1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <asm/atomic.h>
21 
22 #define DM_MSG_PREFIX "table"
23 
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28 
29 /*
30  * The table has always exactly one reference from either mapped_device->map
31  * or hash_cell->new_map. This reference is not counted in table->holders.
32  * A pair of dm_create_table/dm_destroy_table functions is used for table
33  * creation/destruction.
34  *
35  * Temporary references from the other code increase table->holders. A pair
36  * of dm_table_get/dm_table_put functions is used to manipulate it.
37  *
38  * When the table is about to be destroyed, we wait for table->holders to
39  * drop to zero.
40  */
41 
42 struct dm_table {
43 	struct mapped_device *md;
44 	atomic_t holders;
45 	unsigned type;
46 
47 	/* btree table */
48 	unsigned int depth;
49 	unsigned int counts[MAX_DEPTH];	/* in nodes */
50 	sector_t *index[MAX_DEPTH];
51 
52 	unsigned int num_targets;
53 	unsigned int num_allocated;
54 	sector_t *highs;
55 	struct dm_target *targets;
56 
57 	unsigned discards_supported:1;
58 	unsigned integrity_supported:1;
59 
60 	/*
61 	 * Indicates the rw permissions for the new logical
62 	 * device.  This should be a combination of FMODE_READ
63 	 * and FMODE_WRITE.
64 	 */
65 	fmode_t mode;
66 
67 	/* a list of devices used by this table */
68 	struct list_head devices;
69 
70 	/* events get handed up using this callback */
71 	void (*event_fn)(void *);
72 	void *event_context;
73 
74 	struct dm_md_mempools *mempools;
75 
76 	struct list_head target_callbacks;
77 };
78 
79 /*
80  * Similar to ceiling(log_size(n))
81  */
int_log(unsigned int n,unsigned int base)82 static unsigned int int_log(unsigned int n, unsigned int base)
83 {
84 	int result = 0;
85 
86 	while (n > 1) {
87 		n = dm_div_up(n, base);
88 		result++;
89 	}
90 
91 	return result;
92 }
93 
94 /*
95  * Calculate the index of the child node of the n'th node k'th key.
96  */
get_child(unsigned int n,unsigned int k)97 static inline unsigned int get_child(unsigned int n, unsigned int k)
98 {
99 	return (n * CHILDREN_PER_NODE) + k;
100 }
101 
102 /*
103  * Return the n'th node of level l from table t.
104  */
get_node(struct dm_table * t,unsigned int l,unsigned int n)105 static inline sector_t *get_node(struct dm_table *t,
106 				 unsigned int l, unsigned int n)
107 {
108 	return t->index[l] + (n * KEYS_PER_NODE);
109 }
110 
111 /*
112  * Return the highest key that you could lookup from the n'th
113  * node on level l of the btree.
114  */
high(struct dm_table * t,unsigned int l,unsigned int n)115 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
116 {
117 	for (; l < t->depth - 1; l++)
118 		n = get_child(n, CHILDREN_PER_NODE - 1);
119 
120 	if (n >= t->counts[l])
121 		return (sector_t) - 1;
122 
123 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
124 }
125 
126 /*
127  * Fills in a level of the btree based on the highs of the level
128  * below it.
129  */
setup_btree_index(unsigned int l,struct dm_table * t)130 static int setup_btree_index(unsigned int l, struct dm_table *t)
131 {
132 	unsigned int n, k;
133 	sector_t *node;
134 
135 	for (n = 0U; n < t->counts[l]; n++) {
136 		node = get_node(t, l, n);
137 
138 		for (k = 0U; k < KEYS_PER_NODE; k++)
139 			node[k] = high(t, l + 1, get_child(n, k));
140 	}
141 
142 	return 0;
143 }
144 
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)145 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
146 {
147 	unsigned long size;
148 	void *addr;
149 
150 	/*
151 	 * Check that we're not going to overflow.
152 	 */
153 	if (nmemb > (ULONG_MAX / elem_size))
154 		return NULL;
155 
156 	size = nmemb * elem_size;
157 	addr = vmalloc(size);
158 	if (addr)
159 		memset(addr, 0, size);
160 
161 	return addr;
162 }
163 
164 /*
165  * highs, and targets are managed as dynamic arrays during a
166  * table load.
167  */
alloc_targets(struct dm_table * t,unsigned int num)168 static int alloc_targets(struct dm_table *t, unsigned int num)
169 {
170 	sector_t *n_highs;
171 	struct dm_target *n_targets;
172 	int n = t->num_targets;
173 
174 	/*
175 	 * Allocate both the target array and offset array at once.
176 	 * Append an empty entry to catch sectors beyond the end of
177 	 * the device.
178 	 */
179 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
180 					  sizeof(sector_t));
181 	if (!n_highs)
182 		return -ENOMEM;
183 
184 	n_targets = (struct dm_target *) (n_highs + num);
185 
186 	if (n) {
187 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
188 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189 	}
190 
191 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
192 	vfree(t->highs);
193 
194 	t->num_allocated = num;
195 	t->highs = n_highs;
196 	t->targets = n_targets;
197 
198 	return 0;
199 }
200 
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)201 int dm_table_create(struct dm_table **result, fmode_t mode,
202 		    unsigned num_targets, struct mapped_device *md)
203 {
204 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205 
206 	if (!t)
207 		return -ENOMEM;
208 
209 	INIT_LIST_HEAD(&t->devices);
210 	INIT_LIST_HEAD(&t->target_callbacks);
211 	atomic_set(&t->holders, 0);
212 	t->discards_supported = 1;
213 
214 	if (!num_targets)
215 		num_targets = KEYS_PER_NODE;
216 
217 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
218 
219 	if (alloc_targets(t, num_targets)) {
220 		kfree(t);
221 		t = NULL;
222 		return -ENOMEM;
223 	}
224 
225 	t->mode = mode;
226 	t->md = md;
227 	*result = t;
228 	return 0;
229 }
230 
free_devices(struct list_head * devices)231 static void free_devices(struct list_head *devices)
232 {
233 	struct list_head *tmp, *next;
234 
235 	list_for_each_safe(tmp, next, devices) {
236 		struct dm_dev_internal *dd =
237 		    list_entry(tmp, struct dm_dev_internal, list);
238 		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
239 		       dd->dm_dev.name);
240 		kfree(dd);
241 	}
242 }
243 
dm_table_destroy(struct dm_table * t)244 void dm_table_destroy(struct dm_table *t)
245 {
246 	unsigned int i;
247 
248 	if (!t)
249 		return;
250 
251 	while (atomic_read(&t->holders))
252 		msleep(1);
253 	smp_mb();
254 
255 	/* free the indexes */
256 	if (t->depth >= 2)
257 		vfree(t->index[t->depth - 2]);
258 
259 	/* free the targets */
260 	for (i = 0; i < t->num_targets; i++) {
261 		struct dm_target *tgt = t->targets + i;
262 
263 		if (tgt->type->dtr)
264 			tgt->type->dtr(tgt);
265 
266 		dm_put_target_type(tgt->type);
267 	}
268 
269 	vfree(t->highs);
270 
271 	/* free the device list */
272 	if (t->devices.next != &t->devices)
273 		free_devices(&t->devices);
274 
275 	dm_free_md_mempools(t->mempools);
276 
277 	kfree(t);
278 }
279 
dm_table_get(struct dm_table * t)280 void dm_table_get(struct dm_table *t)
281 {
282 	atomic_inc(&t->holders);
283 }
284 
dm_table_put(struct dm_table * t)285 void dm_table_put(struct dm_table *t)
286 {
287 	if (!t)
288 		return;
289 
290 	smp_mb__before_atomic_dec();
291 	atomic_dec(&t->holders);
292 }
293 
294 /*
295  * Checks to see if we need to extend highs or targets.
296  */
check_space(struct dm_table * t)297 static inline int check_space(struct dm_table *t)
298 {
299 	if (t->num_targets >= t->num_allocated)
300 		return alloc_targets(t, t->num_allocated * 2);
301 
302 	return 0;
303 }
304 
305 /*
306  * See if we've already got a device in the list.
307  */
find_device(struct list_head * l,dev_t dev)308 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
309 {
310 	struct dm_dev_internal *dd;
311 
312 	list_for_each_entry (dd, l, list)
313 		if (dd->dm_dev.bdev->bd_dev == dev)
314 			return dd;
315 
316 	return NULL;
317 }
318 
319 /*
320  * Open a device so we can use it as a map destination.
321  */
open_dev(struct dm_dev_internal * d,dev_t dev,struct mapped_device * md)322 static int open_dev(struct dm_dev_internal *d, dev_t dev,
323 		    struct mapped_device *md)
324 {
325 	static char *_claim_ptr = "I belong to device-mapper";
326 	struct block_device *bdev;
327 
328 	int r;
329 
330 	BUG_ON(d->dm_dev.bdev);
331 
332 	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
333 	if (IS_ERR(bdev))
334 		return PTR_ERR(bdev);
335 
336 	r = bd_link_disk_holder(bdev, dm_disk(md));
337 	if (r) {
338 		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
339 		return r;
340 	}
341 
342 	d->dm_dev.bdev = bdev;
343 	return 0;
344 }
345 
346 /*
347  * Close a device that we've been using.
348  */
close_dev(struct dm_dev_internal * d,struct mapped_device * md)349 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
350 {
351 	if (!d->dm_dev.bdev)
352 		return;
353 
354 	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
355 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
356 	d->dm_dev.bdev = NULL;
357 }
358 
359 /*
360  * If possible, this checks an area of a destination device is invalid.
361  */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)362 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
363 				  sector_t start, sector_t len, void *data)
364 {
365 	struct queue_limits *limits = data;
366 	struct block_device *bdev = dev->bdev;
367 	sector_t dev_size =
368 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
369 	unsigned short logical_block_size_sectors =
370 		limits->logical_block_size >> SECTOR_SHIFT;
371 	char b[BDEVNAME_SIZE];
372 
373 	if (!dev_size)
374 		return 0;
375 
376 	if ((start >= dev_size) || (start + len > dev_size)) {
377 		DMWARN("%s: %s too small for target: "
378 		       "start=%llu, len=%llu, dev_size=%llu",
379 		       dm_device_name(ti->table->md), bdevname(bdev, b),
380 		       (unsigned long long)start,
381 		       (unsigned long long)len,
382 		       (unsigned long long)dev_size);
383 		return 1;
384 	}
385 
386 	if (logical_block_size_sectors <= 1)
387 		return 0;
388 
389 	if (start & (logical_block_size_sectors - 1)) {
390 		DMWARN("%s: start=%llu not aligned to h/w "
391 		       "logical block size %u of %s",
392 		       dm_device_name(ti->table->md),
393 		       (unsigned long long)start,
394 		       limits->logical_block_size, bdevname(bdev, b));
395 		return 1;
396 	}
397 
398 	if (len & (logical_block_size_sectors - 1)) {
399 		DMWARN("%s: len=%llu not aligned to h/w "
400 		       "logical block size %u of %s",
401 		       dm_device_name(ti->table->md),
402 		       (unsigned long long)len,
403 		       limits->logical_block_size, bdevname(bdev, b));
404 		return 1;
405 	}
406 
407 	return 0;
408 }
409 
410 /*
411  * This upgrades the mode on an already open dm_dev, being
412  * careful to leave things as they were if we fail to reopen the
413  * device and not to touch the existing bdev field in case
414  * it is accessed concurrently inside dm_table_any_congested().
415  */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)416 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
417 			struct mapped_device *md)
418 {
419 	int r;
420 	struct dm_dev_internal dd_new, dd_old;
421 
422 	dd_new = dd_old = *dd;
423 
424 	dd_new.dm_dev.mode |= new_mode;
425 	dd_new.dm_dev.bdev = NULL;
426 
427 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
428 	if (r)
429 		return r;
430 
431 	dd->dm_dev.mode |= new_mode;
432 	close_dev(&dd_old, md);
433 
434 	return 0;
435 }
436 
437 /*
438  * Add a device to the list, or just increment the usage count if
439  * it's already present.
440  */
__table_get_device(struct dm_table * t,struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)441 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
442 		      const char *path, fmode_t mode, struct dm_dev **result)
443 {
444 	int r;
445 	dev_t uninitialized_var(dev);
446 	struct dm_dev_internal *dd;
447 	unsigned int major, minor;
448 
449 	BUG_ON(!t);
450 
451 	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
452 		/* Extract the major/minor numbers */
453 		dev = MKDEV(major, minor);
454 		if (MAJOR(dev) != major || MINOR(dev) != minor)
455 			return -EOVERFLOW;
456 	} else {
457 		/* convert the path to a device */
458 		struct block_device *bdev = lookup_bdev(path);
459 
460 		if (IS_ERR(bdev))
461 			return PTR_ERR(bdev);
462 		dev = bdev->bd_dev;
463 		bdput(bdev);
464 	}
465 
466 	dd = find_device(&t->devices, dev);
467 	if (!dd) {
468 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
469 		if (!dd)
470 			return -ENOMEM;
471 
472 		dd->dm_dev.mode = mode;
473 		dd->dm_dev.bdev = NULL;
474 
475 		if ((r = open_dev(dd, dev, t->md))) {
476 			kfree(dd);
477 			return r;
478 		}
479 
480 		format_dev_t(dd->dm_dev.name, dev);
481 
482 		atomic_set(&dd->count, 0);
483 		list_add(&dd->list, &t->devices);
484 
485 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
486 		r = upgrade_mode(dd, mode, t->md);
487 		if (r)
488 			return r;
489 	}
490 	atomic_inc(&dd->count);
491 
492 	*result = &dd->dm_dev;
493 	return 0;
494 }
495 
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)496 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
497 			 sector_t start, sector_t len, void *data)
498 {
499 	struct queue_limits *limits = data;
500 	struct block_device *bdev = dev->bdev;
501 	struct request_queue *q = bdev_get_queue(bdev);
502 	char b[BDEVNAME_SIZE];
503 
504 	if (unlikely(!q)) {
505 		DMWARN("%s: Cannot set limits for nonexistent device %s",
506 		       dm_device_name(ti->table->md), bdevname(bdev, b));
507 		return 0;
508 	}
509 
510 	if (bdev_stack_limits(limits, bdev, start) < 0)
511 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
512 		       "physical_block_size=%u, logical_block_size=%u, "
513 		       "alignment_offset=%u, start=%llu",
514 		       dm_device_name(ti->table->md), bdevname(bdev, b),
515 		       q->limits.physical_block_size,
516 		       q->limits.logical_block_size,
517 		       q->limits.alignment_offset,
518 		       (unsigned long long) start << SECTOR_SHIFT);
519 
520 	/*
521 	 * Check if merge fn is supported.
522 	 * If not we'll force DM to use PAGE_SIZE or
523 	 * smaller I/O, just to be safe.
524 	 */
525 
526 	if (q->merge_bvec_fn && !ti->type->merge)
527 		blk_limits_max_hw_sectors(limits,
528 					  (unsigned int) (PAGE_SIZE >> 9));
529 	return 0;
530 }
531 EXPORT_SYMBOL_GPL(dm_set_device_limits);
532 
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)533 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
534 		  struct dm_dev **result)
535 {
536 	return __table_get_device(ti->table, ti, path, mode, result);
537 }
538 
539 
540 /*
541  * Decrement a devices use count and remove it if necessary.
542  */
dm_put_device(struct dm_target * ti,struct dm_dev * d)543 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
544 {
545 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
546 						  dm_dev);
547 
548 	if (atomic_dec_and_test(&dd->count)) {
549 		close_dev(dd, ti->table->md);
550 		list_del(&dd->list);
551 		kfree(dd);
552 	}
553 }
554 
555 /*
556  * Checks to see if the target joins onto the end of the table.
557  */
adjoin(struct dm_table * table,struct dm_target * ti)558 static int adjoin(struct dm_table *table, struct dm_target *ti)
559 {
560 	struct dm_target *prev;
561 
562 	if (!table->num_targets)
563 		return !ti->begin;
564 
565 	prev = &table->targets[table->num_targets - 1];
566 	return (ti->begin == (prev->begin + prev->len));
567 }
568 
569 /*
570  * Used to dynamically allocate the arg array.
571  */
realloc_argv(unsigned * array_size,char ** old_argv)572 static char **realloc_argv(unsigned *array_size, char **old_argv)
573 {
574 	char **argv;
575 	unsigned new_size;
576 
577 	new_size = *array_size ? *array_size * 2 : 64;
578 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
579 	if (argv) {
580 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
581 		*array_size = new_size;
582 	}
583 
584 	kfree(old_argv);
585 	return argv;
586 }
587 
588 /*
589  * Destructively splits up the argument list to pass to ctr.
590  */
dm_split_args(int * argc,char *** argvp,char * input)591 int dm_split_args(int *argc, char ***argvp, char *input)
592 {
593 	char *start, *end = input, *out, **argv = NULL;
594 	unsigned array_size = 0;
595 
596 	*argc = 0;
597 
598 	if (!input) {
599 		*argvp = NULL;
600 		return 0;
601 	}
602 
603 	argv = realloc_argv(&array_size, argv);
604 	if (!argv)
605 		return -ENOMEM;
606 
607 	while (1) {
608 		/* Skip whitespace */
609 		start = skip_spaces(end);
610 
611 		if (!*start)
612 			break;	/* success, we hit the end */
613 
614 		/* 'out' is used to remove any back-quotes */
615 		end = out = start;
616 		while (*end) {
617 			/* Everything apart from '\0' can be quoted */
618 			if (*end == '\\' && *(end + 1)) {
619 				*out++ = *(end + 1);
620 				end += 2;
621 				continue;
622 			}
623 
624 			if (isspace(*end))
625 				break;	/* end of token */
626 
627 			*out++ = *end++;
628 		}
629 
630 		/* have we already filled the array ? */
631 		if ((*argc + 1) > array_size) {
632 			argv = realloc_argv(&array_size, argv);
633 			if (!argv)
634 				return -ENOMEM;
635 		}
636 
637 		/* we know this is whitespace */
638 		if (*end)
639 			end++;
640 
641 		/* terminate the string and put it in the array */
642 		*out = '\0';
643 		argv[*argc] = start;
644 		(*argc)++;
645 	}
646 
647 	*argvp = argv;
648 	return 0;
649 }
650 
651 /*
652  * Impose necessary and sufficient conditions on a devices's table such
653  * that any incoming bio which respects its logical_block_size can be
654  * processed successfully.  If it falls across the boundary between
655  * two or more targets, the size of each piece it gets split into must
656  * be compatible with the logical_block_size of the target processing it.
657  */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)658 static int validate_hardware_logical_block_alignment(struct dm_table *table,
659 						 struct queue_limits *limits)
660 {
661 	/*
662 	 * This function uses arithmetic modulo the logical_block_size
663 	 * (in units of 512-byte sectors).
664 	 */
665 	unsigned short device_logical_block_size_sects =
666 		limits->logical_block_size >> SECTOR_SHIFT;
667 
668 	/*
669 	 * Offset of the start of the next table entry, mod logical_block_size.
670 	 */
671 	unsigned short next_target_start = 0;
672 
673 	/*
674 	 * Given an aligned bio that extends beyond the end of a
675 	 * target, how many sectors must the next target handle?
676 	 */
677 	unsigned short remaining = 0;
678 
679 	struct dm_target *uninitialized_var(ti);
680 	struct queue_limits ti_limits;
681 	unsigned i = 0;
682 
683 	/*
684 	 * Check each entry in the table in turn.
685 	 */
686 	while (i < dm_table_get_num_targets(table)) {
687 		ti = dm_table_get_target(table, i++);
688 
689 		blk_set_default_limits(&ti_limits);
690 
691 		/* combine all target devices' limits */
692 		if (ti->type->iterate_devices)
693 			ti->type->iterate_devices(ti, dm_set_device_limits,
694 						  &ti_limits);
695 
696 		/*
697 		 * If the remaining sectors fall entirely within this
698 		 * table entry are they compatible with its logical_block_size?
699 		 */
700 		if (remaining < ti->len &&
701 		    remaining & ((ti_limits.logical_block_size >>
702 				  SECTOR_SHIFT) - 1))
703 			break;	/* Error */
704 
705 		next_target_start =
706 		    (unsigned short) ((next_target_start + ti->len) &
707 				      (device_logical_block_size_sects - 1));
708 		remaining = next_target_start ?
709 		    device_logical_block_size_sects - next_target_start : 0;
710 	}
711 
712 	if (remaining) {
713 		DMWARN("%s: table line %u (start sect %llu len %llu) "
714 		       "not aligned to h/w logical block size %u",
715 		       dm_device_name(table->md), i,
716 		       (unsigned long long) ti->begin,
717 		       (unsigned long long) ti->len,
718 		       limits->logical_block_size);
719 		return -EINVAL;
720 	}
721 
722 	return 0;
723 }
724 
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)725 int dm_table_add_target(struct dm_table *t, const char *type,
726 			sector_t start, sector_t len, char *params)
727 {
728 	int r = -EINVAL, argc;
729 	char **argv;
730 	struct dm_target *tgt;
731 
732 	if ((r = check_space(t)))
733 		return r;
734 
735 	tgt = t->targets + t->num_targets;
736 	memset(tgt, 0, sizeof(*tgt));
737 
738 	if (!len) {
739 		DMERR("%s: zero-length target", dm_device_name(t->md));
740 		return -EINVAL;
741 	}
742 
743 	tgt->type = dm_get_target_type(type);
744 	if (!tgt->type) {
745 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
746 		      type);
747 		return -EINVAL;
748 	}
749 
750 	tgt->table = t;
751 	tgt->begin = start;
752 	tgt->len = len;
753 	tgt->error = "Unknown error";
754 
755 	/*
756 	 * Does this target adjoin the previous one ?
757 	 */
758 	if (!adjoin(t, tgt)) {
759 		tgt->error = "Gap in table";
760 		r = -EINVAL;
761 		goto bad;
762 	}
763 
764 	r = dm_split_args(&argc, &argv, params);
765 	if (r) {
766 		tgt->error = "couldn't split parameters (insufficient memory)";
767 		goto bad;
768 	}
769 
770 	r = tgt->type->ctr(tgt, argc, argv);
771 	kfree(argv);
772 	if (r)
773 		goto bad;
774 
775 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
776 
777 	if (!tgt->num_discard_requests)
778 		t->discards_supported = 0;
779 
780 	return 0;
781 
782  bad:
783 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
784 	dm_put_target_type(tgt->type);
785 	return r;
786 }
787 
dm_table_set_type(struct dm_table * t)788 static int dm_table_set_type(struct dm_table *t)
789 {
790 	unsigned i;
791 	unsigned bio_based = 0, request_based = 0;
792 	struct dm_target *tgt;
793 	struct dm_dev_internal *dd;
794 	struct list_head *devices;
795 
796 	for (i = 0; i < t->num_targets; i++) {
797 		tgt = t->targets + i;
798 		if (dm_target_request_based(tgt))
799 			request_based = 1;
800 		else
801 			bio_based = 1;
802 
803 		if (bio_based && request_based) {
804 			DMWARN("Inconsistent table: different target types"
805 			       " can't be mixed up");
806 			return -EINVAL;
807 		}
808 	}
809 
810 	if (bio_based) {
811 		/* We must use this table as bio-based */
812 		t->type = DM_TYPE_BIO_BASED;
813 		return 0;
814 	}
815 
816 	BUG_ON(!request_based); /* No targets in this table */
817 
818 	/* Non-request-stackable devices can't be used for request-based dm */
819 	devices = dm_table_get_devices(t);
820 	list_for_each_entry(dd, devices, list) {
821 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
822 			DMWARN("table load rejected: including"
823 			       " non-request-stackable devices");
824 			return -EINVAL;
825 		}
826 	}
827 
828 	/*
829 	 * Request-based dm supports only tables that have a single target now.
830 	 * To support multiple targets, request splitting support is needed,
831 	 * and that needs lots of changes in the block-layer.
832 	 * (e.g. request completion process for partial completion.)
833 	 */
834 	if (t->num_targets > 1) {
835 		DMWARN("Request-based dm doesn't support multiple targets yet");
836 		return -EINVAL;
837 	}
838 
839 	t->type = DM_TYPE_REQUEST_BASED;
840 
841 	return 0;
842 }
843 
dm_table_get_type(struct dm_table * t)844 unsigned dm_table_get_type(struct dm_table *t)
845 {
846 	return t->type;
847 }
848 
dm_table_request_based(struct dm_table * t)849 bool dm_table_request_based(struct dm_table *t)
850 {
851 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
852 }
853 
dm_table_alloc_md_mempools(struct dm_table * t)854 int dm_table_alloc_md_mempools(struct dm_table *t)
855 {
856 	unsigned type = dm_table_get_type(t);
857 
858 	if (unlikely(type == DM_TYPE_NONE)) {
859 		DMWARN("no table type is set, can't allocate mempools");
860 		return -EINVAL;
861 	}
862 
863 	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
864 	if (!t->mempools)
865 		return -ENOMEM;
866 
867 	return 0;
868 }
869 
dm_table_free_md_mempools(struct dm_table * t)870 void dm_table_free_md_mempools(struct dm_table *t)
871 {
872 	dm_free_md_mempools(t->mempools);
873 	t->mempools = NULL;
874 }
875 
dm_table_get_md_mempools(struct dm_table * t)876 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
877 {
878 	return t->mempools;
879 }
880 
setup_indexes(struct dm_table * t)881 static int setup_indexes(struct dm_table *t)
882 {
883 	int i;
884 	unsigned int total = 0;
885 	sector_t *indexes;
886 
887 	/* allocate the space for *all* the indexes */
888 	for (i = t->depth - 2; i >= 0; i--) {
889 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
890 		total += t->counts[i];
891 	}
892 
893 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
894 	if (!indexes)
895 		return -ENOMEM;
896 
897 	/* set up internal nodes, bottom-up */
898 	for (i = t->depth - 2; i >= 0; i--) {
899 		t->index[i] = indexes;
900 		indexes += (KEYS_PER_NODE * t->counts[i]);
901 		setup_btree_index(i, t);
902 	}
903 
904 	return 0;
905 }
906 
907 /*
908  * Builds the btree to index the map.
909  */
dm_table_build_index(struct dm_table * t)910 static int dm_table_build_index(struct dm_table *t)
911 {
912 	int r = 0;
913 	unsigned int leaf_nodes;
914 
915 	/* how many indexes will the btree have ? */
916 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
917 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
918 
919 	/* leaf layer has already been set up */
920 	t->counts[t->depth - 1] = leaf_nodes;
921 	t->index[t->depth - 1] = t->highs;
922 
923 	if (t->depth >= 2)
924 		r = setup_indexes(t);
925 
926 	return r;
927 }
928 
929 /*
930  * Get a disk whose integrity profile reflects the table's profile.
931  * If %match_all is true, all devices' profiles must match.
932  * If %match_all is false, all devices must at least have an
933  * allocated integrity profile; but uninitialized is ok.
934  * Returns NULL if integrity support was inconsistent or unavailable.
935  */
dm_table_get_integrity_disk(struct dm_table * t,bool match_all)936 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
937 						    bool match_all)
938 {
939 	struct list_head *devices = dm_table_get_devices(t);
940 	struct dm_dev_internal *dd = NULL;
941 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
942 
943 	list_for_each_entry(dd, devices, list) {
944 		template_disk = dd->dm_dev.bdev->bd_disk;
945 		if (!blk_get_integrity(template_disk))
946 			goto no_integrity;
947 		if (!match_all && !blk_integrity_is_initialized(template_disk))
948 			continue; /* skip uninitialized profiles */
949 		else if (prev_disk &&
950 			 blk_integrity_compare(prev_disk, template_disk) < 0)
951 			goto no_integrity;
952 		prev_disk = template_disk;
953 	}
954 
955 	return template_disk;
956 
957 no_integrity:
958 	if (prev_disk)
959 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
960 		       dm_device_name(t->md),
961 		       prev_disk->disk_name,
962 		       template_disk->disk_name);
963 	return NULL;
964 }
965 
966 /*
967  * Register the mapped device for blk_integrity support if
968  * the underlying devices have an integrity profile.  But all devices
969  * may not have matching profiles (checking all devices isn't reliable
970  * during table load because this table may use other DM device(s) which
971  * must be resumed before they will have an initialized integity profile).
972  * Stacked DM devices force a 2 stage integrity profile validation:
973  * 1 - during load, validate all initialized integrity profiles match
974  * 2 - during resume, validate all integrity profiles match
975  */
dm_table_prealloc_integrity(struct dm_table * t,struct mapped_device * md)976 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
977 {
978 	struct gendisk *template_disk = NULL;
979 
980 	template_disk = dm_table_get_integrity_disk(t, false);
981 	if (!template_disk)
982 		return 0;
983 
984 	if (!blk_integrity_is_initialized(dm_disk(md))) {
985 		t->integrity_supported = 1;
986 		return blk_integrity_register(dm_disk(md), NULL);
987 	}
988 
989 	/*
990 	 * If DM device already has an initalized integrity
991 	 * profile the new profile should not conflict.
992 	 */
993 	if (blk_integrity_is_initialized(template_disk) &&
994 	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
995 		DMWARN("%s: conflict with existing integrity profile: "
996 		       "%s profile mismatch",
997 		       dm_device_name(t->md),
998 		       template_disk->disk_name);
999 		return 1;
1000 	}
1001 
1002 	/* Preserve existing initialized integrity profile */
1003 	t->integrity_supported = 1;
1004 	return 0;
1005 }
1006 
1007 /*
1008  * Prepares the table for use by building the indices,
1009  * setting the type, and allocating mempools.
1010  */
dm_table_complete(struct dm_table * t)1011 int dm_table_complete(struct dm_table *t)
1012 {
1013 	int r;
1014 
1015 	r = dm_table_set_type(t);
1016 	if (r) {
1017 		DMERR("unable to set table type");
1018 		return r;
1019 	}
1020 
1021 	r = dm_table_build_index(t);
1022 	if (r) {
1023 		DMERR("unable to build btrees");
1024 		return r;
1025 	}
1026 
1027 	r = dm_table_prealloc_integrity(t, t->md);
1028 	if (r) {
1029 		DMERR("could not register integrity profile.");
1030 		return r;
1031 	}
1032 
1033 	r = dm_table_alloc_md_mempools(t);
1034 	if (r)
1035 		DMERR("unable to allocate mempools");
1036 
1037 	return r;
1038 }
1039 
1040 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1041 void dm_table_event_callback(struct dm_table *t,
1042 			     void (*fn)(void *), void *context)
1043 {
1044 	mutex_lock(&_event_lock);
1045 	t->event_fn = fn;
1046 	t->event_context = context;
1047 	mutex_unlock(&_event_lock);
1048 }
1049 
dm_table_event(struct dm_table * t)1050 void dm_table_event(struct dm_table *t)
1051 {
1052 	/*
1053 	 * You can no longer call dm_table_event() from interrupt
1054 	 * context, use a bottom half instead.
1055 	 */
1056 	BUG_ON(in_interrupt());
1057 
1058 	mutex_lock(&_event_lock);
1059 	if (t->event_fn)
1060 		t->event_fn(t->event_context);
1061 	mutex_unlock(&_event_lock);
1062 }
1063 
dm_table_get_size(struct dm_table * t)1064 sector_t dm_table_get_size(struct dm_table *t)
1065 {
1066 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1067 }
1068 
dm_table_get_target(struct dm_table * t,unsigned int index)1069 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1070 {
1071 	if (index >= t->num_targets)
1072 		return NULL;
1073 
1074 	return t->targets + index;
1075 }
1076 
1077 /*
1078  * Search the btree for the correct target.
1079  *
1080  * Caller should check returned pointer with dm_target_is_valid()
1081  * to trap I/O beyond end of device.
1082  */
dm_table_find_target(struct dm_table * t,sector_t sector)1083 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1084 {
1085 	unsigned int l, n = 0, k = 0;
1086 	sector_t *node;
1087 
1088 	for (l = 0; l < t->depth; l++) {
1089 		n = get_child(n, k);
1090 		node = get_node(t, l, n);
1091 
1092 		for (k = 0; k < KEYS_PER_NODE; k++)
1093 			if (node[k] >= sector)
1094 				break;
1095 	}
1096 
1097 	return &t->targets[(KEYS_PER_NODE * n) + k];
1098 }
1099 
1100 /*
1101  * Establish the new table's queue_limits and validate them.
1102  */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1103 int dm_calculate_queue_limits(struct dm_table *table,
1104 			      struct queue_limits *limits)
1105 {
1106 	struct dm_target *uninitialized_var(ti);
1107 	struct queue_limits ti_limits;
1108 	unsigned i = 0;
1109 
1110 	blk_set_default_limits(limits);
1111 
1112 	while (i < dm_table_get_num_targets(table)) {
1113 		blk_set_default_limits(&ti_limits);
1114 
1115 		ti = dm_table_get_target(table, i++);
1116 
1117 		if (!ti->type->iterate_devices)
1118 			goto combine_limits;
1119 
1120 		/*
1121 		 * Combine queue limits of all the devices this target uses.
1122 		 */
1123 		ti->type->iterate_devices(ti, dm_set_device_limits,
1124 					  &ti_limits);
1125 
1126 		/* Set I/O hints portion of queue limits */
1127 		if (ti->type->io_hints)
1128 			ti->type->io_hints(ti, &ti_limits);
1129 
1130 		/*
1131 		 * Check each device area is consistent with the target's
1132 		 * overall queue limits.
1133 		 */
1134 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1135 					      &ti_limits))
1136 			return -EINVAL;
1137 
1138 combine_limits:
1139 		/*
1140 		 * Merge this target's queue limits into the overall limits
1141 		 * for the table.
1142 		 */
1143 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1144 			DMWARN("%s: adding target device "
1145 			       "(start sect %llu len %llu) "
1146 			       "caused an alignment inconsistency",
1147 			       dm_device_name(table->md),
1148 			       (unsigned long long) ti->begin,
1149 			       (unsigned long long) ti->len);
1150 	}
1151 
1152 	return validate_hardware_logical_block_alignment(table, limits);
1153 }
1154 
1155 /*
1156  * Set the integrity profile for this device if all devices used have
1157  * matching profiles.  We're quite deep in the resume path but still
1158  * don't know if all devices (particularly DM devices this device
1159  * may be stacked on) have matching profiles.  Even if the profiles
1160  * don't match we have no way to fail (to resume) at this point.
1161  */
dm_table_set_integrity(struct dm_table * t)1162 static void dm_table_set_integrity(struct dm_table *t)
1163 {
1164 	struct gendisk *template_disk = NULL;
1165 
1166 	if (!blk_get_integrity(dm_disk(t->md)))
1167 		return;
1168 
1169 	template_disk = dm_table_get_integrity_disk(t, true);
1170 	if (!template_disk &&
1171 	    blk_integrity_is_initialized(dm_disk(t->md))) {
1172 		DMWARN("%s: device no longer has a valid integrity profile",
1173 		       dm_device_name(t->md));
1174 		return;
1175 	}
1176 	blk_integrity_register(dm_disk(t->md),
1177 			       blk_get_integrity(template_disk));
1178 }
1179 
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1180 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1181 			       struct queue_limits *limits)
1182 {
1183 	/*
1184 	 * Copy table's limits to the DM device's request_queue
1185 	 */
1186 	q->limits = *limits;
1187 
1188 	if (!dm_table_supports_discards(t))
1189 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1190 	else
1191 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1192 
1193 	dm_table_set_integrity(t);
1194 
1195 	/*
1196 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1197 	 * visible to other CPUs because, once the flag is set, incoming bios
1198 	 * are processed by request-based dm, which refers to the queue
1199 	 * settings.
1200 	 * Until the flag set, bios are passed to bio-based dm and queued to
1201 	 * md->deferred where queue settings are not needed yet.
1202 	 * Those bios are passed to request-based dm at the resume time.
1203 	 */
1204 	smp_mb();
1205 	if (dm_table_request_based(t))
1206 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1207 }
1208 
dm_table_get_num_targets(struct dm_table * t)1209 unsigned int dm_table_get_num_targets(struct dm_table *t)
1210 {
1211 	return t->num_targets;
1212 }
1213 
dm_table_get_devices(struct dm_table * t)1214 struct list_head *dm_table_get_devices(struct dm_table *t)
1215 {
1216 	return &t->devices;
1217 }
1218 
dm_table_get_mode(struct dm_table * t)1219 fmode_t dm_table_get_mode(struct dm_table *t)
1220 {
1221 	return t->mode;
1222 }
1223 
suspend_targets(struct dm_table * t,unsigned postsuspend)1224 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1225 {
1226 	int i = t->num_targets;
1227 	struct dm_target *ti = t->targets;
1228 
1229 	while (i--) {
1230 		if (postsuspend) {
1231 			if (ti->type->postsuspend)
1232 				ti->type->postsuspend(ti);
1233 		} else if (ti->type->presuspend)
1234 			ti->type->presuspend(ti);
1235 
1236 		ti++;
1237 	}
1238 }
1239 
dm_table_presuspend_targets(struct dm_table * t)1240 void dm_table_presuspend_targets(struct dm_table *t)
1241 {
1242 	if (!t)
1243 		return;
1244 
1245 	suspend_targets(t, 0);
1246 }
1247 
dm_table_postsuspend_targets(struct dm_table * t)1248 void dm_table_postsuspend_targets(struct dm_table *t)
1249 {
1250 	if (!t)
1251 		return;
1252 
1253 	suspend_targets(t, 1);
1254 }
1255 
dm_table_resume_targets(struct dm_table * t)1256 int dm_table_resume_targets(struct dm_table *t)
1257 {
1258 	int i, r = 0;
1259 
1260 	for (i = 0; i < t->num_targets; i++) {
1261 		struct dm_target *ti = t->targets + i;
1262 
1263 		if (!ti->type->preresume)
1264 			continue;
1265 
1266 		r = ti->type->preresume(ti);
1267 		if (r)
1268 			return r;
1269 	}
1270 
1271 	for (i = 0; i < t->num_targets; i++) {
1272 		struct dm_target *ti = t->targets + i;
1273 
1274 		if (ti->type->resume)
1275 			ti->type->resume(ti);
1276 	}
1277 
1278 	return 0;
1279 }
1280 
dm_table_add_target_callbacks(struct dm_table * t,struct dm_target_callbacks * cb)1281 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1282 {
1283 	list_add(&cb->list, &t->target_callbacks);
1284 }
1285 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1286 
dm_table_any_congested(struct dm_table * t,int bdi_bits)1287 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1288 {
1289 	struct dm_dev_internal *dd;
1290 	struct list_head *devices = dm_table_get_devices(t);
1291 	struct dm_target_callbacks *cb;
1292 	int r = 0;
1293 
1294 	list_for_each_entry(dd, devices, list) {
1295 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1296 		char b[BDEVNAME_SIZE];
1297 
1298 		if (likely(q))
1299 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1300 		else
1301 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1302 				     dm_device_name(t->md),
1303 				     bdevname(dd->dm_dev.bdev, b));
1304 	}
1305 
1306 	list_for_each_entry(cb, &t->target_callbacks, list)
1307 		if (cb->congested_fn)
1308 			r |= cb->congested_fn(cb, bdi_bits);
1309 
1310 	return r;
1311 }
1312 
dm_table_any_busy_target(struct dm_table * t)1313 int dm_table_any_busy_target(struct dm_table *t)
1314 {
1315 	unsigned i;
1316 	struct dm_target *ti;
1317 
1318 	for (i = 0; i < t->num_targets; i++) {
1319 		ti = t->targets + i;
1320 		if (ti->type->busy && ti->type->busy(ti))
1321 			return 1;
1322 	}
1323 
1324 	return 0;
1325 }
1326 
dm_table_get_md(struct dm_table * t)1327 struct mapped_device *dm_table_get_md(struct dm_table *t)
1328 {
1329 	return t->md;
1330 }
1331 
device_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1332 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1333 				  sector_t start, sector_t len, void *data)
1334 {
1335 	struct request_queue *q = bdev_get_queue(dev->bdev);
1336 
1337 	return q && blk_queue_discard(q);
1338 }
1339 
dm_table_supports_discards(struct dm_table * t)1340 bool dm_table_supports_discards(struct dm_table *t)
1341 {
1342 	struct dm_target *ti;
1343 	unsigned i = 0;
1344 
1345 	if (!t->discards_supported)
1346 		return 0;
1347 
1348 	/*
1349 	 * Ensure that at least one underlying device supports discards.
1350 	 * t->devices includes internal dm devices such as mirror logs
1351 	 * so we need to use iterate_devices here, which targets
1352 	 * supporting discard must provide.
1353 	 */
1354 	while (i < dm_table_get_num_targets(t)) {
1355 		ti = dm_table_get_target(t, i++);
1356 
1357 		if (ti->type->iterate_devices &&
1358 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1359 			return 1;
1360 	}
1361 
1362 	return 0;
1363 }
1364 
1365 EXPORT_SYMBOL(dm_vcalloc);
1366 EXPORT_SYMBOL(dm_get_device);
1367 EXPORT_SYMBOL(dm_put_device);
1368 EXPORT_SYMBOL(dm_table_event);
1369 EXPORT_SYMBOL(dm_table_get_size);
1370 EXPORT_SYMBOL(dm_table_get_mode);
1371 EXPORT_SYMBOL(dm_table_get_md);
1372 EXPORT_SYMBOL(dm_table_put);
1373 EXPORT_SYMBOL(dm_table_get);
1374