1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21
22 #define DM_MSG_PREFIX "table"
23
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29 /*
30 * The table has always exactly one reference from either mapped_device->map
31 * or hash_cell->new_map. This reference is not counted in table->holders.
32 * A pair of dm_create_table/dm_destroy_table functions is used for table
33 * creation/destruction.
34 *
35 * Temporary references from the other code increase table->holders. A pair
36 * of dm_table_get/dm_table_put functions is used to manipulate it.
37 *
38 * When the table is about to be destroyed, we wait for table->holders to
39 * drop to zero.
40 */
41
42 struct dm_table {
43 struct mapped_device *md;
44 atomic_t holders;
45 unsigned type;
46
47 /* btree table */
48 unsigned int depth;
49 unsigned int counts[MAX_DEPTH]; /* in nodes */
50 sector_t *index[MAX_DEPTH];
51
52 unsigned int num_targets;
53 unsigned int num_allocated;
54 sector_t *highs;
55 struct dm_target *targets;
56
57 struct target_type *immutable_target_type;
58 unsigned integrity_supported:1;
59 unsigned singleton:1;
60
61 /*
62 * Indicates the rw permissions for the new logical
63 * device. This should be a combination of FMODE_READ
64 * and FMODE_WRITE.
65 */
66 fmode_t mode;
67
68 /* a list of devices used by this table */
69 struct list_head devices;
70
71 /* events get handed up using this callback */
72 void (*event_fn)(void *);
73 void *event_context;
74
75 struct dm_md_mempools *mempools;
76
77 struct list_head target_callbacks;
78 };
79
80 /*
81 * Similar to ceiling(log_size(n))
82 */
int_log(unsigned int n,unsigned int base)83 static unsigned int int_log(unsigned int n, unsigned int base)
84 {
85 int result = 0;
86
87 while (n > 1) {
88 n = dm_div_up(n, base);
89 result++;
90 }
91
92 return result;
93 }
94
95 /*
96 * Calculate the index of the child node of the n'th node k'th key.
97 */
get_child(unsigned int n,unsigned int k)98 static inline unsigned int get_child(unsigned int n, unsigned int k)
99 {
100 return (n * CHILDREN_PER_NODE) + k;
101 }
102
103 /*
104 * Return the n'th node of level l from table t.
105 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)106 static inline sector_t *get_node(struct dm_table *t,
107 unsigned int l, unsigned int n)
108 {
109 return t->index[l] + (n * KEYS_PER_NODE);
110 }
111
112 /*
113 * Return the highest key that you could lookup from the n'th
114 * node on level l of the btree.
115 */
high(struct dm_table * t,unsigned int l,unsigned int n)116 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
117 {
118 for (; l < t->depth - 1; l++)
119 n = get_child(n, CHILDREN_PER_NODE - 1);
120
121 if (n >= t->counts[l])
122 return (sector_t) - 1;
123
124 return get_node(t, l, n)[KEYS_PER_NODE - 1];
125 }
126
127 /*
128 * Fills in a level of the btree based on the highs of the level
129 * below it.
130 */
setup_btree_index(unsigned int l,struct dm_table * t)131 static int setup_btree_index(unsigned int l, struct dm_table *t)
132 {
133 unsigned int n, k;
134 sector_t *node;
135
136 for (n = 0U; n < t->counts[l]; n++) {
137 node = get_node(t, l, n);
138
139 for (k = 0U; k < KEYS_PER_NODE; k++)
140 node[k] = high(t, l + 1, get_child(n, k));
141 }
142
143 return 0;
144 }
145
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)146 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
147 {
148 unsigned long size;
149 void *addr;
150
151 /*
152 * Check that we're not going to overflow.
153 */
154 if (nmemb > (ULONG_MAX / elem_size))
155 return NULL;
156
157 size = nmemb * elem_size;
158 addr = vzalloc(size);
159
160 return addr;
161 }
162 EXPORT_SYMBOL(dm_vcalloc);
163
164 /*
165 * highs, and targets are managed as dynamic arrays during a
166 * table load.
167 */
alloc_targets(struct dm_table * t,unsigned int num)168 static int alloc_targets(struct dm_table *t, unsigned int num)
169 {
170 sector_t *n_highs;
171 struct dm_target *n_targets;
172 int n = t->num_targets;
173
174 /*
175 * Allocate both the target array and offset array at once.
176 * Append an empty entry to catch sectors beyond the end of
177 * the device.
178 */
179 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
180 sizeof(sector_t));
181 if (!n_highs)
182 return -ENOMEM;
183
184 n_targets = (struct dm_target *) (n_highs + num);
185
186 if (n) {
187 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
188 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189 }
190
191 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
192 vfree(t->highs);
193
194 t->num_allocated = num;
195 t->highs = n_highs;
196 t->targets = n_targets;
197
198 return 0;
199 }
200
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)201 int dm_table_create(struct dm_table **result, fmode_t mode,
202 unsigned num_targets, struct mapped_device *md)
203 {
204 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205
206 if (!t)
207 return -ENOMEM;
208
209 INIT_LIST_HEAD(&t->devices);
210 INIT_LIST_HEAD(&t->target_callbacks);
211 atomic_set(&t->holders, 0);
212
213 if (!num_targets)
214 num_targets = KEYS_PER_NODE;
215
216 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
217
218 if (!num_targets) {
219 kfree(t);
220 return -ENOMEM;
221 }
222
223 if (alloc_targets(t, num_targets)) {
224 kfree(t);
225 t = NULL;
226 return -ENOMEM;
227 }
228
229 t->mode = mode;
230 t->md = md;
231 *result = t;
232 return 0;
233 }
234
free_devices(struct list_head * devices)235 static void free_devices(struct list_head *devices)
236 {
237 struct list_head *tmp, *next;
238
239 list_for_each_safe(tmp, next, devices) {
240 struct dm_dev_internal *dd =
241 list_entry(tmp, struct dm_dev_internal, list);
242 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
243 dd->dm_dev.name);
244 kfree(dd);
245 }
246 }
247
dm_table_destroy(struct dm_table * t)248 void dm_table_destroy(struct dm_table *t)
249 {
250 unsigned int i;
251
252 if (!t)
253 return;
254
255 while (atomic_read(&t->holders))
256 msleep(1);
257 smp_mb();
258
259 /* free the indexes */
260 if (t->depth >= 2)
261 vfree(t->index[t->depth - 2]);
262
263 /* free the targets */
264 for (i = 0; i < t->num_targets; i++) {
265 struct dm_target *tgt = t->targets + i;
266
267 if (tgt->type->dtr)
268 tgt->type->dtr(tgt);
269
270 dm_put_target_type(tgt->type);
271 }
272
273 vfree(t->highs);
274
275 /* free the device list */
276 free_devices(&t->devices);
277
278 dm_free_md_mempools(t->mempools);
279
280 kfree(t);
281 }
282
dm_table_get(struct dm_table * t)283 void dm_table_get(struct dm_table *t)
284 {
285 atomic_inc(&t->holders);
286 }
287 EXPORT_SYMBOL(dm_table_get);
288
dm_table_put(struct dm_table * t)289 void dm_table_put(struct dm_table *t)
290 {
291 if (!t)
292 return;
293
294 smp_mb__before_atomic_dec();
295 atomic_dec(&t->holders);
296 }
297 EXPORT_SYMBOL(dm_table_put);
298
299 /*
300 * Checks to see if we need to extend highs or targets.
301 */
check_space(struct dm_table * t)302 static inline int check_space(struct dm_table *t)
303 {
304 if (t->num_targets >= t->num_allocated)
305 return alloc_targets(t, t->num_allocated * 2);
306
307 return 0;
308 }
309
310 /*
311 * See if we've already got a device in the list.
312 */
find_device(struct list_head * l,dev_t dev)313 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
314 {
315 struct dm_dev_internal *dd;
316
317 list_for_each_entry (dd, l, list)
318 if (dd->dm_dev.bdev->bd_dev == dev)
319 return dd;
320
321 return NULL;
322 }
323
324 /*
325 * Open a device so we can use it as a map destination.
326 */
open_dev(struct dm_dev_internal * d,dev_t dev,struct mapped_device * md)327 static int open_dev(struct dm_dev_internal *d, dev_t dev,
328 struct mapped_device *md)
329 {
330 static char *_claim_ptr = "I belong to device-mapper";
331 struct block_device *bdev;
332
333 int r;
334
335 BUG_ON(d->dm_dev.bdev);
336
337 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
338 if (IS_ERR(bdev))
339 return PTR_ERR(bdev);
340
341 r = bd_link_disk_holder(bdev, dm_disk(md));
342 if (r) {
343 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
344 return r;
345 }
346
347 d->dm_dev.bdev = bdev;
348 return 0;
349 }
350
351 /*
352 * Close a device that we've been using.
353 */
close_dev(struct dm_dev_internal * d,struct mapped_device * md)354 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
355 {
356 if (!d->dm_dev.bdev)
357 return;
358
359 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
360 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
361 d->dm_dev.bdev = NULL;
362 }
363
364 /*
365 * If possible, this checks an area of a destination device is invalid.
366 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)367 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
368 sector_t start, sector_t len, void *data)
369 {
370 struct request_queue *q;
371 struct queue_limits *limits = data;
372 struct block_device *bdev = dev->bdev;
373 sector_t dev_size =
374 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
375 unsigned short logical_block_size_sectors =
376 limits->logical_block_size >> SECTOR_SHIFT;
377 char b[BDEVNAME_SIZE];
378
379 /*
380 * Some devices exist without request functions,
381 * such as loop devices not yet bound to backing files.
382 * Forbid the use of such devices.
383 */
384 q = bdev_get_queue(bdev);
385 if (!q || !q->make_request_fn) {
386 DMWARN("%s: %s is not yet initialised: "
387 "start=%llu, len=%llu, dev_size=%llu",
388 dm_device_name(ti->table->md), bdevname(bdev, b),
389 (unsigned long long)start,
390 (unsigned long long)len,
391 (unsigned long long)dev_size);
392 return 1;
393 }
394
395 if (!dev_size)
396 return 0;
397
398 if ((start >= dev_size) || (start + len > dev_size)) {
399 DMWARN("%s: %s too small for target: "
400 "start=%llu, len=%llu, dev_size=%llu",
401 dm_device_name(ti->table->md), bdevname(bdev, b),
402 (unsigned long long)start,
403 (unsigned long long)len,
404 (unsigned long long)dev_size);
405 return 1;
406 }
407
408 if (logical_block_size_sectors <= 1)
409 return 0;
410
411 if (start & (logical_block_size_sectors - 1)) {
412 DMWARN("%s: start=%llu not aligned to h/w "
413 "logical block size %u of %s",
414 dm_device_name(ti->table->md),
415 (unsigned long long)start,
416 limits->logical_block_size, bdevname(bdev, b));
417 return 1;
418 }
419
420 if (len & (logical_block_size_sectors - 1)) {
421 DMWARN("%s: len=%llu not aligned to h/w "
422 "logical block size %u of %s",
423 dm_device_name(ti->table->md),
424 (unsigned long long)len,
425 limits->logical_block_size, bdevname(bdev, b));
426 return 1;
427 }
428
429 return 0;
430 }
431
432 /*
433 * This upgrades the mode on an already open dm_dev, being
434 * careful to leave things as they were if we fail to reopen the
435 * device and not to touch the existing bdev field in case
436 * it is accessed concurrently inside dm_table_any_congested().
437 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)438 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
439 struct mapped_device *md)
440 {
441 int r;
442 struct dm_dev_internal dd_new, dd_old;
443
444 dd_new = dd_old = *dd;
445
446 dd_new.dm_dev.mode |= new_mode;
447 dd_new.dm_dev.bdev = NULL;
448
449 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
450 if (r)
451 return r;
452
453 dd->dm_dev.mode |= new_mode;
454 close_dev(&dd_old, md);
455
456 return 0;
457 }
458
459 /*
460 * Add a device to the list, or just increment the usage count if
461 * it's already present.
462 */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)463 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
464 struct dm_dev **result)
465 {
466 int r;
467 dev_t uninitialized_var(dev);
468 struct dm_dev_internal *dd;
469 unsigned int major, minor;
470 struct dm_table *t = ti->table;
471 char dummy;
472
473 BUG_ON(!t);
474
475 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
476 /* Extract the major/minor numbers */
477 dev = MKDEV(major, minor);
478 if (MAJOR(dev) != major || MINOR(dev) != minor)
479 return -EOVERFLOW;
480 } else {
481 /* convert the path to a device */
482 struct block_device *bdev = lookup_bdev(path);
483
484 if (IS_ERR(bdev))
485 return PTR_ERR(bdev);
486 dev = bdev->bd_dev;
487 bdput(bdev);
488 }
489
490 dd = find_device(&t->devices, dev);
491 if (!dd) {
492 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
493 if (!dd)
494 return -ENOMEM;
495
496 dd->dm_dev.mode = mode;
497 dd->dm_dev.bdev = NULL;
498
499 if ((r = open_dev(dd, dev, t->md))) {
500 kfree(dd);
501 return r;
502 }
503
504 format_dev_t(dd->dm_dev.name, dev);
505
506 atomic_set(&dd->count, 0);
507 list_add(&dd->list, &t->devices);
508
509 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
510 r = upgrade_mode(dd, mode, t->md);
511 if (r)
512 return r;
513 }
514 atomic_inc(&dd->count);
515
516 *result = &dd->dm_dev;
517 return 0;
518 }
519 EXPORT_SYMBOL(dm_get_device);
520
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)521 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
522 sector_t start, sector_t len, void *data)
523 {
524 struct queue_limits *limits = data;
525 struct block_device *bdev = dev->bdev;
526 struct request_queue *q = bdev_get_queue(bdev);
527 char b[BDEVNAME_SIZE];
528
529 if (unlikely(!q)) {
530 DMWARN("%s: Cannot set limits for nonexistent device %s",
531 dm_device_name(ti->table->md), bdevname(bdev, b));
532 return 0;
533 }
534
535 if (bdev_stack_limits(limits, bdev, start) < 0)
536 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
537 "physical_block_size=%u, logical_block_size=%u, "
538 "alignment_offset=%u, start=%llu",
539 dm_device_name(ti->table->md), bdevname(bdev, b),
540 q->limits.physical_block_size,
541 q->limits.logical_block_size,
542 q->limits.alignment_offset,
543 (unsigned long long) start << SECTOR_SHIFT);
544
545 /*
546 * Check if merge fn is supported.
547 * If not we'll force DM to use PAGE_SIZE or
548 * smaller I/O, just to be safe.
549 */
550 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
551 blk_limits_max_hw_sectors(limits,
552 (unsigned int) (PAGE_SIZE >> 9));
553 return 0;
554 }
555 EXPORT_SYMBOL_GPL(dm_set_device_limits);
556
557 /*
558 * Decrement a device's use count and remove it if necessary.
559 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)560 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
561 {
562 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
563 dm_dev);
564
565 if (atomic_dec_and_test(&dd->count)) {
566 close_dev(dd, ti->table->md);
567 list_del(&dd->list);
568 kfree(dd);
569 }
570 }
571 EXPORT_SYMBOL(dm_put_device);
572
573 /*
574 * Checks to see if the target joins onto the end of the table.
575 */
adjoin(struct dm_table * table,struct dm_target * ti)576 static int adjoin(struct dm_table *table, struct dm_target *ti)
577 {
578 struct dm_target *prev;
579
580 if (!table->num_targets)
581 return !ti->begin;
582
583 prev = &table->targets[table->num_targets - 1];
584 return (ti->begin == (prev->begin + prev->len));
585 }
586
587 /*
588 * Used to dynamically allocate the arg array.
589 *
590 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
591 * process messages even if some device is suspended. These messages have a
592 * small fixed number of arguments.
593 *
594 * On the other hand, dm-switch needs to process bulk data using messages and
595 * excessive use of GFP_NOIO could cause trouble.
596 */
realloc_argv(unsigned * array_size,char ** old_argv)597 static char **realloc_argv(unsigned *array_size, char **old_argv)
598 {
599 char **argv;
600 unsigned new_size;
601 gfp_t gfp;
602
603 if (*array_size) {
604 new_size = *array_size * 2;
605 gfp = GFP_KERNEL;
606 } else {
607 new_size = 8;
608 gfp = GFP_NOIO;
609 }
610 argv = kmalloc(new_size * sizeof(*argv), gfp);
611 if (argv) {
612 memcpy(argv, old_argv, *array_size * sizeof(*argv));
613 *array_size = new_size;
614 }
615
616 kfree(old_argv);
617 return argv;
618 }
619
620 /*
621 * Destructively splits up the argument list to pass to ctr.
622 */
dm_split_args(int * argc,char *** argvp,char * input)623 int dm_split_args(int *argc, char ***argvp, char *input)
624 {
625 char *start, *end = input, *out, **argv = NULL;
626 unsigned array_size = 0;
627
628 *argc = 0;
629
630 if (!input) {
631 *argvp = NULL;
632 return 0;
633 }
634
635 argv = realloc_argv(&array_size, argv);
636 if (!argv)
637 return -ENOMEM;
638
639 while (1) {
640 /* Skip whitespace */
641 start = skip_spaces(end);
642
643 if (!*start)
644 break; /* success, we hit the end */
645
646 /* 'out' is used to remove any back-quotes */
647 end = out = start;
648 while (*end) {
649 /* Everything apart from '\0' can be quoted */
650 if (*end == '\\' && *(end + 1)) {
651 *out++ = *(end + 1);
652 end += 2;
653 continue;
654 }
655
656 if (isspace(*end))
657 break; /* end of token */
658
659 *out++ = *end++;
660 }
661
662 /* have we already filled the array ? */
663 if ((*argc + 1) > array_size) {
664 argv = realloc_argv(&array_size, argv);
665 if (!argv)
666 return -ENOMEM;
667 }
668
669 /* we know this is whitespace */
670 if (*end)
671 end++;
672
673 /* terminate the string and put it in the array */
674 *out = '\0';
675 argv[*argc] = start;
676 (*argc)++;
677 }
678
679 *argvp = argv;
680 return 0;
681 }
682
683 /*
684 * Impose necessary and sufficient conditions on a devices's table such
685 * that any incoming bio which respects its logical_block_size can be
686 * processed successfully. If it falls across the boundary between
687 * two or more targets, the size of each piece it gets split into must
688 * be compatible with the logical_block_size of the target processing it.
689 */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)690 static int validate_hardware_logical_block_alignment(struct dm_table *table,
691 struct queue_limits *limits)
692 {
693 /*
694 * This function uses arithmetic modulo the logical_block_size
695 * (in units of 512-byte sectors).
696 */
697 unsigned short device_logical_block_size_sects =
698 limits->logical_block_size >> SECTOR_SHIFT;
699
700 /*
701 * Offset of the start of the next table entry, mod logical_block_size.
702 */
703 unsigned short next_target_start = 0;
704
705 /*
706 * Given an aligned bio that extends beyond the end of a
707 * target, how many sectors must the next target handle?
708 */
709 unsigned short remaining = 0;
710
711 struct dm_target *uninitialized_var(ti);
712 struct queue_limits ti_limits;
713 unsigned i = 0;
714
715 /*
716 * Check each entry in the table in turn.
717 */
718 while (i < dm_table_get_num_targets(table)) {
719 ti = dm_table_get_target(table, i++);
720
721 blk_set_stacking_limits(&ti_limits);
722
723 /* combine all target devices' limits */
724 if (ti->type->iterate_devices)
725 ti->type->iterate_devices(ti, dm_set_device_limits,
726 &ti_limits);
727
728 /*
729 * If the remaining sectors fall entirely within this
730 * table entry are they compatible with its logical_block_size?
731 */
732 if (remaining < ti->len &&
733 remaining & ((ti_limits.logical_block_size >>
734 SECTOR_SHIFT) - 1))
735 break; /* Error */
736
737 next_target_start =
738 (unsigned short) ((next_target_start + ti->len) &
739 (device_logical_block_size_sects - 1));
740 remaining = next_target_start ?
741 device_logical_block_size_sects - next_target_start : 0;
742 }
743
744 if (remaining) {
745 DMWARN("%s: table line %u (start sect %llu len %llu) "
746 "not aligned to h/w logical block size %u",
747 dm_device_name(table->md), i,
748 (unsigned long long) ti->begin,
749 (unsigned long long) ti->len,
750 limits->logical_block_size);
751 return -EINVAL;
752 }
753
754 return 0;
755 }
756
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)757 int dm_table_add_target(struct dm_table *t, const char *type,
758 sector_t start, sector_t len, char *params)
759 {
760 int r = -EINVAL, argc;
761 char **argv;
762 struct dm_target *tgt;
763
764 if (t->singleton) {
765 DMERR("%s: target type %s must appear alone in table",
766 dm_device_name(t->md), t->targets->type->name);
767 return -EINVAL;
768 }
769
770 if ((r = check_space(t)))
771 return r;
772
773 tgt = t->targets + t->num_targets;
774 memset(tgt, 0, sizeof(*tgt));
775
776 if (!len) {
777 DMERR("%s: zero-length target", dm_device_name(t->md));
778 return -EINVAL;
779 }
780
781 tgt->type = dm_get_target_type(type);
782 if (!tgt->type) {
783 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
784 type);
785 return -EINVAL;
786 }
787
788 if (dm_target_needs_singleton(tgt->type)) {
789 if (t->num_targets) {
790 DMERR("%s: target type %s must appear alone in table",
791 dm_device_name(t->md), type);
792 return -EINVAL;
793 }
794 t->singleton = 1;
795 }
796
797 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
798 DMERR("%s: target type %s may not be included in read-only tables",
799 dm_device_name(t->md), type);
800 return -EINVAL;
801 }
802
803 if (t->immutable_target_type) {
804 if (t->immutable_target_type != tgt->type) {
805 DMERR("%s: immutable target type %s cannot be mixed with other target types",
806 dm_device_name(t->md), t->immutable_target_type->name);
807 return -EINVAL;
808 }
809 } else if (dm_target_is_immutable(tgt->type)) {
810 if (t->num_targets) {
811 DMERR("%s: immutable target type %s cannot be mixed with other target types",
812 dm_device_name(t->md), tgt->type->name);
813 return -EINVAL;
814 }
815 t->immutable_target_type = tgt->type;
816 }
817
818 tgt->table = t;
819 tgt->begin = start;
820 tgt->len = len;
821 tgt->error = "Unknown error";
822
823 /*
824 * Does this target adjoin the previous one ?
825 */
826 if (!adjoin(t, tgt)) {
827 tgt->error = "Gap in table";
828 r = -EINVAL;
829 goto bad;
830 }
831
832 r = dm_split_args(&argc, &argv, params);
833 if (r) {
834 tgt->error = "couldn't split parameters (insufficient memory)";
835 goto bad;
836 }
837
838 r = tgt->type->ctr(tgt, argc, argv);
839 kfree(argv);
840 if (r)
841 goto bad;
842
843 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
844
845 if (!tgt->num_discard_requests && tgt->discards_supported)
846 DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
847 dm_device_name(t->md), type);
848
849 return 0;
850
851 bad:
852 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
853 dm_put_target_type(tgt->type);
854 return r;
855 }
856
857 /*
858 * Target argument parsing helpers.
859 */
validate_next_arg(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)860 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
861 unsigned *value, char **error, unsigned grouped)
862 {
863 const char *arg_str = dm_shift_arg(arg_set);
864 char dummy;
865
866 if (!arg_str ||
867 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
868 (*value < arg->min) ||
869 (*value > arg->max) ||
870 (grouped && arg_set->argc < *value)) {
871 *error = arg->error;
872 return -EINVAL;
873 }
874
875 return 0;
876 }
877
dm_read_arg(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)878 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
879 unsigned *value, char **error)
880 {
881 return validate_next_arg(arg, arg_set, value, error, 0);
882 }
883 EXPORT_SYMBOL(dm_read_arg);
884
dm_read_arg_group(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)885 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
886 unsigned *value, char **error)
887 {
888 return validate_next_arg(arg, arg_set, value, error, 1);
889 }
890 EXPORT_SYMBOL(dm_read_arg_group);
891
dm_shift_arg(struct dm_arg_set * as)892 const char *dm_shift_arg(struct dm_arg_set *as)
893 {
894 char *r;
895
896 if (as->argc) {
897 as->argc--;
898 r = *as->argv;
899 as->argv++;
900 return r;
901 }
902
903 return NULL;
904 }
905 EXPORT_SYMBOL(dm_shift_arg);
906
dm_consume_args(struct dm_arg_set * as,unsigned num_args)907 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
908 {
909 BUG_ON(as->argc < num_args);
910 as->argc -= num_args;
911 as->argv += num_args;
912 }
913 EXPORT_SYMBOL(dm_consume_args);
914
dm_table_set_type(struct dm_table * t)915 static int dm_table_set_type(struct dm_table *t)
916 {
917 unsigned i;
918 unsigned bio_based = 0, request_based = 0;
919 struct dm_target *tgt;
920 struct dm_dev_internal *dd;
921 struct list_head *devices;
922
923 for (i = 0; i < t->num_targets; i++) {
924 tgt = t->targets + i;
925 if (dm_target_request_based(tgt))
926 request_based = 1;
927 else
928 bio_based = 1;
929
930 if (bio_based && request_based) {
931 DMWARN("Inconsistent table: different target types"
932 " can't be mixed up");
933 return -EINVAL;
934 }
935 }
936
937 if (bio_based) {
938 /* We must use this table as bio-based */
939 t->type = DM_TYPE_BIO_BASED;
940 return 0;
941 }
942
943 BUG_ON(!request_based); /* No targets in this table */
944
945 /* Non-request-stackable devices can't be used for request-based dm */
946 devices = dm_table_get_devices(t);
947 list_for_each_entry(dd, devices, list) {
948 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
949 DMWARN("table load rejected: including"
950 " non-request-stackable devices");
951 return -EINVAL;
952 }
953 }
954
955 /*
956 * Request-based dm supports only tables that have a single target now.
957 * To support multiple targets, request splitting support is needed,
958 * and that needs lots of changes in the block-layer.
959 * (e.g. request completion process for partial completion.)
960 */
961 if (t->num_targets > 1) {
962 DMWARN("Request-based dm doesn't support multiple targets yet");
963 return -EINVAL;
964 }
965
966 t->type = DM_TYPE_REQUEST_BASED;
967
968 return 0;
969 }
970
dm_table_get_type(struct dm_table * t)971 unsigned dm_table_get_type(struct dm_table *t)
972 {
973 return t->type;
974 }
975
dm_table_get_immutable_target_type(struct dm_table * t)976 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
977 {
978 return t->immutable_target_type;
979 }
980
dm_table_request_based(struct dm_table * t)981 bool dm_table_request_based(struct dm_table *t)
982 {
983 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
984 }
985
dm_table_alloc_md_mempools(struct dm_table * t)986 int dm_table_alloc_md_mempools(struct dm_table *t)
987 {
988 unsigned type = dm_table_get_type(t);
989
990 if (unlikely(type == DM_TYPE_NONE)) {
991 DMWARN("no table type is set, can't allocate mempools");
992 return -EINVAL;
993 }
994
995 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
996 if (!t->mempools)
997 return -ENOMEM;
998
999 return 0;
1000 }
1001
dm_table_free_md_mempools(struct dm_table * t)1002 void dm_table_free_md_mempools(struct dm_table *t)
1003 {
1004 dm_free_md_mempools(t->mempools);
1005 t->mempools = NULL;
1006 }
1007
dm_table_get_md_mempools(struct dm_table * t)1008 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1009 {
1010 return t->mempools;
1011 }
1012
setup_indexes(struct dm_table * t)1013 static int setup_indexes(struct dm_table *t)
1014 {
1015 int i;
1016 unsigned int total = 0;
1017 sector_t *indexes;
1018
1019 /* allocate the space for *all* the indexes */
1020 for (i = t->depth - 2; i >= 0; i--) {
1021 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1022 total += t->counts[i];
1023 }
1024
1025 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1026 if (!indexes)
1027 return -ENOMEM;
1028
1029 /* set up internal nodes, bottom-up */
1030 for (i = t->depth - 2; i >= 0; i--) {
1031 t->index[i] = indexes;
1032 indexes += (KEYS_PER_NODE * t->counts[i]);
1033 setup_btree_index(i, t);
1034 }
1035
1036 return 0;
1037 }
1038
1039 /*
1040 * Builds the btree to index the map.
1041 */
dm_table_build_index(struct dm_table * t)1042 static int dm_table_build_index(struct dm_table *t)
1043 {
1044 int r = 0;
1045 unsigned int leaf_nodes;
1046
1047 /* how many indexes will the btree have ? */
1048 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1049 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1050
1051 /* leaf layer has already been set up */
1052 t->counts[t->depth - 1] = leaf_nodes;
1053 t->index[t->depth - 1] = t->highs;
1054
1055 if (t->depth >= 2)
1056 r = setup_indexes(t);
1057
1058 return r;
1059 }
1060
1061 /*
1062 * Get a disk whose integrity profile reflects the table's profile.
1063 * If %match_all is true, all devices' profiles must match.
1064 * If %match_all is false, all devices must at least have an
1065 * allocated integrity profile; but uninitialized is ok.
1066 * Returns NULL if integrity support was inconsistent or unavailable.
1067 */
dm_table_get_integrity_disk(struct dm_table * t,bool match_all)1068 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1069 bool match_all)
1070 {
1071 struct list_head *devices = dm_table_get_devices(t);
1072 struct dm_dev_internal *dd = NULL;
1073 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1074
1075 list_for_each_entry(dd, devices, list) {
1076 template_disk = dd->dm_dev.bdev->bd_disk;
1077 if (!blk_get_integrity(template_disk))
1078 goto no_integrity;
1079 if (!match_all && !blk_integrity_is_initialized(template_disk))
1080 continue; /* skip uninitialized profiles */
1081 else if (prev_disk &&
1082 blk_integrity_compare(prev_disk, template_disk) < 0)
1083 goto no_integrity;
1084 prev_disk = template_disk;
1085 }
1086
1087 return template_disk;
1088
1089 no_integrity:
1090 if (prev_disk)
1091 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1092 dm_device_name(t->md),
1093 prev_disk->disk_name,
1094 template_disk->disk_name);
1095 return NULL;
1096 }
1097
1098 /*
1099 * Register the mapped device for blk_integrity support if
1100 * the underlying devices have an integrity profile. But all devices
1101 * may not have matching profiles (checking all devices isn't reliable
1102 * during table load because this table may use other DM device(s) which
1103 * must be resumed before they will have an initialized integity profile).
1104 * Stacked DM devices force a 2 stage integrity profile validation:
1105 * 1 - during load, validate all initialized integrity profiles match
1106 * 2 - during resume, validate all integrity profiles match
1107 */
dm_table_prealloc_integrity(struct dm_table * t,struct mapped_device * md)1108 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1109 {
1110 struct gendisk *template_disk = NULL;
1111
1112 template_disk = dm_table_get_integrity_disk(t, false);
1113 if (!template_disk)
1114 return 0;
1115
1116 if (!blk_integrity_is_initialized(dm_disk(md))) {
1117 t->integrity_supported = 1;
1118 return blk_integrity_register(dm_disk(md), NULL);
1119 }
1120
1121 /*
1122 * If DM device already has an initalized integrity
1123 * profile the new profile should not conflict.
1124 */
1125 if (blk_integrity_is_initialized(template_disk) &&
1126 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1127 DMWARN("%s: conflict with existing integrity profile: "
1128 "%s profile mismatch",
1129 dm_device_name(t->md),
1130 template_disk->disk_name);
1131 return 1;
1132 }
1133
1134 /* Preserve existing initialized integrity profile */
1135 t->integrity_supported = 1;
1136 return 0;
1137 }
1138
1139 /*
1140 * Prepares the table for use by building the indices,
1141 * setting the type, and allocating mempools.
1142 */
dm_table_complete(struct dm_table * t)1143 int dm_table_complete(struct dm_table *t)
1144 {
1145 int r;
1146
1147 r = dm_table_set_type(t);
1148 if (r) {
1149 DMERR("unable to set table type");
1150 return r;
1151 }
1152
1153 r = dm_table_build_index(t);
1154 if (r) {
1155 DMERR("unable to build btrees");
1156 return r;
1157 }
1158
1159 r = dm_table_prealloc_integrity(t, t->md);
1160 if (r) {
1161 DMERR("could not register integrity profile.");
1162 return r;
1163 }
1164
1165 r = dm_table_alloc_md_mempools(t);
1166 if (r)
1167 DMERR("unable to allocate mempools");
1168
1169 return r;
1170 }
1171
1172 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1173 void dm_table_event_callback(struct dm_table *t,
1174 void (*fn)(void *), void *context)
1175 {
1176 mutex_lock(&_event_lock);
1177 t->event_fn = fn;
1178 t->event_context = context;
1179 mutex_unlock(&_event_lock);
1180 }
1181
dm_table_event(struct dm_table * t)1182 void dm_table_event(struct dm_table *t)
1183 {
1184 /*
1185 * You can no longer call dm_table_event() from interrupt
1186 * context, use a bottom half instead.
1187 */
1188 BUG_ON(in_interrupt());
1189
1190 mutex_lock(&_event_lock);
1191 if (t->event_fn)
1192 t->event_fn(t->event_context);
1193 mutex_unlock(&_event_lock);
1194 }
1195 EXPORT_SYMBOL(dm_table_event);
1196
dm_table_get_size(struct dm_table * t)1197 sector_t dm_table_get_size(struct dm_table *t)
1198 {
1199 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1200 }
1201 EXPORT_SYMBOL(dm_table_get_size);
1202
dm_table_get_target(struct dm_table * t,unsigned int index)1203 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1204 {
1205 if (index >= t->num_targets)
1206 return NULL;
1207
1208 return t->targets + index;
1209 }
1210
1211 /*
1212 * Search the btree for the correct target.
1213 *
1214 * Caller should check returned pointer with dm_target_is_valid()
1215 * to trap I/O beyond end of device.
1216 */
dm_table_find_target(struct dm_table * t,sector_t sector)1217 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1218 {
1219 unsigned int l, n = 0, k = 0;
1220 sector_t *node;
1221
1222 for (l = 0; l < t->depth; l++) {
1223 n = get_child(n, k);
1224 node = get_node(t, l, n);
1225
1226 for (k = 0; k < KEYS_PER_NODE; k++)
1227 if (node[k] >= sector)
1228 break;
1229 }
1230
1231 return &t->targets[(KEYS_PER_NODE * n) + k];
1232 }
1233
1234 /*
1235 * Establish the new table's queue_limits and validate them.
1236 */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1237 int dm_calculate_queue_limits(struct dm_table *table,
1238 struct queue_limits *limits)
1239 {
1240 struct dm_target *uninitialized_var(ti);
1241 struct queue_limits ti_limits;
1242 unsigned i = 0;
1243
1244 blk_set_stacking_limits(limits);
1245
1246 while (i < dm_table_get_num_targets(table)) {
1247 blk_set_stacking_limits(&ti_limits);
1248
1249 ti = dm_table_get_target(table, i++);
1250
1251 if (!ti->type->iterate_devices)
1252 goto combine_limits;
1253
1254 /*
1255 * Combine queue limits of all the devices this target uses.
1256 */
1257 ti->type->iterate_devices(ti, dm_set_device_limits,
1258 &ti_limits);
1259
1260 /* Set I/O hints portion of queue limits */
1261 if (ti->type->io_hints)
1262 ti->type->io_hints(ti, &ti_limits);
1263
1264 /*
1265 * Check each device area is consistent with the target's
1266 * overall queue limits.
1267 */
1268 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1269 &ti_limits))
1270 return -EINVAL;
1271
1272 combine_limits:
1273 /*
1274 * Merge this target's queue limits into the overall limits
1275 * for the table.
1276 */
1277 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1278 DMWARN("%s: adding target device "
1279 "(start sect %llu len %llu) "
1280 "caused an alignment inconsistency",
1281 dm_device_name(table->md),
1282 (unsigned long long) ti->begin,
1283 (unsigned long long) ti->len);
1284 }
1285
1286 return validate_hardware_logical_block_alignment(table, limits);
1287 }
1288
1289 /*
1290 * Set the integrity profile for this device if all devices used have
1291 * matching profiles. We're quite deep in the resume path but still
1292 * don't know if all devices (particularly DM devices this device
1293 * may be stacked on) have matching profiles. Even if the profiles
1294 * don't match we have no way to fail (to resume) at this point.
1295 */
dm_table_set_integrity(struct dm_table * t)1296 static void dm_table_set_integrity(struct dm_table *t)
1297 {
1298 struct gendisk *template_disk = NULL;
1299
1300 if (!blk_get_integrity(dm_disk(t->md)))
1301 return;
1302
1303 template_disk = dm_table_get_integrity_disk(t, true);
1304 if (template_disk)
1305 blk_integrity_register(dm_disk(t->md),
1306 blk_get_integrity(template_disk));
1307 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1308 DMWARN("%s: device no longer has a valid integrity profile",
1309 dm_device_name(t->md));
1310 else
1311 DMWARN("%s: unable to establish an integrity profile",
1312 dm_device_name(t->md));
1313 }
1314
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1315 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1316 sector_t start, sector_t len, void *data)
1317 {
1318 unsigned flush = (*(unsigned *)data);
1319 struct request_queue *q = bdev_get_queue(dev->bdev);
1320
1321 return q && (q->flush_flags & flush);
1322 }
1323
dm_table_supports_flush(struct dm_table * t,unsigned flush)1324 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1325 {
1326 struct dm_target *ti;
1327 unsigned i = 0;
1328
1329 /*
1330 * Require at least one underlying device to support flushes.
1331 * t->devices includes internal dm devices such as mirror logs
1332 * so we need to use iterate_devices here, which targets
1333 * supporting flushes must provide.
1334 */
1335 while (i < dm_table_get_num_targets(t)) {
1336 ti = dm_table_get_target(t, i++);
1337
1338 if (!ti->num_flush_requests)
1339 continue;
1340
1341 if (ti->type->iterate_devices &&
1342 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1343 return 1;
1344 }
1345
1346 return 0;
1347 }
1348
dm_table_discard_zeroes_data(struct dm_table * t)1349 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1350 {
1351 struct dm_target *ti;
1352 unsigned i = 0;
1353
1354 /* Ensure that all targets supports discard_zeroes_data. */
1355 while (i < dm_table_get_num_targets(t)) {
1356 ti = dm_table_get_target(t, i++);
1357
1358 if (ti->discard_zeroes_data_unsupported)
1359 return 0;
1360 }
1361
1362 return 1;
1363 }
1364
device_is_nonrot(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1365 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1366 sector_t start, sector_t len, void *data)
1367 {
1368 struct request_queue *q = bdev_get_queue(dev->bdev);
1369
1370 return q && blk_queue_nonrot(q);
1371 }
1372
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1373 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1374 sector_t start, sector_t len, void *data)
1375 {
1376 struct request_queue *q = bdev_get_queue(dev->bdev);
1377
1378 return q && !blk_queue_add_random(q);
1379 }
1380
dm_table_all_devices_attribute(struct dm_table * t,iterate_devices_callout_fn func)1381 static bool dm_table_all_devices_attribute(struct dm_table *t,
1382 iterate_devices_callout_fn func)
1383 {
1384 struct dm_target *ti;
1385 unsigned i = 0;
1386
1387 while (i < dm_table_get_num_targets(t)) {
1388 ti = dm_table_get_target(t, i++);
1389
1390 if (!ti->type->iterate_devices ||
1391 !ti->type->iterate_devices(ti, func, NULL))
1392 return 0;
1393 }
1394
1395 return 1;
1396 }
1397
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1398 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1399 struct queue_limits *limits)
1400 {
1401 unsigned flush = 0;
1402
1403 /*
1404 * Copy table's limits to the DM device's request_queue
1405 */
1406 q->limits = *limits;
1407
1408 if (!dm_table_supports_discards(t))
1409 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1410 else
1411 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1412
1413 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1414 flush |= REQ_FLUSH;
1415 if (dm_table_supports_flush(t, REQ_FUA))
1416 flush |= REQ_FUA;
1417 }
1418 blk_queue_flush(q, flush);
1419
1420 if (!dm_table_discard_zeroes_data(t))
1421 q->limits.discard_zeroes_data = 0;
1422
1423 /* Ensure that all underlying devices are non-rotational. */
1424 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1425 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1426 else
1427 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1428
1429 dm_table_set_integrity(t);
1430
1431 /*
1432 * Determine whether or not this queue's I/O timings contribute
1433 * to the entropy pool, Only request-based targets use this.
1434 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1435 * have it set.
1436 */
1437 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1438 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1439
1440 /*
1441 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1442 * visible to other CPUs because, once the flag is set, incoming bios
1443 * are processed by request-based dm, which refers to the queue
1444 * settings.
1445 * Until the flag set, bios are passed to bio-based dm and queued to
1446 * md->deferred where queue settings are not needed yet.
1447 * Those bios are passed to request-based dm at the resume time.
1448 */
1449 smp_mb();
1450 if (dm_table_request_based(t))
1451 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1452 }
1453
dm_table_get_num_targets(struct dm_table * t)1454 unsigned int dm_table_get_num_targets(struct dm_table *t)
1455 {
1456 return t->num_targets;
1457 }
1458
dm_table_get_devices(struct dm_table * t)1459 struct list_head *dm_table_get_devices(struct dm_table *t)
1460 {
1461 return &t->devices;
1462 }
1463
dm_table_get_mode(struct dm_table * t)1464 fmode_t dm_table_get_mode(struct dm_table *t)
1465 {
1466 return t->mode;
1467 }
1468 EXPORT_SYMBOL(dm_table_get_mode);
1469
suspend_targets(struct dm_table * t,unsigned postsuspend)1470 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1471 {
1472 int i = t->num_targets;
1473 struct dm_target *ti = t->targets;
1474
1475 while (i--) {
1476 if (postsuspend) {
1477 if (ti->type->postsuspend)
1478 ti->type->postsuspend(ti);
1479 } else if (ti->type->presuspend)
1480 ti->type->presuspend(ti);
1481
1482 ti++;
1483 }
1484 }
1485
dm_table_presuspend_targets(struct dm_table * t)1486 void dm_table_presuspend_targets(struct dm_table *t)
1487 {
1488 if (!t)
1489 return;
1490
1491 suspend_targets(t, 0);
1492 }
1493
dm_table_postsuspend_targets(struct dm_table * t)1494 void dm_table_postsuspend_targets(struct dm_table *t)
1495 {
1496 if (!t)
1497 return;
1498
1499 suspend_targets(t, 1);
1500 }
1501
dm_table_resume_targets(struct dm_table * t)1502 int dm_table_resume_targets(struct dm_table *t)
1503 {
1504 int i, r = 0;
1505
1506 for (i = 0; i < t->num_targets; i++) {
1507 struct dm_target *ti = t->targets + i;
1508
1509 if (!ti->type->preresume)
1510 continue;
1511
1512 r = ti->type->preresume(ti);
1513 if (r)
1514 return r;
1515 }
1516
1517 for (i = 0; i < t->num_targets; i++) {
1518 struct dm_target *ti = t->targets + i;
1519
1520 if (ti->type->resume)
1521 ti->type->resume(ti);
1522 }
1523
1524 return 0;
1525 }
1526
dm_table_add_target_callbacks(struct dm_table * t,struct dm_target_callbacks * cb)1527 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1528 {
1529 list_add(&cb->list, &t->target_callbacks);
1530 }
1531 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1532
dm_table_any_congested(struct dm_table * t,int bdi_bits)1533 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1534 {
1535 struct dm_dev_internal *dd;
1536 struct list_head *devices = dm_table_get_devices(t);
1537 struct dm_target_callbacks *cb;
1538 int r = 0;
1539
1540 list_for_each_entry(dd, devices, list) {
1541 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1542 char b[BDEVNAME_SIZE];
1543
1544 if (likely(q))
1545 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1546 else
1547 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1548 dm_device_name(t->md),
1549 bdevname(dd->dm_dev.bdev, b));
1550 }
1551
1552 list_for_each_entry(cb, &t->target_callbacks, list)
1553 if (cb->congested_fn)
1554 r |= cb->congested_fn(cb, bdi_bits);
1555
1556 return r;
1557 }
1558
dm_table_any_busy_target(struct dm_table * t)1559 int dm_table_any_busy_target(struct dm_table *t)
1560 {
1561 unsigned i;
1562 struct dm_target *ti;
1563
1564 for (i = 0; i < t->num_targets; i++) {
1565 ti = t->targets + i;
1566 if (ti->type->busy && ti->type->busy(ti))
1567 return 1;
1568 }
1569
1570 return 0;
1571 }
1572
dm_table_get_md(struct dm_table * t)1573 struct mapped_device *dm_table_get_md(struct dm_table *t)
1574 {
1575 return t->md;
1576 }
1577 EXPORT_SYMBOL(dm_table_get_md);
1578
device_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1579 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1580 sector_t start, sector_t len, void *data)
1581 {
1582 struct request_queue *q = bdev_get_queue(dev->bdev);
1583
1584 return q && blk_queue_discard(q);
1585 }
1586
dm_table_supports_discards(struct dm_table * t)1587 bool dm_table_supports_discards(struct dm_table *t)
1588 {
1589 struct dm_target *ti;
1590 unsigned i = 0;
1591
1592 /*
1593 * Unless any target used by the table set discards_supported,
1594 * require at least one underlying device to support discards.
1595 * t->devices includes internal dm devices such as mirror logs
1596 * so we need to use iterate_devices here, which targets
1597 * supporting discard selectively must provide.
1598 */
1599 while (i < dm_table_get_num_targets(t)) {
1600 ti = dm_table_get_target(t, i++);
1601
1602 if (!ti->num_discard_requests)
1603 continue;
1604
1605 if (ti->discards_supported)
1606 return 1;
1607
1608 if (ti->type->iterate_devices &&
1609 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1610 return 1;
1611 }
1612
1613 return 0;
1614 }
1615