1 /*
2  * DMA implementation for Hexagon
3  *
4  * Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18  * 02110-1301, USA.
19  */
20 
21 #include <linux/dma-mapping.h>
22 #include <linux/bootmem.h>
23 #include <linux/genalloc.h>
24 #include <asm/dma-mapping.h>
25 #include <linux/module.h>
26 
27 struct dma_map_ops *dma_ops;
28 EXPORT_SYMBOL(dma_ops);
29 
30 int bad_dma_address;  /*  globals are automatically initialized to zero  */
31 
dma_supported(struct device * dev,u64 mask)32 int dma_supported(struct device *dev, u64 mask)
33 {
34 	if (mask == DMA_BIT_MASK(32))
35 		return 1;
36 	else
37 		return 0;
38 }
39 EXPORT_SYMBOL(dma_supported);
40 
dma_set_mask(struct device * dev,u64 mask)41 int dma_set_mask(struct device *dev, u64 mask)
42 {
43 	if (!dev->dma_mask || !dma_supported(dev, mask))
44 		return -EIO;
45 
46 	*dev->dma_mask = mask;
47 
48 	return 0;
49 }
50 EXPORT_SYMBOL(dma_set_mask);
51 
52 static struct gen_pool *coherent_pool;
53 
54 
55 /* Allocates from a pool of uncached memory that was reserved at boot time */
56 
hexagon_dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t flag,struct dma_attrs * attrs)57 void *hexagon_dma_alloc_coherent(struct device *dev, size_t size,
58 				 dma_addr_t *dma_addr, gfp_t flag,
59 				 struct dma_attrs *attrs)
60 {
61 	void *ret;
62 
63 	if (coherent_pool == NULL) {
64 		coherent_pool = gen_pool_create(PAGE_SHIFT, -1);
65 
66 		if (coherent_pool == NULL)
67 			panic("Can't create %s() memory pool!", __func__);
68 		else
69 			gen_pool_add(coherent_pool,
70 				(PAGE_OFFSET + (max_low_pfn << PAGE_SHIFT)),
71 				hexagon_coherent_pool_size, -1);
72 	}
73 
74 	ret = (void *) gen_pool_alloc(coherent_pool, size);
75 
76 	if (ret) {
77 		memset(ret, 0, size);
78 		*dma_addr = (dma_addr_t) (ret - PAGE_OFFSET);
79 	} else
80 		*dma_addr = ~0;
81 
82 	return ret;
83 }
84 
hexagon_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_addr,struct dma_attrs * attrs)85 static void hexagon_free_coherent(struct device *dev, size_t size, void *vaddr,
86 				  dma_addr_t dma_addr, struct dma_attrs *attrs)
87 {
88 	gen_pool_free(coherent_pool, (unsigned long) vaddr, size);
89 }
90 
check_addr(const char * name,struct device * hwdev,dma_addr_t bus,size_t size)91 static int check_addr(const char *name, struct device *hwdev,
92 		      dma_addr_t bus, size_t size)
93 {
94 	if (hwdev && hwdev->dma_mask && !dma_capable(hwdev, bus, size)) {
95 		if (*hwdev->dma_mask >= DMA_BIT_MASK(32))
96 			printk(KERN_ERR
97 				"%s: overflow %Lx+%zu of device mask %Lx\n",
98 				name, (long long)bus, size,
99 				(long long)*hwdev->dma_mask);
100 		return 0;
101 	}
102 	return 1;
103 }
104 
hexagon_map_sg(struct device * hwdev,struct scatterlist * sg,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)105 static int hexagon_map_sg(struct device *hwdev, struct scatterlist *sg,
106 			  int nents, enum dma_data_direction dir,
107 			  struct dma_attrs *attrs)
108 {
109 	struct scatterlist *s;
110 	int i;
111 
112 	WARN_ON(nents == 0 || sg[0].length == 0);
113 
114 	for_each_sg(sg, s, nents, i) {
115 		s->dma_address = sg_phys(s);
116 		if (!check_addr("map_sg", hwdev, s->dma_address, s->length))
117 			return 0;
118 
119 		s->dma_length = s->length;
120 
121 		flush_dcache_range(PAGE_OFFSET + s->dma_address,
122 				   PAGE_OFFSET + s->dma_address + s->length);
123 	}
124 
125 	return nents;
126 }
127 
128 /*
129  * address is virtual
130  */
dma_sync(void * addr,size_t size,enum dma_data_direction dir)131 static inline void dma_sync(void *addr, size_t size,
132 			    enum dma_data_direction dir)
133 {
134 	switch (dir) {
135 	case DMA_TO_DEVICE:
136 		hexagon_clean_dcache_range((unsigned long) addr,
137 		(unsigned long) addr + size);
138 		break;
139 	case DMA_FROM_DEVICE:
140 		hexagon_inv_dcache_range((unsigned long) addr,
141 		(unsigned long) addr + size);
142 		break;
143 	case DMA_BIDIRECTIONAL:
144 		flush_dcache_range((unsigned long) addr,
145 		(unsigned long) addr + size);
146 		break;
147 	default:
148 		BUG();
149 	}
150 }
151 
dma_addr_to_virt(dma_addr_t dma_addr)152 static inline void *dma_addr_to_virt(dma_addr_t dma_addr)
153 {
154 	return phys_to_virt((unsigned long) dma_addr);
155 }
156 
157 /**
158  * hexagon_map_page() - maps an address for device DMA
159  * @dev:	pointer to DMA device
160  * @page:	pointer to page struct of DMA memory
161  * @offset:	offset within page
162  * @size:	size of memory to map
163  * @dir:	transfer direction
164  * @attrs:	pointer to DMA attrs (not used)
165  *
166  * Called to map a memory address to a DMA address prior
167  * to accesses to/from device.
168  *
169  * We don't particularly have many hoops to jump through
170  * so far.  Straight translation between phys and virtual.
171  *
172  * DMA is not cache coherent so sync is necessary; this
173  * seems to be a convenient place to do it.
174  *
175  */
hexagon_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)176 static dma_addr_t hexagon_map_page(struct device *dev, struct page *page,
177 				   unsigned long offset, size_t size,
178 				   enum dma_data_direction dir,
179 				   struct dma_attrs *attrs)
180 {
181 	dma_addr_t bus = page_to_phys(page) + offset;
182 	WARN_ON(size == 0);
183 
184 	if (!check_addr("map_single", dev, bus, size))
185 		return bad_dma_address;
186 
187 	dma_sync(dma_addr_to_virt(bus), size, dir);
188 
189 	return bus;
190 }
191 
hexagon_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)192 static void hexagon_sync_single_for_cpu(struct device *dev,
193 					dma_addr_t dma_handle, size_t size,
194 					enum dma_data_direction dir)
195 {
196 	dma_sync(dma_addr_to_virt(dma_handle), size, dir);
197 }
198 
hexagon_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)199 static void hexagon_sync_single_for_device(struct device *dev,
200 					dma_addr_t dma_handle, size_t size,
201 					enum dma_data_direction dir)
202 {
203 	dma_sync(dma_addr_to_virt(dma_handle), size, dir);
204 }
205 
206 struct dma_map_ops hexagon_dma_ops = {
207 	.alloc		= hexagon_dma_alloc_coherent,
208 	.free		= hexagon_free_coherent,
209 	.map_sg		= hexagon_map_sg,
210 	.map_page	= hexagon_map_page,
211 	.sync_single_for_cpu = hexagon_sync_single_for_cpu,
212 	.sync_single_for_device = hexagon_sync_single_for_device,
213 	.is_phys	= 1,
214 };
215 
hexagon_dma_init(void)216 void __init hexagon_dma_init(void)
217 {
218 	if (dma_ops)
219 		return;
220 
221 	dma_ops = &hexagon_dma_ops;
222 }
223