1 /*
2 * DMA implementation for Hexagon
3 *
4 * Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 and
8 * only version 2 as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18 * 02110-1301, USA.
19 */
20
21 #include <linux/dma-mapping.h>
22 #include <linux/bootmem.h>
23 #include <linux/genalloc.h>
24 #include <asm/dma-mapping.h>
25 #include <linux/module.h>
26
27 struct dma_map_ops *dma_ops;
28 EXPORT_SYMBOL(dma_ops);
29
30 int bad_dma_address; /* globals are automatically initialized to zero */
31
dma_supported(struct device * dev,u64 mask)32 int dma_supported(struct device *dev, u64 mask)
33 {
34 if (mask == DMA_BIT_MASK(32))
35 return 1;
36 else
37 return 0;
38 }
39 EXPORT_SYMBOL(dma_supported);
40
dma_set_mask(struct device * dev,u64 mask)41 int dma_set_mask(struct device *dev, u64 mask)
42 {
43 if (!dev->dma_mask || !dma_supported(dev, mask))
44 return -EIO;
45
46 *dev->dma_mask = mask;
47
48 return 0;
49 }
50 EXPORT_SYMBOL(dma_set_mask);
51
52 static struct gen_pool *coherent_pool;
53
54
55 /* Allocates from a pool of uncached memory that was reserved at boot time */
56
hexagon_dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t flag,struct dma_attrs * attrs)57 void *hexagon_dma_alloc_coherent(struct device *dev, size_t size,
58 dma_addr_t *dma_addr, gfp_t flag,
59 struct dma_attrs *attrs)
60 {
61 void *ret;
62
63 if (coherent_pool == NULL) {
64 coherent_pool = gen_pool_create(PAGE_SHIFT, -1);
65
66 if (coherent_pool == NULL)
67 panic("Can't create %s() memory pool!", __func__);
68 else
69 gen_pool_add(coherent_pool,
70 (PAGE_OFFSET + (max_low_pfn << PAGE_SHIFT)),
71 hexagon_coherent_pool_size, -1);
72 }
73
74 ret = (void *) gen_pool_alloc(coherent_pool, size);
75
76 if (ret) {
77 memset(ret, 0, size);
78 *dma_addr = (dma_addr_t) (ret - PAGE_OFFSET);
79 } else
80 *dma_addr = ~0;
81
82 return ret;
83 }
84
hexagon_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_addr,struct dma_attrs * attrs)85 static void hexagon_free_coherent(struct device *dev, size_t size, void *vaddr,
86 dma_addr_t dma_addr, struct dma_attrs *attrs)
87 {
88 gen_pool_free(coherent_pool, (unsigned long) vaddr, size);
89 }
90
check_addr(const char * name,struct device * hwdev,dma_addr_t bus,size_t size)91 static int check_addr(const char *name, struct device *hwdev,
92 dma_addr_t bus, size_t size)
93 {
94 if (hwdev && hwdev->dma_mask && !dma_capable(hwdev, bus, size)) {
95 if (*hwdev->dma_mask >= DMA_BIT_MASK(32))
96 printk(KERN_ERR
97 "%s: overflow %Lx+%zu of device mask %Lx\n",
98 name, (long long)bus, size,
99 (long long)*hwdev->dma_mask);
100 return 0;
101 }
102 return 1;
103 }
104
hexagon_map_sg(struct device * hwdev,struct scatterlist * sg,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)105 static int hexagon_map_sg(struct device *hwdev, struct scatterlist *sg,
106 int nents, enum dma_data_direction dir,
107 struct dma_attrs *attrs)
108 {
109 struct scatterlist *s;
110 int i;
111
112 WARN_ON(nents == 0 || sg[0].length == 0);
113
114 for_each_sg(sg, s, nents, i) {
115 s->dma_address = sg_phys(s);
116 if (!check_addr("map_sg", hwdev, s->dma_address, s->length))
117 return 0;
118
119 s->dma_length = s->length;
120
121 flush_dcache_range(PAGE_OFFSET + s->dma_address,
122 PAGE_OFFSET + s->dma_address + s->length);
123 }
124
125 return nents;
126 }
127
128 /*
129 * address is virtual
130 */
dma_sync(void * addr,size_t size,enum dma_data_direction dir)131 static inline void dma_sync(void *addr, size_t size,
132 enum dma_data_direction dir)
133 {
134 switch (dir) {
135 case DMA_TO_DEVICE:
136 hexagon_clean_dcache_range((unsigned long) addr,
137 (unsigned long) addr + size);
138 break;
139 case DMA_FROM_DEVICE:
140 hexagon_inv_dcache_range((unsigned long) addr,
141 (unsigned long) addr + size);
142 break;
143 case DMA_BIDIRECTIONAL:
144 flush_dcache_range((unsigned long) addr,
145 (unsigned long) addr + size);
146 break;
147 default:
148 BUG();
149 }
150 }
151
dma_addr_to_virt(dma_addr_t dma_addr)152 static inline void *dma_addr_to_virt(dma_addr_t dma_addr)
153 {
154 return phys_to_virt((unsigned long) dma_addr);
155 }
156
157 /**
158 * hexagon_map_page() - maps an address for device DMA
159 * @dev: pointer to DMA device
160 * @page: pointer to page struct of DMA memory
161 * @offset: offset within page
162 * @size: size of memory to map
163 * @dir: transfer direction
164 * @attrs: pointer to DMA attrs (not used)
165 *
166 * Called to map a memory address to a DMA address prior
167 * to accesses to/from device.
168 *
169 * We don't particularly have many hoops to jump through
170 * so far. Straight translation between phys and virtual.
171 *
172 * DMA is not cache coherent so sync is necessary; this
173 * seems to be a convenient place to do it.
174 *
175 */
hexagon_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)176 static dma_addr_t hexagon_map_page(struct device *dev, struct page *page,
177 unsigned long offset, size_t size,
178 enum dma_data_direction dir,
179 struct dma_attrs *attrs)
180 {
181 dma_addr_t bus = page_to_phys(page) + offset;
182 WARN_ON(size == 0);
183
184 if (!check_addr("map_single", dev, bus, size))
185 return bad_dma_address;
186
187 dma_sync(dma_addr_to_virt(bus), size, dir);
188
189 return bus;
190 }
191
hexagon_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)192 static void hexagon_sync_single_for_cpu(struct device *dev,
193 dma_addr_t dma_handle, size_t size,
194 enum dma_data_direction dir)
195 {
196 dma_sync(dma_addr_to_virt(dma_handle), size, dir);
197 }
198
hexagon_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)199 static void hexagon_sync_single_for_device(struct device *dev,
200 dma_addr_t dma_handle, size_t size,
201 enum dma_data_direction dir)
202 {
203 dma_sync(dma_addr_to_virt(dma_handle), size, dir);
204 }
205
206 struct dma_map_ops hexagon_dma_ops = {
207 .alloc = hexagon_dma_alloc_coherent,
208 .free = hexagon_free_coherent,
209 .map_sg = hexagon_map_sg,
210 .map_page = hexagon_map_page,
211 .sync_single_for_cpu = hexagon_sync_single_for_cpu,
212 .sync_single_for_device = hexagon_sync_single_for_device,
213 .is_phys = 1,
214 };
215
hexagon_dma_init(void)216 void __init hexagon_dma_init(void)
217 {
218 if (dma_ops)
219 return;
220
221 dma_ops = &hexagon_dma_ops;
222 }
223