1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/dma-fence-unwrap.h>
19 #include <linux/anon_inodes.h>
20 #include <linux/export.h>
21 #include <linux/debugfs.h>
22 #include <linux/module.h>
23 #include <linux/seq_file.h>
24 #include <linux/sync_file.h>
25 #include <linux/poll.h>
26 #include <linux/dma-resv.h>
27 #include <linux/mm.h>
28 #include <linux/mount.h>
29 #include <linux/pseudo_fs.h>
30 
31 #include <uapi/linux/dma-buf.h>
32 #include <uapi/linux/magic.h>
33 
34 #include "dma-buf-sysfs-stats.h"
35 
36 static inline int is_dma_buf_file(struct file *);
37 
38 struct dma_buf_list {
39 	struct list_head head;
40 	struct mutex lock;
41 };
42 
43 static struct dma_buf_list db_list;
44 
dmabuffs_dname(struct dentry * dentry,char * buffer,int buflen)45 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
46 {
47 	struct dma_buf *dmabuf;
48 	char name[DMA_BUF_NAME_LEN];
49 	size_t ret = 0;
50 
51 	dmabuf = dentry->d_fsdata;
52 	spin_lock(&dmabuf->name_lock);
53 	if (dmabuf->name)
54 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
55 	spin_unlock(&dmabuf->name_lock);
56 
57 	return dynamic_dname(buffer, buflen, "/%s:%s",
58 			     dentry->d_name.name, ret > 0 ? name : "");
59 }
60 
dma_buf_release(struct dentry * dentry)61 static void dma_buf_release(struct dentry *dentry)
62 {
63 	struct dma_buf *dmabuf;
64 
65 	dmabuf = dentry->d_fsdata;
66 	if (unlikely(!dmabuf))
67 		return;
68 
69 	BUG_ON(dmabuf->vmapping_counter);
70 
71 	/*
72 	 * If you hit this BUG() it could mean:
73 	 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
74 	 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
75 	 */
76 	BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
77 
78 	dma_buf_stats_teardown(dmabuf);
79 	dmabuf->ops->release(dmabuf);
80 
81 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
82 		dma_resv_fini(dmabuf->resv);
83 
84 	WARN_ON(!list_empty(&dmabuf->attachments));
85 	module_put(dmabuf->owner);
86 	kfree(dmabuf->name);
87 	kfree(dmabuf);
88 }
89 
dma_buf_file_release(struct inode * inode,struct file * file)90 static int dma_buf_file_release(struct inode *inode, struct file *file)
91 {
92 	struct dma_buf *dmabuf;
93 
94 	if (!is_dma_buf_file(file))
95 		return -EINVAL;
96 
97 	dmabuf = file->private_data;
98 	if (dmabuf) {
99 		mutex_lock(&db_list.lock);
100 		list_del(&dmabuf->list_node);
101 		mutex_unlock(&db_list.lock);
102 	}
103 
104 	return 0;
105 }
106 
107 static const struct dentry_operations dma_buf_dentry_ops = {
108 	.d_dname = dmabuffs_dname,
109 	.d_release = dma_buf_release,
110 };
111 
112 static struct vfsmount *dma_buf_mnt;
113 
dma_buf_fs_init_context(struct fs_context * fc)114 static int dma_buf_fs_init_context(struct fs_context *fc)
115 {
116 	struct pseudo_fs_context *ctx;
117 
118 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
119 	if (!ctx)
120 		return -ENOMEM;
121 	ctx->dops = &dma_buf_dentry_ops;
122 	return 0;
123 }
124 
125 static struct file_system_type dma_buf_fs_type = {
126 	.name = "dmabuf",
127 	.init_fs_context = dma_buf_fs_init_context,
128 	.kill_sb = kill_anon_super,
129 };
130 
dma_buf_mmap_internal(struct file * file,struct vm_area_struct * vma)131 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct dma_buf *dmabuf;
134 
135 	if (!is_dma_buf_file(file))
136 		return -EINVAL;
137 
138 	dmabuf = file->private_data;
139 
140 	/* check if buffer supports mmap */
141 	if (!dmabuf->ops->mmap)
142 		return -EINVAL;
143 
144 	/* check for overflowing the buffer's size */
145 	if (vma->vm_pgoff + vma_pages(vma) >
146 	    dmabuf->size >> PAGE_SHIFT)
147 		return -EINVAL;
148 
149 	return dmabuf->ops->mmap(dmabuf, vma);
150 }
151 
dma_buf_llseek(struct file * file,loff_t offset,int whence)152 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
153 {
154 	struct dma_buf *dmabuf;
155 	loff_t base;
156 
157 	if (!is_dma_buf_file(file))
158 		return -EBADF;
159 
160 	dmabuf = file->private_data;
161 
162 	/* only support discovering the end of the buffer,
163 	   but also allow SEEK_SET to maintain the idiomatic
164 	   SEEK_END(0), SEEK_CUR(0) pattern */
165 	if (whence == SEEK_END)
166 		base = dmabuf->size;
167 	else if (whence == SEEK_SET)
168 		base = 0;
169 	else
170 		return -EINVAL;
171 
172 	if (offset != 0)
173 		return -EINVAL;
174 
175 	return base + offset;
176 }
177 
178 /**
179  * DOC: implicit fence polling
180  *
181  * To support cross-device and cross-driver synchronization of buffer access
182  * implicit fences (represented internally in the kernel with &struct dma_fence)
183  * can be attached to a &dma_buf. The glue for that and a few related things are
184  * provided in the &dma_resv structure.
185  *
186  * Userspace can query the state of these implicitly tracked fences using poll()
187  * and related system calls:
188  *
189  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
190  *   most recent write or exclusive fence.
191  *
192  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
193  *   all attached fences, shared and exclusive ones.
194  *
195  * Note that this only signals the completion of the respective fences, i.e. the
196  * DMA transfers are complete. Cache flushing and any other necessary
197  * preparations before CPU access can begin still need to happen.
198  *
199  * As an alternative to poll(), the set of fences on DMA buffer can be
200  * exported as a &sync_file using &dma_buf_sync_file_export.
201  */
202 
dma_buf_poll_cb(struct dma_fence * fence,struct dma_fence_cb * cb)203 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
204 {
205 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
206 	struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
207 	unsigned long flags;
208 
209 	spin_lock_irqsave(&dcb->poll->lock, flags);
210 	wake_up_locked_poll(dcb->poll, dcb->active);
211 	dcb->active = 0;
212 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
213 	dma_fence_put(fence);
214 	/* Paired with get_file in dma_buf_poll */
215 	fput(dmabuf->file);
216 }
217 
dma_buf_poll_add_cb(struct dma_resv * resv,bool write,struct dma_buf_poll_cb_t * dcb)218 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
219 				struct dma_buf_poll_cb_t *dcb)
220 {
221 	struct dma_resv_iter cursor;
222 	struct dma_fence *fence;
223 	int r;
224 
225 	dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
226 				fence) {
227 		dma_fence_get(fence);
228 		r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
229 		if (!r)
230 			return true;
231 		dma_fence_put(fence);
232 	}
233 
234 	return false;
235 }
236 
dma_buf_poll(struct file * file,poll_table * poll)237 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
238 {
239 	struct dma_buf *dmabuf;
240 	struct dma_resv *resv;
241 	__poll_t events;
242 
243 	dmabuf = file->private_data;
244 	if (!dmabuf || !dmabuf->resv)
245 		return EPOLLERR;
246 
247 	resv = dmabuf->resv;
248 
249 	poll_wait(file, &dmabuf->poll, poll);
250 
251 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
252 	if (!events)
253 		return 0;
254 
255 	dma_resv_lock(resv, NULL);
256 
257 	if (events & EPOLLOUT) {
258 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
259 
260 		/* Check that callback isn't busy */
261 		spin_lock_irq(&dmabuf->poll.lock);
262 		if (dcb->active)
263 			events &= ~EPOLLOUT;
264 		else
265 			dcb->active = EPOLLOUT;
266 		spin_unlock_irq(&dmabuf->poll.lock);
267 
268 		if (events & EPOLLOUT) {
269 			/* Paired with fput in dma_buf_poll_cb */
270 			get_file(dmabuf->file);
271 
272 			if (!dma_buf_poll_add_cb(resv, true, dcb))
273 				/* No callback queued, wake up any other waiters */
274 				dma_buf_poll_cb(NULL, &dcb->cb);
275 			else
276 				events &= ~EPOLLOUT;
277 		}
278 	}
279 
280 	if (events & EPOLLIN) {
281 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
282 
283 		/* Check that callback isn't busy */
284 		spin_lock_irq(&dmabuf->poll.lock);
285 		if (dcb->active)
286 			events &= ~EPOLLIN;
287 		else
288 			dcb->active = EPOLLIN;
289 		spin_unlock_irq(&dmabuf->poll.lock);
290 
291 		if (events & EPOLLIN) {
292 			/* Paired with fput in dma_buf_poll_cb */
293 			get_file(dmabuf->file);
294 
295 			if (!dma_buf_poll_add_cb(resv, false, dcb))
296 				/* No callback queued, wake up any other waiters */
297 				dma_buf_poll_cb(NULL, &dcb->cb);
298 			else
299 				events &= ~EPOLLIN;
300 		}
301 	}
302 
303 	dma_resv_unlock(resv);
304 	return events;
305 }
306 
307 /**
308  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
309  * It could support changing the name of the dma-buf if the same
310  * piece of memory is used for multiple purpose between different devices.
311  *
312  * @dmabuf: [in]     dmabuf buffer that will be renamed.
313  * @buf:    [in]     A piece of userspace memory that contains the name of
314  *                   the dma-buf.
315  *
316  * Returns 0 on success. If the dma-buf buffer is already attached to
317  * devices, return -EBUSY.
318  *
319  */
dma_buf_set_name(struct dma_buf * dmabuf,const char __user * buf)320 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
321 {
322 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
323 
324 	if (IS_ERR(name))
325 		return PTR_ERR(name);
326 
327 	spin_lock(&dmabuf->name_lock);
328 	kfree(dmabuf->name);
329 	dmabuf->name = name;
330 	spin_unlock(&dmabuf->name_lock);
331 
332 	return 0;
333 }
334 
335 #if IS_ENABLED(CONFIG_SYNC_FILE)
dma_buf_export_sync_file(struct dma_buf * dmabuf,void __user * user_data)336 static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
337 				     void __user *user_data)
338 {
339 	struct dma_buf_export_sync_file arg;
340 	enum dma_resv_usage usage;
341 	struct dma_fence *fence = NULL;
342 	struct sync_file *sync_file;
343 	int fd, ret;
344 
345 	if (copy_from_user(&arg, user_data, sizeof(arg)))
346 		return -EFAULT;
347 
348 	if (arg.flags & ~DMA_BUF_SYNC_RW)
349 		return -EINVAL;
350 
351 	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
352 		return -EINVAL;
353 
354 	fd = get_unused_fd_flags(O_CLOEXEC);
355 	if (fd < 0)
356 		return fd;
357 
358 	usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
359 	ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
360 	if (ret)
361 		goto err_put_fd;
362 
363 	if (!fence)
364 		fence = dma_fence_get_stub();
365 
366 	sync_file = sync_file_create(fence);
367 
368 	dma_fence_put(fence);
369 
370 	if (!sync_file) {
371 		ret = -ENOMEM;
372 		goto err_put_fd;
373 	}
374 
375 	arg.fd = fd;
376 	if (copy_to_user(user_data, &arg, sizeof(arg))) {
377 		ret = -EFAULT;
378 		goto err_put_file;
379 	}
380 
381 	fd_install(fd, sync_file->file);
382 
383 	return 0;
384 
385 err_put_file:
386 	fput(sync_file->file);
387 err_put_fd:
388 	put_unused_fd(fd);
389 	return ret;
390 }
391 
dma_buf_import_sync_file(struct dma_buf * dmabuf,const void __user * user_data)392 static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
393 				     const void __user *user_data)
394 {
395 	struct dma_buf_import_sync_file arg;
396 	struct dma_fence *fence, *f;
397 	enum dma_resv_usage usage;
398 	struct dma_fence_unwrap iter;
399 	unsigned int num_fences;
400 	int ret = 0;
401 
402 	if (copy_from_user(&arg, user_data, sizeof(arg)))
403 		return -EFAULT;
404 
405 	if (arg.flags & ~DMA_BUF_SYNC_RW)
406 		return -EINVAL;
407 
408 	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
409 		return -EINVAL;
410 
411 	fence = sync_file_get_fence(arg.fd);
412 	if (!fence)
413 		return -EINVAL;
414 
415 	usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
416 						   DMA_RESV_USAGE_READ;
417 
418 	num_fences = 0;
419 	dma_fence_unwrap_for_each(f, &iter, fence)
420 		++num_fences;
421 
422 	if (num_fences > 0) {
423 		dma_resv_lock(dmabuf->resv, NULL);
424 
425 		ret = dma_resv_reserve_fences(dmabuf->resv, num_fences);
426 		if (!ret) {
427 			dma_fence_unwrap_for_each(f, &iter, fence)
428 				dma_resv_add_fence(dmabuf->resv, f, usage);
429 		}
430 
431 		dma_resv_unlock(dmabuf->resv);
432 	}
433 
434 	dma_fence_put(fence);
435 
436 	return ret;
437 }
438 #endif
439 
dma_buf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)440 static long dma_buf_ioctl(struct file *file,
441 			  unsigned int cmd, unsigned long arg)
442 {
443 	struct dma_buf *dmabuf;
444 	struct dma_buf_sync sync;
445 	enum dma_data_direction direction;
446 	int ret;
447 
448 	dmabuf = file->private_data;
449 
450 	switch (cmd) {
451 	case DMA_BUF_IOCTL_SYNC:
452 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
453 			return -EFAULT;
454 
455 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
456 			return -EINVAL;
457 
458 		switch (sync.flags & DMA_BUF_SYNC_RW) {
459 		case DMA_BUF_SYNC_READ:
460 			direction = DMA_FROM_DEVICE;
461 			break;
462 		case DMA_BUF_SYNC_WRITE:
463 			direction = DMA_TO_DEVICE;
464 			break;
465 		case DMA_BUF_SYNC_RW:
466 			direction = DMA_BIDIRECTIONAL;
467 			break;
468 		default:
469 			return -EINVAL;
470 		}
471 
472 		if (sync.flags & DMA_BUF_SYNC_END)
473 			ret = dma_buf_end_cpu_access(dmabuf, direction);
474 		else
475 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
476 
477 		return ret;
478 
479 	case DMA_BUF_SET_NAME_A:
480 	case DMA_BUF_SET_NAME_B:
481 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
482 
483 #if IS_ENABLED(CONFIG_SYNC_FILE)
484 	case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
485 		return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
486 	case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
487 		return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
488 #endif
489 
490 	default:
491 		return -ENOTTY;
492 	}
493 }
494 
dma_buf_show_fdinfo(struct seq_file * m,struct file * file)495 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
496 {
497 	struct dma_buf *dmabuf = file->private_data;
498 
499 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
500 	/* Don't count the temporary reference taken inside procfs seq_show */
501 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
502 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
503 	spin_lock(&dmabuf->name_lock);
504 	if (dmabuf->name)
505 		seq_printf(m, "name:\t%s\n", dmabuf->name);
506 	spin_unlock(&dmabuf->name_lock);
507 }
508 
509 static const struct file_operations dma_buf_fops = {
510 	.release	= dma_buf_file_release,
511 	.mmap		= dma_buf_mmap_internal,
512 	.llseek		= dma_buf_llseek,
513 	.poll		= dma_buf_poll,
514 	.unlocked_ioctl	= dma_buf_ioctl,
515 	.compat_ioctl	= compat_ptr_ioctl,
516 	.show_fdinfo	= dma_buf_show_fdinfo,
517 };
518 
519 /*
520  * is_dma_buf_file - Check if struct file* is associated with dma_buf
521  */
is_dma_buf_file(struct file * file)522 static inline int is_dma_buf_file(struct file *file)
523 {
524 	return file->f_op == &dma_buf_fops;
525 }
526 
dma_buf_getfile(size_t size,int flags)527 static struct file *dma_buf_getfile(size_t size, int flags)
528 {
529 	static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
530 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
531 	struct file *file;
532 
533 	if (IS_ERR(inode))
534 		return ERR_CAST(inode);
535 
536 	inode->i_size = size;
537 	inode_set_bytes(inode, size);
538 
539 	/*
540 	 * The ->i_ino acquired from get_next_ino() is not unique thus
541 	 * not suitable for using it as dentry name by dmabuf stats.
542 	 * Override ->i_ino with the unique and dmabuffs specific
543 	 * value.
544 	 */
545 	inode->i_ino = atomic64_add_return(1, &dmabuf_inode);
546 	flags &= O_ACCMODE | O_NONBLOCK;
547 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
548 				 flags, &dma_buf_fops);
549 	if (IS_ERR(file))
550 		goto err_alloc_file;
551 
552 	return file;
553 
554 err_alloc_file:
555 	iput(inode);
556 	return file;
557 }
558 
559 /**
560  * DOC: dma buf device access
561  *
562  * For device DMA access to a shared DMA buffer the usual sequence of operations
563  * is fairly simple:
564  *
565  * 1. The exporter defines his exporter instance using
566  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
567  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
568  *    as a file descriptor by calling dma_buf_fd().
569  *
570  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
571  *    to share with: First the file descriptor is converted to a &dma_buf using
572  *    dma_buf_get(). Then the buffer is attached to the device using
573  *    dma_buf_attach().
574  *
575  *    Up to this stage the exporter is still free to migrate or reallocate the
576  *    backing storage.
577  *
578  * 3. Once the buffer is attached to all devices userspace can initiate DMA
579  *    access to the shared buffer. In the kernel this is done by calling
580  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
581  *
582  * 4. Once a driver is done with a shared buffer it needs to call
583  *    dma_buf_detach() (after cleaning up any mappings) and then release the
584  *    reference acquired with dma_buf_get() by calling dma_buf_put().
585  *
586  * For the detailed semantics exporters are expected to implement see
587  * &dma_buf_ops.
588  */
589 
590 /**
591  * dma_buf_export - Creates a new dma_buf, and associates an anon file
592  * with this buffer, so it can be exported.
593  * Also connect the allocator specific data and ops to the buffer.
594  * Additionally, provide a name string for exporter; useful in debugging.
595  *
596  * @exp_info:	[in]	holds all the export related information provided
597  *			by the exporter. see &struct dma_buf_export_info
598  *			for further details.
599  *
600  * Returns, on success, a newly created struct dma_buf object, which wraps the
601  * supplied private data and operations for struct dma_buf_ops. On either
602  * missing ops, or error in allocating struct dma_buf, will return negative
603  * error.
604  *
605  * For most cases the easiest way to create @exp_info is through the
606  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
607  */
dma_buf_export(const struct dma_buf_export_info * exp_info)608 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
609 {
610 	struct dma_buf *dmabuf;
611 	struct dma_resv *resv = exp_info->resv;
612 	struct file *file;
613 	size_t alloc_size = sizeof(struct dma_buf);
614 	int ret;
615 
616 	if (WARN_ON(!exp_info->priv || !exp_info->ops
617 		    || !exp_info->ops->map_dma_buf
618 		    || !exp_info->ops->unmap_dma_buf
619 		    || !exp_info->ops->release))
620 		return ERR_PTR(-EINVAL);
621 
622 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
623 		    (exp_info->ops->pin || exp_info->ops->unpin)))
624 		return ERR_PTR(-EINVAL);
625 
626 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
627 		return ERR_PTR(-EINVAL);
628 
629 	if (!try_module_get(exp_info->owner))
630 		return ERR_PTR(-ENOENT);
631 
632 	file = dma_buf_getfile(exp_info->size, exp_info->flags);
633 	if (IS_ERR(file)) {
634 		ret = PTR_ERR(file);
635 		goto err_module;
636 	}
637 
638 	if (!exp_info->resv)
639 		alloc_size += sizeof(struct dma_resv);
640 	else
641 		/* prevent &dma_buf[1] == dma_buf->resv */
642 		alloc_size += 1;
643 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
644 	if (!dmabuf) {
645 		ret = -ENOMEM;
646 		goto err_file;
647 	}
648 
649 	dmabuf->priv = exp_info->priv;
650 	dmabuf->ops = exp_info->ops;
651 	dmabuf->size = exp_info->size;
652 	dmabuf->exp_name = exp_info->exp_name;
653 	dmabuf->owner = exp_info->owner;
654 	spin_lock_init(&dmabuf->name_lock);
655 	init_waitqueue_head(&dmabuf->poll);
656 	dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
657 	dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
658 	mutex_init(&dmabuf->lock);
659 	INIT_LIST_HEAD(&dmabuf->attachments);
660 
661 	if (!resv) {
662 		dmabuf->resv = (struct dma_resv *)&dmabuf[1];
663 		dma_resv_init(dmabuf->resv);
664 	} else {
665 		dmabuf->resv = resv;
666 	}
667 
668 	ret = dma_buf_stats_setup(dmabuf, file);
669 	if (ret)
670 		goto err_dmabuf;
671 
672 	file->private_data = dmabuf;
673 	file->f_path.dentry->d_fsdata = dmabuf;
674 	dmabuf->file = file;
675 
676 	mutex_lock(&db_list.lock);
677 	list_add(&dmabuf->list_node, &db_list.head);
678 	mutex_unlock(&db_list.lock);
679 
680 	return dmabuf;
681 
682 err_dmabuf:
683 	if (!resv)
684 		dma_resv_fini(dmabuf->resv);
685 	kfree(dmabuf);
686 err_file:
687 	fput(file);
688 err_module:
689 	module_put(exp_info->owner);
690 	return ERR_PTR(ret);
691 }
692 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
693 
694 /**
695  * dma_buf_fd - returns a file descriptor for the given struct dma_buf
696  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
697  * @flags:      [in]    flags to give to fd
698  *
699  * On success, returns an associated 'fd'. Else, returns error.
700  */
dma_buf_fd(struct dma_buf * dmabuf,int flags)701 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
702 {
703 	int fd;
704 
705 	if (!dmabuf || !dmabuf->file)
706 		return -EINVAL;
707 
708 	fd = get_unused_fd_flags(flags);
709 	if (fd < 0)
710 		return fd;
711 
712 	fd_install(fd, dmabuf->file);
713 
714 	return fd;
715 }
716 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
717 
718 /**
719  * dma_buf_get - returns the struct dma_buf related to an fd
720  * @fd:	[in]	fd associated with the struct dma_buf to be returned
721  *
722  * On success, returns the struct dma_buf associated with an fd; uses
723  * file's refcounting done by fget to increase refcount. returns ERR_PTR
724  * otherwise.
725  */
dma_buf_get(int fd)726 struct dma_buf *dma_buf_get(int fd)
727 {
728 	struct file *file;
729 
730 	file = fget(fd);
731 
732 	if (!file)
733 		return ERR_PTR(-EBADF);
734 
735 	if (!is_dma_buf_file(file)) {
736 		fput(file);
737 		return ERR_PTR(-EINVAL);
738 	}
739 
740 	return file->private_data;
741 }
742 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
743 
744 /**
745  * dma_buf_put - decreases refcount of the buffer
746  * @dmabuf:	[in]	buffer to reduce refcount of
747  *
748  * Uses file's refcounting done implicitly by fput().
749  *
750  * If, as a result of this call, the refcount becomes 0, the 'release' file
751  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
752  * in turn, and frees the memory allocated for dmabuf when exported.
753  */
dma_buf_put(struct dma_buf * dmabuf)754 void dma_buf_put(struct dma_buf *dmabuf)
755 {
756 	if (WARN_ON(!dmabuf || !dmabuf->file))
757 		return;
758 
759 	fput(dmabuf->file);
760 }
761 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
762 
mangle_sg_table(struct sg_table * sg_table)763 static void mangle_sg_table(struct sg_table *sg_table)
764 {
765 #ifdef CONFIG_DMABUF_DEBUG
766 	int i;
767 	struct scatterlist *sg;
768 
769 	/* To catch abuse of the underlying struct page by importers mix
770 	 * up the bits, but take care to preserve the low SG_ bits to
771 	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
772 	 * before passing the sgt back to the exporter. */
773 	for_each_sgtable_sg(sg_table, sg, i)
774 		sg->page_link ^= ~0xffUL;
775 #endif
776 
777 }
__map_dma_buf(struct dma_buf_attachment * attach,enum dma_data_direction direction)778 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
779 				       enum dma_data_direction direction)
780 {
781 	struct sg_table *sg_table;
782 	signed long ret;
783 
784 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
785 	if (IS_ERR_OR_NULL(sg_table))
786 		return sg_table;
787 
788 	if (!dma_buf_attachment_is_dynamic(attach)) {
789 		ret = dma_resv_wait_timeout(attach->dmabuf->resv,
790 					    DMA_RESV_USAGE_KERNEL, true,
791 					    MAX_SCHEDULE_TIMEOUT);
792 		if (ret < 0) {
793 			attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
794 							   direction);
795 			return ERR_PTR(ret);
796 		}
797 	}
798 
799 	mangle_sg_table(sg_table);
800 	return sg_table;
801 }
802 
803 /**
804  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
805  * @dmabuf:		[in]	buffer to attach device to.
806  * @dev:		[in]	device to be attached.
807  * @importer_ops:	[in]	importer operations for the attachment
808  * @importer_priv:	[in]	importer private pointer for the attachment
809  *
810  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
811  * must be cleaned up by calling dma_buf_detach().
812  *
813  * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
814  * functionality.
815  *
816  * Returns:
817  *
818  * A pointer to newly created &dma_buf_attachment on success, or a negative
819  * error code wrapped into a pointer on failure.
820  *
821  * Note that this can fail if the backing storage of @dmabuf is in a place not
822  * accessible to @dev, and cannot be moved to a more suitable place. This is
823  * indicated with the error code -EBUSY.
824  */
825 struct dma_buf_attachment *
dma_buf_dynamic_attach(struct dma_buf * dmabuf,struct device * dev,const struct dma_buf_attach_ops * importer_ops,void * importer_priv)826 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
827 		       const struct dma_buf_attach_ops *importer_ops,
828 		       void *importer_priv)
829 {
830 	struct dma_buf_attachment *attach;
831 	int ret;
832 
833 	if (WARN_ON(!dmabuf || !dev))
834 		return ERR_PTR(-EINVAL);
835 
836 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
837 		return ERR_PTR(-EINVAL);
838 
839 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
840 	if (!attach)
841 		return ERR_PTR(-ENOMEM);
842 
843 	attach->dev = dev;
844 	attach->dmabuf = dmabuf;
845 	if (importer_ops)
846 		attach->peer2peer = importer_ops->allow_peer2peer;
847 	attach->importer_ops = importer_ops;
848 	attach->importer_priv = importer_priv;
849 
850 	if (dmabuf->ops->attach) {
851 		ret = dmabuf->ops->attach(dmabuf, attach);
852 		if (ret)
853 			goto err_attach;
854 	}
855 	dma_resv_lock(dmabuf->resv, NULL);
856 	list_add(&attach->node, &dmabuf->attachments);
857 	dma_resv_unlock(dmabuf->resv);
858 
859 	/* When either the importer or the exporter can't handle dynamic
860 	 * mappings we cache the mapping here to avoid issues with the
861 	 * reservation object lock.
862 	 */
863 	if (dma_buf_attachment_is_dynamic(attach) !=
864 	    dma_buf_is_dynamic(dmabuf)) {
865 		struct sg_table *sgt;
866 
867 		if (dma_buf_is_dynamic(attach->dmabuf)) {
868 			dma_resv_lock(attach->dmabuf->resv, NULL);
869 			ret = dmabuf->ops->pin(attach);
870 			if (ret)
871 				goto err_unlock;
872 		}
873 
874 		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
875 		if (!sgt)
876 			sgt = ERR_PTR(-ENOMEM);
877 		if (IS_ERR(sgt)) {
878 			ret = PTR_ERR(sgt);
879 			goto err_unpin;
880 		}
881 		if (dma_buf_is_dynamic(attach->dmabuf))
882 			dma_resv_unlock(attach->dmabuf->resv);
883 		attach->sgt = sgt;
884 		attach->dir = DMA_BIDIRECTIONAL;
885 	}
886 
887 	return attach;
888 
889 err_attach:
890 	kfree(attach);
891 	return ERR_PTR(ret);
892 
893 err_unpin:
894 	if (dma_buf_is_dynamic(attach->dmabuf))
895 		dmabuf->ops->unpin(attach);
896 
897 err_unlock:
898 	if (dma_buf_is_dynamic(attach->dmabuf))
899 		dma_resv_unlock(attach->dmabuf->resv);
900 
901 	dma_buf_detach(dmabuf, attach);
902 	return ERR_PTR(ret);
903 }
904 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
905 
906 /**
907  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
908  * @dmabuf:	[in]	buffer to attach device to.
909  * @dev:	[in]	device to be attached.
910  *
911  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
912  * mapping.
913  */
dma_buf_attach(struct dma_buf * dmabuf,struct device * dev)914 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
915 					  struct device *dev)
916 {
917 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
918 }
919 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
920 
__unmap_dma_buf(struct dma_buf_attachment * attach,struct sg_table * sg_table,enum dma_data_direction direction)921 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
922 			    struct sg_table *sg_table,
923 			    enum dma_data_direction direction)
924 {
925 	/* uses XOR, hence this unmangles */
926 	mangle_sg_table(sg_table);
927 
928 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
929 }
930 
931 /**
932  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
933  * @dmabuf:	[in]	buffer to detach from.
934  * @attach:	[in]	attachment to be detached; is free'd after this call.
935  *
936  * Clean up a device attachment obtained by calling dma_buf_attach().
937  *
938  * Optionally this calls &dma_buf_ops.detach for device-specific detach.
939  */
dma_buf_detach(struct dma_buf * dmabuf,struct dma_buf_attachment * attach)940 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
941 {
942 	if (WARN_ON(!dmabuf || !attach))
943 		return;
944 
945 	if (attach->sgt) {
946 		if (dma_buf_is_dynamic(attach->dmabuf))
947 			dma_resv_lock(attach->dmabuf->resv, NULL);
948 
949 		__unmap_dma_buf(attach, attach->sgt, attach->dir);
950 
951 		if (dma_buf_is_dynamic(attach->dmabuf)) {
952 			dmabuf->ops->unpin(attach);
953 			dma_resv_unlock(attach->dmabuf->resv);
954 		}
955 	}
956 
957 	dma_resv_lock(dmabuf->resv, NULL);
958 	list_del(&attach->node);
959 	dma_resv_unlock(dmabuf->resv);
960 	if (dmabuf->ops->detach)
961 		dmabuf->ops->detach(dmabuf, attach);
962 
963 	kfree(attach);
964 }
965 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
966 
967 /**
968  * dma_buf_pin - Lock down the DMA-buf
969  * @attach:	[in]	attachment which should be pinned
970  *
971  * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
972  * call this, and only for limited use cases like scanout and not for temporary
973  * pin operations. It is not permitted to allow userspace to pin arbitrary
974  * amounts of buffers through this interface.
975  *
976  * Buffers must be unpinned by calling dma_buf_unpin().
977  *
978  * Returns:
979  * 0 on success, negative error code on failure.
980  */
dma_buf_pin(struct dma_buf_attachment * attach)981 int dma_buf_pin(struct dma_buf_attachment *attach)
982 {
983 	struct dma_buf *dmabuf = attach->dmabuf;
984 	int ret = 0;
985 
986 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
987 
988 	dma_resv_assert_held(dmabuf->resv);
989 
990 	if (dmabuf->ops->pin)
991 		ret = dmabuf->ops->pin(attach);
992 
993 	return ret;
994 }
995 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
996 
997 /**
998  * dma_buf_unpin - Unpin a DMA-buf
999  * @attach:	[in]	attachment which should be unpinned
1000  *
1001  * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1002  * any mapping of @attach again and inform the importer through
1003  * &dma_buf_attach_ops.move_notify.
1004  */
dma_buf_unpin(struct dma_buf_attachment * attach)1005 void dma_buf_unpin(struct dma_buf_attachment *attach)
1006 {
1007 	struct dma_buf *dmabuf = attach->dmabuf;
1008 
1009 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1010 
1011 	dma_resv_assert_held(dmabuf->resv);
1012 
1013 	if (dmabuf->ops->unpin)
1014 		dmabuf->ops->unpin(attach);
1015 }
1016 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
1017 
1018 /**
1019  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1020  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1021  * dma_buf_ops.
1022  * @attach:	[in]	attachment whose scatterlist is to be returned
1023  * @direction:	[in]	direction of DMA transfer
1024  *
1025  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1026  * on error. May return -EINTR if it is interrupted by a signal.
1027  *
1028  * On success, the DMA addresses and lengths in the returned scatterlist are
1029  * PAGE_SIZE aligned.
1030  *
1031  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1032  * the underlying backing storage is pinned for as long as a mapping exists,
1033  * therefore users/importers should not hold onto a mapping for undue amounts of
1034  * time.
1035  *
1036  * Important: Dynamic importers must wait for the exclusive fence of the struct
1037  * dma_resv attached to the DMA-BUF first.
1038  */
dma_buf_map_attachment(struct dma_buf_attachment * attach,enum dma_data_direction direction)1039 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1040 					enum dma_data_direction direction)
1041 {
1042 	struct sg_table *sg_table;
1043 	int r;
1044 
1045 	might_sleep();
1046 
1047 	if (WARN_ON(!attach || !attach->dmabuf))
1048 		return ERR_PTR(-EINVAL);
1049 
1050 	if (dma_buf_attachment_is_dynamic(attach))
1051 		dma_resv_assert_held(attach->dmabuf->resv);
1052 
1053 	if (attach->sgt) {
1054 		/*
1055 		 * Two mappings with different directions for the same
1056 		 * attachment are not allowed.
1057 		 */
1058 		if (attach->dir != direction &&
1059 		    attach->dir != DMA_BIDIRECTIONAL)
1060 			return ERR_PTR(-EBUSY);
1061 
1062 		return attach->sgt;
1063 	}
1064 
1065 	if (dma_buf_is_dynamic(attach->dmabuf)) {
1066 		dma_resv_assert_held(attach->dmabuf->resv);
1067 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1068 			r = attach->dmabuf->ops->pin(attach);
1069 			if (r)
1070 				return ERR_PTR(r);
1071 		}
1072 	}
1073 
1074 	sg_table = __map_dma_buf(attach, direction);
1075 	if (!sg_table)
1076 		sg_table = ERR_PTR(-ENOMEM);
1077 
1078 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
1079 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1080 		attach->dmabuf->ops->unpin(attach);
1081 
1082 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1083 		attach->sgt = sg_table;
1084 		attach->dir = direction;
1085 	}
1086 
1087 #ifdef CONFIG_DMA_API_DEBUG
1088 	if (!IS_ERR(sg_table)) {
1089 		struct scatterlist *sg;
1090 		u64 addr;
1091 		int len;
1092 		int i;
1093 
1094 		for_each_sgtable_dma_sg(sg_table, sg, i) {
1095 			addr = sg_dma_address(sg);
1096 			len = sg_dma_len(sg);
1097 			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1098 				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1099 					 __func__, addr, len);
1100 			}
1101 		}
1102 	}
1103 #endif /* CONFIG_DMA_API_DEBUG */
1104 	return sg_table;
1105 }
1106 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
1107 
1108 /**
1109  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1110  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1111  * dma_buf_ops.
1112  * @attach:	[in]	attachment to unmap buffer from
1113  * @sg_table:	[in]	scatterlist info of the buffer to unmap
1114  * @direction:  [in]    direction of DMA transfer
1115  *
1116  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1117  */
dma_buf_unmap_attachment(struct dma_buf_attachment * attach,struct sg_table * sg_table,enum dma_data_direction direction)1118 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1119 				struct sg_table *sg_table,
1120 				enum dma_data_direction direction)
1121 {
1122 	might_sleep();
1123 
1124 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1125 		return;
1126 
1127 	if (dma_buf_attachment_is_dynamic(attach))
1128 		dma_resv_assert_held(attach->dmabuf->resv);
1129 
1130 	if (attach->sgt == sg_table)
1131 		return;
1132 
1133 	if (dma_buf_is_dynamic(attach->dmabuf))
1134 		dma_resv_assert_held(attach->dmabuf->resv);
1135 
1136 	__unmap_dma_buf(attach, sg_table, direction);
1137 
1138 	if (dma_buf_is_dynamic(attach->dmabuf) &&
1139 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1140 		dma_buf_unpin(attach);
1141 }
1142 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1143 
1144 /**
1145  * dma_buf_move_notify - notify attachments that DMA-buf is moving
1146  *
1147  * @dmabuf:	[in]	buffer which is moving
1148  *
1149  * Informs all attachmenst that they need to destroy and recreated all their
1150  * mappings.
1151  */
dma_buf_move_notify(struct dma_buf * dmabuf)1152 void dma_buf_move_notify(struct dma_buf *dmabuf)
1153 {
1154 	struct dma_buf_attachment *attach;
1155 
1156 	dma_resv_assert_held(dmabuf->resv);
1157 
1158 	list_for_each_entry(attach, &dmabuf->attachments, node)
1159 		if (attach->importer_ops)
1160 			attach->importer_ops->move_notify(attach);
1161 }
1162 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1163 
1164 /**
1165  * DOC: cpu access
1166  *
1167  * There are mutliple reasons for supporting CPU access to a dma buffer object:
1168  *
1169  * - Fallback operations in the kernel, for example when a device is connected
1170  *   over USB and the kernel needs to shuffle the data around first before
1171  *   sending it away. Cache coherency is handled by braketing any transactions
1172  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1173  *   access.
1174  *
1175  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1176  *   vmap interface is introduced. Note that on very old 32-bit architectures
1177  *   vmalloc space might be limited and result in vmap calls failing.
1178  *
1179  *   Interfaces::
1180  *
1181  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1182  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1183  *
1184  *   The vmap call can fail if there is no vmap support in the exporter, or if
1185  *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1186  *   count for all vmap access and calls down into the exporter's vmap function
1187  *   only when no vmapping exists, and only unmaps it once. Protection against
1188  *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1189  *
1190  * - For full compatibility on the importer side with existing userspace
1191  *   interfaces, which might already support mmap'ing buffers. This is needed in
1192  *   many processing pipelines (e.g. feeding a software rendered image into a
1193  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1194  *   framework already supported this and for DMA buffer file descriptors to
1195  *   replace ION buffers mmap support was needed.
1196  *
1197  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1198  *   fd. But like for CPU access there's a need to braket the actual access,
1199  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1200  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1201  *   be restarted.
1202  *
1203  *   Some systems might need some sort of cache coherency management e.g. when
1204  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1205  *   To circumvent this problem there are begin/end coherency markers, that
1206  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1207  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1208  *   sequence would be used like following:
1209  *
1210  *     - mmap dma-buf fd
1211  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1212  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1213  *       want (with the new data being consumed by say the GPU or the scanout
1214  *       device)
1215  *     - munmap once you don't need the buffer any more
1216  *
1217  *    For correctness and optimal performance, it is always required to use
1218  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1219  *    mapped address. Userspace cannot rely on coherent access, even when there
1220  *    are systems where it just works without calling these ioctls.
1221  *
1222  * - And as a CPU fallback in userspace processing pipelines.
1223  *
1224  *   Similar to the motivation for kernel cpu access it is again important that
1225  *   the userspace code of a given importing subsystem can use the same
1226  *   interfaces with a imported dma-buf buffer object as with a native buffer
1227  *   object. This is especially important for drm where the userspace part of
1228  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1229  *   use a different way to mmap a buffer rather invasive.
1230  *
1231  *   The assumption in the current dma-buf interfaces is that redirecting the
1232  *   initial mmap is all that's needed. A survey of some of the existing
1233  *   subsystems shows that no driver seems to do any nefarious thing like
1234  *   syncing up with outstanding asynchronous processing on the device or
1235  *   allocating special resources at fault time. So hopefully this is good
1236  *   enough, since adding interfaces to intercept pagefaults and allow pte
1237  *   shootdowns would increase the complexity quite a bit.
1238  *
1239  *   Interface::
1240  *
1241  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1242  *		       unsigned long);
1243  *
1244  *   If the importing subsystem simply provides a special-purpose mmap call to
1245  *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1246  *   equally achieve that for a dma-buf object.
1247  */
1248 
__dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1249 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1250 				      enum dma_data_direction direction)
1251 {
1252 	bool write = (direction == DMA_BIDIRECTIONAL ||
1253 		      direction == DMA_TO_DEVICE);
1254 	struct dma_resv *resv = dmabuf->resv;
1255 	long ret;
1256 
1257 	/* Wait on any implicit rendering fences */
1258 	ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1259 				    true, MAX_SCHEDULE_TIMEOUT);
1260 	if (ret < 0)
1261 		return ret;
1262 
1263 	return 0;
1264 }
1265 
1266 /**
1267  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1268  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1269  * preparations. Coherency is only guaranteed in the specified range for the
1270  * specified access direction.
1271  * @dmabuf:	[in]	buffer to prepare cpu access for.
1272  * @direction:	[in]	length of range for cpu access.
1273  *
1274  * After the cpu access is complete the caller should call
1275  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1276  * it guaranteed to be coherent with other DMA access.
1277  *
1278  * This function will also wait for any DMA transactions tracked through
1279  * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1280  * synchronization this function will only ensure cache coherency, callers must
1281  * ensure synchronization with such DMA transactions on their own.
1282  *
1283  * Can return negative error values, returns 0 on success.
1284  */
dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1285 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1286 			     enum dma_data_direction direction)
1287 {
1288 	int ret = 0;
1289 
1290 	if (WARN_ON(!dmabuf))
1291 		return -EINVAL;
1292 
1293 	might_lock(&dmabuf->resv->lock.base);
1294 
1295 	if (dmabuf->ops->begin_cpu_access)
1296 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1297 
1298 	/* Ensure that all fences are waited upon - but we first allow
1299 	 * the native handler the chance to do so more efficiently if it
1300 	 * chooses. A double invocation here will be reasonably cheap no-op.
1301 	 */
1302 	if (ret == 0)
1303 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1304 
1305 	return ret;
1306 }
1307 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1308 
1309 /**
1310  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1311  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1312  * actions. Coherency is only guaranteed in the specified range for the
1313  * specified access direction.
1314  * @dmabuf:	[in]	buffer to complete cpu access for.
1315  * @direction:	[in]	length of range for cpu access.
1316  *
1317  * This terminates CPU access started with dma_buf_begin_cpu_access().
1318  *
1319  * Can return negative error values, returns 0 on success.
1320  */
dma_buf_end_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1321 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1322 			   enum dma_data_direction direction)
1323 {
1324 	int ret = 0;
1325 
1326 	WARN_ON(!dmabuf);
1327 
1328 	might_lock(&dmabuf->resv->lock.base);
1329 
1330 	if (dmabuf->ops->end_cpu_access)
1331 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1332 
1333 	return ret;
1334 }
1335 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1336 
1337 
1338 /**
1339  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1340  * @dmabuf:	[in]	buffer that should back the vma
1341  * @vma:	[in]	vma for the mmap
1342  * @pgoff:	[in]	offset in pages where this mmap should start within the
1343  *			dma-buf buffer.
1344  *
1345  * This function adjusts the passed in vma so that it points at the file of the
1346  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1347  * checking on the size of the vma. Then it calls the exporters mmap function to
1348  * set up the mapping.
1349  *
1350  * Can return negative error values, returns 0 on success.
1351  */
dma_buf_mmap(struct dma_buf * dmabuf,struct vm_area_struct * vma,unsigned long pgoff)1352 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1353 		 unsigned long pgoff)
1354 {
1355 	if (WARN_ON(!dmabuf || !vma))
1356 		return -EINVAL;
1357 
1358 	/* check if buffer supports mmap */
1359 	if (!dmabuf->ops->mmap)
1360 		return -EINVAL;
1361 
1362 	/* check for offset overflow */
1363 	if (pgoff + vma_pages(vma) < pgoff)
1364 		return -EOVERFLOW;
1365 
1366 	/* check for overflowing the buffer's size */
1367 	if (pgoff + vma_pages(vma) >
1368 	    dmabuf->size >> PAGE_SHIFT)
1369 		return -EINVAL;
1370 
1371 	/* readjust the vma */
1372 	vma_set_file(vma, dmabuf->file);
1373 	vma->vm_pgoff = pgoff;
1374 
1375 	return dmabuf->ops->mmap(dmabuf, vma);
1376 }
1377 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1378 
1379 /**
1380  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1381  * address space. Same restrictions as for vmap and friends apply.
1382  * @dmabuf:	[in]	buffer to vmap
1383  * @map:	[out]	returns the vmap pointer
1384  *
1385  * This call may fail due to lack of virtual mapping address space.
1386  * These calls are optional in drivers. The intended use for them
1387  * is for mapping objects linear in kernel space for high use objects.
1388  *
1389  * To ensure coherency users must call dma_buf_begin_cpu_access() and
1390  * dma_buf_end_cpu_access() around any cpu access performed through this
1391  * mapping.
1392  *
1393  * Returns 0 on success, or a negative errno code otherwise.
1394  */
dma_buf_vmap(struct dma_buf * dmabuf,struct iosys_map * map)1395 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1396 {
1397 	struct iosys_map ptr;
1398 	int ret = 0;
1399 
1400 	iosys_map_clear(map);
1401 
1402 	if (WARN_ON(!dmabuf))
1403 		return -EINVAL;
1404 
1405 	if (!dmabuf->ops->vmap)
1406 		return -EINVAL;
1407 
1408 	mutex_lock(&dmabuf->lock);
1409 	if (dmabuf->vmapping_counter) {
1410 		dmabuf->vmapping_counter++;
1411 		BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1412 		*map = dmabuf->vmap_ptr;
1413 		goto out_unlock;
1414 	}
1415 
1416 	BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1417 
1418 	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1419 	if (WARN_ON_ONCE(ret))
1420 		goto out_unlock;
1421 
1422 	dmabuf->vmap_ptr = ptr;
1423 	dmabuf->vmapping_counter = 1;
1424 
1425 	*map = dmabuf->vmap_ptr;
1426 
1427 out_unlock:
1428 	mutex_unlock(&dmabuf->lock);
1429 	return ret;
1430 }
1431 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1432 
1433 /**
1434  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1435  * @dmabuf:	[in]	buffer to vunmap
1436  * @map:	[in]	vmap pointer to vunmap
1437  */
dma_buf_vunmap(struct dma_buf * dmabuf,struct iosys_map * map)1438 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1439 {
1440 	if (WARN_ON(!dmabuf))
1441 		return;
1442 
1443 	BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1444 	BUG_ON(dmabuf->vmapping_counter == 0);
1445 	BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1446 
1447 	mutex_lock(&dmabuf->lock);
1448 	if (--dmabuf->vmapping_counter == 0) {
1449 		if (dmabuf->ops->vunmap)
1450 			dmabuf->ops->vunmap(dmabuf, map);
1451 		iosys_map_clear(&dmabuf->vmap_ptr);
1452 	}
1453 	mutex_unlock(&dmabuf->lock);
1454 }
1455 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1456 
1457 #ifdef CONFIG_DEBUG_FS
dma_buf_debug_show(struct seq_file * s,void * unused)1458 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1459 {
1460 	struct dma_buf *buf_obj;
1461 	struct dma_buf_attachment *attach_obj;
1462 	int count = 0, attach_count;
1463 	size_t size = 0;
1464 	int ret;
1465 
1466 	ret = mutex_lock_interruptible(&db_list.lock);
1467 
1468 	if (ret)
1469 		return ret;
1470 
1471 	seq_puts(s, "\nDma-buf Objects:\n");
1472 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1473 		   "size", "flags", "mode", "count", "ino");
1474 
1475 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1476 
1477 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1478 		if (ret)
1479 			goto error_unlock;
1480 
1481 
1482 		spin_lock(&buf_obj->name_lock);
1483 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1484 				buf_obj->size,
1485 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1486 				file_count(buf_obj->file),
1487 				buf_obj->exp_name,
1488 				file_inode(buf_obj->file)->i_ino,
1489 				buf_obj->name ?: "<none>");
1490 		spin_unlock(&buf_obj->name_lock);
1491 
1492 		dma_resv_describe(buf_obj->resv, s);
1493 
1494 		seq_puts(s, "\tAttached Devices:\n");
1495 		attach_count = 0;
1496 
1497 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1498 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1499 			attach_count++;
1500 		}
1501 		dma_resv_unlock(buf_obj->resv);
1502 
1503 		seq_printf(s, "Total %d devices attached\n\n",
1504 				attach_count);
1505 
1506 		count++;
1507 		size += buf_obj->size;
1508 	}
1509 
1510 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1511 
1512 	mutex_unlock(&db_list.lock);
1513 	return 0;
1514 
1515 error_unlock:
1516 	mutex_unlock(&db_list.lock);
1517 	return ret;
1518 }
1519 
1520 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1521 
1522 static struct dentry *dma_buf_debugfs_dir;
1523 
dma_buf_init_debugfs(void)1524 static int dma_buf_init_debugfs(void)
1525 {
1526 	struct dentry *d;
1527 	int err = 0;
1528 
1529 	d = debugfs_create_dir("dma_buf", NULL);
1530 	if (IS_ERR(d))
1531 		return PTR_ERR(d);
1532 
1533 	dma_buf_debugfs_dir = d;
1534 
1535 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1536 				NULL, &dma_buf_debug_fops);
1537 	if (IS_ERR(d)) {
1538 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1539 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1540 		dma_buf_debugfs_dir = NULL;
1541 		err = PTR_ERR(d);
1542 	}
1543 
1544 	return err;
1545 }
1546 
dma_buf_uninit_debugfs(void)1547 static void dma_buf_uninit_debugfs(void)
1548 {
1549 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1550 }
1551 #else
dma_buf_init_debugfs(void)1552 static inline int dma_buf_init_debugfs(void)
1553 {
1554 	return 0;
1555 }
dma_buf_uninit_debugfs(void)1556 static inline void dma_buf_uninit_debugfs(void)
1557 {
1558 }
1559 #endif
1560 
dma_buf_init(void)1561 static int __init dma_buf_init(void)
1562 {
1563 	int ret;
1564 
1565 	ret = dma_buf_init_sysfs_statistics();
1566 	if (ret)
1567 		return ret;
1568 
1569 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1570 	if (IS_ERR(dma_buf_mnt))
1571 		return PTR_ERR(dma_buf_mnt);
1572 
1573 	mutex_init(&db_list.lock);
1574 	INIT_LIST_HEAD(&db_list.head);
1575 	dma_buf_init_debugfs();
1576 	return 0;
1577 }
1578 subsys_initcall(dma_buf_init);
1579 
dma_buf_deinit(void)1580 static void __exit dma_buf_deinit(void)
1581 {
1582 	dma_buf_uninit_debugfs();
1583 	kern_unmount(dma_buf_mnt);
1584 	dma_buf_uninit_sysfs_statistics();
1585 }
1586 __exitcall(dma_buf_deinit);
1587