1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 
22 #define DM_MSG_PREFIX "table"
23 
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28 
29 /*
30  * The table has always exactly one reference from either mapped_device->map
31  * or hash_cell->new_map. This reference is not counted in table->holders.
32  * A pair of dm_create_table/dm_destroy_table functions is used for table
33  * creation/destruction.
34  *
35  * Temporary references from the other code increase table->holders. A pair
36  * of dm_table_get/dm_table_put functions is used to manipulate it.
37  *
38  * When the table is about to be destroyed, we wait for table->holders to
39  * drop to zero.
40  */
41 
42 struct dm_table {
43 	struct mapped_device *md;
44 	atomic_t holders;
45 	unsigned type;
46 
47 	/* btree table */
48 	unsigned int depth;
49 	unsigned int counts[MAX_DEPTH];	/* in nodes */
50 	sector_t *index[MAX_DEPTH];
51 
52 	unsigned int num_targets;
53 	unsigned int num_allocated;
54 	sector_t *highs;
55 	struct dm_target *targets;
56 
57 	struct target_type *immutable_target_type;
58 	unsigned integrity_supported:1;
59 	unsigned singleton:1;
60 
61 	/*
62 	 * Indicates the rw permissions for the new logical
63 	 * device.  This should be a combination of FMODE_READ
64 	 * and FMODE_WRITE.
65 	 */
66 	fmode_t mode;
67 
68 	/* a list of devices used by this table */
69 	struct list_head devices;
70 
71 	/* events get handed up using this callback */
72 	void (*event_fn)(void *);
73 	void *event_context;
74 
75 	struct dm_md_mempools *mempools;
76 
77 	struct list_head target_callbacks;
78 };
79 
80 /*
81  * Similar to ceiling(log_size(n))
82  */
int_log(unsigned int n,unsigned int base)83 static unsigned int int_log(unsigned int n, unsigned int base)
84 {
85 	int result = 0;
86 
87 	while (n > 1) {
88 		n = dm_div_up(n, base);
89 		result++;
90 	}
91 
92 	return result;
93 }
94 
95 /*
96  * Calculate the index of the child node of the n'th node k'th key.
97  */
get_child(unsigned int n,unsigned int k)98 static inline unsigned int get_child(unsigned int n, unsigned int k)
99 {
100 	return (n * CHILDREN_PER_NODE) + k;
101 }
102 
103 /*
104  * Return the n'th node of level l from table t.
105  */
get_node(struct dm_table * t,unsigned int l,unsigned int n)106 static inline sector_t *get_node(struct dm_table *t,
107 				 unsigned int l, unsigned int n)
108 {
109 	return t->index[l] + (n * KEYS_PER_NODE);
110 }
111 
112 /*
113  * Return the highest key that you could lookup from the n'th
114  * node on level l of the btree.
115  */
high(struct dm_table * t,unsigned int l,unsigned int n)116 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
117 {
118 	for (; l < t->depth - 1; l++)
119 		n = get_child(n, CHILDREN_PER_NODE - 1);
120 
121 	if (n >= t->counts[l])
122 		return (sector_t) - 1;
123 
124 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
125 }
126 
127 /*
128  * Fills in a level of the btree based on the highs of the level
129  * below it.
130  */
setup_btree_index(unsigned int l,struct dm_table * t)131 static int setup_btree_index(unsigned int l, struct dm_table *t)
132 {
133 	unsigned int n, k;
134 	sector_t *node;
135 
136 	for (n = 0U; n < t->counts[l]; n++) {
137 		node = get_node(t, l, n);
138 
139 		for (k = 0U; k < KEYS_PER_NODE; k++)
140 			node[k] = high(t, l + 1, get_child(n, k));
141 	}
142 
143 	return 0;
144 }
145 
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)146 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
147 {
148 	unsigned long size;
149 	void *addr;
150 
151 	/*
152 	 * Check that we're not going to overflow.
153 	 */
154 	if (nmemb > (ULONG_MAX / elem_size))
155 		return NULL;
156 
157 	size = nmemb * elem_size;
158 	addr = vzalloc(size);
159 
160 	return addr;
161 }
162 EXPORT_SYMBOL(dm_vcalloc);
163 
164 /*
165  * highs, and targets are managed as dynamic arrays during a
166  * table load.
167  */
alloc_targets(struct dm_table * t,unsigned int num)168 static int alloc_targets(struct dm_table *t, unsigned int num)
169 {
170 	sector_t *n_highs;
171 	struct dm_target *n_targets;
172 	int n = t->num_targets;
173 
174 	/*
175 	 * Allocate both the target array and offset array at once.
176 	 * Append an empty entry to catch sectors beyond the end of
177 	 * the device.
178 	 */
179 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
180 					  sizeof(sector_t));
181 	if (!n_highs)
182 		return -ENOMEM;
183 
184 	n_targets = (struct dm_target *) (n_highs + num);
185 
186 	if (n) {
187 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
188 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189 	}
190 
191 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
192 	vfree(t->highs);
193 
194 	t->num_allocated = num;
195 	t->highs = n_highs;
196 	t->targets = n_targets;
197 
198 	return 0;
199 }
200 
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)201 int dm_table_create(struct dm_table **result, fmode_t mode,
202 		    unsigned num_targets, struct mapped_device *md)
203 {
204 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205 
206 	if (!t)
207 		return -ENOMEM;
208 
209 	INIT_LIST_HEAD(&t->devices);
210 	INIT_LIST_HEAD(&t->target_callbacks);
211 	atomic_set(&t->holders, 0);
212 
213 	if (!num_targets)
214 		num_targets = KEYS_PER_NODE;
215 
216 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
217 
218 	if (!num_targets) {
219 		kfree(t);
220 		return -ENOMEM;
221 	}
222 
223 	if (alloc_targets(t, num_targets)) {
224 		kfree(t);
225 		t = NULL;
226 		return -ENOMEM;
227 	}
228 
229 	t->mode = mode;
230 	t->md = md;
231 	*result = t;
232 	return 0;
233 }
234 
free_devices(struct list_head * devices)235 static void free_devices(struct list_head *devices)
236 {
237 	struct list_head *tmp, *next;
238 
239 	list_for_each_safe(tmp, next, devices) {
240 		struct dm_dev_internal *dd =
241 		    list_entry(tmp, struct dm_dev_internal, list);
242 		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
243 		       dd->dm_dev.name);
244 		kfree(dd);
245 	}
246 }
247 
dm_table_destroy(struct dm_table * t)248 void dm_table_destroy(struct dm_table *t)
249 {
250 	unsigned int i;
251 
252 	if (!t)
253 		return;
254 
255 	while (atomic_read(&t->holders))
256 		msleep(1);
257 	smp_mb();
258 
259 	/* free the indexes */
260 	if (t->depth >= 2)
261 		vfree(t->index[t->depth - 2]);
262 
263 	/* free the targets */
264 	for (i = 0; i < t->num_targets; i++) {
265 		struct dm_target *tgt = t->targets + i;
266 
267 		if (tgt->type->dtr)
268 			tgt->type->dtr(tgt);
269 
270 		dm_put_target_type(tgt->type);
271 	}
272 
273 	vfree(t->highs);
274 
275 	/* free the device list */
276 	free_devices(&t->devices);
277 
278 	dm_free_md_mempools(t->mempools);
279 
280 	kfree(t);
281 }
282 
dm_table_get(struct dm_table * t)283 void dm_table_get(struct dm_table *t)
284 {
285 	atomic_inc(&t->holders);
286 }
287 EXPORT_SYMBOL(dm_table_get);
288 
dm_table_put(struct dm_table * t)289 void dm_table_put(struct dm_table *t)
290 {
291 	if (!t)
292 		return;
293 
294 	smp_mb__before_atomic_dec();
295 	atomic_dec(&t->holders);
296 }
297 EXPORT_SYMBOL(dm_table_put);
298 
299 /*
300  * Checks to see if we need to extend highs or targets.
301  */
check_space(struct dm_table * t)302 static inline int check_space(struct dm_table *t)
303 {
304 	if (t->num_targets >= t->num_allocated)
305 		return alloc_targets(t, t->num_allocated * 2);
306 
307 	return 0;
308 }
309 
310 /*
311  * See if we've already got a device in the list.
312  */
find_device(struct list_head * l,dev_t dev)313 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
314 {
315 	struct dm_dev_internal *dd;
316 
317 	list_for_each_entry (dd, l, list)
318 		if (dd->dm_dev.bdev->bd_dev == dev)
319 			return dd;
320 
321 	return NULL;
322 }
323 
324 /*
325  * Open a device so we can use it as a map destination.
326  */
open_dev(struct dm_dev_internal * d,dev_t dev,struct mapped_device * md)327 static int open_dev(struct dm_dev_internal *d, dev_t dev,
328 		    struct mapped_device *md)
329 {
330 	static char *_claim_ptr = "I belong to device-mapper";
331 	struct block_device *bdev;
332 
333 	int r;
334 
335 	BUG_ON(d->dm_dev.bdev);
336 
337 	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
338 	if (IS_ERR(bdev))
339 		return PTR_ERR(bdev);
340 
341 	r = bd_link_disk_holder(bdev, dm_disk(md));
342 	if (r) {
343 		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
344 		return r;
345 	}
346 
347 	d->dm_dev.bdev = bdev;
348 	return 0;
349 }
350 
351 /*
352  * Close a device that we've been using.
353  */
close_dev(struct dm_dev_internal * d,struct mapped_device * md)354 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
355 {
356 	if (!d->dm_dev.bdev)
357 		return;
358 
359 	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
360 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
361 	d->dm_dev.bdev = NULL;
362 }
363 
364 /*
365  * If possible, this checks an area of a destination device is invalid.
366  */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)367 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
368 				  sector_t start, sector_t len, void *data)
369 {
370 	struct request_queue *q;
371 	struct queue_limits *limits = data;
372 	struct block_device *bdev = dev->bdev;
373 	sector_t dev_size =
374 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
375 	unsigned short logical_block_size_sectors =
376 		limits->logical_block_size >> SECTOR_SHIFT;
377 	char b[BDEVNAME_SIZE];
378 
379 	/*
380 	 * Some devices exist without request functions,
381 	 * such as loop devices not yet bound to backing files.
382 	 * Forbid the use of such devices.
383 	 */
384 	q = bdev_get_queue(bdev);
385 	if (!q || !q->make_request_fn) {
386 		DMWARN("%s: %s is not yet initialised: "
387 		       "start=%llu, len=%llu, dev_size=%llu",
388 		       dm_device_name(ti->table->md), bdevname(bdev, b),
389 		       (unsigned long long)start,
390 		       (unsigned long long)len,
391 		       (unsigned long long)dev_size);
392 		return 1;
393 	}
394 
395 	if (!dev_size)
396 		return 0;
397 
398 	if ((start >= dev_size) || (start + len > dev_size)) {
399 		DMWARN("%s: %s too small for target: "
400 		       "start=%llu, len=%llu, dev_size=%llu",
401 		       dm_device_name(ti->table->md), bdevname(bdev, b),
402 		       (unsigned long long)start,
403 		       (unsigned long long)len,
404 		       (unsigned long long)dev_size);
405 		return 1;
406 	}
407 
408 	if (logical_block_size_sectors <= 1)
409 		return 0;
410 
411 	if (start & (logical_block_size_sectors - 1)) {
412 		DMWARN("%s: start=%llu not aligned to h/w "
413 		       "logical block size %u of %s",
414 		       dm_device_name(ti->table->md),
415 		       (unsigned long long)start,
416 		       limits->logical_block_size, bdevname(bdev, b));
417 		return 1;
418 	}
419 
420 	if (len & (logical_block_size_sectors - 1)) {
421 		DMWARN("%s: len=%llu not aligned to h/w "
422 		       "logical block size %u of %s",
423 		       dm_device_name(ti->table->md),
424 		       (unsigned long long)len,
425 		       limits->logical_block_size, bdevname(bdev, b));
426 		return 1;
427 	}
428 
429 	return 0;
430 }
431 
432 /*
433  * This upgrades the mode on an already open dm_dev, being
434  * careful to leave things as they were if we fail to reopen the
435  * device and not to touch the existing bdev field in case
436  * it is accessed concurrently inside dm_table_any_congested().
437  */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)438 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
439 			struct mapped_device *md)
440 {
441 	int r;
442 	struct dm_dev_internal dd_new, dd_old;
443 
444 	dd_new = dd_old = *dd;
445 
446 	dd_new.dm_dev.mode |= new_mode;
447 	dd_new.dm_dev.bdev = NULL;
448 
449 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
450 	if (r)
451 		return r;
452 
453 	dd->dm_dev.mode |= new_mode;
454 	close_dev(&dd_old, md);
455 
456 	return 0;
457 }
458 
459 /*
460  * Add a device to the list, or just increment the usage count if
461  * it's already present.
462  */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)463 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
464 		  struct dm_dev **result)
465 {
466 	int r;
467 	dev_t uninitialized_var(dev);
468 	struct dm_dev_internal *dd;
469 	unsigned int major, minor;
470 	struct dm_table *t = ti->table;
471 	char dummy;
472 
473 	BUG_ON(!t);
474 
475 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
476 		/* Extract the major/minor numbers */
477 		dev = MKDEV(major, minor);
478 		if (MAJOR(dev) != major || MINOR(dev) != minor)
479 			return -EOVERFLOW;
480 	} else {
481 		/* convert the path to a device */
482 		struct block_device *bdev = lookup_bdev(path);
483 
484 		if (IS_ERR(bdev))
485 			return PTR_ERR(bdev);
486 		dev = bdev->bd_dev;
487 		bdput(bdev);
488 	}
489 
490 	dd = find_device(&t->devices, dev);
491 	if (!dd) {
492 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
493 		if (!dd)
494 			return -ENOMEM;
495 
496 		dd->dm_dev.mode = mode;
497 		dd->dm_dev.bdev = NULL;
498 
499 		if ((r = open_dev(dd, dev, t->md))) {
500 			kfree(dd);
501 			return r;
502 		}
503 
504 		format_dev_t(dd->dm_dev.name, dev);
505 
506 		atomic_set(&dd->count, 0);
507 		list_add(&dd->list, &t->devices);
508 
509 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
510 		r = upgrade_mode(dd, mode, t->md);
511 		if (r)
512 			return r;
513 	}
514 	atomic_inc(&dd->count);
515 
516 	*result = &dd->dm_dev;
517 	return 0;
518 }
519 EXPORT_SYMBOL(dm_get_device);
520 
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)521 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
522 			 sector_t start, sector_t len, void *data)
523 {
524 	struct queue_limits *limits = data;
525 	struct block_device *bdev = dev->bdev;
526 	struct request_queue *q = bdev_get_queue(bdev);
527 	char b[BDEVNAME_SIZE];
528 
529 	if (unlikely(!q)) {
530 		DMWARN("%s: Cannot set limits for nonexistent device %s",
531 		       dm_device_name(ti->table->md), bdevname(bdev, b));
532 		return 0;
533 	}
534 
535 	if (bdev_stack_limits(limits, bdev, start) < 0)
536 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
537 		       "physical_block_size=%u, logical_block_size=%u, "
538 		       "alignment_offset=%u, start=%llu",
539 		       dm_device_name(ti->table->md), bdevname(bdev, b),
540 		       q->limits.physical_block_size,
541 		       q->limits.logical_block_size,
542 		       q->limits.alignment_offset,
543 		       (unsigned long long) start << SECTOR_SHIFT);
544 
545 	/*
546 	 * Check if merge fn is supported.
547 	 * If not we'll force DM to use PAGE_SIZE or
548 	 * smaller I/O, just to be safe.
549 	 */
550 	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
551 		blk_limits_max_hw_sectors(limits,
552 					  (unsigned int) (PAGE_SIZE >> 9));
553 	return 0;
554 }
555 EXPORT_SYMBOL_GPL(dm_set_device_limits);
556 
557 /*
558  * Decrement a device's use count and remove it if necessary.
559  */
dm_put_device(struct dm_target * ti,struct dm_dev * d)560 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
561 {
562 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
563 						  dm_dev);
564 
565 	if (atomic_dec_and_test(&dd->count)) {
566 		close_dev(dd, ti->table->md);
567 		list_del(&dd->list);
568 		kfree(dd);
569 	}
570 }
571 EXPORT_SYMBOL(dm_put_device);
572 
573 /*
574  * Checks to see if the target joins onto the end of the table.
575  */
adjoin(struct dm_table * table,struct dm_target * ti)576 static int adjoin(struct dm_table *table, struct dm_target *ti)
577 {
578 	struct dm_target *prev;
579 
580 	if (!table->num_targets)
581 		return !ti->begin;
582 
583 	prev = &table->targets[table->num_targets - 1];
584 	return (ti->begin == (prev->begin + prev->len));
585 }
586 
587 /*
588  * Used to dynamically allocate the arg array.
589  *
590  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
591  * process messages even if some device is suspended. These messages have a
592  * small fixed number of arguments.
593  *
594  * On the other hand, dm-switch needs to process bulk data using messages and
595  * excessive use of GFP_NOIO could cause trouble.
596  */
realloc_argv(unsigned * array_size,char ** old_argv)597 static char **realloc_argv(unsigned *array_size, char **old_argv)
598 {
599 	char **argv;
600 	unsigned new_size;
601 	gfp_t gfp;
602 
603 	if (*array_size) {
604 		new_size = *array_size * 2;
605 		gfp = GFP_KERNEL;
606 	} else {
607 		new_size = 8;
608 		gfp = GFP_NOIO;
609 	}
610 	argv = kmalloc(new_size * sizeof(*argv), gfp);
611 	if (argv) {
612 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
613 		*array_size = new_size;
614 	}
615 
616 	kfree(old_argv);
617 	return argv;
618 }
619 
620 /*
621  * Destructively splits up the argument list to pass to ctr.
622  */
dm_split_args(int * argc,char *** argvp,char * input)623 int dm_split_args(int *argc, char ***argvp, char *input)
624 {
625 	char *start, *end = input, *out, **argv = NULL;
626 	unsigned array_size = 0;
627 
628 	*argc = 0;
629 
630 	if (!input) {
631 		*argvp = NULL;
632 		return 0;
633 	}
634 
635 	argv = realloc_argv(&array_size, argv);
636 	if (!argv)
637 		return -ENOMEM;
638 
639 	while (1) {
640 		/* Skip whitespace */
641 		start = skip_spaces(end);
642 
643 		if (!*start)
644 			break;	/* success, we hit the end */
645 
646 		/* 'out' is used to remove any back-quotes */
647 		end = out = start;
648 		while (*end) {
649 			/* Everything apart from '\0' can be quoted */
650 			if (*end == '\\' && *(end + 1)) {
651 				*out++ = *(end + 1);
652 				end += 2;
653 				continue;
654 			}
655 
656 			if (isspace(*end))
657 				break;	/* end of token */
658 
659 			*out++ = *end++;
660 		}
661 
662 		/* have we already filled the array ? */
663 		if ((*argc + 1) > array_size) {
664 			argv = realloc_argv(&array_size, argv);
665 			if (!argv)
666 				return -ENOMEM;
667 		}
668 
669 		/* we know this is whitespace */
670 		if (*end)
671 			end++;
672 
673 		/* terminate the string and put it in the array */
674 		*out = '\0';
675 		argv[*argc] = start;
676 		(*argc)++;
677 	}
678 
679 	*argvp = argv;
680 	return 0;
681 }
682 
683 /*
684  * Impose necessary and sufficient conditions on a devices's table such
685  * that any incoming bio which respects its logical_block_size can be
686  * processed successfully.  If it falls across the boundary between
687  * two or more targets, the size of each piece it gets split into must
688  * be compatible with the logical_block_size of the target processing it.
689  */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)690 static int validate_hardware_logical_block_alignment(struct dm_table *table,
691 						 struct queue_limits *limits)
692 {
693 	/*
694 	 * This function uses arithmetic modulo the logical_block_size
695 	 * (in units of 512-byte sectors).
696 	 */
697 	unsigned short device_logical_block_size_sects =
698 		limits->logical_block_size >> SECTOR_SHIFT;
699 
700 	/*
701 	 * Offset of the start of the next table entry, mod logical_block_size.
702 	 */
703 	unsigned short next_target_start = 0;
704 
705 	/*
706 	 * Given an aligned bio that extends beyond the end of a
707 	 * target, how many sectors must the next target handle?
708 	 */
709 	unsigned short remaining = 0;
710 
711 	struct dm_target *uninitialized_var(ti);
712 	struct queue_limits ti_limits;
713 	unsigned i = 0;
714 
715 	/*
716 	 * Check each entry in the table in turn.
717 	 */
718 	while (i < dm_table_get_num_targets(table)) {
719 		ti = dm_table_get_target(table, i++);
720 
721 		blk_set_stacking_limits(&ti_limits);
722 
723 		/* combine all target devices' limits */
724 		if (ti->type->iterate_devices)
725 			ti->type->iterate_devices(ti, dm_set_device_limits,
726 						  &ti_limits);
727 
728 		/*
729 		 * If the remaining sectors fall entirely within this
730 		 * table entry are they compatible with its logical_block_size?
731 		 */
732 		if (remaining < ti->len &&
733 		    remaining & ((ti_limits.logical_block_size >>
734 				  SECTOR_SHIFT) - 1))
735 			break;	/* Error */
736 
737 		next_target_start =
738 		    (unsigned short) ((next_target_start + ti->len) &
739 				      (device_logical_block_size_sects - 1));
740 		remaining = next_target_start ?
741 		    device_logical_block_size_sects - next_target_start : 0;
742 	}
743 
744 	if (remaining) {
745 		DMWARN("%s: table line %u (start sect %llu len %llu) "
746 		       "not aligned to h/w logical block size %u",
747 		       dm_device_name(table->md), i,
748 		       (unsigned long long) ti->begin,
749 		       (unsigned long long) ti->len,
750 		       limits->logical_block_size);
751 		return -EINVAL;
752 	}
753 
754 	return 0;
755 }
756 
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)757 int dm_table_add_target(struct dm_table *t, const char *type,
758 			sector_t start, sector_t len, char *params)
759 {
760 	int r = -EINVAL, argc;
761 	char **argv;
762 	struct dm_target *tgt;
763 
764 	if (t->singleton) {
765 		DMERR("%s: target type %s must appear alone in table",
766 		      dm_device_name(t->md), t->targets->type->name);
767 		return -EINVAL;
768 	}
769 
770 	if ((r = check_space(t)))
771 		return r;
772 
773 	tgt = t->targets + t->num_targets;
774 	memset(tgt, 0, sizeof(*tgt));
775 
776 	if (!len) {
777 		DMERR("%s: zero-length target", dm_device_name(t->md));
778 		return -EINVAL;
779 	}
780 
781 	tgt->type = dm_get_target_type(type);
782 	if (!tgt->type) {
783 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
784 		      type);
785 		return -EINVAL;
786 	}
787 
788 	if (dm_target_needs_singleton(tgt->type)) {
789 		if (t->num_targets) {
790 			DMERR("%s: target type %s must appear alone in table",
791 			      dm_device_name(t->md), type);
792 			return -EINVAL;
793 		}
794 		t->singleton = 1;
795 	}
796 
797 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
798 		DMERR("%s: target type %s may not be included in read-only tables",
799 		      dm_device_name(t->md), type);
800 		return -EINVAL;
801 	}
802 
803 	if (t->immutable_target_type) {
804 		if (t->immutable_target_type != tgt->type) {
805 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
806 			      dm_device_name(t->md), t->immutable_target_type->name);
807 			return -EINVAL;
808 		}
809 	} else if (dm_target_is_immutable(tgt->type)) {
810 		if (t->num_targets) {
811 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
812 			      dm_device_name(t->md), tgt->type->name);
813 			return -EINVAL;
814 		}
815 		t->immutable_target_type = tgt->type;
816 	}
817 
818 	tgt->table = t;
819 	tgt->begin = start;
820 	tgt->len = len;
821 	tgt->error = "Unknown error";
822 
823 	/*
824 	 * Does this target adjoin the previous one ?
825 	 */
826 	if (!adjoin(t, tgt)) {
827 		tgt->error = "Gap in table";
828 		r = -EINVAL;
829 		goto bad;
830 	}
831 
832 	r = dm_split_args(&argc, &argv, params);
833 	if (r) {
834 		tgt->error = "couldn't split parameters (insufficient memory)";
835 		goto bad;
836 	}
837 
838 	r = tgt->type->ctr(tgt, argc, argv);
839 	kfree(argv);
840 	if (r)
841 		goto bad;
842 
843 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
844 
845 	if (!tgt->num_discard_requests && tgt->discards_supported)
846 		DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
847 		       dm_device_name(t->md), type);
848 
849 	return 0;
850 
851  bad:
852 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
853 	dm_put_target_type(tgt->type);
854 	return r;
855 }
856 
857 /*
858  * Target argument parsing helpers.
859  */
validate_next_arg(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)860 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
861 			     unsigned *value, char **error, unsigned grouped)
862 {
863 	const char *arg_str = dm_shift_arg(arg_set);
864 	char dummy;
865 
866 	if (!arg_str ||
867 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
868 	    (*value < arg->min) ||
869 	    (*value > arg->max) ||
870 	    (grouped && arg_set->argc < *value)) {
871 		*error = arg->error;
872 		return -EINVAL;
873 	}
874 
875 	return 0;
876 }
877 
dm_read_arg(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)878 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
879 		unsigned *value, char **error)
880 {
881 	return validate_next_arg(arg, arg_set, value, error, 0);
882 }
883 EXPORT_SYMBOL(dm_read_arg);
884 
dm_read_arg_group(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)885 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
886 		      unsigned *value, char **error)
887 {
888 	return validate_next_arg(arg, arg_set, value, error, 1);
889 }
890 EXPORT_SYMBOL(dm_read_arg_group);
891 
dm_shift_arg(struct dm_arg_set * as)892 const char *dm_shift_arg(struct dm_arg_set *as)
893 {
894 	char *r;
895 
896 	if (as->argc) {
897 		as->argc--;
898 		r = *as->argv;
899 		as->argv++;
900 		return r;
901 	}
902 
903 	return NULL;
904 }
905 EXPORT_SYMBOL(dm_shift_arg);
906 
dm_consume_args(struct dm_arg_set * as,unsigned num_args)907 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
908 {
909 	BUG_ON(as->argc < num_args);
910 	as->argc -= num_args;
911 	as->argv += num_args;
912 }
913 EXPORT_SYMBOL(dm_consume_args);
914 
dm_table_set_type(struct dm_table * t)915 static int dm_table_set_type(struct dm_table *t)
916 {
917 	unsigned i;
918 	unsigned bio_based = 0, request_based = 0;
919 	struct dm_target *tgt;
920 	struct dm_dev_internal *dd;
921 	struct list_head *devices;
922 
923 	for (i = 0; i < t->num_targets; i++) {
924 		tgt = t->targets + i;
925 		if (dm_target_request_based(tgt))
926 			request_based = 1;
927 		else
928 			bio_based = 1;
929 
930 		if (bio_based && request_based) {
931 			DMWARN("Inconsistent table: different target types"
932 			       " can't be mixed up");
933 			return -EINVAL;
934 		}
935 	}
936 
937 	if (bio_based) {
938 		/* We must use this table as bio-based */
939 		t->type = DM_TYPE_BIO_BASED;
940 		return 0;
941 	}
942 
943 	BUG_ON(!request_based); /* No targets in this table */
944 
945 	/* Non-request-stackable devices can't be used for request-based dm */
946 	devices = dm_table_get_devices(t);
947 	list_for_each_entry(dd, devices, list) {
948 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
949 			DMWARN("table load rejected: including"
950 			       " non-request-stackable devices");
951 			return -EINVAL;
952 		}
953 	}
954 
955 	/*
956 	 * Request-based dm supports only tables that have a single target now.
957 	 * To support multiple targets, request splitting support is needed,
958 	 * and that needs lots of changes in the block-layer.
959 	 * (e.g. request completion process for partial completion.)
960 	 */
961 	if (t->num_targets > 1) {
962 		DMWARN("Request-based dm doesn't support multiple targets yet");
963 		return -EINVAL;
964 	}
965 
966 	t->type = DM_TYPE_REQUEST_BASED;
967 
968 	return 0;
969 }
970 
dm_table_get_type(struct dm_table * t)971 unsigned dm_table_get_type(struct dm_table *t)
972 {
973 	return t->type;
974 }
975 
dm_table_get_immutable_target_type(struct dm_table * t)976 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
977 {
978 	return t->immutable_target_type;
979 }
980 
dm_table_request_based(struct dm_table * t)981 bool dm_table_request_based(struct dm_table *t)
982 {
983 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
984 }
985 
dm_table_alloc_md_mempools(struct dm_table * t)986 int dm_table_alloc_md_mempools(struct dm_table *t)
987 {
988 	unsigned type = dm_table_get_type(t);
989 
990 	if (unlikely(type == DM_TYPE_NONE)) {
991 		DMWARN("no table type is set, can't allocate mempools");
992 		return -EINVAL;
993 	}
994 
995 	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
996 	if (!t->mempools)
997 		return -ENOMEM;
998 
999 	return 0;
1000 }
1001 
dm_table_free_md_mempools(struct dm_table * t)1002 void dm_table_free_md_mempools(struct dm_table *t)
1003 {
1004 	dm_free_md_mempools(t->mempools);
1005 	t->mempools = NULL;
1006 }
1007 
dm_table_get_md_mempools(struct dm_table * t)1008 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1009 {
1010 	return t->mempools;
1011 }
1012 
setup_indexes(struct dm_table * t)1013 static int setup_indexes(struct dm_table *t)
1014 {
1015 	int i;
1016 	unsigned int total = 0;
1017 	sector_t *indexes;
1018 
1019 	/* allocate the space for *all* the indexes */
1020 	for (i = t->depth - 2; i >= 0; i--) {
1021 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1022 		total += t->counts[i];
1023 	}
1024 
1025 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1026 	if (!indexes)
1027 		return -ENOMEM;
1028 
1029 	/* set up internal nodes, bottom-up */
1030 	for (i = t->depth - 2; i >= 0; i--) {
1031 		t->index[i] = indexes;
1032 		indexes += (KEYS_PER_NODE * t->counts[i]);
1033 		setup_btree_index(i, t);
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 /*
1040  * Builds the btree to index the map.
1041  */
dm_table_build_index(struct dm_table * t)1042 static int dm_table_build_index(struct dm_table *t)
1043 {
1044 	int r = 0;
1045 	unsigned int leaf_nodes;
1046 
1047 	/* how many indexes will the btree have ? */
1048 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1049 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1050 
1051 	/* leaf layer has already been set up */
1052 	t->counts[t->depth - 1] = leaf_nodes;
1053 	t->index[t->depth - 1] = t->highs;
1054 
1055 	if (t->depth >= 2)
1056 		r = setup_indexes(t);
1057 
1058 	return r;
1059 }
1060 
1061 /*
1062  * Get a disk whose integrity profile reflects the table's profile.
1063  * If %match_all is true, all devices' profiles must match.
1064  * If %match_all is false, all devices must at least have an
1065  * allocated integrity profile; but uninitialized is ok.
1066  * Returns NULL if integrity support was inconsistent or unavailable.
1067  */
dm_table_get_integrity_disk(struct dm_table * t,bool match_all)1068 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1069 						    bool match_all)
1070 {
1071 	struct list_head *devices = dm_table_get_devices(t);
1072 	struct dm_dev_internal *dd = NULL;
1073 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1074 
1075 	list_for_each_entry(dd, devices, list) {
1076 		template_disk = dd->dm_dev.bdev->bd_disk;
1077 		if (!blk_get_integrity(template_disk))
1078 			goto no_integrity;
1079 		if (!match_all && !blk_integrity_is_initialized(template_disk))
1080 			continue; /* skip uninitialized profiles */
1081 		else if (prev_disk &&
1082 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1083 			goto no_integrity;
1084 		prev_disk = template_disk;
1085 	}
1086 
1087 	return template_disk;
1088 
1089 no_integrity:
1090 	if (prev_disk)
1091 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1092 		       dm_device_name(t->md),
1093 		       prev_disk->disk_name,
1094 		       template_disk->disk_name);
1095 	return NULL;
1096 }
1097 
1098 /*
1099  * Register the mapped device for blk_integrity support if
1100  * the underlying devices have an integrity profile.  But all devices
1101  * may not have matching profiles (checking all devices isn't reliable
1102  * during table load because this table may use other DM device(s) which
1103  * must be resumed before they will have an initialized integity profile).
1104  * Stacked DM devices force a 2 stage integrity profile validation:
1105  * 1 - during load, validate all initialized integrity profiles match
1106  * 2 - during resume, validate all integrity profiles match
1107  */
dm_table_prealloc_integrity(struct dm_table * t,struct mapped_device * md)1108 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1109 {
1110 	struct gendisk *template_disk = NULL;
1111 
1112 	template_disk = dm_table_get_integrity_disk(t, false);
1113 	if (!template_disk)
1114 		return 0;
1115 
1116 	if (!blk_integrity_is_initialized(dm_disk(md))) {
1117 		t->integrity_supported = 1;
1118 		return blk_integrity_register(dm_disk(md), NULL);
1119 	}
1120 
1121 	/*
1122 	 * If DM device already has an initalized integrity
1123 	 * profile the new profile should not conflict.
1124 	 */
1125 	if (blk_integrity_is_initialized(template_disk) &&
1126 	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1127 		DMWARN("%s: conflict with existing integrity profile: "
1128 		       "%s profile mismatch",
1129 		       dm_device_name(t->md),
1130 		       template_disk->disk_name);
1131 		return 1;
1132 	}
1133 
1134 	/* Preserve existing initialized integrity profile */
1135 	t->integrity_supported = 1;
1136 	return 0;
1137 }
1138 
1139 /*
1140  * Prepares the table for use by building the indices,
1141  * setting the type, and allocating mempools.
1142  */
dm_table_complete(struct dm_table * t)1143 int dm_table_complete(struct dm_table *t)
1144 {
1145 	int r;
1146 
1147 	r = dm_table_set_type(t);
1148 	if (r) {
1149 		DMERR("unable to set table type");
1150 		return r;
1151 	}
1152 
1153 	r = dm_table_build_index(t);
1154 	if (r) {
1155 		DMERR("unable to build btrees");
1156 		return r;
1157 	}
1158 
1159 	r = dm_table_prealloc_integrity(t, t->md);
1160 	if (r) {
1161 		DMERR("could not register integrity profile.");
1162 		return r;
1163 	}
1164 
1165 	r = dm_table_alloc_md_mempools(t);
1166 	if (r)
1167 		DMERR("unable to allocate mempools");
1168 
1169 	return r;
1170 }
1171 
1172 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1173 void dm_table_event_callback(struct dm_table *t,
1174 			     void (*fn)(void *), void *context)
1175 {
1176 	mutex_lock(&_event_lock);
1177 	t->event_fn = fn;
1178 	t->event_context = context;
1179 	mutex_unlock(&_event_lock);
1180 }
1181 
dm_table_event(struct dm_table * t)1182 void dm_table_event(struct dm_table *t)
1183 {
1184 	/*
1185 	 * You can no longer call dm_table_event() from interrupt
1186 	 * context, use a bottom half instead.
1187 	 */
1188 	BUG_ON(in_interrupt());
1189 
1190 	mutex_lock(&_event_lock);
1191 	if (t->event_fn)
1192 		t->event_fn(t->event_context);
1193 	mutex_unlock(&_event_lock);
1194 }
1195 EXPORT_SYMBOL(dm_table_event);
1196 
dm_table_get_size(struct dm_table * t)1197 sector_t dm_table_get_size(struct dm_table *t)
1198 {
1199 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1200 }
1201 EXPORT_SYMBOL(dm_table_get_size);
1202 
dm_table_get_target(struct dm_table * t,unsigned int index)1203 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1204 {
1205 	if (index >= t->num_targets)
1206 		return NULL;
1207 
1208 	return t->targets + index;
1209 }
1210 
1211 /*
1212  * Search the btree for the correct target.
1213  *
1214  * Caller should check returned pointer with dm_target_is_valid()
1215  * to trap I/O beyond end of device.
1216  */
dm_table_find_target(struct dm_table * t,sector_t sector)1217 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1218 {
1219 	unsigned int l, n = 0, k = 0;
1220 	sector_t *node;
1221 
1222 	for (l = 0; l < t->depth; l++) {
1223 		n = get_child(n, k);
1224 		node = get_node(t, l, n);
1225 
1226 		for (k = 0; k < KEYS_PER_NODE; k++)
1227 			if (node[k] >= sector)
1228 				break;
1229 	}
1230 
1231 	return &t->targets[(KEYS_PER_NODE * n) + k];
1232 }
1233 
1234 /*
1235  * Establish the new table's queue_limits and validate them.
1236  */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1237 int dm_calculate_queue_limits(struct dm_table *table,
1238 			      struct queue_limits *limits)
1239 {
1240 	struct dm_target *uninitialized_var(ti);
1241 	struct queue_limits ti_limits;
1242 	unsigned i = 0;
1243 
1244 	blk_set_stacking_limits(limits);
1245 
1246 	while (i < dm_table_get_num_targets(table)) {
1247 		blk_set_stacking_limits(&ti_limits);
1248 
1249 		ti = dm_table_get_target(table, i++);
1250 
1251 		if (!ti->type->iterate_devices)
1252 			goto combine_limits;
1253 
1254 		/*
1255 		 * Combine queue limits of all the devices this target uses.
1256 		 */
1257 		ti->type->iterate_devices(ti, dm_set_device_limits,
1258 					  &ti_limits);
1259 
1260 		/* Set I/O hints portion of queue limits */
1261 		if (ti->type->io_hints)
1262 			ti->type->io_hints(ti, &ti_limits);
1263 
1264 		/*
1265 		 * Check each device area is consistent with the target's
1266 		 * overall queue limits.
1267 		 */
1268 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1269 					      &ti_limits))
1270 			return -EINVAL;
1271 
1272 combine_limits:
1273 		/*
1274 		 * Merge this target's queue limits into the overall limits
1275 		 * for the table.
1276 		 */
1277 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1278 			DMWARN("%s: adding target device "
1279 			       "(start sect %llu len %llu) "
1280 			       "caused an alignment inconsistency",
1281 			       dm_device_name(table->md),
1282 			       (unsigned long long) ti->begin,
1283 			       (unsigned long long) ti->len);
1284 	}
1285 
1286 	return validate_hardware_logical_block_alignment(table, limits);
1287 }
1288 
1289 /*
1290  * Set the integrity profile for this device if all devices used have
1291  * matching profiles.  We're quite deep in the resume path but still
1292  * don't know if all devices (particularly DM devices this device
1293  * may be stacked on) have matching profiles.  Even if the profiles
1294  * don't match we have no way to fail (to resume) at this point.
1295  */
dm_table_set_integrity(struct dm_table * t)1296 static void dm_table_set_integrity(struct dm_table *t)
1297 {
1298 	struct gendisk *template_disk = NULL;
1299 
1300 	if (!blk_get_integrity(dm_disk(t->md)))
1301 		return;
1302 
1303 	template_disk = dm_table_get_integrity_disk(t, true);
1304 	if (template_disk)
1305 		blk_integrity_register(dm_disk(t->md),
1306 				       blk_get_integrity(template_disk));
1307 	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1308 		DMWARN("%s: device no longer has a valid integrity profile",
1309 		       dm_device_name(t->md));
1310 	else
1311 		DMWARN("%s: unable to establish an integrity profile",
1312 		       dm_device_name(t->md));
1313 }
1314 
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1315 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1316 				sector_t start, sector_t len, void *data)
1317 {
1318 	unsigned flush = (*(unsigned *)data);
1319 	struct request_queue *q = bdev_get_queue(dev->bdev);
1320 
1321 	return q && (q->flush_flags & flush);
1322 }
1323 
dm_table_supports_flush(struct dm_table * t,unsigned flush)1324 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1325 {
1326 	struct dm_target *ti;
1327 	unsigned i = 0;
1328 
1329 	/*
1330 	 * Require at least one underlying device to support flushes.
1331 	 * t->devices includes internal dm devices such as mirror logs
1332 	 * so we need to use iterate_devices here, which targets
1333 	 * supporting flushes must provide.
1334 	 */
1335 	while (i < dm_table_get_num_targets(t)) {
1336 		ti = dm_table_get_target(t, i++);
1337 
1338 		if (!ti->num_flush_requests)
1339 			continue;
1340 
1341 		if (ti->type->iterate_devices &&
1342 		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1343 			return 1;
1344 	}
1345 
1346 	return 0;
1347 }
1348 
dm_table_discard_zeroes_data(struct dm_table * t)1349 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1350 {
1351 	struct dm_target *ti;
1352 	unsigned i = 0;
1353 
1354 	/* Ensure that all targets supports discard_zeroes_data. */
1355 	while (i < dm_table_get_num_targets(t)) {
1356 		ti = dm_table_get_target(t, i++);
1357 
1358 		if (ti->discard_zeroes_data_unsupported)
1359 			return 0;
1360 	}
1361 
1362 	return 1;
1363 }
1364 
device_is_nonrot(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1365 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1366 			    sector_t start, sector_t len, void *data)
1367 {
1368 	struct request_queue *q = bdev_get_queue(dev->bdev);
1369 
1370 	return q && blk_queue_nonrot(q);
1371 }
1372 
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1373 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1374 			     sector_t start, sector_t len, void *data)
1375 {
1376 	struct request_queue *q = bdev_get_queue(dev->bdev);
1377 
1378 	return q && !blk_queue_add_random(q);
1379 }
1380 
dm_table_all_devices_attribute(struct dm_table * t,iterate_devices_callout_fn func)1381 static bool dm_table_all_devices_attribute(struct dm_table *t,
1382 					   iterate_devices_callout_fn func)
1383 {
1384 	struct dm_target *ti;
1385 	unsigned i = 0;
1386 
1387 	while (i < dm_table_get_num_targets(t)) {
1388 		ti = dm_table_get_target(t, i++);
1389 
1390 		if (!ti->type->iterate_devices ||
1391 		    !ti->type->iterate_devices(ti, func, NULL))
1392 			return 0;
1393 	}
1394 
1395 	return 1;
1396 }
1397 
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1398 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1399 			       struct queue_limits *limits)
1400 {
1401 	unsigned flush = 0;
1402 
1403 	/*
1404 	 * Copy table's limits to the DM device's request_queue
1405 	 */
1406 	q->limits = *limits;
1407 
1408 	if (!dm_table_supports_discards(t))
1409 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1410 	else
1411 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1412 
1413 	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1414 		flush |= REQ_FLUSH;
1415 		if (dm_table_supports_flush(t, REQ_FUA))
1416 			flush |= REQ_FUA;
1417 	}
1418 	blk_queue_flush(q, flush);
1419 
1420 	if (!dm_table_discard_zeroes_data(t))
1421 		q->limits.discard_zeroes_data = 0;
1422 
1423 	/* Ensure that all underlying devices are non-rotational. */
1424 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1425 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1426 	else
1427 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1428 
1429 	dm_table_set_integrity(t);
1430 
1431 	/*
1432 	 * Determine whether or not this queue's I/O timings contribute
1433 	 * to the entropy pool, Only request-based targets use this.
1434 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1435 	 * have it set.
1436 	 */
1437 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1438 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1439 
1440 	/*
1441 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1442 	 * visible to other CPUs because, once the flag is set, incoming bios
1443 	 * are processed by request-based dm, which refers to the queue
1444 	 * settings.
1445 	 * Until the flag set, bios are passed to bio-based dm and queued to
1446 	 * md->deferred where queue settings are not needed yet.
1447 	 * Those bios are passed to request-based dm at the resume time.
1448 	 */
1449 	smp_mb();
1450 	if (dm_table_request_based(t))
1451 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1452 }
1453 
dm_table_get_num_targets(struct dm_table * t)1454 unsigned int dm_table_get_num_targets(struct dm_table *t)
1455 {
1456 	return t->num_targets;
1457 }
1458 
dm_table_get_devices(struct dm_table * t)1459 struct list_head *dm_table_get_devices(struct dm_table *t)
1460 {
1461 	return &t->devices;
1462 }
1463 
dm_table_get_mode(struct dm_table * t)1464 fmode_t dm_table_get_mode(struct dm_table *t)
1465 {
1466 	return t->mode;
1467 }
1468 EXPORT_SYMBOL(dm_table_get_mode);
1469 
suspend_targets(struct dm_table * t,unsigned postsuspend)1470 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1471 {
1472 	int i = t->num_targets;
1473 	struct dm_target *ti = t->targets;
1474 
1475 	while (i--) {
1476 		if (postsuspend) {
1477 			if (ti->type->postsuspend)
1478 				ti->type->postsuspend(ti);
1479 		} else if (ti->type->presuspend)
1480 			ti->type->presuspend(ti);
1481 
1482 		ti++;
1483 	}
1484 }
1485 
dm_table_presuspend_targets(struct dm_table * t)1486 void dm_table_presuspend_targets(struct dm_table *t)
1487 {
1488 	if (!t)
1489 		return;
1490 
1491 	suspend_targets(t, 0);
1492 }
1493 
dm_table_postsuspend_targets(struct dm_table * t)1494 void dm_table_postsuspend_targets(struct dm_table *t)
1495 {
1496 	if (!t)
1497 		return;
1498 
1499 	suspend_targets(t, 1);
1500 }
1501 
dm_table_resume_targets(struct dm_table * t)1502 int dm_table_resume_targets(struct dm_table *t)
1503 {
1504 	int i, r = 0;
1505 
1506 	for (i = 0; i < t->num_targets; i++) {
1507 		struct dm_target *ti = t->targets + i;
1508 
1509 		if (!ti->type->preresume)
1510 			continue;
1511 
1512 		r = ti->type->preresume(ti);
1513 		if (r)
1514 			return r;
1515 	}
1516 
1517 	for (i = 0; i < t->num_targets; i++) {
1518 		struct dm_target *ti = t->targets + i;
1519 
1520 		if (ti->type->resume)
1521 			ti->type->resume(ti);
1522 	}
1523 
1524 	return 0;
1525 }
1526 
dm_table_add_target_callbacks(struct dm_table * t,struct dm_target_callbacks * cb)1527 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1528 {
1529 	list_add(&cb->list, &t->target_callbacks);
1530 }
1531 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1532 
dm_table_any_congested(struct dm_table * t,int bdi_bits)1533 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1534 {
1535 	struct dm_dev_internal *dd;
1536 	struct list_head *devices = dm_table_get_devices(t);
1537 	struct dm_target_callbacks *cb;
1538 	int r = 0;
1539 
1540 	list_for_each_entry(dd, devices, list) {
1541 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1542 		char b[BDEVNAME_SIZE];
1543 
1544 		if (likely(q))
1545 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1546 		else
1547 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1548 				     dm_device_name(t->md),
1549 				     bdevname(dd->dm_dev.bdev, b));
1550 	}
1551 
1552 	list_for_each_entry(cb, &t->target_callbacks, list)
1553 		if (cb->congested_fn)
1554 			r |= cb->congested_fn(cb, bdi_bits);
1555 
1556 	return r;
1557 }
1558 
dm_table_any_busy_target(struct dm_table * t)1559 int dm_table_any_busy_target(struct dm_table *t)
1560 {
1561 	unsigned i;
1562 	struct dm_target *ti;
1563 
1564 	for (i = 0; i < t->num_targets; i++) {
1565 		ti = t->targets + i;
1566 		if (ti->type->busy && ti->type->busy(ti))
1567 			return 1;
1568 	}
1569 
1570 	return 0;
1571 }
1572 
dm_table_get_md(struct dm_table * t)1573 struct mapped_device *dm_table_get_md(struct dm_table *t)
1574 {
1575 	return t->md;
1576 }
1577 EXPORT_SYMBOL(dm_table_get_md);
1578 
device_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1579 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1580 				  sector_t start, sector_t len, void *data)
1581 {
1582 	struct request_queue *q = bdev_get_queue(dev->bdev);
1583 
1584 	return q && blk_queue_discard(q);
1585 }
1586 
dm_table_supports_discards(struct dm_table * t)1587 bool dm_table_supports_discards(struct dm_table *t)
1588 {
1589 	struct dm_target *ti;
1590 	unsigned i = 0;
1591 
1592 	/*
1593 	 * Unless any target used by the table set discards_supported,
1594 	 * require at least one underlying device to support discards.
1595 	 * t->devices includes internal dm devices such as mirror logs
1596 	 * so we need to use iterate_devices here, which targets
1597 	 * supporting discard selectively must provide.
1598 	 */
1599 	while (i < dm_table_get_num_targets(t)) {
1600 		ti = dm_table_get_target(t, i++);
1601 
1602 		if (!ti->num_discard_requests)
1603 			continue;
1604 
1605 		if (ti->discards_supported)
1606 			return 1;
1607 
1608 		if (ti->type->iterate_devices &&
1609 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1610 			return 1;
1611 	}
1612 
1613 	return 0;
1614 }
1615