1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_DMA_MAPPING_H
3 #define _LINUX_DMA_MAPPING_H
4 
5 #include <linux/sizes.h>
6 #include <linux/string.h>
7 #include <linux/device.h>
8 #include <linux/err.h>
9 #include <linux/dma-direction.h>
10 #include <linux/scatterlist.h>
11 #include <linux/bug.h>
12 #include <linux/mem_encrypt.h>
13 
14 /**
15  * List of possible attributes associated with a DMA mapping. The semantics
16  * of each attribute should be defined in Documentation/core-api/dma-attributes.rst.
17  */
18 
19 /*
20  * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
21  * may be weakly ordered, that is that reads and writes may pass each other.
22  */
23 #define DMA_ATTR_WEAK_ORDERING		(1UL << 1)
24 /*
25  * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
26  * buffered to improve performance.
27  */
28 #define DMA_ATTR_WRITE_COMBINE		(1UL << 2)
29 /*
30  * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
31  * virtual mapping for the allocated buffer.
32  */
33 #define DMA_ATTR_NO_KERNEL_MAPPING	(1UL << 4)
34 /*
35  * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
36  * the CPU cache for the given buffer assuming that it has been already
37  * transferred to 'device' domain.
38  */
39 #define DMA_ATTR_SKIP_CPU_SYNC		(1UL << 5)
40 /*
41  * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
42  * in physical memory.
43  */
44 #define DMA_ATTR_FORCE_CONTIGUOUS	(1UL << 6)
45 /*
46  * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
47  * that it's probably not worth the time to try to allocate memory to in a way
48  * that gives better TLB efficiency.
49  */
50 #define DMA_ATTR_ALLOC_SINGLE_PAGES	(1UL << 7)
51 /*
52  * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
53  * allocation failure reports (similarly to __GFP_NOWARN).
54  */
55 #define DMA_ATTR_NO_WARN	(1UL << 8)
56 
57 /*
58  * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully
59  * accessible at an elevated privilege level (and ideally inaccessible or
60  * at least read-only at lesser-privileged levels).
61  */
62 #define DMA_ATTR_PRIVILEGED		(1UL << 9)
63 
64 /*
65  * A dma_addr_t can hold any valid DMA or bus address for the platform.  It can
66  * be given to a device to use as a DMA source or target.  It is specific to a
67  * given device and there may be a translation between the CPU physical address
68  * space and the bus address space.
69  *
70  * DMA_MAPPING_ERROR is the magic error code if a mapping failed.  It should not
71  * be used directly in drivers, but checked for using dma_mapping_error()
72  * instead.
73  */
74 #define DMA_MAPPING_ERROR		(~(dma_addr_t)0)
75 
76 #define DMA_BIT_MASK(n)	(((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
77 
78 #ifdef CONFIG_DMA_API_DEBUG
79 void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr);
80 void debug_dma_map_single(struct device *dev, const void *addr,
81 		unsigned long len);
82 #else
debug_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)83 static inline void debug_dma_mapping_error(struct device *dev,
84 		dma_addr_t dma_addr)
85 {
86 }
debug_dma_map_single(struct device * dev,const void * addr,unsigned long len)87 static inline void debug_dma_map_single(struct device *dev, const void *addr,
88 		unsigned long len)
89 {
90 }
91 #endif /* CONFIG_DMA_API_DEBUG */
92 
93 #ifdef CONFIG_HAS_DMA
dma_mapping_error(struct device * dev,dma_addr_t dma_addr)94 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
95 {
96 	debug_dma_mapping_error(dev, dma_addr);
97 
98 	if (unlikely(dma_addr == DMA_MAPPING_ERROR))
99 		return -ENOMEM;
100 	return 0;
101 }
102 
103 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
104 		size_t offset, size_t size, enum dma_data_direction dir,
105 		unsigned long attrs);
106 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
107 		enum dma_data_direction dir, unsigned long attrs);
108 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
109 		int nents, enum dma_data_direction dir, unsigned long attrs);
110 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
111 				      int nents, enum dma_data_direction dir,
112 				      unsigned long attrs);
113 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
114 		enum dma_data_direction dir, unsigned long attrs);
115 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
116 		size_t size, enum dma_data_direction dir, unsigned long attrs);
117 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
118 		enum dma_data_direction dir, unsigned long attrs);
119 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
120 		enum dma_data_direction dir);
121 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
122 		size_t size, enum dma_data_direction dir);
123 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
124 		    int nelems, enum dma_data_direction dir);
125 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
126 		       int nelems, enum dma_data_direction dir);
127 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
128 		gfp_t flag, unsigned long attrs);
129 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
130 		dma_addr_t dma_handle, unsigned long attrs);
131 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
132 		gfp_t gfp, unsigned long attrs);
133 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
134 		dma_addr_t dma_handle);
135 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
136 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
137 		unsigned long attrs);
138 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
139 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
140 		unsigned long attrs);
141 bool dma_can_mmap(struct device *dev);
142 int dma_supported(struct device *dev, u64 mask);
143 int dma_set_mask(struct device *dev, u64 mask);
144 int dma_set_coherent_mask(struct device *dev, u64 mask);
145 u64 dma_get_required_mask(struct device *dev);
146 size_t dma_max_mapping_size(struct device *dev);
147 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr);
148 unsigned long dma_get_merge_boundary(struct device *dev);
149 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
150 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs);
151 void dma_free_noncontiguous(struct device *dev, size_t size,
152 		struct sg_table *sgt, enum dma_data_direction dir);
153 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
154 		struct sg_table *sgt);
155 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr);
156 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
157 		size_t size, struct sg_table *sgt);
158 #else /* CONFIG_HAS_DMA */
dma_map_page_attrs(struct device * dev,struct page * page,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)159 static inline dma_addr_t dma_map_page_attrs(struct device *dev,
160 		struct page *page, size_t offset, size_t size,
161 		enum dma_data_direction dir, unsigned long attrs)
162 {
163 	return DMA_MAPPING_ERROR;
164 }
dma_unmap_page_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)165 static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr,
166 		size_t size, enum dma_data_direction dir, unsigned long attrs)
167 {
168 }
dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)169 static inline unsigned int dma_map_sg_attrs(struct device *dev,
170 		struct scatterlist *sg, int nents, enum dma_data_direction dir,
171 		unsigned long attrs)
172 {
173 	return 0;
174 }
dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)175 static inline void dma_unmap_sg_attrs(struct device *dev,
176 		struct scatterlist *sg, int nents, enum dma_data_direction dir,
177 		unsigned long attrs)
178 {
179 }
dma_map_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)180 static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
181 		enum dma_data_direction dir, unsigned long attrs)
182 {
183 	return -EOPNOTSUPP;
184 }
dma_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)185 static inline dma_addr_t dma_map_resource(struct device *dev,
186 		phys_addr_t phys_addr, size_t size, enum dma_data_direction dir,
187 		unsigned long attrs)
188 {
189 	return DMA_MAPPING_ERROR;
190 }
dma_unmap_resource(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)191 static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
192 		size_t size, enum dma_data_direction dir, unsigned long attrs)
193 {
194 }
dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)195 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
196 		size_t size, enum dma_data_direction dir)
197 {
198 }
dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)199 static inline void dma_sync_single_for_device(struct device *dev,
200 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
201 {
202 }
dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)203 static inline void dma_sync_sg_for_cpu(struct device *dev,
204 		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
205 {
206 }
dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)207 static inline void dma_sync_sg_for_device(struct device *dev,
208 		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
209 {
210 }
dma_mapping_error(struct device * dev,dma_addr_t dma_addr)211 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
212 {
213 	return -ENOMEM;
214 }
dma_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)215 static inline void *dma_alloc_attrs(struct device *dev, size_t size,
216 		dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
217 {
218 	return NULL;
219 }
dma_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)220 static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
221 		dma_addr_t dma_handle, unsigned long attrs)
222 {
223 }
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)224 static inline void *dmam_alloc_attrs(struct device *dev, size_t size,
225 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
226 {
227 	return NULL;
228 }
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)229 static inline void dmam_free_coherent(struct device *dev, size_t size,
230 		void *vaddr, dma_addr_t dma_handle)
231 {
232 }
dma_get_sgtable_attrs(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)233 static inline int dma_get_sgtable_attrs(struct device *dev,
234 		struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr,
235 		size_t size, unsigned long attrs)
236 {
237 	return -ENXIO;
238 }
dma_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)239 static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
240 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
241 		unsigned long attrs)
242 {
243 	return -ENXIO;
244 }
dma_can_mmap(struct device * dev)245 static inline bool dma_can_mmap(struct device *dev)
246 {
247 	return false;
248 }
dma_supported(struct device * dev,u64 mask)249 static inline int dma_supported(struct device *dev, u64 mask)
250 {
251 	return 0;
252 }
dma_set_mask(struct device * dev,u64 mask)253 static inline int dma_set_mask(struct device *dev, u64 mask)
254 {
255 	return -EIO;
256 }
dma_set_coherent_mask(struct device * dev,u64 mask)257 static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
258 {
259 	return -EIO;
260 }
dma_get_required_mask(struct device * dev)261 static inline u64 dma_get_required_mask(struct device *dev)
262 {
263 	return 0;
264 }
dma_max_mapping_size(struct device * dev)265 static inline size_t dma_max_mapping_size(struct device *dev)
266 {
267 	return 0;
268 }
dma_need_sync(struct device * dev,dma_addr_t dma_addr)269 static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
270 {
271 	return false;
272 }
dma_get_merge_boundary(struct device * dev)273 static inline unsigned long dma_get_merge_boundary(struct device *dev)
274 {
275 	return 0;
276 }
dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)277 static inline struct sg_table *dma_alloc_noncontiguous(struct device *dev,
278 		size_t size, enum dma_data_direction dir, gfp_t gfp,
279 		unsigned long attrs)
280 {
281 	return NULL;
282 }
dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)283 static inline void dma_free_noncontiguous(struct device *dev, size_t size,
284 		struct sg_table *sgt, enum dma_data_direction dir)
285 {
286 }
dma_vmap_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt)287 static inline void *dma_vmap_noncontiguous(struct device *dev, size_t size,
288 		struct sg_table *sgt)
289 {
290 	return NULL;
291 }
dma_vunmap_noncontiguous(struct device * dev,void * vaddr)292 static inline void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
293 {
294 }
dma_mmap_noncontiguous(struct device * dev,struct vm_area_struct * vma,size_t size,struct sg_table * sgt)295 static inline int dma_mmap_noncontiguous(struct device *dev,
296 		struct vm_area_struct *vma, size_t size, struct sg_table *sgt)
297 {
298 	return -EINVAL;
299 }
300 #endif /* CONFIG_HAS_DMA */
301 
302 struct page *dma_alloc_pages(struct device *dev, size_t size,
303 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
304 void dma_free_pages(struct device *dev, size_t size, struct page *page,
305 		dma_addr_t dma_handle, enum dma_data_direction dir);
306 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
307 		size_t size, struct page *page);
308 
dma_alloc_noncoherent(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)309 static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
310 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
311 {
312 	struct page *page = dma_alloc_pages(dev, size, dma_handle, dir, gfp);
313 	return page ? page_address(page) : NULL;
314 }
315 
dma_free_noncoherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,enum dma_data_direction dir)316 static inline void dma_free_noncoherent(struct device *dev, size_t size,
317 		void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir)
318 {
319 	dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir);
320 }
321 
dma_map_single_attrs(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir,unsigned long attrs)322 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
323 		size_t size, enum dma_data_direction dir, unsigned long attrs)
324 {
325 	/* DMA must never operate on areas that might be remapped. */
326 	if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr),
327 			  "rejecting DMA map of vmalloc memory\n"))
328 		return DMA_MAPPING_ERROR;
329 	debug_dma_map_single(dev, ptr, size);
330 	return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr),
331 			size, dir, attrs);
332 }
333 
dma_unmap_single_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)334 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
335 		size_t size, enum dma_data_direction dir, unsigned long attrs)
336 {
337 	return dma_unmap_page_attrs(dev, addr, size, dir, attrs);
338 }
339 
dma_sync_single_range_for_cpu(struct device * dev,dma_addr_t addr,unsigned long offset,size_t size,enum dma_data_direction dir)340 static inline void dma_sync_single_range_for_cpu(struct device *dev,
341 		dma_addr_t addr, unsigned long offset, size_t size,
342 		enum dma_data_direction dir)
343 {
344 	return dma_sync_single_for_cpu(dev, addr + offset, size, dir);
345 }
346 
dma_sync_single_range_for_device(struct device * dev,dma_addr_t addr,unsigned long offset,size_t size,enum dma_data_direction dir)347 static inline void dma_sync_single_range_for_device(struct device *dev,
348 		dma_addr_t addr, unsigned long offset, size_t size,
349 		enum dma_data_direction dir)
350 {
351 	return dma_sync_single_for_device(dev, addr + offset, size, dir);
352 }
353 
354 /**
355  * dma_unmap_sgtable - Unmap the given buffer for DMA
356  * @dev:	The device for which to perform the DMA operation
357  * @sgt:	The sg_table object describing the buffer
358  * @dir:	DMA direction
359  * @attrs:	Optional DMA attributes for the unmap operation
360  *
361  * Unmaps a buffer described by a scatterlist stored in the given sg_table
362  * object for the @dir DMA operation by the @dev device. After this function
363  * the ownership of the buffer is transferred back to the CPU domain.
364  */
dma_unmap_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)365 static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt,
366 		enum dma_data_direction dir, unsigned long attrs)
367 {
368 	dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
369 }
370 
371 /**
372  * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access
373  * @dev:	The device for which to perform the DMA operation
374  * @sgt:	The sg_table object describing the buffer
375  * @dir:	DMA direction
376  *
377  * Performs the needed cache synchronization and moves the ownership of the
378  * buffer back to the CPU domain, so it is safe to perform any access to it
379  * by the CPU. Before doing any further DMA operations, one has to transfer
380  * the ownership of the buffer back to the DMA domain by calling the
381  * dma_sync_sgtable_for_device().
382  */
dma_sync_sgtable_for_cpu(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)383 static inline void dma_sync_sgtable_for_cpu(struct device *dev,
384 		struct sg_table *sgt, enum dma_data_direction dir)
385 {
386 	dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir);
387 }
388 
389 /**
390  * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA
391  * @dev:	The device for which to perform the DMA operation
392  * @sgt:	The sg_table object describing the buffer
393  * @dir:	DMA direction
394  *
395  * Performs the needed cache synchronization and moves the ownership of the
396  * buffer back to the DMA domain, so it is safe to perform the DMA operation.
397  * Once finished, one has to call dma_sync_sgtable_for_cpu() or
398  * dma_unmap_sgtable().
399  */
dma_sync_sgtable_for_device(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)400 static inline void dma_sync_sgtable_for_device(struct device *dev,
401 		struct sg_table *sgt, enum dma_data_direction dir)
402 {
403 	dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir);
404 }
405 
406 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
407 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
408 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
409 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
410 #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0)
411 #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0)
412 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
413 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
414 
dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)415 static inline void *dma_alloc_coherent(struct device *dev, size_t size,
416 		dma_addr_t *dma_handle, gfp_t gfp)
417 {
418 	return dma_alloc_attrs(dev, size, dma_handle, gfp,
419 			(gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
420 }
421 
dma_free_coherent(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle)422 static inline void dma_free_coherent(struct device *dev, size_t size,
423 		void *cpu_addr, dma_addr_t dma_handle)
424 {
425 	return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
426 }
427 
428 
dma_get_mask(struct device * dev)429 static inline u64 dma_get_mask(struct device *dev)
430 {
431 	if (dev->dma_mask && *dev->dma_mask)
432 		return *dev->dma_mask;
433 	return DMA_BIT_MASK(32);
434 }
435 
436 /*
437  * Set both the DMA mask and the coherent DMA mask to the same thing.
438  * Note that we don't check the return value from dma_set_coherent_mask()
439  * as the DMA API guarantees that the coherent DMA mask can be set to
440  * the same or smaller than the streaming DMA mask.
441  */
dma_set_mask_and_coherent(struct device * dev,u64 mask)442 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
443 {
444 	int rc = dma_set_mask(dev, mask);
445 	if (rc == 0)
446 		dma_set_coherent_mask(dev, mask);
447 	return rc;
448 }
449 
450 /*
451  * Similar to the above, except it deals with the case where the device
452  * does not have dev->dma_mask appropriately setup.
453  */
dma_coerce_mask_and_coherent(struct device * dev,u64 mask)454 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
455 {
456 	dev->dma_mask = &dev->coherent_dma_mask;
457 	return dma_set_mask_and_coherent(dev, mask);
458 }
459 
460 /**
461  * dma_addressing_limited - return if the device is addressing limited
462  * @dev:	device to check
463  *
464  * Return %true if the devices DMA mask is too small to address all memory in
465  * the system, else %false.  Lack of addressing bits is the prime reason for
466  * bounce buffering, but might not be the only one.
467  */
dma_addressing_limited(struct device * dev)468 static inline bool dma_addressing_limited(struct device *dev)
469 {
470 	return min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
471 			    dma_get_required_mask(dev);
472 }
473 
dma_get_max_seg_size(struct device * dev)474 static inline unsigned int dma_get_max_seg_size(struct device *dev)
475 {
476 	if (dev->dma_parms && dev->dma_parms->max_segment_size)
477 		return dev->dma_parms->max_segment_size;
478 	return SZ_64K;
479 }
480 
dma_set_max_seg_size(struct device * dev,unsigned int size)481 static inline int dma_set_max_seg_size(struct device *dev, unsigned int size)
482 {
483 	if (dev->dma_parms) {
484 		dev->dma_parms->max_segment_size = size;
485 		return 0;
486 	}
487 	return -EIO;
488 }
489 
dma_get_seg_boundary(struct device * dev)490 static inline unsigned long dma_get_seg_boundary(struct device *dev)
491 {
492 	if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
493 		return dev->dma_parms->segment_boundary_mask;
494 	return ULONG_MAX;
495 }
496 
497 /**
498  * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units
499  * @dev: device to guery the boundary for
500  * @page_shift: ilog() of the IOMMU page size
501  *
502  * Return the segment boundary in IOMMU page units (which may be different from
503  * the CPU page size) for the passed in device.
504  *
505  * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for
506  * non-DMA API callers.
507  */
dma_get_seg_boundary_nr_pages(struct device * dev,unsigned int page_shift)508 static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev,
509 		unsigned int page_shift)
510 {
511 	if (!dev)
512 		return (U32_MAX >> page_shift) + 1;
513 	return (dma_get_seg_boundary(dev) >> page_shift) + 1;
514 }
515 
dma_set_seg_boundary(struct device * dev,unsigned long mask)516 static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
517 {
518 	if (dev->dma_parms) {
519 		dev->dma_parms->segment_boundary_mask = mask;
520 		return 0;
521 	}
522 	return -EIO;
523 }
524 
dma_get_min_align_mask(struct device * dev)525 static inline unsigned int dma_get_min_align_mask(struct device *dev)
526 {
527 	if (dev->dma_parms)
528 		return dev->dma_parms->min_align_mask;
529 	return 0;
530 }
531 
dma_set_min_align_mask(struct device * dev,unsigned int min_align_mask)532 static inline int dma_set_min_align_mask(struct device *dev,
533 		unsigned int min_align_mask)
534 {
535 	if (WARN_ON_ONCE(!dev->dma_parms))
536 		return -EIO;
537 	dev->dma_parms->min_align_mask = min_align_mask;
538 	return 0;
539 }
540 
dma_get_cache_alignment(void)541 static inline int dma_get_cache_alignment(void)
542 {
543 #ifdef ARCH_DMA_MINALIGN
544 	return ARCH_DMA_MINALIGN;
545 #endif
546 	return 1;
547 }
548 
dmam_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)549 static inline void *dmam_alloc_coherent(struct device *dev, size_t size,
550 		dma_addr_t *dma_handle, gfp_t gfp)
551 {
552 	return dmam_alloc_attrs(dev, size, dma_handle, gfp,
553 			(gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
554 }
555 
dma_alloc_wc(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t gfp)556 static inline void *dma_alloc_wc(struct device *dev, size_t size,
557 				 dma_addr_t *dma_addr, gfp_t gfp)
558 {
559 	unsigned long attrs = DMA_ATTR_WRITE_COMBINE;
560 
561 	if (gfp & __GFP_NOWARN)
562 		attrs |= DMA_ATTR_NO_WARN;
563 
564 	return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs);
565 }
566 
dma_free_wc(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr)567 static inline void dma_free_wc(struct device *dev, size_t size,
568 			       void *cpu_addr, dma_addr_t dma_addr)
569 {
570 	return dma_free_attrs(dev, size, cpu_addr, dma_addr,
571 			      DMA_ATTR_WRITE_COMBINE);
572 }
573 
dma_mmap_wc(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)574 static inline int dma_mmap_wc(struct device *dev,
575 			      struct vm_area_struct *vma,
576 			      void *cpu_addr, dma_addr_t dma_addr,
577 			      size_t size)
578 {
579 	return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
580 			      DMA_ATTR_WRITE_COMBINE);
581 }
582 
583 #ifdef CONFIG_NEED_DMA_MAP_STATE
584 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)        dma_addr_t ADDR_NAME
585 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)          __u32 LEN_NAME
586 #define dma_unmap_addr(PTR, ADDR_NAME)           ((PTR)->ADDR_NAME)
587 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  (((PTR)->ADDR_NAME) = (VAL))
588 #define dma_unmap_len(PTR, LEN_NAME)             ((PTR)->LEN_NAME)
589 #define dma_unmap_len_set(PTR, LEN_NAME, VAL)    (((PTR)->LEN_NAME) = (VAL))
590 #else
591 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
592 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
593 #define dma_unmap_addr(PTR, ADDR_NAME)           (0)
594 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  do { } while (0)
595 #define dma_unmap_len(PTR, LEN_NAME)             (0)
596 #define dma_unmap_len_set(PTR, LEN_NAME, VAL)    do { } while (0)
597 #endif
598 
599 #endif /* _LINUX_DMA_MAPPING_H */
600