1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 
22 /*
23  * This code implements the DMA subsystem. It provides a HW-neutral interface
24  * for other kernel code to use asynchronous memory copy capabilities,
25  * if present, and allows different HW DMA drivers to register as providing
26  * this capability.
27  *
28  * Due to the fact we are accelerating what is already a relatively fast
29  * operation, the code goes to great lengths to avoid additional overhead,
30  * such as locking.
31  *
32  * LOCKING:
33  *
34  * The subsystem keeps a global list of dma_device structs it is protected by a
35  * mutex, dma_list_mutex.
36  *
37  * A subsystem can get access to a channel by calling dmaengine_get() followed
38  * by dma_find_channel(), or if it has need for an exclusive channel it can call
39  * dma_request_channel().  Once a channel is allocated a reference is taken
40  * against its corresponding driver to disable removal.
41  *
42  * Each device has a channels list, which runs unlocked but is never modified
43  * once the device is registered, it's just setup by the driver.
44  *
45  * See Documentation/dmaengine.txt for more details
46  */
47 
48 #include <linux/dma-mapping.h>
49 #include <linux/init.h>
50 #include <linux/module.h>
51 #include <linux/mm.h>
52 #include <linux/device.h>
53 #include <linux/dmaengine.h>
54 #include <linux/hardirq.h>
55 #include <linux/spinlock.h>
56 #include <linux/percpu.h>
57 #include <linux/rcupdate.h>
58 #include <linux/mutex.h>
59 #include <linux/jiffies.h>
60 #include <linux/rculist.h>
61 #include <linux/idr.h>
62 #include <linux/slab.h>
63 
64 static DEFINE_MUTEX(dma_list_mutex);
65 static DEFINE_IDR(dma_idr);
66 static LIST_HEAD(dma_device_list);
67 static long dmaengine_ref_count;
68 
69 /* --- sysfs implementation --- */
70 
71 /**
72  * dev_to_dma_chan - convert a device pointer to the its sysfs container object
73  * @dev - device node
74  *
75  * Must be called under dma_list_mutex
76  */
dev_to_dma_chan(struct device * dev)77 static struct dma_chan *dev_to_dma_chan(struct device *dev)
78 {
79 	struct dma_chan_dev *chan_dev;
80 
81 	chan_dev = container_of(dev, typeof(*chan_dev), device);
82 	return chan_dev->chan;
83 }
84 
show_memcpy_count(struct device * dev,struct device_attribute * attr,char * buf)85 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
86 {
87 	struct dma_chan *chan;
88 	unsigned long count = 0;
89 	int i;
90 	int err;
91 
92 	mutex_lock(&dma_list_mutex);
93 	chan = dev_to_dma_chan(dev);
94 	if (chan) {
95 		for_each_possible_cpu(i)
96 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
97 		err = sprintf(buf, "%lu\n", count);
98 	} else
99 		err = -ENODEV;
100 	mutex_unlock(&dma_list_mutex);
101 
102 	return err;
103 }
104 
show_bytes_transferred(struct device * dev,struct device_attribute * attr,char * buf)105 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
106 				      char *buf)
107 {
108 	struct dma_chan *chan;
109 	unsigned long count = 0;
110 	int i;
111 	int err;
112 
113 	mutex_lock(&dma_list_mutex);
114 	chan = dev_to_dma_chan(dev);
115 	if (chan) {
116 		for_each_possible_cpu(i)
117 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
118 		err = sprintf(buf, "%lu\n", count);
119 	} else
120 		err = -ENODEV;
121 	mutex_unlock(&dma_list_mutex);
122 
123 	return err;
124 }
125 
show_in_use(struct device * dev,struct device_attribute * attr,char * buf)126 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
127 {
128 	struct dma_chan *chan;
129 	int err;
130 
131 	mutex_lock(&dma_list_mutex);
132 	chan = dev_to_dma_chan(dev);
133 	if (chan)
134 		err = sprintf(buf, "%d\n", chan->client_count);
135 	else
136 		err = -ENODEV;
137 	mutex_unlock(&dma_list_mutex);
138 
139 	return err;
140 }
141 
142 static struct device_attribute dma_attrs[] = {
143 	__ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
144 	__ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
145 	__ATTR(in_use, S_IRUGO, show_in_use, NULL),
146 	__ATTR_NULL
147 };
148 
chan_dev_release(struct device * dev)149 static void chan_dev_release(struct device *dev)
150 {
151 	struct dma_chan_dev *chan_dev;
152 
153 	chan_dev = container_of(dev, typeof(*chan_dev), device);
154 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
155 		mutex_lock(&dma_list_mutex);
156 		idr_remove(&dma_idr, chan_dev->dev_id);
157 		mutex_unlock(&dma_list_mutex);
158 		kfree(chan_dev->idr_ref);
159 	}
160 	kfree(chan_dev);
161 }
162 
163 static struct class dma_devclass = {
164 	.name		= "dma",
165 	.dev_attrs	= dma_attrs,
166 	.dev_release	= chan_dev_release,
167 };
168 
169 /* --- client and device registration --- */
170 
171 #define dma_device_satisfies_mask(device, mask) \
172 	__dma_device_satisfies_mask((device), &(mask))
173 static int
__dma_device_satisfies_mask(struct dma_device * device,dma_cap_mask_t * want)174 __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want)
175 {
176 	dma_cap_mask_t has;
177 
178 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
179 		DMA_TX_TYPE_END);
180 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
181 }
182 
dma_chan_to_owner(struct dma_chan * chan)183 static struct module *dma_chan_to_owner(struct dma_chan *chan)
184 {
185 	return chan->device->dev->driver->owner;
186 }
187 
188 /**
189  * balance_ref_count - catch up the channel reference count
190  * @chan - channel to balance ->client_count versus dmaengine_ref_count
191  *
192  * balance_ref_count must be called under dma_list_mutex
193  */
balance_ref_count(struct dma_chan * chan)194 static void balance_ref_count(struct dma_chan *chan)
195 {
196 	struct module *owner = dma_chan_to_owner(chan);
197 
198 	while (chan->client_count < dmaengine_ref_count) {
199 		__module_get(owner);
200 		chan->client_count++;
201 	}
202 }
203 
204 /**
205  * dma_chan_get - try to grab a dma channel's parent driver module
206  * @chan - channel to grab
207  *
208  * Must be called under dma_list_mutex
209  */
dma_chan_get(struct dma_chan * chan)210 static int dma_chan_get(struct dma_chan *chan)
211 {
212 	int err = -ENODEV;
213 	struct module *owner = dma_chan_to_owner(chan);
214 
215 	if (chan->client_count) {
216 		__module_get(owner);
217 		err = 0;
218 	} else if (try_module_get(owner))
219 		err = 0;
220 
221 	if (err == 0)
222 		chan->client_count++;
223 
224 	/* allocate upon first client reference */
225 	if (chan->client_count == 1 && err == 0) {
226 		int desc_cnt = chan->device->device_alloc_chan_resources(chan);
227 
228 		if (desc_cnt < 0) {
229 			err = desc_cnt;
230 			chan->client_count = 0;
231 			module_put(owner);
232 		} else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
233 			balance_ref_count(chan);
234 	}
235 
236 	return err;
237 }
238 
239 /**
240  * dma_chan_put - drop a reference to a dma channel's parent driver module
241  * @chan - channel to release
242  *
243  * Must be called under dma_list_mutex
244  */
dma_chan_put(struct dma_chan * chan)245 static void dma_chan_put(struct dma_chan *chan)
246 {
247 	if (!chan->client_count)
248 		return; /* this channel failed alloc_chan_resources */
249 	chan->client_count--;
250 	module_put(dma_chan_to_owner(chan));
251 	if (chan->client_count == 0)
252 		chan->device->device_free_chan_resources(chan);
253 }
254 
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)255 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
256 {
257 	enum dma_status status;
258 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
259 
260 	dma_async_issue_pending(chan);
261 	do {
262 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
263 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
264 			printk(KERN_ERR "dma_sync_wait_timeout!\n");
265 			return DMA_ERROR;
266 		}
267 	} while (status == DMA_IN_PROGRESS);
268 
269 	return status;
270 }
271 EXPORT_SYMBOL(dma_sync_wait);
272 
273 /**
274  * dma_cap_mask_all - enable iteration over all operation types
275  */
276 static dma_cap_mask_t dma_cap_mask_all;
277 
278 /**
279  * dma_chan_tbl_ent - tracks channel allocations per core/operation
280  * @chan - associated channel for this entry
281  */
282 struct dma_chan_tbl_ent {
283 	struct dma_chan *chan;
284 };
285 
286 /**
287  * channel_table - percpu lookup table for memory-to-memory offload providers
288  */
289 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
290 
dma_channel_table_init(void)291 static int __init dma_channel_table_init(void)
292 {
293 	enum dma_transaction_type cap;
294 	int err = 0;
295 
296 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
297 
298 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
299 	 * but are not associated with an operation so they do not need
300 	 * an entry in the channel_table
301 	 */
302 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
303 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
304 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
305 
306 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
307 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
308 		if (!channel_table[cap]) {
309 			err = -ENOMEM;
310 			break;
311 		}
312 	}
313 
314 	if (err) {
315 		pr_err("dmaengine: initialization failure\n");
316 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
317 			if (channel_table[cap])
318 				free_percpu(channel_table[cap]);
319 	}
320 
321 	return err;
322 }
323 arch_initcall(dma_channel_table_init);
324 
325 /**
326  * dma_find_channel - find a channel to carry out the operation
327  * @tx_type: transaction type
328  */
dma_find_channel(enum dma_transaction_type tx_type)329 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
330 {
331 	return this_cpu_read(channel_table[tx_type]->chan);
332 }
333 EXPORT_SYMBOL(dma_find_channel);
334 
335 /*
336  * net_dma_find_channel - find a channel for net_dma
337  * net_dma has alignment requirements
338  */
net_dma_find_channel(void)339 struct dma_chan *net_dma_find_channel(void)
340 {
341 	struct dma_chan *chan = dma_find_channel(DMA_MEMCPY);
342 	if (chan && !is_dma_copy_aligned(chan->device, 1, 1, 1))
343 		return NULL;
344 
345 	return chan;
346 }
347 EXPORT_SYMBOL(net_dma_find_channel);
348 
349 /**
350  * dma_issue_pending_all - flush all pending operations across all channels
351  */
dma_issue_pending_all(void)352 void dma_issue_pending_all(void)
353 {
354 	struct dma_device *device;
355 	struct dma_chan *chan;
356 
357 	rcu_read_lock();
358 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
359 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
360 			continue;
361 		list_for_each_entry(chan, &device->channels, device_node)
362 			if (chan->client_count)
363 				device->device_issue_pending(chan);
364 	}
365 	rcu_read_unlock();
366 }
367 EXPORT_SYMBOL(dma_issue_pending_all);
368 
369 /**
370  * nth_chan - returns the nth channel of the given capability
371  * @cap: capability to match
372  * @n: nth channel desired
373  *
374  * Defaults to returning the channel with the desired capability and the
375  * lowest reference count when 'n' cannot be satisfied.  Must be called
376  * under dma_list_mutex.
377  */
nth_chan(enum dma_transaction_type cap,int n)378 static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
379 {
380 	struct dma_device *device;
381 	struct dma_chan *chan;
382 	struct dma_chan *ret = NULL;
383 	struct dma_chan *min = NULL;
384 
385 	list_for_each_entry(device, &dma_device_list, global_node) {
386 		if (!dma_has_cap(cap, device->cap_mask) ||
387 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
388 			continue;
389 		list_for_each_entry(chan, &device->channels, device_node) {
390 			if (!chan->client_count)
391 				continue;
392 			if (!min)
393 				min = chan;
394 			else if (chan->table_count < min->table_count)
395 				min = chan;
396 
397 			if (n-- == 0) {
398 				ret = chan;
399 				break; /* done */
400 			}
401 		}
402 		if (ret)
403 			break; /* done */
404 	}
405 
406 	if (!ret)
407 		ret = min;
408 
409 	if (ret)
410 		ret->table_count++;
411 
412 	return ret;
413 }
414 
415 /**
416  * dma_channel_rebalance - redistribute the available channels
417  *
418  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
419  * operation type) in the SMP case,  and operation isolation (avoid
420  * multi-tasking channels) in the non-SMP case.  Must be called under
421  * dma_list_mutex.
422  */
dma_channel_rebalance(void)423 static void dma_channel_rebalance(void)
424 {
425 	struct dma_chan *chan;
426 	struct dma_device *device;
427 	int cpu;
428 	int cap;
429 	int n;
430 
431 	/* undo the last distribution */
432 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
433 		for_each_possible_cpu(cpu)
434 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
435 
436 	list_for_each_entry(device, &dma_device_list, global_node) {
437 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
438 			continue;
439 		list_for_each_entry(chan, &device->channels, device_node)
440 			chan->table_count = 0;
441 	}
442 
443 	/* don't populate the channel_table if no clients are available */
444 	if (!dmaengine_ref_count)
445 		return;
446 
447 	/* redistribute available channels */
448 	n = 0;
449 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
450 		for_each_online_cpu(cpu) {
451 			if (num_possible_cpus() > 1)
452 				chan = nth_chan(cap, n++);
453 			else
454 				chan = nth_chan(cap, -1);
455 
456 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
457 		}
458 }
459 
private_candidate(dma_cap_mask_t * mask,struct dma_device * dev,dma_filter_fn fn,void * fn_param)460 static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev,
461 					  dma_filter_fn fn, void *fn_param)
462 {
463 	struct dma_chan *chan;
464 
465 	if (!__dma_device_satisfies_mask(dev, mask)) {
466 		pr_debug("%s: wrong capabilities\n", __func__);
467 		return NULL;
468 	}
469 	/* devices with multiple channels need special handling as we need to
470 	 * ensure that all channels are either private or public.
471 	 */
472 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
473 		list_for_each_entry(chan, &dev->channels, device_node) {
474 			/* some channels are already publicly allocated */
475 			if (chan->client_count)
476 				return NULL;
477 		}
478 
479 	list_for_each_entry(chan, &dev->channels, device_node) {
480 		if (chan->client_count) {
481 			pr_debug("%s: %s busy\n",
482 				 __func__, dma_chan_name(chan));
483 			continue;
484 		}
485 		if (fn && !fn(chan, fn_param)) {
486 			pr_debug("%s: %s filter said false\n",
487 				 __func__, dma_chan_name(chan));
488 			continue;
489 		}
490 		return chan;
491 	}
492 
493 	return NULL;
494 }
495 
496 /**
497  * dma_request_channel - try to allocate an exclusive channel
498  * @mask: capabilities that the channel must satisfy
499  * @fn: optional callback to disposition available channels
500  * @fn_param: opaque parameter to pass to dma_filter_fn
501  */
__dma_request_channel(dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param)502 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param)
503 {
504 	struct dma_device *device, *_d;
505 	struct dma_chan *chan = NULL;
506 	int err;
507 
508 	/* Find a channel */
509 	mutex_lock(&dma_list_mutex);
510 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
511 		chan = private_candidate(mask, device, fn, fn_param);
512 		if (chan) {
513 			/* Found a suitable channel, try to grab, prep, and
514 			 * return it.  We first set DMA_PRIVATE to disable
515 			 * balance_ref_count as this channel will not be
516 			 * published in the general-purpose allocator
517 			 */
518 			dma_cap_set(DMA_PRIVATE, device->cap_mask);
519 			device->privatecnt++;
520 			err = dma_chan_get(chan);
521 
522 			if (err == -ENODEV) {
523 				pr_debug("%s: %s module removed\n", __func__,
524 					 dma_chan_name(chan));
525 				list_del_rcu(&device->global_node);
526 			} else if (err)
527 				pr_debug("%s: failed to get %s: (%d)\n",
528 					__func__, dma_chan_name(chan), err);
529 			else
530 				break;
531 			if (--device->privatecnt == 0)
532 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
533 			chan = NULL;
534 		}
535 	}
536 	mutex_unlock(&dma_list_mutex);
537 
538 	pr_debug("%s: %s (%s)\n", __func__, chan ? "success" : "fail",
539 		 chan ? dma_chan_name(chan) : NULL);
540 
541 	return chan;
542 }
543 EXPORT_SYMBOL_GPL(__dma_request_channel);
544 
dma_release_channel(struct dma_chan * chan)545 void dma_release_channel(struct dma_chan *chan)
546 {
547 	mutex_lock(&dma_list_mutex);
548 	WARN_ONCE(chan->client_count != 1,
549 		  "chan reference count %d != 1\n", chan->client_count);
550 	dma_chan_put(chan);
551 	/* drop PRIVATE cap enabled by __dma_request_channel() */
552 	if (--chan->device->privatecnt == 0)
553 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
554 	mutex_unlock(&dma_list_mutex);
555 }
556 EXPORT_SYMBOL_GPL(dma_release_channel);
557 
558 /**
559  * dmaengine_get - register interest in dma_channels
560  */
dmaengine_get(void)561 void dmaengine_get(void)
562 {
563 	struct dma_device *device, *_d;
564 	struct dma_chan *chan;
565 	int err;
566 
567 	mutex_lock(&dma_list_mutex);
568 	dmaengine_ref_count++;
569 
570 	/* try to grab channels */
571 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
572 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
573 			continue;
574 		list_for_each_entry(chan, &device->channels, device_node) {
575 			err = dma_chan_get(chan);
576 			if (err == -ENODEV) {
577 				/* module removed before we could use it */
578 				list_del_rcu(&device->global_node);
579 				break;
580 			} else if (err)
581 				pr_debug("%s: failed to get %s: (%d)\n",
582 					__func__, dma_chan_name(chan), err);
583 		}
584 	}
585 
586 	/* if this is the first reference and there were channels
587 	 * waiting we need to rebalance to get those channels
588 	 * incorporated into the channel table
589 	 */
590 	if (dmaengine_ref_count == 1)
591 		dma_channel_rebalance();
592 	mutex_unlock(&dma_list_mutex);
593 }
594 EXPORT_SYMBOL(dmaengine_get);
595 
596 /**
597  * dmaengine_put - let dma drivers be removed when ref_count == 0
598  */
dmaengine_put(void)599 void dmaengine_put(void)
600 {
601 	struct dma_device *device;
602 	struct dma_chan *chan;
603 
604 	mutex_lock(&dma_list_mutex);
605 	dmaengine_ref_count--;
606 	BUG_ON(dmaengine_ref_count < 0);
607 	/* drop channel references */
608 	list_for_each_entry(device, &dma_device_list, global_node) {
609 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
610 			continue;
611 		list_for_each_entry(chan, &device->channels, device_node)
612 			dma_chan_put(chan);
613 	}
614 	mutex_unlock(&dma_list_mutex);
615 }
616 EXPORT_SYMBOL(dmaengine_put);
617 
device_has_all_tx_types(struct dma_device * device)618 static bool device_has_all_tx_types(struct dma_device *device)
619 {
620 	/* A device that satisfies this test has channels that will never cause
621 	 * an async_tx channel switch event as all possible operation types can
622 	 * be handled.
623 	 */
624 	#ifdef CONFIG_ASYNC_TX_DMA
625 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
626 		return false;
627 	#endif
628 
629 	#if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
630 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
631 		return false;
632 	#endif
633 
634 	#if defined(CONFIG_ASYNC_MEMSET) || defined(CONFIG_ASYNC_MEMSET_MODULE)
635 	if (!dma_has_cap(DMA_MEMSET, device->cap_mask))
636 		return false;
637 	#endif
638 
639 	#if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
640 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
641 		return false;
642 
643 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
644 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
645 		return false;
646 	#endif
647 	#endif
648 
649 	#if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
650 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
651 		return false;
652 
653 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
654 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
655 		return false;
656 	#endif
657 	#endif
658 
659 	return true;
660 }
661 
get_dma_id(struct dma_device * device)662 static int get_dma_id(struct dma_device *device)
663 {
664 	int rc;
665 
666  idr_retry:
667 	if (!idr_pre_get(&dma_idr, GFP_KERNEL))
668 		return -ENOMEM;
669 	mutex_lock(&dma_list_mutex);
670 	rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
671 	mutex_unlock(&dma_list_mutex);
672 	if (rc == -EAGAIN)
673 		goto idr_retry;
674 	else if (rc != 0)
675 		return rc;
676 
677 	return 0;
678 }
679 
680 /**
681  * dma_async_device_register - registers DMA devices found
682  * @device: &dma_device
683  */
dma_async_device_register(struct dma_device * device)684 int dma_async_device_register(struct dma_device *device)
685 {
686 	int chancnt = 0, rc;
687 	struct dma_chan* chan;
688 	atomic_t *idr_ref;
689 
690 	if (!device)
691 		return -ENODEV;
692 
693 	/* validate device routines */
694 	BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
695 		!device->device_prep_dma_memcpy);
696 	BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
697 		!device->device_prep_dma_xor);
698 	BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
699 		!device->device_prep_dma_xor_val);
700 	BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
701 		!device->device_prep_dma_pq);
702 	BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
703 		!device->device_prep_dma_pq_val);
704 	BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
705 		!device->device_prep_dma_memset);
706 	BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
707 		!device->device_prep_dma_interrupt);
708 	BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
709 		!device->device_prep_dma_sg);
710 	BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
711 		!device->device_prep_dma_cyclic);
712 	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
713 		!device->device_control);
714 	BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
715 		!device->device_prep_interleaved_dma);
716 
717 	BUG_ON(!device->device_alloc_chan_resources);
718 	BUG_ON(!device->device_free_chan_resources);
719 	BUG_ON(!device->device_tx_status);
720 	BUG_ON(!device->device_issue_pending);
721 	BUG_ON(!device->dev);
722 
723 	/* note: this only matters in the
724 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
725 	 */
726 	if (device_has_all_tx_types(device))
727 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
728 
729 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
730 	if (!idr_ref)
731 		return -ENOMEM;
732 	rc = get_dma_id(device);
733 	if (rc != 0) {
734 		kfree(idr_ref);
735 		return rc;
736 	}
737 
738 	atomic_set(idr_ref, 0);
739 
740 	/* represent channels in sysfs. Probably want devs too */
741 	list_for_each_entry(chan, &device->channels, device_node) {
742 		rc = -ENOMEM;
743 		chan->local = alloc_percpu(typeof(*chan->local));
744 		if (chan->local == NULL)
745 			goto err_out;
746 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
747 		if (chan->dev == NULL) {
748 			free_percpu(chan->local);
749 			chan->local = NULL;
750 			goto err_out;
751 		}
752 
753 		chan->chan_id = chancnt++;
754 		chan->dev->device.class = &dma_devclass;
755 		chan->dev->device.parent = device->dev;
756 		chan->dev->chan = chan;
757 		chan->dev->idr_ref = idr_ref;
758 		chan->dev->dev_id = device->dev_id;
759 		atomic_inc(idr_ref);
760 		dev_set_name(&chan->dev->device, "dma%dchan%d",
761 			     device->dev_id, chan->chan_id);
762 
763 		rc = device_register(&chan->dev->device);
764 		if (rc) {
765 			free_percpu(chan->local);
766 			chan->local = NULL;
767 			kfree(chan->dev);
768 			atomic_dec(idr_ref);
769 			goto err_out;
770 		}
771 		chan->client_count = 0;
772 	}
773 	device->chancnt = chancnt;
774 
775 	mutex_lock(&dma_list_mutex);
776 	/* take references on public channels */
777 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
778 		list_for_each_entry(chan, &device->channels, device_node) {
779 			/* if clients are already waiting for channels we need
780 			 * to take references on their behalf
781 			 */
782 			if (dma_chan_get(chan) == -ENODEV) {
783 				/* note we can only get here for the first
784 				 * channel as the remaining channels are
785 				 * guaranteed to get a reference
786 				 */
787 				rc = -ENODEV;
788 				mutex_unlock(&dma_list_mutex);
789 				goto err_out;
790 			}
791 		}
792 	list_add_tail_rcu(&device->global_node, &dma_device_list);
793 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
794 		device->privatecnt++;	/* Always private */
795 	dma_channel_rebalance();
796 	mutex_unlock(&dma_list_mutex);
797 
798 	return 0;
799 
800 err_out:
801 	/* if we never registered a channel just release the idr */
802 	if (atomic_read(idr_ref) == 0) {
803 		mutex_lock(&dma_list_mutex);
804 		idr_remove(&dma_idr, device->dev_id);
805 		mutex_unlock(&dma_list_mutex);
806 		kfree(idr_ref);
807 		return rc;
808 	}
809 
810 	list_for_each_entry(chan, &device->channels, device_node) {
811 		if (chan->local == NULL)
812 			continue;
813 		mutex_lock(&dma_list_mutex);
814 		chan->dev->chan = NULL;
815 		mutex_unlock(&dma_list_mutex);
816 		device_unregister(&chan->dev->device);
817 		free_percpu(chan->local);
818 	}
819 	return rc;
820 }
821 EXPORT_SYMBOL(dma_async_device_register);
822 
823 /**
824  * dma_async_device_unregister - unregister a DMA device
825  * @device: &dma_device
826  *
827  * This routine is called by dma driver exit routines, dmaengine holds module
828  * references to prevent it being called while channels are in use.
829  */
dma_async_device_unregister(struct dma_device * device)830 void dma_async_device_unregister(struct dma_device *device)
831 {
832 	struct dma_chan *chan;
833 
834 	mutex_lock(&dma_list_mutex);
835 	list_del_rcu(&device->global_node);
836 	dma_channel_rebalance();
837 	mutex_unlock(&dma_list_mutex);
838 
839 	list_for_each_entry(chan, &device->channels, device_node) {
840 		WARN_ONCE(chan->client_count,
841 			  "%s called while %d clients hold a reference\n",
842 			  __func__, chan->client_count);
843 		mutex_lock(&dma_list_mutex);
844 		chan->dev->chan = NULL;
845 		mutex_unlock(&dma_list_mutex);
846 		device_unregister(&chan->dev->device);
847 		free_percpu(chan->local);
848 	}
849 }
850 EXPORT_SYMBOL(dma_async_device_unregister);
851 
852 /**
853  * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
854  * @chan: DMA channel to offload copy to
855  * @dest: destination address (virtual)
856  * @src: source address (virtual)
857  * @len: length
858  *
859  * Both @dest and @src must be mappable to a bus address according to the
860  * DMA mapping API rules for streaming mappings.
861  * Both @dest and @src must stay memory resident (kernel memory or locked
862  * user space pages).
863  */
864 dma_cookie_t
dma_async_memcpy_buf_to_buf(struct dma_chan * chan,void * dest,void * src,size_t len)865 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
866 			void *src, size_t len)
867 {
868 	struct dma_device *dev = chan->device;
869 	struct dma_async_tx_descriptor *tx;
870 	dma_addr_t dma_dest, dma_src;
871 	dma_cookie_t cookie;
872 	unsigned long flags;
873 
874 	dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
875 	dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
876 	flags = DMA_CTRL_ACK |
877 		DMA_COMPL_SRC_UNMAP_SINGLE |
878 		DMA_COMPL_DEST_UNMAP_SINGLE;
879 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
880 
881 	if (!tx) {
882 		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
883 		dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
884 		return -ENOMEM;
885 	}
886 
887 	tx->callback = NULL;
888 	cookie = tx->tx_submit(tx);
889 
890 	preempt_disable();
891 	__this_cpu_add(chan->local->bytes_transferred, len);
892 	__this_cpu_inc(chan->local->memcpy_count);
893 	preempt_enable();
894 
895 	return cookie;
896 }
897 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
898 
899 /**
900  * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
901  * @chan: DMA channel to offload copy to
902  * @page: destination page
903  * @offset: offset in page to copy to
904  * @kdata: source address (virtual)
905  * @len: length
906  *
907  * Both @page/@offset and @kdata must be mappable to a bus address according
908  * to the DMA mapping API rules for streaming mappings.
909  * Both @page/@offset and @kdata must stay memory resident (kernel memory or
910  * locked user space pages)
911  */
912 dma_cookie_t
dma_async_memcpy_buf_to_pg(struct dma_chan * chan,struct page * page,unsigned int offset,void * kdata,size_t len)913 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
914 			unsigned int offset, void *kdata, size_t len)
915 {
916 	struct dma_device *dev = chan->device;
917 	struct dma_async_tx_descriptor *tx;
918 	dma_addr_t dma_dest, dma_src;
919 	dma_cookie_t cookie;
920 	unsigned long flags;
921 
922 	dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
923 	dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
924 	flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE;
925 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
926 
927 	if (!tx) {
928 		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
929 		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
930 		return -ENOMEM;
931 	}
932 
933 	tx->callback = NULL;
934 	cookie = tx->tx_submit(tx);
935 
936 	preempt_disable();
937 	__this_cpu_add(chan->local->bytes_transferred, len);
938 	__this_cpu_inc(chan->local->memcpy_count);
939 	preempt_enable();
940 
941 	return cookie;
942 }
943 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
944 
945 /**
946  * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
947  * @chan: DMA channel to offload copy to
948  * @dest_pg: destination page
949  * @dest_off: offset in page to copy to
950  * @src_pg: source page
951  * @src_off: offset in page to copy from
952  * @len: length
953  *
954  * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
955  * address according to the DMA mapping API rules for streaming mappings.
956  * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
957  * (kernel memory or locked user space pages).
958  */
959 dma_cookie_t
dma_async_memcpy_pg_to_pg(struct dma_chan * chan,struct page * dest_pg,unsigned int dest_off,struct page * src_pg,unsigned int src_off,size_t len)960 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
961 	unsigned int dest_off, struct page *src_pg, unsigned int src_off,
962 	size_t len)
963 {
964 	struct dma_device *dev = chan->device;
965 	struct dma_async_tx_descriptor *tx;
966 	dma_addr_t dma_dest, dma_src;
967 	dma_cookie_t cookie;
968 	unsigned long flags;
969 
970 	dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
971 	dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
972 				DMA_FROM_DEVICE);
973 	flags = DMA_CTRL_ACK;
974 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
975 
976 	if (!tx) {
977 		dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
978 		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
979 		return -ENOMEM;
980 	}
981 
982 	tx->callback = NULL;
983 	cookie = tx->tx_submit(tx);
984 
985 	preempt_disable();
986 	__this_cpu_add(chan->local->bytes_transferred, len);
987 	__this_cpu_inc(chan->local->memcpy_count);
988 	preempt_enable();
989 
990 	return cookie;
991 }
992 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
993 
dma_async_tx_descriptor_init(struct dma_async_tx_descriptor * tx,struct dma_chan * chan)994 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
995 	struct dma_chan *chan)
996 {
997 	tx->chan = chan;
998 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
999 	spin_lock_init(&tx->lock);
1000 	#endif
1001 }
1002 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1003 
1004 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1005  * @tx: in-flight transaction to wait on
1006  */
1007 enum dma_status
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1008 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1009 {
1010 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1011 
1012 	if (!tx)
1013 		return DMA_SUCCESS;
1014 
1015 	while (tx->cookie == -EBUSY) {
1016 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1017 			pr_err("%s timeout waiting for descriptor submission\n",
1018 				__func__);
1019 			return DMA_ERROR;
1020 		}
1021 		cpu_relax();
1022 	}
1023 	return dma_sync_wait(tx->chan, tx->cookie);
1024 }
1025 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1026 
1027 /* dma_run_dependencies - helper routine for dma drivers to process
1028  *	(start) dependent operations on their target channel
1029  * @tx: transaction with dependencies
1030  */
dma_run_dependencies(struct dma_async_tx_descriptor * tx)1031 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1032 {
1033 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1034 	struct dma_async_tx_descriptor *dep_next;
1035 	struct dma_chan *chan;
1036 
1037 	if (!dep)
1038 		return;
1039 
1040 	/* we'll submit tx->next now, so clear the link */
1041 	txd_clear_next(tx);
1042 	chan = dep->chan;
1043 
1044 	/* keep submitting up until a channel switch is detected
1045 	 * in that case we will be called again as a result of
1046 	 * processing the interrupt from async_tx_channel_switch
1047 	 */
1048 	for (; dep; dep = dep_next) {
1049 		txd_lock(dep);
1050 		txd_clear_parent(dep);
1051 		dep_next = txd_next(dep);
1052 		if (dep_next && dep_next->chan == chan)
1053 			txd_clear_next(dep); /* ->next will be submitted */
1054 		else
1055 			dep_next = NULL; /* submit current dep and terminate */
1056 		txd_unlock(dep);
1057 
1058 		dep->tx_submit(dep);
1059 	}
1060 
1061 	chan->device->device_issue_pending(chan);
1062 }
1063 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1064 
dma_bus_init(void)1065 static int __init dma_bus_init(void)
1066 {
1067 	return class_register(&dma_devclass);
1068 }
1069 arch_initcall(dma_bus_init);
1070 
1071 
1072