1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/namei.h>
15 #include <linux/ctype.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/mount.h>
24 #include <linux/dax.h>
25
26 #define DM_MSG_PREFIX "table"
27
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32 /*
33 * Similar to ceiling(log_size(n))
34 */
int_log(unsigned int n,unsigned int base)35 static unsigned int int_log(unsigned int n, unsigned int base)
36 {
37 int result = 0;
38
39 while (n > 1) {
40 n = dm_div_up(n, base);
41 result++;
42 }
43
44 return result;
45 }
46
47 /*
48 * Calculate the index of the child node of the n'th node k'th key.
49 */
get_child(unsigned int n,unsigned int k)50 static inline unsigned int get_child(unsigned int n, unsigned int k)
51 {
52 return (n * CHILDREN_PER_NODE) + k;
53 }
54
55 /*
56 * Return the n'th node of level l from table t.
57 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)58 static inline sector_t *get_node(struct dm_table *t,
59 unsigned int l, unsigned int n)
60 {
61 return t->index[l] + (n * KEYS_PER_NODE);
62 }
63
64 /*
65 * Return the highest key that you could lookup from the n'th
66 * node on level l of the btree.
67 */
high(struct dm_table * t,unsigned int l,unsigned int n)68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
69 {
70 for (; l < t->depth - 1; l++)
71 n = get_child(n, CHILDREN_PER_NODE - 1);
72
73 if (n >= t->counts[l])
74 return (sector_t) - 1;
75
76 return get_node(t, l, n)[KEYS_PER_NODE - 1];
77 }
78
79 /*
80 * Fills in a level of the btree based on the highs of the level
81 * below it.
82 */
setup_btree_index(unsigned int l,struct dm_table * t)83 static int setup_btree_index(unsigned int l, struct dm_table *t)
84 {
85 unsigned int n, k;
86 sector_t *node;
87
88 for (n = 0U; n < t->counts[l]; n++) {
89 node = get_node(t, l, n);
90
91 for (k = 0U; k < KEYS_PER_NODE; k++)
92 node[k] = high(t, l + 1, get_child(n, k));
93 }
94
95 return 0;
96 }
97
98 /*
99 * highs, and targets are managed as dynamic arrays during a
100 * table load.
101 */
alloc_targets(struct dm_table * t,unsigned int num)102 static int alloc_targets(struct dm_table *t, unsigned int num)
103 {
104 sector_t *n_highs;
105 struct dm_target *n_targets;
106
107 /*
108 * Allocate both the target array and offset array at once.
109 */
110 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
111 GFP_KERNEL);
112 if (!n_highs)
113 return -ENOMEM;
114
115 n_targets = (struct dm_target *) (n_highs + num);
116
117 memset(n_highs, -1, sizeof(*n_highs) * num);
118 kvfree(t->highs);
119
120 t->num_allocated = num;
121 t->highs = n_highs;
122 t->targets = n_targets;
123
124 return 0;
125 }
126
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)127 int dm_table_create(struct dm_table **result, fmode_t mode,
128 unsigned num_targets, struct mapped_device *md)
129 {
130 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
131
132 if (!t)
133 return -ENOMEM;
134
135 INIT_LIST_HEAD(&t->devices);
136
137 if (!num_targets)
138 num_targets = KEYS_PER_NODE;
139
140 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
141
142 if (!num_targets) {
143 kfree(t);
144 return -ENOMEM;
145 }
146
147 if (alloc_targets(t, num_targets)) {
148 kfree(t);
149 return -ENOMEM;
150 }
151
152 t->type = DM_TYPE_NONE;
153 t->mode = mode;
154 t->md = md;
155 *result = t;
156 return 0;
157 }
158
free_devices(struct list_head * devices,struct mapped_device * md)159 static void free_devices(struct list_head *devices, struct mapped_device *md)
160 {
161 struct list_head *tmp, *next;
162
163 list_for_each_safe(tmp, next, devices) {
164 struct dm_dev_internal *dd =
165 list_entry(tmp, struct dm_dev_internal, list);
166 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
167 dm_device_name(md), dd->dm_dev->name);
168 dm_put_table_device(md, dd->dm_dev);
169 kfree(dd);
170 }
171 }
172
173 static void dm_table_destroy_crypto_profile(struct dm_table *t);
174
dm_table_destroy(struct dm_table * t)175 void dm_table_destroy(struct dm_table *t)
176 {
177 unsigned int i;
178
179 if (!t)
180 return;
181
182 /* free the indexes */
183 if (t->depth >= 2)
184 kvfree(t->index[t->depth - 2]);
185
186 /* free the targets */
187 for (i = 0; i < t->num_targets; i++) {
188 struct dm_target *tgt = t->targets + i;
189
190 if (tgt->type->dtr)
191 tgt->type->dtr(tgt);
192
193 dm_put_target_type(tgt->type);
194 }
195
196 kvfree(t->highs);
197
198 /* free the device list */
199 free_devices(&t->devices, t->md);
200
201 dm_free_md_mempools(t->mempools);
202
203 dm_table_destroy_crypto_profile(t);
204
205 kfree(t);
206 }
207
208 /*
209 * See if we've already got a device in the list.
210 */
find_device(struct list_head * l,dev_t dev)211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
212 {
213 struct dm_dev_internal *dd;
214
215 list_for_each_entry (dd, l, list)
216 if (dd->dm_dev->bdev->bd_dev == dev)
217 return dd;
218
219 return NULL;
220 }
221
222 /*
223 * If possible, this checks an area of a destination device is invalid.
224 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
226 sector_t start, sector_t len, void *data)
227 {
228 struct queue_limits *limits = data;
229 struct block_device *bdev = dev->bdev;
230 sector_t dev_size = bdev_nr_sectors(bdev);
231 unsigned short logical_block_size_sectors =
232 limits->logical_block_size >> SECTOR_SHIFT;
233
234 if (!dev_size)
235 return 0;
236
237 if ((start >= dev_size) || (start + len > dev_size)) {
238 DMWARN("%s: %pg too small for target: "
239 "start=%llu, len=%llu, dev_size=%llu",
240 dm_device_name(ti->table->md), bdev,
241 (unsigned long long)start,
242 (unsigned long long)len,
243 (unsigned long long)dev_size);
244 return 1;
245 }
246
247 /*
248 * If the target is mapped to zoned block device(s), check
249 * that the zones are not partially mapped.
250 */
251 if (bdev_is_zoned(bdev)) {
252 unsigned int zone_sectors = bdev_zone_sectors(bdev);
253
254 if (start & (zone_sectors - 1)) {
255 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %pg",
256 dm_device_name(ti->table->md),
257 (unsigned long long)start,
258 zone_sectors, bdev);
259 return 1;
260 }
261
262 /*
263 * Note: The last zone of a zoned block device may be smaller
264 * than other zones. So for a target mapping the end of a
265 * zoned block device with such a zone, len would not be zone
266 * aligned. We do not allow such last smaller zone to be part
267 * of the mapping here to ensure that mappings with multiple
268 * devices do not end up with a smaller zone in the middle of
269 * the sector range.
270 */
271 if (len & (zone_sectors - 1)) {
272 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %pg",
273 dm_device_name(ti->table->md),
274 (unsigned long long)len,
275 zone_sectors, bdev);
276 return 1;
277 }
278 }
279
280 if (logical_block_size_sectors <= 1)
281 return 0;
282
283 if (start & (logical_block_size_sectors - 1)) {
284 DMWARN("%s: start=%llu not aligned to h/w "
285 "logical block size %u of %pg",
286 dm_device_name(ti->table->md),
287 (unsigned long long)start,
288 limits->logical_block_size, bdev);
289 return 1;
290 }
291
292 if (len & (logical_block_size_sectors - 1)) {
293 DMWARN("%s: len=%llu not aligned to h/w "
294 "logical block size %u of %pg",
295 dm_device_name(ti->table->md),
296 (unsigned long long)len,
297 limits->logical_block_size, bdev);
298 return 1;
299 }
300
301 return 0;
302 }
303
304 /*
305 * This upgrades the mode on an already open dm_dev, being
306 * careful to leave things as they were if we fail to reopen the
307 * device and not to touch the existing bdev field in case
308 * it is accessed concurrently.
309 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)310 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
311 struct mapped_device *md)
312 {
313 int r;
314 struct dm_dev *old_dev, *new_dev;
315
316 old_dev = dd->dm_dev;
317
318 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
319 dd->dm_dev->mode | new_mode, &new_dev);
320 if (r)
321 return r;
322
323 dd->dm_dev = new_dev;
324 dm_put_table_device(md, old_dev);
325
326 return 0;
327 }
328
329 /*
330 * Convert the path to a device
331 */
dm_get_dev_t(const char * path)332 dev_t dm_get_dev_t(const char *path)
333 {
334 dev_t dev;
335
336 if (lookup_bdev(path, &dev))
337 dev = name_to_dev_t(path);
338 return dev;
339 }
340 EXPORT_SYMBOL_GPL(dm_get_dev_t);
341
342 /*
343 * Add a device to the list, or just increment the usage count if
344 * it's already present.
345 */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)346 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
347 struct dm_dev **result)
348 {
349 int r;
350 dev_t dev;
351 unsigned int major, minor;
352 char dummy;
353 struct dm_dev_internal *dd;
354 struct dm_table *t = ti->table;
355
356 BUG_ON(!t);
357
358 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
359 /* Extract the major/minor numbers */
360 dev = MKDEV(major, minor);
361 if (MAJOR(dev) != major || MINOR(dev) != minor)
362 return -EOVERFLOW;
363 } else {
364 dev = dm_get_dev_t(path);
365 if (!dev)
366 return -ENODEV;
367 }
368
369 dd = find_device(&t->devices, dev);
370 if (!dd) {
371 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
372 if (!dd)
373 return -ENOMEM;
374
375 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
376 kfree(dd);
377 return r;
378 }
379
380 refcount_set(&dd->count, 1);
381 list_add(&dd->list, &t->devices);
382 goto out;
383
384 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
385 r = upgrade_mode(dd, mode, t->md);
386 if (r)
387 return r;
388 }
389 refcount_inc(&dd->count);
390 out:
391 *result = dd->dm_dev;
392 return 0;
393 }
394 EXPORT_SYMBOL(dm_get_device);
395
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)396 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
397 sector_t start, sector_t len, void *data)
398 {
399 struct queue_limits *limits = data;
400 struct block_device *bdev = dev->bdev;
401 struct request_queue *q = bdev_get_queue(bdev);
402
403 if (unlikely(!q)) {
404 DMWARN("%s: Cannot set limits for nonexistent device %pg",
405 dm_device_name(ti->table->md), bdev);
406 return 0;
407 }
408
409 if (blk_stack_limits(limits, &q->limits,
410 get_start_sect(bdev) + start) < 0)
411 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
412 "physical_block_size=%u, logical_block_size=%u, "
413 "alignment_offset=%u, start=%llu",
414 dm_device_name(ti->table->md), bdev,
415 q->limits.physical_block_size,
416 q->limits.logical_block_size,
417 q->limits.alignment_offset,
418 (unsigned long long) start << SECTOR_SHIFT);
419 return 0;
420 }
421
422 /*
423 * Decrement a device's use count and remove it if necessary.
424 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)425 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
426 {
427 int found = 0;
428 struct list_head *devices = &ti->table->devices;
429 struct dm_dev_internal *dd;
430
431 list_for_each_entry(dd, devices, list) {
432 if (dd->dm_dev == d) {
433 found = 1;
434 break;
435 }
436 }
437 if (!found) {
438 DMWARN("%s: device %s not in table devices list",
439 dm_device_name(ti->table->md), d->name);
440 return;
441 }
442 if (refcount_dec_and_test(&dd->count)) {
443 dm_put_table_device(ti->table->md, d);
444 list_del(&dd->list);
445 kfree(dd);
446 }
447 }
448 EXPORT_SYMBOL(dm_put_device);
449
450 /*
451 * Checks to see if the target joins onto the end of the table.
452 */
adjoin(struct dm_table * table,struct dm_target * ti)453 static int adjoin(struct dm_table *table, struct dm_target *ti)
454 {
455 struct dm_target *prev;
456
457 if (!table->num_targets)
458 return !ti->begin;
459
460 prev = &table->targets[table->num_targets - 1];
461 return (ti->begin == (prev->begin + prev->len));
462 }
463
464 /*
465 * Used to dynamically allocate the arg array.
466 *
467 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
468 * process messages even if some device is suspended. These messages have a
469 * small fixed number of arguments.
470 *
471 * On the other hand, dm-switch needs to process bulk data using messages and
472 * excessive use of GFP_NOIO could cause trouble.
473 */
realloc_argv(unsigned * size,char ** old_argv)474 static char **realloc_argv(unsigned *size, char **old_argv)
475 {
476 char **argv;
477 unsigned new_size;
478 gfp_t gfp;
479
480 if (*size) {
481 new_size = *size * 2;
482 gfp = GFP_KERNEL;
483 } else {
484 new_size = 8;
485 gfp = GFP_NOIO;
486 }
487 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
488 if (argv && old_argv) {
489 memcpy(argv, old_argv, *size * sizeof(*argv));
490 *size = new_size;
491 }
492
493 kfree(old_argv);
494 return argv;
495 }
496
497 /*
498 * Destructively splits up the argument list to pass to ctr.
499 */
dm_split_args(int * argc,char *** argvp,char * input)500 int dm_split_args(int *argc, char ***argvp, char *input)
501 {
502 char *start, *end = input, *out, **argv = NULL;
503 unsigned array_size = 0;
504
505 *argc = 0;
506
507 if (!input) {
508 *argvp = NULL;
509 return 0;
510 }
511
512 argv = realloc_argv(&array_size, argv);
513 if (!argv)
514 return -ENOMEM;
515
516 while (1) {
517 /* Skip whitespace */
518 start = skip_spaces(end);
519
520 if (!*start)
521 break; /* success, we hit the end */
522
523 /* 'out' is used to remove any back-quotes */
524 end = out = start;
525 while (*end) {
526 /* Everything apart from '\0' can be quoted */
527 if (*end == '\\' && *(end + 1)) {
528 *out++ = *(end + 1);
529 end += 2;
530 continue;
531 }
532
533 if (isspace(*end))
534 break; /* end of token */
535
536 *out++ = *end++;
537 }
538
539 /* have we already filled the array ? */
540 if ((*argc + 1) > array_size) {
541 argv = realloc_argv(&array_size, argv);
542 if (!argv)
543 return -ENOMEM;
544 }
545
546 /* we know this is whitespace */
547 if (*end)
548 end++;
549
550 /* terminate the string and put it in the array */
551 *out = '\0';
552 argv[*argc] = start;
553 (*argc)++;
554 }
555
556 *argvp = argv;
557 return 0;
558 }
559
560 /*
561 * Impose necessary and sufficient conditions on a devices's table such
562 * that any incoming bio which respects its logical_block_size can be
563 * processed successfully. If it falls across the boundary between
564 * two or more targets, the size of each piece it gets split into must
565 * be compatible with the logical_block_size of the target processing it.
566 */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)567 static int validate_hardware_logical_block_alignment(struct dm_table *table,
568 struct queue_limits *limits)
569 {
570 /*
571 * This function uses arithmetic modulo the logical_block_size
572 * (in units of 512-byte sectors).
573 */
574 unsigned short device_logical_block_size_sects =
575 limits->logical_block_size >> SECTOR_SHIFT;
576
577 /*
578 * Offset of the start of the next table entry, mod logical_block_size.
579 */
580 unsigned short next_target_start = 0;
581
582 /*
583 * Given an aligned bio that extends beyond the end of a
584 * target, how many sectors must the next target handle?
585 */
586 unsigned short remaining = 0;
587
588 struct dm_target *ti;
589 struct queue_limits ti_limits;
590 unsigned i;
591
592 /*
593 * Check each entry in the table in turn.
594 */
595 for (i = 0; i < dm_table_get_num_targets(table); i++) {
596 ti = dm_table_get_target(table, i);
597
598 blk_set_stacking_limits(&ti_limits);
599
600 /* combine all target devices' limits */
601 if (ti->type->iterate_devices)
602 ti->type->iterate_devices(ti, dm_set_device_limits,
603 &ti_limits);
604
605 /*
606 * If the remaining sectors fall entirely within this
607 * table entry are they compatible with its logical_block_size?
608 */
609 if (remaining < ti->len &&
610 remaining & ((ti_limits.logical_block_size >>
611 SECTOR_SHIFT) - 1))
612 break; /* Error */
613
614 next_target_start =
615 (unsigned short) ((next_target_start + ti->len) &
616 (device_logical_block_size_sects - 1));
617 remaining = next_target_start ?
618 device_logical_block_size_sects - next_target_start : 0;
619 }
620
621 if (remaining) {
622 DMWARN("%s: table line %u (start sect %llu len %llu) "
623 "not aligned to h/w logical block size %u",
624 dm_device_name(table->md), i,
625 (unsigned long long) ti->begin,
626 (unsigned long long) ti->len,
627 limits->logical_block_size);
628 return -EINVAL;
629 }
630
631 return 0;
632 }
633
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)634 int dm_table_add_target(struct dm_table *t, const char *type,
635 sector_t start, sector_t len, char *params)
636 {
637 int r = -EINVAL, argc;
638 char **argv;
639 struct dm_target *tgt;
640
641 if (t->singleton) {
642 DMERR("%s: target type %s must appear alone in table",
643 dm_device_name(t->md), t->targets->type->name);
644 return -EINVAL;
645 }
646
647 BUG_ON(t->num_targets >= t->num_allocated);
648
649 tgt = t->targets + t->num_targets;
650 memset(tgt, 0, sizeof(*tgt));
651
652 if (!len) {
653 DMERR("%s: zero-length target", dm_device_name(t->md));
654 return -EINVAL;
655 }
656
657 tgt->type = dm_get_target_type(type);
658 if (!tgt->type) {
659 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
660 return -EINVAL;
661 }
662
663 if (dm_target_needs_singleton(tgt->type)) {
664 if (t->num_targets) {
665 tgt->error = "singleton target type must appear alone in table";
666 goto bad;
667 }
668 t->singleton = true;
669 }
670
671 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
672 tgt->error = "target type may not be included in a read-only table";
673 goto bad;
674 }
675
676 if (t->immutable_target_type) {
677 if (t->immutable_target_type != tgt->type) {
678 tgt->error = "immutable target type cannot be mixed with other target types";
679 goto bad;
680 }
681 } else if (dm_target_is_immutable(tgt->type)) {
682 if (t->num_targets) {
683 tgt->error = "immutable target type cannot be mixed with other target types";
684 goto bad;
685 }
686 t->immutable_target_type = tgt->type;
687 }
688
689 if (dm_target_has_integrity(tgt->type))
690 t->integrity_added = 1;
691
692 tgt->table = t;
693 tgt->begin = start;
694 tgt->len = len;
695 tgt->error = "Unknown error";
696
697 /*
698 * Does this target adjoin the previous one ?
699 */
700 if (!adjoin(t, tgt)) {
701 tgt->error = "Gap in table";
702 goto bad;
703 }
704
705 r = dm_split_args(&argc, &argv, params);
706 if (r) {
707 tgt->error = "couldn't split parameters";
708 goto bad;
709 }
710
711 r = tgt->type->ctr(tgt, argc, argv);
712 kfree(argv);
713 if (r)
714 goto bad;
715
716 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
717
718 if (!tgt->num_discard_bios && tgt->discards_supported)
719 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
720 dm_device_name(t->md), type);
721
722 if (tgt->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
723 static_branch_enable(&swap_bios_enabled);
724
725 return 0;
726
727 bad:
728 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, tgt->error, ERR_PTR(r));
729 dm_put_target_type(tgt->type);
730 return r;
731 }
732
733 /*
734 * Target argument parsing helpers.
735 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)736 static int validate_next_arg(const struct dm_arg *arg,
737 struct dm_arg_set *arg_set,
738 unsigned *value, char **error, unsigned grouped)
739 {
740 const char *arg_str = dm_shift_arg(arg_set);
741 char dummy;
742
743 if (!arg_str ||
744 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
745 (*value < arg->min) ||
746 (*value > arg->max) ||
747 (grouped && arg_set->argc < *value)) {
748 *error = arg->error;
749 return -EINVAL;
750 }
751
752 return 0;
753 }
754
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)755 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
756 unsigned *value, char **error)
757 {
758 return validate_next_arg(arg, arg_set, value, error, 0);
759 }
760 EXPORT_SYMBOL(dm_read_arg);
761
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)762 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
763 unsigned *value, char **error)
764 {
765 return validate_next_arg(arg, arg_set, value, error, 1);
766 }
767 EXPORT_SYMBOL(dm_read_arg_group);
768
dm_shift_arg(struct dm_arg_set * as)769 const char *dm_shift_arg(struct dm_arg_set *as)
770 {
771 char *r;
772
773 if (as->argc) {
774 as->argc--;
775 r = *as->argv;
776 as->argv++;
777 return r;
778 }
779
780 return NULL;
781 }
782 EXPORT_SYMBOL(dm_shift_arg);
783
dm_consume_args(struct dm_arg_set * as,unsigned num_args)784 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
785 {
786 BUG_ON(as->argc < num_args);
787 as->argc -= num_args;
788 as->argv += num_args;
789 }
790 EXPORT_SYMBOL(dm_consume_args);
791
__table_type_bio_based(enum dm_queue_mode table_type)792 static bool __table_type_bio_based(enum dm_queue_mode table_type)
793 {
794 return (table_type == DM_TYPE_BIO_BASED ||
795 table_type == DM_TYPE_DAX_BIO_BASED);
796 }
797
__table_type_request_based(enum dm_queue_mode table_type)798 static bool __table_type_request_based(enum dm_queue_mode table_type)
799 {
800 return table_type == DM_TYPE_REQUEST_BASED;
801 }
802
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)803 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
804 {
805 t->type = type;
806 }
807 EXPORT_SYMBOL_GPL(dm_table_set_type);
808
809 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)810 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
811 sector_t start, sector_t len, void *data)
812 {
813 if (dev->dax_dev)
814 return false;
815
816 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
817 return true;
818 }
819
820 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)821 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
822 sector_t start, sector_t len, void *data)
823 {
824 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
825 }
826
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn)827 static bool dm_table_supports_dax(struct dm_table *t,
828 iterate_devices_callout_fn iterate_fn)
829 {
830 struct dm_target *ti;
831 unsigned i;
832
833 /* Ensure that all targets support DAX. */
834 for (i = 0; i < dm_table_get_num_targets(t); i++) {
835 ti = dm_table_get_target(t, i);
836
837 if (!ti->type->direct_access)
838 return false;
839
840 if (!ti->type->iterate_devices ||
841 ti->type->iterate_devices(ti, iterate_fn, NULL))
842 return false;
843 }
844
845 return true;
846 }
847
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)848 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
849 sector_t start, sector_t len, void *data)
850 {
851 struct block_device *bdev = dev->bdev;
852 struct request_queue *q = bdev_get_queue(bdev);
853
854 /* request-based cannot stack on partitions! */
855 if (bdev_is_partition(bdev))
856 return false;
857
858 return queue_is_mq(q);
859 }
860
dm_table_determine_type(struct dm_table * t)861 static int dm_table_determine_type(struct dm_table *t)
862 {
863 unsigned i;
864 unsigned bio_based = 0, request_based = 0, hybrid = 0;
865 struct dm_target *tgt;
866 struct list_head *devices = dm_table_get_devices(t);
867 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
868
869 if (t->type != DM_TYPE_NONE) {
870 /* target already set the table's type */
871 if (t->type == DM_TYPE_BIO_BASED) {
872 /* possibly upgrade to a variant of bio-based */
873 goto verify_bio_based;
874 }
875 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
876 goto verify_rq_based;
877 }
878
879 for (i = 0; i < t->num_targets; i++) {
880 tgt = t->targets + i;
881 if (dm_target_hybrid(tgt))
882 hybrid = 1;
883 else if (dm_target_request_based(tgt))
884 request_based = 1;
885 else
886 bio_based = 1;
887
888 if (bio_based && request_based) {
889 DMERR("Inconsistent table: different target types"
890 " can't be mixed up");
891 return -EINVAL;
892 }
893 }
894
895 if (hybrid && !bio_based && !request_based) {
896 /*
897 * The targets can work either way.
898 * Determine the type from the live device.
899 * Default to bio-based if device is new.
900 */
901 if (__table_type_request_based(live_md_type))
902 request_based = 1;
903 else
904 bio_based = 1;
905 }
906
907 if (bio_based) {
908 verify_bio_based:
909 /* We must use this table as bio-based */
910 t->type = DM_TYPE_BIO_BASED;
911 if (dm_table_supports_dax(t, device_not_dax_capable) ||
912 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
913 t->type = DM_TYPE_DAX_BIO_BASED;
914 }
915 return 0;
916 }
917
918 BUG_ON(!request_based); /* No targets in this table */
919
920 t->type = DM_TYPE_REQUEST_BASED;
921
922 verify_rq_based:
923 /*
924 * Request-based dm supports only tables that have a single target now.
925 * To support multiple targets, request splitting support is needed,
926 * and that needs lots of changes in the block-layer.
927 * (e.g. request completion process for partial completion.)
928 */
929 if (t->num_targets > 1) {
930 DMERR("request-based DM doesn't support multiple targets");
931 return -EINVAL;
932 }
933
934 if (list_empty(devices)) {
935 int srcu_idx;
936 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
937
938 /* inherit live table's type */
939 if (live_table)
940 t->type = live_table->type;
941 dm_put_live_table(t->md, srcu_idx);
942 return 0;
943 }
944
945 tgt = dm_table_get_immutable_target(t);
946 if (!tgt) {
947 DMERR("table load rejected: immutable target is required");
948 return -EINVAL;
949 } else if (tgt->max_io_len) {
950 DMERR("table load rejected: immutable target that splits IO is not supported");
951 return -EINVAL;
952 }
953
954 /* Non-request-stackable devices can't be used for request-based dm */
955 if (!tgt->type->iterate_devices ||
956 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
957 DMERR("table load rejected: including non-request-stackable devices");
958 return -EINVAL;
959 }
960
961 return 0;
962 }
963
dm_table_get_type(struct dm_table * t)964 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
965 {
966 return t->type;
967 }
968
dm_table_get_immutable_target_type(struct dm_table * t)969 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
970 {
971 return t->immutable_target_type;
972 }
973
dm_table_get_immutable_target(struct dm_table * t)974 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
975 {
976 /* Immutable target is implicitly a singleton */
977 if (t->num_targets > 1 ||
978 !dm_target_is_immutable(t->targets[0].type))
979 return NULL;
980
981 return t->targets;
982 }
983
dm_table_get_wildcard_target(struct dm_table * t)984 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
985 {
986 struct dm_target *ti;
987 unsigned i;
988
989 for (i = 0; i < dm_table_get_num_targets(t); i++) {
990 ti = dm_table_get_target(t, i);
991 if (dm_target_is_wildcard(ti->type))
992 return ti;
993 }
994
995 return NULL;
996 }
997
dm_table_bio_based(struct dm_table * t)998 bool dm_table_bio_based(struct dm_table *t)
999 {
1000 return __table_type_bio_based(dm_table_get_type(t));
1001 }
1002
dm_table_request_based(struct dm_table * t)1003 bool dm_table_request_based(struct dm_table *t)
1004 {
1005 return __table_type_request_based(dm_table_get_type(t));
1006 }
1007
1008 static bool dm_table_supports_poll(struct dm_table *t);
1009
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1010 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1011 {
1012 enum dm_queue_mode type = dm_table_get_type(t);
1013 unsigned per_io_data_size = 0;
1014 unsigned min_pool_size = 0;
1015 struct dm_target *ti;
1016 unsigned i;
1017 bool poll_supported = false;
1018
1019 if (unlikely(type == DM_TYPE_NONE)) {
1020 DMWARN("no table type is set, can't allocate mempools");
1021 return -EINVAL;
1022 }
1023
1024 if (__table_type_bio_based(type)) {
1025 for (i = 0; i < t->num_targets; i++) {
1026 ti = t->targets + i;
1027 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1028 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1029 }
1030 poll_supported = dm_table_supports_poll(t);
1031 }
1032
1033 t->mempools = dm_alloc_md_mempools(md, type, per_io_data_size, min_pool_size,
1034 t->integrity_supported, poll_supported);
1035 if (!t->mempools)
1036 return -ENOMEM;
1037
1038 return 0;
1039 }
1040
setup_indexes(struct dm_table * t)1041 static int setup_indexes(struct dm_table *t)
1042 {
1043 int i;
1044 unsigned int total = 0;
1045 sector_t *indexes;
1046
1047 /* allocate the space for *all* the indexes */
1048 for (i = t->depth - 2; i >= 0; i--) {
1049 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1050 total += t->counts[i];
1051 }
1052
1053 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1054 if (!indexes)
1055 return -ENOMEM;
1056
1057 /* set up internal nodes, bottom-up */
1058 for (i = t->depth - 2; i >= 0; i--) {
1059 t->index[i] = indexes;
1060 indexes += (KEYS_PER_NODE * t->counts[i]);
1061 setup_btree_index(i, t);
1062 }
1063
1064 return 0;
1065 }
1066
1067 /*
1068 * Builds the btree to index the map.
1069 */
dm_table_build_index(struct dm_table * t)1070 static int dm_table_build_index(struct dm_table *t)
1071 {
1072 int r = 0;
1073 unsigned int leaf_nodes;
1074
1075 /* how many indexes will the btree have ? */
1076 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1077 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1078
1079 /* leaf layer has already been set up */
1080 t->counts[t->depth - 1] = leaf_nodes;
1081 t->index[t->depth - 1] = t->highs;
1082
1083 if (t->depth >= 2)
1084 r = setup_indexes(t);
1085
1086 return r;
1087 }
1088
integrity_profile_exists(struct gendisk * disk)1089 static bool integrity_profile_exists(struct gendisk *disk)
1090 {
1091 return !!blk_get_integrity(disk);
1092 }
1093
1094 /*
1095 * Get a disk whose integrity profile reflects the table's profile.
1096 * Returns NULL if integrity support was inconsistent or unavailable.
1097 */
dm_table_get_integrity_disk(struct dm_table * t)1098 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1099 {
1100 struct list_head *devices = dm_table_get_devices(t);
1101 struct dm_dev_internal *dd = NULL;
1102 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1103 unsigned i;
1104
1105 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1106 struct dm_target *ti = dm_table_get_target(t, i);
1107 if (!dm_target_passes_integrity(ti->type))
1108 goto no_integrity;
1109 }
1110
1111 list_for_each_entry(dd, devices, list) {
1112 template_disk = dd->dm_dev->bdev->bd_disk;
1113 if (!integrity_profile_exists(template_disk))
1114 goto no_integrity;
1115 else if (prev_disk &&
1116 blk_integrity_compare(prev_disk, template_disk) < 0)
1117 goto no_integrity;
1118 prev_disk = template_disk;
1119 }
1120
1121 return template_disk;
1122
1123 no_integrity:
1124 if (prev_disk)
1125 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1126 dm_device_name(t->md),
1127 prev_disk->disk_name,
1128 template_disk->disk_name);
1129 return NULL;
1130 }
1131
1132 /*
1133 * Register the mapped device for blk_integrity support if the
1134 * underlying devices have an integrity profile. But all devices may
1135 * not have matching profiles (checking all devices isn't reliable
1136 * during table load because this table may use other DM device(s) which
1137 * must be resumed before they will have an initialized integity
1138 * profile). Consequently, stacked DM devices force a 2 stage integrity
1139 * profile validation: First pass during table load, final pass during
1140 * resume.
1141 */
dm_table_register_integrity(struct dm_table * t)1142 static int dm_table_register_integrity(struct dm_table *t)
1143 {
1144 struct mapped_device *md = t->md;
1145 struct gendisk *template_disk = NULL;
1146
1147 /* If target handles integrity itself do not register it here. */
1148 if (t->integrity_added)
1149 return 0;
1150
1151 template_disk = dm_table_get_integrity_disk(t);
1152 if (!template_disk)
1153 return 0;
1154
1155 if (!integrity_profile_exists(dm_disk(md))) {
1156 t->integrity_supported = true;
1157 /*
1158 * Register integrity profile during table load; we can do
1159 * this because the final profile must match during resume.
1160 */
1161 blk_integrity_register(dm_disk(md),
1162 blk_get_integrity(template_disk));
1163 return 0;
1164 }
1165
1166 /*
1167 * If DM device already has an initialized integrity
1168 * profile the new profile should not conflict.
1169 */
1170 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1171 DMWARN("%s: conflict with existing integrity profile: "
1172 "%s profile mismatch",
1173 dm_device_name(t->md),
1174 template_disk->disk_name);
1175 return 1;
1176 }
1177
1178 /* Preserve existing integrity profile */
1179 t->integrity_supported = true;
1180 return 0;
1181 }
1182
1183 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1184
1185 struct dm_crypto_profile {
1186 struct blk_crypto_profile profile;
1187 struct mapped_device *md;
1188 };
1189
1190 struct dm_keyslot_evict_args {
1191 const struct blk_crypto_key *key;
1192 int err;
1193 };
1194
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1195 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1196 sector_t start, sector_t len, void *data)
1197 {
1198 struct dm_keyslot_evict_args *args = data;
1199 int err;
1200
1201 err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1202 if (!args->err)
1203 args->err = err;
1204 /* Always try to evict the key from all devices. */
1205 return 0;
1206 }
1207
1208 /*
1209 * When an inline encryption key is evicted from a device-mapper device, evict
1210 * it from all the underlying devices.
1211 */
dm_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1212 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1213 const struct blk_crypto_key *key, unsigned int slot)
1214 {
1215 struct mapped_device *md =
1216 container_of(profile, struct dm_crypto_profile, profile)->md;
1217 struct dm_keyslot_evict_args args = { key };
1218 struct dm_table *t;
1219 int srcu_idx;
1220 int i;
1221 struct dm_target *ti;
1222
1223 t = dm_get_live_table(md, &srcu_idx);
1224 if (!t)
1225 return 0;
1226 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1227 ti = dm_table_get_target(t, i);
1228 if (!ti->type->iterate_devices)
1229 continue;
1230 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1231 }
1232 dm_put_live_table(md, srcu_idx);
1233 return args.err;
1234 }
1235
1236 static int
device_intersect_crypto_capabilities(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1237 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1238 sector_t start, sector_t len, void *data)
1239 {
1240 struct blk_crypto_profile *parent = data;
1241 struct blk_crypto_profile *child =
1242 bdev_get_queue(dev->bdev)->crypto_profile;
1243
1244 blk_crypto_intersect_capabilities(parent, child);
1245 return 0;
1246 }
1247
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1248 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1249 {
1250 struct dm_crypto_profile *dmcp = container_of(profile,
1251 struct dm_crypto_profile,
1252 profile);
1253
1254 if (!profile)
1255 return;
1256
1257 blk_crypto_profile_destroy(profile);
1258 kfree(dmcp);
1259 }
1260
dm_table_destroy_crypto_profile(struct dm_table * t)1261 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1262 {
1263 dm_destroy_crypto_profile(t->crypto_profile);
1264 t->crypto_profile = NULL;
1265 }
1266
1267 /*
1268 * Constructs and initializes t->crypto_profile with a crypto profile that
1269 * represents the common set of crypto capabilities of the devices described by
1270 * the dm_table. However, if the constructed crypto profile doesn't support all
1271 * crypto capabilities that are supported by the current mapped_device, it
1272 * returns an error instead, since we don't support removing crypto capabilities
1273 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1274 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1275 */
dm_table_construct_crypto_profile(struct dm_table * t)1276 static int dm_table_construct_crypto_profile(struct dm_table *t)
1277 {
1278 struct dm_crypto_profile *dmcp;
1279 struct blk_crypto_profile *profile;
1280 struct dm_target *ti;
1281 unsigned int i;
1282 bool empty_profile = true;
1283
1284 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1285 if (!dmcp)
1286 return -ENOMEM;
1287 dmcp->md = t->md;
1288
1289 profile = &dmcp->profile;
1290 blk_crypto_profile_init(profile, 0);
1291 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1292 profile->max_dun_bytes_supported = UINT_MAX;
1293 memset(profile->modes_supported, 0xFF,
1294 sizeof(profile->modes_supported));
1295
1296 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1297 ti = dm_table_get_target(t, i);
1298
1299 if (!dm_target_passes_crypto(ti->type)) {
1300 blk_crypto_intersect_capabilities(profile, NULL);
1301 break;
1302 }
1303 if (!ti->type->iterate_devices)
1304 continue;
1305 ti->type->iterate_devices(ti,
1306 device_intersect_crypto_capabilities,
1307 profile);
1308 }
1309
1310 if (t->md->queue &&
1311 !blk_crypto_has_capabilities(profile,
1312 t->md->queue->crypto_profile)) {
1313 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1314 dm_destroy_crypto_profile(profile);
1315 return -EINVAL;
1316 }
1317
1318 /*
1319 * If the new profile doesn't actually support any crypto capabilities,
1320 * we may as well represent it with a NULL profile.
1321 */
1322 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1323 if (profile->modes_supported[i]) {
1324 empty_profile = false;
1325 break;
1326 }
1327 }
1328
1329 if (empty_profile) {
1330 dm_destroy_crypto_profile(profile);
1331 profile = NULL;
1332 }
1333
1334 /*
1335 * t->crypto_profile is only set temporarily while the table is being
1336 * set up, and it gets set to NULL after the profile has been
1337 * transferred to the request_queue.
1338 */
1339 t->crypto_profile = profile;
1340
1341 return 0;
1342 }
1343
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1344 static void dm_update_crypto_profile(struct request_queue *q,
1345 struct dm_table *t)
1346 {
1347 if (!t->crypto_profile)
1348 return;
1349
1350 /* Make the crypto profile less restrictive. */
1351 if (!q->crypto_profile) {
1352 blk_crypto_register(t->crypto_profile, q);
1353 } else {
1354 blk_crypto_update_capabilities(q->crypto_profile,
1355 t->crypto_profile);
1356 dm_destroy_crypto_profile(t->crypto_profile);
1357 }
1358 t->crypto_profile = NULL;
1359 }
1360
1361 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1362
dm_table_construct_crypto_profile(struct dm_table * t)1363 static int dm_table_construct_crypto_profile(struct dm_table *t)
1364 {
1365 return 0;
1366 }
1367
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1368 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1369 {
1370 }
1371
dm_table_destroy_crypto_profile(struct dm_table * t)1372 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1373 {
1374 }
1375
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1376 static void dm_update_crypto_profile(struct request_queue *q,
1377 struct dm_table *t)
1378 {
1379 }
1380
1381 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1382
1383 /*
1384 * Prepares the table for use by building the indices,
1385 * setting the type, and allocating mempools.
1386 */
dm_table_complete(struct dm_table * t)1387 int dm_table_complete(struct dm_table *t)
1388 {
1389 int r;
1390
1391 r = dm_table_determine_type(t);
1392 if (r) {
1393 DMERR("unable to determine table type");
1394 return r;
1395 }
1396
1397 r = dm_table_build_index(t);
1398 if (r) {
1399 DMERR("unable to build btrees");
1400 return r;
1401 }
1402
1403 r = dm_table_register_integrity(t);
1404 if (r) {
1405 DMERR("could not register integrity profile.");
1406 return r;
1407 }
1408
1409 r = dm_table_construct_crypto_profile(t);
1410 if (r) {
1411 DMERR("could not construct crypto profile.");
1412 return r;
1413 }
1414
1415 r = dm_table_alloc_md_mempools(t, t->md);
1416 if (r)
1417 DMERR("unable to allocate mempools");
1418
1419 return r;
1420 }
1421
1422 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1423 void dm_table_event_callback(struct dm_table *t,
1424 void (*fn)(void *), void *context)
1425 {
1426 mutex_lock(&_event_lock);
1427 t->event_fn = fn;
1428 t->event_context = context;
1429 mutex_unlock(&_event_lock);
1430 }
1431
dm_table_event(struct dm_table * t)1432 void dm_table_event(struct dm_table *t)
1433 {
1434 mutex_lock(&_event_lock);
1435 if (t->event_fn)
1436 t->event_fn(t->event_context);
1437 mutex_unlock(&_event_lock);
1438 }
1439 EXPORT_SYMBOL(dm_table_event);
1440
dm_table_get_size(struct dm_table * t)1441 inline sector_t dm_table_get_size(struct dm_table *t)
1442 {
1443 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1444 }
1445 EXPORT_SYMBOL(dm_table_get_size);
1446
dm_table_get_target(struct dm_table * t,unsigned int index)1447 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1448 {
1449 if (index >= t->num_targets)
1450 return NULL;
1451
1452 return t->targets + index;
1453 }
1454
1455 /*
1456 * Search the btree for the correct target.
1457 *
1458 * Caller should check returned pointer for NULL
1459 * to trap I/O beyond end of device.
1460 */
dm_table_find_target(struct dm_table * t,sector_t sector)1461 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1462 {
1463 unsigned int l, n = 0, k = 0;
1464 sector_t *node;
1465
1466 if (unlikely(sector >= dm_table_get_size(t)))
1467 return NULL;
1468
1469 for (l = 0; l < t->depth; l++) {
1470 n = get_child(n, k);
1471 node = get_node(t, l, n);
1472
1473 for (k = 0; k < KEYS_PER_NODE; k++)
1474 if (node[k] >= sector)
1475 break;
1476 }
1477
1478 return &t->targets[(KEYS_PER_NODE * n) + k];
1479 }
1480
device_not_poll_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1481 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1482 sector_t start, sector_t len, void *data)
1483 {
1484 struct request_queue *q = bdev_get_queue(dev->bdev);
1485
1486 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1487 }
1488
1489 /*
1490 * type->iterate_devices() should be called when the sanity check needs to
1491 * iterate and check all underlying data devices. iterate_devices() will
1492 * iterate all underlying data devices until it encounters a non-zero return
1493 * code, returned by whether the input iterate_devices_callout_fn, or
1494 * iterate_devices() itself internally.
1495 *
1496 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1497 * iterate multiple underlying devices internally, in which case a non-zero
1498 * return code returned by iterate_devices_callout_fn will stop the iteration
1499 * in advance.
1500 *
1501 * Cases requiring _any_ underlying device supporting some kind of attribute,
1502 * should use the iteration structure like dm_table_any_dev_attr(), or call
1503 * it directly. @func should handle semantics of positive examples, e.g.
1504 * capable of something.
1505 *
1506 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1507 * should use the iteration structure like dm_table_supports_nowait() or
1508 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1509 * uses an @anti_func that handle semantics of counter examples, e.g. not
1510 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1511 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1512 static bool dm_table_any_dev_attr(struct dm_table *t,
1513 iterate_devices_callout_fn func, void *data)
1514 {
1515 struct dm_target *ti;
1516 unsigned int i;
1517
1518 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1519 ti = dm_table_get_target(t, i);
1520
1521 if (ti->type->iterate_devices &&
1522 ti->type->iterate_devices(ti, func, data))
1523 return true;
1524 }
1525
1526 return false;
1527 }
1528
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1529 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1530 sector_t start, sector_t len, void *data)
1531 {
1532 unsigned *num_devices = data;
1533
1534 (*num_devices)++;
1535
1536 return 0;
1537 }
1538
dm_table_supports_poll(struct dm_table * t)1539 static bool dm_table_supports_poll(struct dm_table *t)
1540 {
1541 struct dm_target *ti;
1542 unsigned i = 0;
1543
1544 while (i < dm_table_get_num_targets(t)) {
1545 ti = dm_table_get_target(t, i++);
1546
1547 if (!ti->type->iterate_devices ||
1548 ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1549 return false;
1550 }
1551
1552 return true;
1553 }
1554
1555 /*
1556 * Check whether a table has no data devices attached using each
1557 * target's iterate_devices method.
1558 * Returns false if the result is unknown because a target doesn't
1559 * support iterate_devices.
1560 */
dm_table_has_no_data_devices(struct dm_table * table)1561 bool dm_table_has_no_data_devices(struct dm_table *table)
1562 {
1563 struct dm_target *ti;
1564 unsigned i, num_devices;
1565
1566 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1567 ti = dm_table_get_target(table, i);
1568
1569 if (!ti->type->iterate_devices)
1570 return false;
1571
1572 num_devices = 0;
1573 ti->type->iterate_devices(ti, count_device, &num_devices);
1574 if (num_devices)
1575 return false;
1576 }
1577
1578 return true;
1579 }
1580
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1581 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1582 sector_t start, sector_t len, void *data)
1583 {
1584 struct request_queue *q = bdev_get_queue(dev->bdev);
1585 enum blk_zoned_model *zoned_model = data;
1586
1587 return blk_queue_zoned_model(q) != *zoned_model;
1588 }
1589
1590 /*
1591 * Check the device zoned model based on the target feature flag. If the target
1592 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1593 * also accepted but all devices must have the same zoned model. If the target
1594 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1595 * zoned model with all zoned devices having the same zone size.
1596 */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1597 static bool dm_table_supports_zoned_model(struct dm_table *t,
1598 enum blk_zoned_model zoned_model)
1599 {
1600 struct dm_target *ti;
1601 unsigned i;
1602
1603 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1604 ti = dm_table_get_target(t, i);
1605
1606 if (dm_target_supports_zoned_hm(ti->type)) {
1607 if (!ti->type->iterate_devices ||
1608 ti->type->iterate_devices(ti, device_not_zoned_model,
1609 &zoned_model))
1610 return false;
1611 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1612 if (zoned_model == BLK_ZONED_HM)
1613 return false;
1614 }
1615 }
1616
1617 return true;
1618 }
1619
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1620 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1621 sector_t start, sector_t len, void *data)
1622 {
1623 struct request_queue *q = bdev_get_queue(dev->bdev);
1624 unsigned int *zone_sectors = data;
1625
1626 if (!blk_queue_is_zoned(q))
1627 return 0;
1628
1629 return blk_queue_zone_sectors(q) != *zone_sectors;
1630 }
1631
1632 /*
1633 * Check consistency of zoned model and zone sectors across all targets. For
1634 * zone sectors, if the destination device is a zoned block device, it shall
1635 * have the specified zone_sectors.
1636 */
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1637 static int validate_hardware_zoned_model(struct dm_table *table,
1638 enum blk_zoned_model zoned_model,
1639 unsigned int zone_sectors)
1640 {
1641 if (zoned_model == BLK_ZONED_NONE)
1642 return 0;
1643
1644 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1645 DMERR("%s: zoned model is not consistent across all devices",
1646 dm_device_name(table->md));
1647 return -EINVAL;
1648 }
1649
1650 /* Check zone size validity and compatibility */
1651 if (!zone_sectors || !is_power_of_2(zone_sectors))
1652 return -EINVAL;
1653
1654 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1655 DMERR("%s: zone sectors is not consistent across all zoned devices",
1656 dm_device_name(table->md));
1657 return -EINVAL;
1658 }
1659
1660 return 0;
1661 }
1662
1663 /*
1664 * Establish the new table's queue_limits and validate them.
1665 */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1666 int dm_calculate_queue_limits(struct dm_table *table,
1667 struct queue_limits *limits)
1668 {
1669 struct dm_target *ti;
1670 struct queue_limits ti_limits;
1671 unsigned i;
1672 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1673 unsigned int zone_sectors = 0;
1674
1675 blk_set_stacking_limits(limits);
1676
1677 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1678 blk_set_stacking_limits(&ti_limits);
1679
1680 ti = dm_table_get_target(table, i);
1681
1682 if (!ti->type->iterate_devices)
1683 goto combine_limits;
1684
1685 /*
1686 * Combine queue limits of all the devices this target uses.
1687 */
1688 ti->type->iterate_devices(ti, dm_set_device_limits,
1689 &ti_limits);
1690
1691 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1692 /*
1693 * After stacking all limits, validate all devices
1694 * in table support this zoned model and zone sectors.
1695 */
1696 zoned_model = ti_limits.zoned;
1697 zone_sectors = ti_limits.chunk_sectors;
1698 }
1699
1700 /* Set I/O hints portion of queue limits */
1701 if (ti->type->io_hints)
1702 ti->type->io_hints(ti, &ti_limits);
1703
1704 /*
1705 * Check each device area is consistent with the target's
1706 * overall queue limits.
1707 */
1708 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1709 &ti_limits))
1710 return -EINVAL;
1711
1712 combine_limits:
1713 /*
1714 * Merge this target's queue limits into the overall limits
1715 * for the table.
1716 */
1717 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1718 DMWARN("%s: adding target device "
1719 "(start sect %llu len %llu) "
1720 "caused an alignment inconsistency",
1721 dm_device_name(table->md),
1722 (unsigned long long) ti->begin,
1723 (unsigned long long) ti->len);
1724 }
1725
1726 /*
1727 * Verify that the zoned model and zone sectors, as determined before
1728 * any .io_hints override, are the same across all devices in the table.
1729 * - this is especially relevant if .io_hints is emulating a disk-managed
1730 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1731 * BUT...
1732 */
1733 if (limits->zoned != BLK_ZONED_NONE) {
1734 /*
1735 * ...IF the above limits stacking determined a zoned model
1736 * validate that all of the table's devices conform to it.
1737 */
1738 zoned_model = limits->zoned;
1739 zone_sectors = limits->chunk_sectors;
1740 }
1741 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1742 return -EINVAL;
1743
1744 return validate_hardware_logical_block_alignment(table, limits);
1745 }
1746
1747 /*
1748 * Verify that all devices have an integrity profile that matches the
1749 * DM device's registered integrity profile. If the profiles don't
1750 * match then unregister the DM device's integrity profile.
1751 */
dm_table_verify_integrity(struct dm_table * t)1752 static void dm_table_verify_integrity(struct dm_table *t)
1753 {
1754 struct gendisk *template_disk = NULL;
1755
1756 if (t->integrity_added)
1757 return;
1758
1759 if (t->integrity_supported) {
1760 /*
1761 * Verify that the original integrity profile
1762 * matches all the devices in this table.
1763 */
1764 template_disk = dm_table_get_integrity_disk(t);
1765 if (template_disk &&
1766 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1767 return;
1768 }
1769
1770 if (integrity_profile_exists(dm_disk(t->md))) {
1771 DMWARN("%s: unable to establish an integrity profile",
1772 dm_device_name(t->md));
1773 blk_integrity_unregister(dm_disk(t->md));
1774 }
1775 }
1776
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1777 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1778 sector_t start, sector_t len, void *data)
1779 {
1780 unsigned long flush = (unsigned long) data;
1781 struct request_queue *q = bdev_get_queue(dev->bdev);
1782
1783 return (q->queue_flags & flush);
1784 }
1785
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1786 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1787 {
1788 struct dm_target *ti;
1789 unsigned i;
1790
1791 /*
1792 * Require at least one underlying device to support flushes.
1793 * t->devices includes internal dm devices such as mirror logs
1794 * so we need to use iterate_devices here, which targets
1795 * supporting flushes must provide.
1796 */
1797 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1798 ti = dm_table_get_target(t, i);
1799
1800 if (!ti->num_flush_bios)
1801 continue;
1802
1803 if (ti->flush_supported)
1804 return true;
1805
1806 if (ti->type->iterate_devices &&
1807 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1808 return true;
1809 }
1810
1811 return false;
1812 }
1813
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1814 static int device_dax_write_cache_enabled(struct dm_target *ti,
1815 struct dm_dev *dev, sector_t start,
1816 sector_t len, void *data)
1817 {
1818 struct dax_device *dax_dev = dev->dax_dev;
1819
1820 if (!dax_dev)
1821 return false;
1822
1823 if (dax_write_cache_enabled(dax_dev))
1824 return true;
1825 return false;
1826 }
1827
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1828 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1829 sector_t start, sector_t len, void *data)
1830 {
1831 return !bdev_nonrot(dev->bdev);
1832 }
1833
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1834 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1835 sector_t start, sector_t len, void *data)
1836 {
1837 struct request_queue *q = bdev_get_queue(dev->bdev);
1838
1839 return !blk_queue_add_random(q);
1840 }
1841
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1842 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1843 sector_t start, sector_t len, void *data)
1844 {
1845 struct request_queue *q = bdev_get_queue(dev->bdev);
1846
1847 return !q->limits.max_write_zeroes_sectors;
1848 }
1849
dm_table_supports_write_zeroes(struct dm_table * t)1850 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1851 {
1852 struct dm_target *ti;
1853 unsigned i = 0;
1854
1855 while (i < dm_table_get_num_targets(t)) {
1856 ti = dm_table_get_target(t, i++);
1857
1858 if (!ti->num_write_zeroes_bios)
1859 return false;
1860
1861 if (!ti->type->iterate_devices ||
1862 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1863 return false;
1864 }
1865
1866 return true;
1867 }
1868
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1869 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1870 sector_t start, sector_t len, void *data)
1871 {
1872 struct request_queue *q = bdev_get_queue(dev->bdev);
1873
1874 return !blk_queue_nowait(q);
1875 }
1876
dm_table_supports_nowait(struct dm_table * t)1877 static bool dm_table_supports_nowait(struct dm_table *t)
1878 {
1879 struct dm_target *ti;
1880 unsigned i = 0;
1881
1882 while (i < dm_table_get_num_targets(t)) {
1883 ti = dm_table_get_target(t, i++);
1884
1885 if (!dm_target_supports_nowait(ti->type))
1886 return false;
1887
1888 if (!ti->type->iterate_devices ||
1889 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1890 return false;
1891 }
1892
1893 return true;
1894 }
1895
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1896 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1897 sector_t start, sector_t len, void *data)
1898 {
1899 return !bdev_max_discard_sectors(dev->bdev);
1900 }
1901
dm_table_supports_discards(struct dm_table * t)1902 static bool dm_table_supports_discards(struct dm_table *t)
1903 {
1904 struct dm_target *ti;
1905 unsigned i;
1906
1907 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1908 ti = dm_table_get_target(t, i);
1909
1910 if (!ti->num_discard_bios)
1911 return false;
1912
1913 /*
1914 * Either the target provides discard support (as implied by setting
1915 * 'discards_supported') or it relies on _all_ data devices having
1916 * discard support.
1917 */
1918 if (!ti->discards_supported &&
1919 (!ti->type->iterate_devices ||
1920 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1921 return false;
1922 }
1923
1924 return true;
1925 }
1926
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1927 static int device_not_secure_erase_capable(struct dm_target *ti,
1928 struct dm_dev *dev, sector_t start,
1929 sector_t len, void *data)
1930 {
1931 return !bdev_max_secure_erase_sectors(dev->bdev);
1932 }
1933
dm_table_supports_secure_erase(struct dm_table * t)1934 static bool dm_table_supports_secure_erase(struct dm_table *t)
1935 {
1936 struct dm_target *ti;
1937 unsigned int i;
1938
1939 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1940 ti = dm_table_get_target(t, i);
1941
1942 if (!ti->num_secure_erase_bios)
1943 return false;
1944
1945 if (!ti->type->iterate_devices ||
1946 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1947 return false;
1948 }
1949
1950 return true;
1951 }
1952
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1953 static int device_requires_stable_pages(struct dm_target *ti,
1954 struct dm_dev *dev, sector_t start,
1955 sector_t len, void *data)
1956 {
1957 return bdev_stable_writes(dev->bdev);
1958 }
1959
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1960 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1961 struct queue_limits *limits)
1962 {
1963 bool wc = false, fua = false;
1964 int r;
1965
1966 /*
1967 * Copy table's limits to the DM device's request_queue
1968 */
1969 q->limits = *limits;
1970
1971 if (dm_table_supports_nowait(t))
1972 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1973 else
1974 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1975
1976 if (!dm_table_supports_discards(t)) {
1977 q->limits.max_discard_sectors = 0;
1978 q->limits.max_hw_discard_sectors = 0;
1979 q->limits.discard_granularity = 0;
1980 q->limits.discard_alignment = 0;
1981 q->limits.discard_misaligned = 0;
1982 }
1983
1984 if (!dm_table_supports_secure_erase(t))
1985 q->limits.max_secure_erase_sectors = 0;
1986
1987 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1988 wc = true;
1989 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1990 fua = true;
1991 }
1992 blk_queue_write_cache(q, wc, fua);
1993
1994 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1995 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1996 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1997 set_dax_synchronous(t->md->dax_dev);
1998 }
1999 else
2000 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2001
2002 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2003 dax_write_cache(t->md->dax_dev, true);
2004
2005 /* Ensure that all underlying devices are non-rotational. */
2006 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2007 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2008 else
2009 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2010
2011 if (!dm_table_supports_write_zeroes(t))
2012 q->limits.max_write_zeroes_sectors = 0;
2013
2014 dm_table_verify_integrity(t);
2015
2016 /*
2017 * Some devices don't use blk_integrity but still want stable pages
2018 * because they do their own checksumming.
2019 * If any underlying device requires stable pages, a table must require
2020 * them as well. Only targets that support iterate_devices are considered:
2021 * don't want error, zero, etc to require stable pages.
2022 */
2023 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2024 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2025 else
2026 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2027
2028 /*
2029 * Determine whether or not this queue's I/O timings contribute
2030 * to the entropy pool, Only request-based targets use this.
2031 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2032 * have it set.
2033 */
2034 if (blk_queue_add_random(q) &&
2035 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2036 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2037
2038 /*
2039 * For a zoned target, setup the zones related queue attributes
2040 * and resources necessary for zone append emulation if necessary.
2041 */
2042 if (blk_queue_is_zoned(q)) {
2043 r = dm_set_zones_restrictions(t, q);
2044 if (r)
2045 return r;
2046 if (!static_key_enabled(&zoned_enabled.key))
2047 static_branch_enable(&zoned_enabled);
2048 }
2049
2050 dm_update_crypto_profile(q, t);
2051 disk_update_readahead(t->md->disk);
2052
2053 /*
2054 * Check for request-based device is left to
2055 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2056 *
2057 * For bio-based device, only set QUEUE_FLAG_POLL when all
2058 * underlying devices supporting polling.
2059 */
2060 if (__table_type_bio_based(t->type)) {
2061 if (dm_table_supports_poll(t))
2062 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2063 else
2064 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2065 }
2066
2067 return 0;
2068 }
2069
dm_table_get_num_targets(struct dm_table * t)2070 unsigned int dm_table_get_num_targets(struct dm_table *t)
2071 {
2072 return t->num_targets;
2073 }
2074
dm_table_get_devices(struct dm_table * t)2075 struct list_head *dm_table_get_devices(struct dm_table *t)
2076 {
2077 return &t->devices;
2078 }
2079
dm_table_get_mode(struct dm_table * t)2080 fmode_t dm_table_get_mode(struct dm_table *t)
2081 {
2082 return t->mode;
2083 }
2084 EXPORT_SYMBOL(dm_table_get_mode);
2085
2086 enum suspend_mode {
2087 PRESUSPEND,
2088 PRESUSPEND_UNDO,
2089 POSTSUSPEND,
2090 };
2091
suspend_targets(struct dm_table * t,enum suspend_mode mode)2092 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2093 {
2094 int i = t->num_targets;
2095 struct dm_target *ti = t->targets;
2096
2097 lockdep_assert_held(&t->md->suspend_lock);
2098
2099 while (i--) {
2100 switch (mode) {
2101 case PRESUSPEND:
2102 if (ti->type->presuspend)
2103 ti->type->presuspend(ti);
2104 break;
2105 case PRESUSPEND_UNDO:
2106 if (ti->type->presuspend_undo)
2107 ti->type->presuspend_undo(ti);
2108 break;
2109 case POSTSUSPEND:
2110 if (ti->type->postsuspend)
2111 ti->type->postsuspend(ti);
2112 break;
2113 }
2114 ti++;
2115 }
2116 }
2117
dm_table_presuspend_targets(struct dm_table * t)2118 void dm_table_presuspend_targets(struct dm_table *t)
2119 {
2120 if (!t)
2121 return;
2122
2123 suspend_targets(t, PRESUSPEND);
2124 }
2125
dm_table_presuspend_undo_targets(struct dm_table * t)2126 void dm_table_presuspend_undo_targets(struct dm_table *t)
2127 {
2128 if (!t)
2129 return;
2130
2131 suspend_targets(t, PRESUSPEND_UNDO);
2132 }
2133
dm_table_postsuspend_targets(struct dm_table * t)2134 void dm_table_postsuspend_targets(struct dm_table *t)
2135 {
2136 if (!t)
2137 return;
2138
2139 suspend_targets(t, POSTSUSPEND);
2140 }
2141
dm_table_resume_targets(struct dm_table * t)2142 int dm_table_resume_targets(struct dm_table *t)
2143 {
2144 int i, r = 0;
2145
2146 lockdep_assert_held(&t->md->suspend_lock);
2147
2148 for (i = 0; i < t->num_targets; i++) {
2149 struct dm_target *ti = t->targets + i;
2150
2151 if (!ti->type->preresume)
2152 continue;
2153
2154 r = ti->type->preresume(ti);
2155 if (r) {
2156 DMERR("%s: %s: preresume failed, error = %d",
2157 dm_device_name(t->md), ti->type->name, r);
2158 return r;
2159 }
2160 }
2161
2162 for (i = 0; i < t->num_targets; i++) {
2163 struct dm_target *ti = t->targets + i;
2164
2165 if (ti->type->resume)
2166 ti->type->resume(ti);
2167 }
2168
2169 return 0;
2170 }
2171
dm_table_get_md(struct dm_table * t)2172 struct mapped_device *dm_table_get_md(struct dm_table *t)
2173 {
2174 return t->md;
2175 }
2176 EXPORT_SYMBOL(dm_table_get_md);
2177
dm_table_device_name(struct dm_table * t)2178 const char *dm_table_device_name(struct dm_table *t)
2179 {
2180 return dm_device_name(t->md);
2181 }
2182 EXPORT_SYMBOL_GPL(dm_table_device_name);
2183
dm_table_run_md_queue_async(struct dm_table * t)2184 void dm_table_run_md_queue_async(struct dm_table *t)
2185 {
2186 if (!dm_table_request_based(t))
2187 return;
2188
2189 if (t->md->queue)
2190 blk_mq_run_hw_queues(t->md->queue, true);
2191 }
2192 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2193
2194