1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63 };
64
65 /*
66 * For bio-based dm.
67 * One of these is allocated per target within a bio. Hopefully
68 * this will be simplified out one day.
69 */
70 struct dm_target_io {
71 struct dm_io *io;
72 struct dm_target *ti;
73 union map_info info;
74 };
75
76 /*
77 * For request-based dm.
78 * One of these is allocated per request.
79 */
80 struct dm_rq_target_io {
81 struct mapped_device *md;
82 struct dm_target *ti;
83 struct request *orig, clone;
84 int error;
85 union map_info info;
86 };
87
88 /*
89 * For request-based dm.
90 * One of these is allocated per bio.
91 */
92 struct dm_rq_clone_bio_info {
93 struct bio *orig;
94 struct dm_rq_target_io *tio;
95 };
96
dm_get_mapinfo(struct bio * bio)97 union map_info *dm_get_mapinfo(struct bio *bio)
98 {
99 if (bio && bio->bi_private)
100 return &((struct dm_target_io *)bio->bi_private)->info;
101 return NULL;
102 }
103
dm_get_rq_mapinfo(struct request * rq)104 union map_info *dm_get_rq_mapinfo(struct request *rq)
105 {
106 if (rq && rq->end_io_data)
107 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 return NULL;
109 }
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
111
112 #define MINOR_ALLOCED ((void *)-1)
113
114 /*
115 * Bits for the md->flags field.
116 */
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
119 #define DMF_FROZEN 2
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
124
125 /*
126 * Work processed by per-device workqueue.
127 */
128 struct mapped_device {
129 struct rw_semaphore io_lock;
130 struct mutex suspend_lock;
131 rwlock_t map_lock;
132 atomic_t holders;
133 atomic_t open_count;
134
135 unsigned long flags;
136
137 struct request_queue *queue;
138 unsigned type;
139 /* Protect queue and type against concurrent access. */
140 struct mutex type_lock;
141
142 struct target_type *immutable_target_type;
143
144 struct gendisk *disk;
145 char name[16];
146
147 void *interface_ptr;
148
149 /*
150 * A list of ios that arrived while we were suspended.
151 */
152 atomic_t pending[2];
153 wait_queue_head_t wait;
154 struct work_struct work;
155 struct bio_list deferred;
156 spinlock_t deferred_lock;
157
158 /*
159 * Processing queue (flush)
160 */
161 struct workqueue_struct *wq;
162
163 /*
164 * The current mapping.
165 */
166 struct dm_table *map;
167
168 /*
169 * io objects are allocated from here.
170 */
171 mempool_t *io_pool;
172 mempool_t *tio_pool;
173
174 struct bio_set *bs;
175
176 /*
177 * Event handling.
178 */
179 atomic_t event_nr;
180 wait_queue_head_t eventq;
181 atomic_t uevent_seq;
182 struct list_head uevent_list;
183 spinlock_t uevent_lock; /* Protect access to uevent_list */
184
185 /*
186 * freeze/thaw support require holding onto a super block
187 */
188 struct super_block *frozen_sb;
189 struct block_device *bdev;
190
191 /* forced geometry settings */
192 struct hd_geometry geometry;
193
194 /* kobject and completion */
195 struct dm_kobject_holder kobj_holder;
196
197 /* zero-length flush that will be cloned and submitted to targets */
198 struct bio flush_bio;
199 };
200
201 /*
202 * For mempools pre-allocation at the table loading time.
203 */
204 struct dm_md_mempools {
205 mempool_t *io_pool;
206 mempool_t *tio_pool;
207 struct bio_set *bs;
208 };
209
210 #define MIN_IOS 256
211 static struct kmem_cache *_io_cache;
212 static struct kmem_cache *_tio_cache;
213 static struct kmem_cache *_rq_tio_cache;
214 static struct kmem_cache *_rq_bio_info_cache;
215
local_init(void)216 static int __init local_init(void)
217 {
218 int r = -ENOMEM;
219
220 /* allocate a slab for the dm_ios */
221 _io_cache = KMEM_CACHE(dm_io, 0);
222 if (!_io_cache)
223 return r;
224
225 /* allocate a slab for the target ios */
226 _tio_cache = KMEM_CACHE(dm_target_io, 0);
227 if (!_tio_cache)
228 goto out_free_io_cache;
229
230 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 if (!_rq_tio_cache)
232 goto out_free_tio_cache;
233
234 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
235 if (!_rq_bio_info_cache)
236 goto out_free_rq_tio_cache;
237
238 r = dm_uevent_init();
239 if (r)
240 goto out_free_rq_bio_info_cache;
241
242 _major = major;
243 r = register_blkdev(_major, _name);
244 if (r < 0)
245 goto out_uevent_exit;
246
247 if (!_major)
248 _major = r;
249
250 return 0;
251
252 out_uevent_exit:
253 dm_uevent_exit();
254 out_free_rq_bio_info_cache:
255 kmem_cache_destroy(_rq_bio_info_cache);
256 out_free_rq_tio_cache:
257 kmem_cache_destroy(_rq_tio_cache);
258 out_free_tio_cache:
259 kmem_cache_destroy(_tio_cache);
260 out_free_io_cache:
261 kmem_cache_destroy(_io_cache);
262
263 return r;
264 }
265
local_exit(void)266 static void local_exit(void)
267 {
268 kmem_cache_destroy(_rq_bio_info_cache);
269 kmem_cache_destroy(_rq_tio_cache);
270 kmem_cache_destroy(_tio_cache);
271 kmem_cache_destroy(_io_cache);
272 unregister_blkdev(_major, _name);
273 dm_uevent_exit();
274
275 _major = 0;
276
277 DMINFO("cleaned up");
278 }
279
280 static int (*_inits[])(void) __initdata = {
281 local_init,
282 dm_target_init,
283 dm_linear_init,
284 dm_stripe_init,
285 dm_io_init,
286 dm_kcopyd_init,
287 dm_interface_init,
288 };
289
290 static void (*_exits[])(void) = {
291 local_exit,
292 dm_target_exit,
293 dm_linear_exit,
294 dm_stripe_exit,
295 dm_io_exit,
296 dm_kcopyd_exit,
297 dm_interface_exit,
298 };
299
dm_init(void)300 static int __init dm_init(void)
301 {
302 const int count = ARRAY_SIZE(_inits);
303
304 int r, i;
305
306 for (i = 0; i < count; i++) {
307 r = _inits[i]();
308 if (r)
309 goto bad;
310 }
311
312 return 0;
313
314 bad:
315 while (i--)
316 _exits[i]();
317
318 return r;
319 }
320
dm_exit(void)321 static void __exit dm_exit(void)
322 {
323 int i = ARRAY_SIZE(_exits);
324
325 while (i--)
326 _exits[i]();
327
328 /*
329 * Should be empty by this point.
330 */
331 idr_remove_all(&_minor_idr);
332 idr_destroy(&_minor_idr);
333 }
334
335 /*
336 * Block device functions
337 */
dm_deleting_md(struct mapped_device * md)338 int dm_deleting_md(struct mapped_device *md)
339 {
340 return test_bit(DMF_DELETING, &md->flags);
341 }
342
dm_blk_open(struct block_device * bdev,fmode_t mode)343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 struct mapped_device *md;
346
347 spin_lock(&_minor_lock);
348
349 md = bdev->bd_disk->private_data;
350 if (!md)
351 goto out;
352
353 if (test_bit(DMF_FREEING, &md->flags) ||
354 dm_deleting_md(md)) {
355 md = NULL;
356 goto out;
357 }
358
359 dm_get(md);
360 atomic_inc(&md->open_count);
361
362 out:
363 spin_unlock(&_minor_lock);
364
365 return md ? 0 : -ENXIO;
366 }
367
dm_blk_close(struct gendisk * disk,fmode_t mode)368 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
369 {
370 struct mapped_device *md = disk->private_data;
371
372 spin_lock(&_minor_lock);
373
374 atomic_dec(&md->open_count);
375 dm_put(md);
376
377 spin_unlock(&_minor_lock);
378
379 return 0;
380 }
381
dm_open_count(struct mapped_device * md)382 int dm_open_count(struct mapped_device *md)
383 {
384 return atomic_read(&md->open_count);
385 }
386
387 /*
388 * Guarantees nothing is using the device before it's deleted.
389 */
dm_lock_for_deletion(struct mapped_device * md)390 int dm_lock_for_deletion(struct mapped_device *md)
391 {
392 int r = 0;
393
394 spin_lock(&_minor_lock);
395
396 if (dm_open_count(md))
397 r = -EBUSY;
398 else
399 set_bit(DMF_DELETING, &md->flags);
400
401 spin_unlock(&_minor_lock);
402
403 return r;
404 }
405
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411 }
412
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)413 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
414 unsigned int cmd, unsigned long arg)
415 {
416 struct mapped_device *md = bdev->bd_disk->private_data;
417 struct dm_table *map = dm_get_live_table(md);
418 struct dm_target *tgt;
419 int r = -ENOTTY;
420
421 if (!map || !dm_table_get_size(map))
422 goto out;
423
424 /* We only support devices that have a single target */
425 if (dm_table_get_num_targets(map) != 1)
426 goto out;
427
428 tgt = dm_table_get_target(map, 0);
429
430 if (dm_suspended_md(md)) {
431 r = -EAGAIN;
432 goto out;
433 }
434
435 if (tgt->type->ioctl)
436 r = tgt->type->ioctl(tgt, cmd, arg);
437
438 out:
439 dm_table_put(map);
440
441 return r;
442 }
443
alloc_io(struct mapped_device * md)444 static struct dm_io *alloc_io(struct mapped_device *md)
445 {
446 return mempool_alloc(md->io_pool, GFP_NOIO);
447 }
448
free_io(struct mapped_device * md,struct dm_io * io)449 static void free_io(struct mapped_device *md, struct dm_io *io)
450 {
451 mempool_free(io, md->io_pool);
452 }
453
free_tio(struct mapped_device * md,struct dm_target_io * tio)454 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
455 {
456 mempool_free(tio, md->tio_pool);
457 }
458
alloc_rq_tio(struct mapped_device * md,gfp_t gfp_mask)459 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
460 gfp_t gfp_mask)
461 {
462 return mempool_alloc(md->tio_pool, gfp_mask);
463 }
464
free_rq_tio(struct dm_rq_target_io * tio)465 static void free_rq_tio(struct dm_rq_target_io *tio)
466 {
467 mempool_free(tio, tio->md->tio_pool);
468 }
469
alloc_bio_info(struct mapped_device * md)470 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
471 {
472 return mempool_alloc(md->io_pool, GFP_ATOMIC);
473 }
474
free_bio_info(struct dm_rq_clone_bio_info * info)475 static void free_bio_info(struct dm_rq_clone_bio_info *info)
476 {
477 mempool_free(info, info->tio->md->io_pool);
478 }
479
md_in_flight(struct mapped_device * md)480 static int md_in_flight(struct mapped_device *md)
481 {
482 return atomic_read(&md->pending[READ]) +
483 atomic_read(&md->pending[WRITE]);
484 }
485
start_io_acct(struct dm_io * io)486 static void start_io_acct(struct dm_io *io)
487 {
488 struct mapped_device *md = io->md;
489 int cpu;
490 int rw = bio_data_dir(io->bio);
491
492 io->start_time = jiffies;
493
494 cpu = part_stat_lock();
495 part_round_stats(cpu, &dm_disk(md)->part0);
496 part_stat_unlock();
497 atomic_set(&dm_disk(md)->part0.in_flight[rw],
498 atomic_inc_return(&md->pending[rw]));
499 }
500
end_io_acct(struct dm_io * io)501 static void end_io_acct(struct dm_io *io)
502 {
503 struct mapped_device *md = io->md;
504 struct bio *bio = io->bio;
505 unsigned long duration = jiffies - io->start_time;
506 int pending, cpu;
507 int rw = bio_data_dir(bio);
508
509 cpu = part_stat_lock();
510 part_round_stats(cpu, &dm_disk(md)->part0);
511 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 part_stat_unlock();
513
514 /*
515 * After this is decremented the bio must not be touched if it is
516 * a flush.
517 */
518 pending = atomic_dec_return(&md->pending[rw]);
519 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
520 pending += atomic_read(&md->pending[rw^0x1]);
521
522 /* nudge anyone waiting on suspend queue */
523 if (!pending)
524 wake_up(&md->wait);
525 }
526
527 /*
528 * Add the bio to the list of deferred io.
529 */
queue_io(struct mapped_device * md,struct bio * bio)530 static void queue_io(struct mapped_device *md, struct bio *bio)
531 {
532 unsigned long flags;
533
534 spin_lock_irqsave(&md->deferred_lock, flags);
535 bio_list_add(&md->deferred, bio);
536 spin_unlock_irqrestore(&md->deferred_lock, flags);
537 queue_work(md->wq, &md->work);
538 }
539
540 /*
541 * Everyone (including functions in this file), should use this
542 * function to access the md->map field, and make sure they call
543 * dm_table_put() when finished.
544 */
dm_get_live_table(struct mapped_device * md)545 struct dm_table *dm_get_live_table(struct mapped_device *md)
546 {
547 struct dm_table *t;
548 unsigned long flags;
549
550 read_lock_irqsave(&md->map_lock, flags);
551 t = md->map;
552 if (t)
553 dm_table_get(t);
554 read_unlock_irqrestore(&md->map_lock, flags);
555
556 return t;
557 }
558
559 /*
560 * Get the geometry associated with a dm device
561 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
563 {
564 *geo = md->geometry;
565
566 return 0;
567 }
568
569 /*
570 * Set the geometry of a device.
571 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
573 {
574 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
575
576 if (geo->start > sz) {
577 DMWARN("Start sector is beyond the geometry limits.");
578 return -EINVAL;
579 }
580
581 md->geometry = *geo;
582
583 return 0;
584 }
585
586 /*-----------------------------------------------------------------
587 * CRUD START:
588 * A more elegant soln is in the works that uses the queue
589 * merge fn, unfortunately there are a couple of changes to
590 * the block layer that I want to make for this. So in the
591 * interests of getting something for people to use I give
592 * you this clearly demarcated crap.
593 *---------------------------------------------------------------*/
594
__noflush_suspending(struct mapped_device * md)595 static int __noflush_suspending(struct mapped_device *md)
596 {
597 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
598 }
599
600 /*
601 * Decrements the number of outstanding ios that a bio has been
602 * cloned into, completing the original io if necc.
603 */
dec_pending(struct dm_io * io,int error)604 static void dec_pending(struct dm_io *io, int error)
605 {
606 unsigned long flags;
607 int io_error;
608 struct bio *bio;
609 struct mapped_device *md = io->md;
610
611 /* Push-back supersedes any I/O errors */
612 if (unlikely(error)) {
613 spin_lock_irqsave(&io->endio_lock, flags);
614 if (!(io->error > 0 && __noflush_suspending(md)))
615 io->error = error;
616 spin_unlock_irqrestore(&io->endio_lock, flags);
617 }
618
619 if (atomic_dec_and_test(&io->io_count)) {
620 if (io->error == DM_ENDIO_REQUEUE) {
621 /*
622 * Target requested pushing back the I/O.
623 */
624 spin_lock_irqsave(&md->deferred_lock, flags);
625 if (__noflush_suspending(md))
626 bio_list_add_head(&md->deferred, io->bio);
627 else
628 /* noflush suspend was interrupted. */
629 io->error = -EIO;
630 spin_unlock_irqrestore(&md->deferred_lock, flags);
631 }
632
633 io_error = io->error;
634 bio = io->bio;
635 end_io_acct(io);
636 free_io(md, io);
637
638 if (io_error == DM_ENDIO_REQUEUE)
639 return;
640
641 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
642 /*
643 * Preflush done for flush with data, reissue
644 * without REQ_FLUSH.
645 */
646 bio->bi_rw &= ~REQ_FLUSH;
647 queue_io(md, bio);
648 } else {
649 /* done with normal IO or empty flush */
650 trace_block_bio_complete(md->queue, bio, io_error);
651 bio_endio(bio, io_error);
652 }
653 }
654 }
655
clone_endio(struct bio * bio,int error)656 static void clone_endio(struct bio *bio, int error)
657 {
658 int r = 0;
659 struct dm_target_io *tio = bio->bi_private;
660 struct dm_io *io = tio->io;
661 struct mapped_device *md = tio->io->md;
662 dm_endio_fn endio = tio->ti->type->end_io;
663
664 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
665 error = -EIO;
666
667 if (endio) {
668 r = endio(tio->ti, bio, error, &tio->info);
669 if (r < 0 || r == DM_ENDIO_REQUEUE)
670 /*
671 * error and requeue request are handled
672 * in dec_pending().
673 */
674 error = r;
675 else if (r == DM_ENDIO_INCOMPLETE)
676 /* The target will handle the io */
677 return;
678 else if (r) {
679 DMWARN("unimplemented target endio return value: %d", r);
680 BUG();
681 }
682 }
683
684 /*
685 * Store md for cleanup instead of tio which is about to get freed.
686 */
687 bio->bi_private = md->bs;
688
689 free_tio(md, tio);
690 bio_put(bio);
691 dec_pending(io, error);
692 }
693
694 /*
695 * Partial completion handling for request-based dm
696 */
end_clone_bio(struct bio * clone,int error)697 static void end_clone_bio(struct bio *clone, int error)
698 {
699 struct dm_rq_clone_bio_info *info = clone->bi_private;
700 struct dm_rq_target_io *tio = info->tio;
701 struct bio *bio = info->orig;
702 unsigned int nr_bytes = info->orig->bi_size;
703
704 bio_put(clone);
705
706 if (tio->error)
707 /*
708 * An error has already been detected on the request.
709 * Once error occurred, just let clone->end_io() handle
710 * the remainder.
711 */
712 return;
713 else if (error) {
714 /*
715 * Don't notice the error to the upper layer yet.
716 * The error handling decision is made by the target driver,
717 * when the request is completed.
718 */
719 tio->error = error;
720 return;
721 }
722
723 /*
724 * I/O for the bio successfully completed.
725 * Notice the data completion to the upper layer.
726 */
727
728 /*
729 * bios are processed from the head of the list.
730 * So the completing bio should always be rq->bio.
731 * If it's not, something wrong is happening.
732 */
733 if (tio->orig->bio != bio)
734 DMERR("bio completion is going in the middle of the request");
735
736 /*
737 * Update the original request.
738 * Do not use blk_end_request() here, because it may complete
739 * the original request before the clone, and break the ordering.
740 */
741 blk_update_request(tio->orig, 0, nr_bytes);
742 }
743
744 /*
745 * Don't touch any member of the md after calling this function because
746 * the md may be freed in dm_put() at the end of this function.
747 * Or do dm_get() before calling this function and dm_put() later.
748 */
rq_completed(struct mapped_device * md,int rw,int run_queue)749 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
750 {
751 atomic_dec(&md->pending[rw]);
752
753 /* nudge anyone waiting on suspend queue */
754 if (!md_in_flight(md))
755 wake_up(&md->wait);
756
757 /*
758 * Run this off this callpath, as drivers could invoke end_io while
759 * inside their request_fn (and holding the queue lock). Calling
760 * back into ->request_fn() could deadlock attempting to grab the
761 * queue lock again.
762 */
763 if (run_queue)
764 blk_run_queue_async(md->queue);
765
766 /*
767 * dm_put() must be at the end of this function. See the comment above
768 */
769 dm_put(md);
770 }
771
free_rq_clone(struct request * clone)772 static void free_rq_clone(struct request *clone)
773 {
774 struct dm_rq_target_io *tio = clone->end_io_data;
775
776 blk_rq_unprep_clone(clone);
777 free_rq_tio(tio);
778 }
779
780 /*
781 * Complete the clone and the original request.
782 * Must be called without queue lock.
783 */
dm_end_request(struct request * clone,int error)784 static void dm_end_request(struct request *clone, int error)
785 {
786 int rw = rq_data_dir(clone);
787 struct dm_rq_target_io *tio = clone->end_io_data;
788 struct mapped_device *md = tio->md;
789 struct request *rq = tio->orig;
790
791 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
792 rq->errors = clone->errors;
793 rq->resid_len = clone->resid_len;
794
795 if (rq->sense)
796 /*
797 * We are using the sense buffer of the original
798 * request.
799 * So setting the length of the sense data is enough.
800 */
801 rq->sense_len = clone->sense_len;
802 }
803
804 free_rq_clone(clone);
805 blk_end_request_all(rq, error);
806 rq_completed(md, rw, true);
807 }
808
dm_unprep_request(struct request * rq)809 static void dm_unprep_request(struct request *rq)
810 {
811 struct request *clone = rq->special;
812
813 rq->special = NULL;
814 rq->cmd_flags &= ~REQ_DONTPREP;
815
816 free_rq_clone(clone);
817 }
818
819 /*
820 * Requeue the original request of a clone.
821 */
dm_requeue_unmapped_request(struct request * clone)822 void dm_requeue_unmapped_request(struct request *clone)
823 {
824 int rw = rq_data_dir(clone);
825 struct dm_rq_target_io *tio = clone->end_io_data;
826 struct mapped_device *md = tio->md;
827 struct request *rq = tio->orig;
828 struct request_queue *q = rq->q;
829 unsigned long flags;
830
831 dm_unprep_request(rq);
832
833 spin_lock_irqsave(q->queue_lock, flags);
834 blk_requeue_request(q, rq);
835 spin_unlock_irqrestore(q->queue_lock, flags);
836
837 rq_completed(md, rw, 0);
838 }
839 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
840
__stop_queue(struct request_queue * q)841 static void __stop_queue(struct request_queue *q)
842 {
843 blk_stop_queue(q);
844 }
845
stop_queue(struct request_queue * q)846 static void stop_queue(struct request_queue *q)
847 {
848 unsigned long flags;
849
850 spin_lock_irqsave(q->queue_lock, flags);
851 __stop_queue(q);
852 spin_unlock_irqrestore(q->queue_lock, flags);
853 }
854
__start_queue(struct request_queue * q)855 static void __start_queue(struct request_queue *q)
856 {
857 if (blk_queue_stopped(q))
858 blk_start_queue(q);
859 }
860
start_queue(struct request_queue * q)861 static void start_queue(struct request_queue *q)
862 {
863 unsigned long flags;
864
865 spin_lock_irqsave(q->queue_lock, flags);
866 __start_queue(q);
867 spin_unlock_irqrestore(q->queue_lock, flags);
868 }
869
dm_done(struct request * clone,int error,bool mapped)870 static void dm_done(struct request *clone, int error, bool mapped)
871 {
872 int r = error;
873 struct dm_rq_target_io *tio = clone->end_io_data;
874 dm_request_endio_fn rq_end_io = NULL;
875
876 if (tio->ti) {
877 rq_end_io = tio->ti->type->rq_end_io;
878
879 if (mapped && rq_end_io)
880 r = rq_end_io(tio->ti, clone, error, &tio->info);
881 }
882
883 if (r <= 0)
884 /* The target wants to complete the I/O */
885 dm_end_request(clone, r);
886 else if (r == DM_ENDIO_INCOMPLETE)
887 /* The target will handle the I/O */
888 return;
889 else if (r == DM_ENDIO_REQUEUE)
890 /* The target wants to requeue the I/O */
891 dm_requeue_unmapped_request(clone);
892 else {
893 DMWARN("unimplemented target endio return value: %d", r);
894 BUG();
895 }
896 }
897
898 /*
899 * Request completion handler for request-based dm
900 */
dm_softirq_done(struct request * rq)901 static void dm_softirq_done(struct request *rq)
902 {
903 bool mapped = true;
904 struct request *clone = rq->completion_data;
905 struct dm_rq_target_io *tio = clone->end_io_data;
906
907 if (rq->cmd_flags & REQ_FAILED)
908 mapped = false;
909
910 dm_done(clone, tio->error, mapped);
911 }
912
913 /*
914 * Complete the clone and the original request with the error status
915 * through softirq context.
916 */
dm_complete_request(struct request * clone,int error)917 static void dm_complete_request(struct request *clone, int error)
918 {
919 struct dm_rq_target_io *tio = clone->end_io_data;
920 struct request *rq = tio->orig;
921
922 tio->error = error;
923 rq->completion_data = clone;
924 blk_complete_request(rq);
925 }
926
927 /*
928 * Complete the not-mapped clone and the original request with the error status
929 * through softirq context.
930 * Target's rq_end_io() function isn't called.
931 * This may be used when the target's map_rq() function fails.
932 */
dm_kill_unmapped_request(struct request * clone,int error)933 void dm_kill_unmapped_request(struct request *clone, int error)
934 {
935 struct dm_rq_target_io *tio = clone->end_io_data;
936 struct request *rq = tio->orig;
937
938 rq->cmd_flags |= REQ_FAILED;
939 dm_complete_request(clone, error);
940 }
941 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
942
943 /*
944 * Called with the queue lock held
945 */
end_clone_request(struct request * clone,int error)946 static void end_clone_request(struct request *clone, int error)
947 {
948 /*
949 * For just cleaning up the information of the queue in which
950 * the clone was dispatched.
951 * The clone is *NOT* freed actually here because it is alloced from
952 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
953 */
954 __blk_put_request(clone->q, clone);
955
956 /*
957 * Actual request completion is done in a softirq context which doesn't
958 * hold the queue lock. Otherwise, deadlock could occur because:
959 * - another request may be submitted by the upper level driver
960 * of the stacking during the completion
961 * - the submission which requires queue lock may be done
962 * against this queue
963 */
964 dm_complete_request(clone, error);
965 }
966
967 /*
968 * Return maximum size of I/O possible at the supplied sector up to the current
969 * target boundary.
970 */
max_io_len_target_boundary(sector_t sector,struct dm_target * ti)971 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
972 {
973 sector_t target_offset = dm_target_offset(ti, sector);
974
975 return ti->len - target_offset;
976 }
977
max_io_len(sector_t sector,struct dm_target * ti)978 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
979 {
980 sector_t len = max_io_len_target_boundary(sector, ti);
981
982 /*
983 * Does the target need to split even further ?
984 */
985 if (ti->split_io) {
986 sector_t boundary;
987 sector_t offset = dm_target_offset(ti, sector);
988 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
989 - offset;
990 if (len > boundary)
991 len = boundary;
992 }
993
994 return len;
995 }
996
__map_bio(struct dm_target * ti,struct bio * clone,struct dm_target_io * tio)997 static void __map_bio(struct dm_target *ti, struct bio *clone,
998 struct dm_target_io *tio)
999 {
1000 int r;
1001 sector_t sector;
1002 struct mapped_device *md;
1003
1004 clone->bi_end_io = clone_endio;
1005 clone->bi_private = tio;
1006
1007 /*
1008 * Map the clone. If r == 0 we don't need to do
1009 * anything, the target has assumed ownership of
1010 * this io.
1011 */
1012 atomic_inc(&tio->io->io_count);
1013 sector = clone->bi_sector;
1014 r = ti->type->map(ti, clone, &tio->info);
1015 if (r == DM_MAPIO_REMAPPED) {
1016 /* the bio has been remapped so dispatch it */
1017
1018 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1019 tio->io->bio->bi_bdev->bd_dev, sector);
1020
1021 generic_make_request(clone);
1022 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1023 /* error the io and bail out, or requeue it if needed */
1024 md = tio->io->md;
1025 dec_pending(tio->io, r);
1026 /*
1027 * Store bio_set for cleanup.
1028 */
1029 clone->bi_end_io = NULL;
1030 clone->bi_private = md->bs;
1031 bio_put(clone);
1032 free_tio(md, tio);
1033 } else if (r) {
1034 DMWARN("unimplemented target map return value: %d", r);
1035 BUG();
1036 }
1037 }
1038
1039 struct clone_info {
1040 struct mapped_device *md;
1041 struct dm_table *map;
1042 struct bio *bio;
1043 struct dm_io *io;
1044 sector_t sector;
1045 sector_t sector_count;
1046 unsigned short idx;
1047 };
1048
dm_bio_destructor(struct bio * bio)1049 static void dm_bio_destructor(struct bio *bio)
1050 {
1051 struct bio_set *bs = bio->bi_private;
1052
1053 bio_free(bio, bs);
1054 }
1055
1056 /*
1057 * Creates a little bio that just does part of a bvec.
1058 */
split_bvec(struct bio * bio,sector_t sector,unsigned short idx,unsigned int offset,unsigned int len,struct bio_set * bs)1059 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1060 unsigned short idx, unsigned int offset,
1061 unsigned int len, struct bio_set *bs)
1062 {
1063 struct bio *clone;
1064 struct bio_vec *bv = bio->bi_io_vec + idx;
1065
1066 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1067 clone->bi_destructor = dm_bio_destructor;
1068 *clone->bi_io_vec = *bv;
1069
1070 clone->bi_sector = sector;
1071 clone->bi_bdev = bio->bi_bdev;
1072 clone->bi_rw = bio->bi_rw;
1073 clone->bi_vcnt = 1;
1074 clone->bi_size = to_bytes(len);
1075 clone->bi_io_vec->bv_offset = offset;
1076 clone->bi_io_vec->bv_len = clone->bi_size;
1077 clone->bi_flags |= 1 << BIO_CLONED;
1078
1079 if (bio_integrity(bio)) {
1080 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1081 bio_integrity_trim(clone,
1082 bio_sector_offset(bio, idx, offset), len);
1083 }
1084
1085 return clone;
1086 }
1087
1088 /*
1089 * Creates a bio that consists of range of complete bvecs.
1090 */
clone_bio(struct bio * bio,sector_t sector,unsigned short idx,unsigned short bv_count,unsigned int len,struct bio_set * bs)1091 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1092 unsigned short idx, unsigned short bv_count,
1093 unsigned int len, struct bio_set *bs)
1094 {
1095 struct bio *clone;
1096
1097 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1098 __bio_clone(clone, bio);
1099 clone->bi_destructor = dm_bio_destructor;
1100 clone->bi_sector = sector;
1101 clone->bi_idx = idx;
1102 clone->bi_vcnt = idx + bv_count;
1103 clone->bi_size = to_bytes(len);
1104 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1105
1106 if (bio_integrity(bio)) {
1107 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1108
1109 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1110 bio_integrity_trim(clone,
1111 bio_sector_offset(bio, idx, 0), len);
1112 }
1113
1114 return clone;
1115 }
1116
alloc_tio(struct clone_info * ci,struct dm_target * ti)1117 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1118 struct dm_target *ti)
1119 {
1120 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1121
1122 tio->io = ci->io;
1123 tio->ti = ti;
1124 memset(&tio->info, 0, sizeof(tio->info));
1125
1126 return tio;
1127 }
1128
__issue_target_request(struct clone_info * ci,struct dm_target * ti,unsigned request_nr,sector_t len)1129 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1130 unsigned request_nr, sector_t len)
1131 {
1132 struct dm_target_io *tio = alloc_tio(ci, ti);
1133 struct bio *clone;
1134
1135 tio->info.target_request_nr = request_nr;
1136
1137 /*
1138 * Discard requests require the bio's inline iovecs be initialized.
1139 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1140 * and discard, so no need for concern about wasted bvec allocations.
1141 */
1142 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1143 __bio_clone(clone, ci->bio);
1144 clone->bi_destructor = dm_bio_destructor;
1145 if (len) {
1146 clone->bi_sector = ci->sector;
1147 clone->bi_size = to_bytes(len);
1148 }
1149
1150 __map_bio(ti, clone, tio);
1151 }
1152
__issue_target_requests(struct clone_info * ci,struct dm_target * ti,unsigned num_requests,sector_t len)1153 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1154 unsigned num_requests, sector_t len)
1155 {
1156 unsigned request_nr;
1157
1158 for (request_nr = 0; request_nr < num_requests; request_nr++)
1159 __issue_target_request(ci, ti, request_nr, len);
1160 }
1161
__clone_and_map_empty_flush(struct clone_info * ci)1162 static int __clone_and_map_empty_flush(struct clone_info *ci)
1163 {
1164 unsigned target_nr = 0;
1165 struct dm_target *ti;
1166
1167 BUG_ON(bio_has_data(ci->bio));
1168 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1169 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1170
1171 return 0;
1172 }
1173
1174 /*
1175 * Perform all io with a single clone.
1176 */
__clone_and_map_simple(struct clone_info * ci,struct dm_target * ti)1177 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1178 {
1179 struct bio *clone, *bio = ci->bio;
1180 struct dm_target_io *tio;
1181
1182 tio = alloc_tio(ci, ti);
1183 clone = clone_bio(bio, ci->sector, ci->idx,
1184 bio->bi_vcnt - ci->idx, ci->sector_count,
1185 ci->md->bs);
1186 __map_bio(ti, clone, tio);
1187 ci->sector_count = 0;
1188 }
1189
__clone_and_map_discard(struct clone_info * ci)1190 static int __clone_and_map_discard(struct clone_info *ci)
1191 {
1192 struct dm_target *ti;
1193 sector_t len;
1194
1195 do {
1196 ti = dm_table_find_target(ci->map, ci->sector);
1197 if (!dm_target_is_valid(ti))
1198 return -EIO;
1199
1200 /*
1201 * Even though the device advertised discard support,
1202 * that does not mean every target supports it, and
1203 * reconfiguration might also have changed that since the
1204 * check was performed.
1205 */
1206 if (!ti->num_discard_requests)
1207 return -EOPNOTSUPP;
1208
1209 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1210
1211 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1212
1213 ci->sector += len;
1214 } while (ci->sector_count -= len);
1215
1216 return 0;
1217 }
1218
__clone_and_map(struct clone_info * ci)1219 static int __clone_and_map(struct clone_info *ci)
1220 {
1221 struct bio *clone, *bio = ci->bio;
1222 struct dm_target *ti;
1223 sector_t len = 0, max;
1224 struct dm_target_io *tio;
1225
1226 if (unlikely(bio->bi_rw & REQ_DISCARD))
1227 return __clone_and_map_discard(ci);
1228
1229 ti = dm_table_find_target(ci->map, ci->sector);
1230 if (!dm_target_is_valid(ti))
1231 return -EIO;
1232
1233 max = max_io_len(ci->sector, ti);
1234
1235 if (ci->sector_count <= max) {
1236 /*
1237 * Optimise for the simple case where we can do all of
1238 * the remaining io with a single clone.
1239 */
1240 __clone_and_map_simple(ci, ti);
1241
1242 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1243 /*
1244 * There are some bvecs that don't span targets.
1245 * Do as many of these as possible.
1246 */
1247 int i;
1248 sector_t remaining = max;
1249 sector_t bv_len;
1250
1251 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1252 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1253
1254 if (bv_len > remaining)
1255 break;
1256
1257 remaining -= bv_len;
1258 len += bv_len;
1259 }
1260
1261 tio = alloc_tio(ci, ti);
1262 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1263 ci->md->bs);
1264 __map_bio(ti, clone, tio);
1265
1266 ci->sector += len;
1267 ci->sector_count -= len;
1268 ci->idx = i;
1269
1270 } else {
1271 /*
1272 * Handle a bvec that must be split between two or more targets.
1273 */
1274 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1275 sector_t remaining = to_sector(bv->bv_len);
1276 unsigned int offset = 0;
1277
1278 do {
1279 if (offset) {
1280 ti = dm_table_find_target(ci->map, ci->sector);
1281 if (!dm_target_is_valid(ti))
1282 return -EIO;
1283
1284 max = max_io_len(ci->sector, ti);
1285 }
1286
1287 len = min(remaining, max);
1288
1289 tio = alloc_tio(ci, ti);
1290 clone = split_bvec(bio, ci->sector, ci->idx,
1291 bv->bv_offset + offset, len,
1292 ci->md->bs);
1293
1294 __map_bio(ti, clone, tio);
1295
1296 ci->sector += len;
1297 ci->sector_count -= len;
1298 offset += to_bytes(len);
1299 } while (remaining -= len);
1300
1301 ci->idx++;
1302 }
1303
1304 return 0;
1305 }
1306
1307 /*
1308 * Split the bio into several clones and submit it to targets.
1309 */
__split_and_process_bio(struct mapped_device * md,struct bio * bio)1310 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1311 {
1312 struct clone_info ci;
1313 int error = 0;
1314
1315 ci.map = dm_get_live_table(md);
1316 if (unlikely(!ci.map)) {
1317 bio_io_error(bio);
1318 return;
1319 }
1320
1321 ci.md = md;
1322 ci.io = alloc_io(md);
1323 ci.io->error = 0;
1324 atomic_set(&ci.io->io_count, 1);
1325 ci.io->bio = bio;
1326 ci.io->md = md;
1327 spin_lock_init(&ci.io->endio_lock);
1328 ci.sector = bio->bi_sector;
1329 ci.idx = bio->bi_idx;
1330
1331 start_io_acct(ci.io);
1332 if (bio->bi_rw & REQ_FLUSH) {
1333 ci.bio = &ci.md->flush_bio;
1334 ci.sector_count = 0;
1335 error = __clone_and_map_empty_flush(&ci);
1336 /* dec_pending submits any data associated with flush */
1337 } else {
1338 ci.bio = bio;
1339 ci.sector_count = bio_sectors(bio);
1340 while (ci.sector_count && !error)
1341 error = __clone_and_map(&ci);
1342 }
1343
1344 /* drop the extra reference count */
1345 dec_pending(ci.io, error);
1346 dm_table_put(ci.map);
1347 }
1348 /*-----------------------------------------------------------------
1349 * CRUD END
1350 *---------------------------------------------------------------*/
1351
dm_merge_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)1352 static int dm_merge_bvec(struct request_queue *q,
1353 struct bvec_merge_data *bvm,
1354 struct bio_vec *biovec)
1355 {
1356 struct mapped_device *md = q->queuedata;
1357 struct dm_table *map = dm_get_live_table(md);
1358 struct dm_target *ti;
1359 sector_t max_sectors;
1360 int max_size = 0;
1361
1362 if (unlikely(!map))
1363 goto out;
1364
1365 ti = dm_table_find_target(map, bvm->bi_sector);
1366 if (!dm_target_is_valid(ti))
1367 goto out_table;
1368
1369 /*
1370 * Find maximum amount of I/O that won't need splitting
1371 */
1372 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1373 (sector_t) BIO_MAX_SECTORS);
1374 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1375 if (max_size < 0)
1376 max_size = 0;
1377
1378 /*
1379 * merge_bvec_fn() returns number of bytes
1380 * it can accept at this offset
1381 * max is precomputed maximal io size
1382 */
1383 if (max_size && ti->type->merge)
1384 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1385 /*
1386 * If the target doesn't support merge method and some of the devices
1387 * provided their merge_bvec method (we know this by looking at
1388 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1389 * entries. So always set max_size to 0, and the code below allows
1390 * just one page.
1391 */
1392 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1393
1394 max_size = 0;
1395
1396 out_table:
1397 dm_table_put(map);
1398
1399 out:
1400 /*
1401 * Always allow an entire first page
1402 */
1403 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1404 max_size = biovec->bv_len;
1405
1406 return max_size;
1407 }
1408
1409 /*
1410 * The request function that just remaps the bio built up by
1411 * dm_merge_bvec.
1412 */
_dm_request(struct request_queue * q,struct bio * bio)1413 static void _dm_request(struct request_queue *q, struct bio *bio)
1414 {
1415 int rw = bio_data_dir(bio);
1416 struct mapped_device *md = q->queuedata;
1417 int cpu;
1418
1419 down_read(&md->io_lock);
1420
1421 cpu = part_stat_lock();
1422 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1423 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1424 part_stat_unlock();
1425
1426 /* if we're suspended, we have to queue this io for later */
1427 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1428 up_read(&md->io_lock);
1429
1430 if (bio_rw(bio) != READA)
1431 queue_io(md, bio);
1432 else
1433 bio_io_error(bio);
1434 return;
1435 }
1436
1437 __split_and_process_bio(md, bio);
1438 up_read(&md->io_lock);
1439 return;
1440 }
1441
dm_request_based(struct mapped_device * md)1442 static int dm_request_based(struct mapped_device *md)
1443 {
1444 return blk_queue_stackable(md->queue);
1445 }
1446
dm_request(struct request_queue * q,struct bio * bio)1447 static void dm_request(struct request_queue *q, struct bio *bio)
1448 {
1449 struct mapped_device *md = q->queuedata;
1450
1451 if (dm_request_based(md))
1452 blk_queue_bio(q, bio);
1453 else
1454 _dm_request(q, bio);
1455 }
1456
dm_dispatch_request(struct request * rq)1457 void dm_dispatch_request(struct request *rq)
1458 {
1459 int r;
1460
1461 if (blk_queue_io_stat(rq->q))
1462 rq->cmd_flags |= REQ_IO_STAT;
1463
1464 rq->start_time = jiffies;
1465 r = blk_insert_cloned_request(rq->q, rq);
1466 if (r)
1467 dm_complete_request(rq, r);
1468 }
1469 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1470
dm_rq_bio_destructor(struct bio * bio)1471 static void dm_rq_bio_destructor(struct bio *bio)
1472 {
1473 struct dm_rq_clone_bio_info *info = bio->bi_private;
1474 struct mapped_device *md = info->tio->md;
1475
1476 free_bio_info(info);
1477 bio_free(bio, md->bs);
1478 }
1479
dm_rq_bio_constructor(struct bio * bio,struct bio * bio_orig,void * data)1480 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1481 void *data)
1482 {
1483 struct dm_rq_target_io *tio = data;
1484 struct mapped_device *md = tio->md;
1485 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1486
1487 if (!info)
1488 return -ENOMEM;
1489
1490 info->orig = bio_orig;
1491 info->tio = tio;
1492 bio->bi_end_io = end_clone_bio;
1493 bio->bi_private = info;
1494 bio->bi_destructor = dm_rq_bio_destructor;
1495
1496 return 0;
1497 }
1498
setup_clone(struct request * clone,struct request * rq,struct dm_rq_target_io * tio)1499 static int setup_clone(struct request *clone, struct request *rq,
1500 struct dm_rq_target_io *tio)
1501 {
1502 int r;
1503
1504 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1505 dm_rq_bio_constructor, tio);
1506 if (r)
1507 return r;
1508
1509 clone->cmd = rq->cmd;
1510 clone->cmd_len = rq->cmd_len;
1511 clone->sense = rq->sense;
1512 clone->buffer = rq->buffer;
1513 clone->end_io = end_clone_request;
1514 clone->end_io_data = tio;
1515
1516 return 0;
1517 }
1518
clone_rq(struct request * rq,struct mapped_device * md,gfp_t gfp_mask)1519 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1520 gfp_t gfp_mask)
1521 {
1522 struct request *clone;
1523 struct dm_rq_target_io *tio;
1524
1525 tio = alloc_rq_tio(md, gfp_mask);
1526 if (!tio)
1527 return NULL;
1528
1529 tio->md = md;
1530 tio->ti = NULL;
1531 tio->orig = rq;
1532 tio->error = 0;
1533 memset(&tio->info, 0, sizeof(tio->info));
1534
1535 clone = &tio->clone;
1536 if (setup_clone(clone, rq, tio)) {
1537 /* -ENOMEM */
1538 free_rq_tio(tio);
1539 return NULL;
1540 }
1541
1542 return clone;
1543 }
1544
1545 /*
1546 * Called with the queue lock held.
1547 */
dm_prep_fn(struct request_queue * q,struct request * rq)1548 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1549 {
1550 struct mapped_device *md = q->queuedata;
1551 struct request *clone;
1552
1553 if (unlikely(rq->special)) {
1554 DMWARN("Already has something in rq->special.");
1555 return BLKPREP_KILL;
1556 }
1557
1558 clone = clone_rq(rq, md, GFP_ATOMIC);
1559 if (!clone)
1560 return BLKPREP_DEFER;
1561
1562 rq->special = clone;
1563 rq->cmd_flags |= REQ_DONTPREP;
1564
1565 return BLKPREP_OK;
1566 }
1567
1568 /*
1569 * Returns:
1570 * 0 : the request has been processed (not requeued)
1571 * !0 : the request has been requeued
1572 */
map_request(struct dm_target * ti,struct request * clone,struct mapped_device * md)1573 static int map_request(struct dm_target *ti, struct request *clone,
1574 struct mapped_device *md)
1575 {
1576 int r, requeued = 0;
1577 struct dm_rq_target_io *tio = clone->end_io_data;
1578
1579 tio->ti = ti;
1580 r = ti->type->map_rq(ti, clone, &tio->info);
1581 switch (r) {
1582 case DM_MAPIO_SUBMITTED:
1583 /* The target has taken the I/O to submit by itself later */
1584 break;
1585 case DM_MAPIO_REMAPPED:
1586 /* The target has remapped the I/O so dispatch it */
1587 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1588 blk_rq_pos(tio->orig));
1589 dm_dispatch_request(clone);
1590 break;
1591 case DM_MAPIO_REQUEUE:
1592 /* The target wants to requeue the I/O */
1593 dm_requeue_unmapped_request(clone);
1594 requeued = 1;
1595 break;
1596 default:
1597 if (r > 0) {
1598 DMWARN("unimplemented target map return value: %d", r);
1599 BUG();
1600 }
1601
1602 /* The target wants to complete the I/O */
1603 dm_kill_unmapped_request(clone, r);
1604 break;
1605 }
1606
1607 return requeued;
1608 }
1609
dm_start_request(struct mapped_device * md,struct request * orig)1610 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1611 {
1612 struct request *clone;
1613
1614 blk_start_request(orig);
1615 clone = orig->special;
1616 atomic_inc(&md->pending[rq_data_dir(clone)]);
1617
1618 /*
1619 * Hold the md reference here for the in-flight I/O.
1620 * We can't rely on the reference count by device opener,
1621 * because the device may be closed during the request completion
1622 * when all bios are completed.
1623 * See the comment in rq_completed() too.
1624 */
1625 dm_get(md);
1626
1627 return clone;
1628 }
1629
1630 /*
1631 * q->request_fn for request-based dm.
1632 * Called with the queue lock held.
1633 */
dm_request_fn(struct request_queue * q)1634 static void dm_request_fn(struct request_queue *q)
1635 {
1636 struct mapped_device *md = q->queuedata;
1637 struct dm_table *map = dm_get_live_table(md);
1638 struct dm_target *ti;
1639 struct request *rq, *clone;
1640 sector_t pos;
1641
1642 /*
1643 * For suspend, check blk_queue_stopped() and increment
1644 * ->pending within a single queue_lock not to increment the
1645 * number of in-flight I/Os after the queue is stopped in
1646 * dm_suspend().
1647 */
1648 while (!blk_queue_stopped(q)) {
1649 rq = blk_peek_request(q);
1650 if (!rq)
1651 goto delay_and_out;
1652
1653 /* always use block 0 to find the target for flushes for now */
1654 pos = 0;
1655 if (!(rq->cmd_flags & REQ_FLUSH))
1656 pos = blk_rq_pos(rq);
1657
1658 ti = dm_table_find_target(map, pos);
1659 if (!dm_target_is_valid(ti)) {
1660 /*
1661 * Must perform setup, that dm_done() requires,
1662 * before calling dm_kill_unmapped_request
1663 */
1664 DMERR_LIMIT("request attempted access beyond the end of device");
1665 clone = dm_start_request(md, rq);
1666 dm_kill_unmapped_request(clone, -EIO);
1667 continue;
1668 }
1669
1670 if (ti->type->busy && ti->type->busy(ti))
1671 goto delay_and_out;
1672
1673 clone = dm_start_request(md, rq);
1674
1675 spin_unlock(q->queue_lock);
1676 if (map_request(ti, clone, md))
1677 goto requeued;
1678
1679 BUG_ON(!irqs_disabled());
1680 spin_lock(q->queue_lock);
1681 }
1682
1683 goto out;
1684
1685 requeued:
1686 BUG_ON(!irqs_disabled());
1687 spin_lock(q->queue_lock);
1688
1689 delay_and_out:
1690 blk_delay_queue(q, HZ / 10);
1691 out:
1692 dm_table_put(map);
1693 }
1694
dm_underlying_device_busy(struct request_queue * q)1695 int dm_underlying_device_busy(struct request_queue *q)
1696 {
1697 return blk_lld_busy(q);
1698 }
1699 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1700
dm_lld_busy(struct request_queue * q)1701 static int dm_lld_busy(struct request_queue *q)
1702 {
1703 int r;
1704 struct mapped_device *md = q->queuedata;
1705 struct dm_table *map = dm_get_live_table(md);
1706
1707 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1708 r = 1;
1709 else
1710 r = dm_table_any_busy_target(map);
1711
1712 dm_table_put(map);
1713
1714 return r;
1715 }
1716
dm_any_congested(void * congested_data,int bdi_bits)1717 static int dm_any_congested(void *congested_data, int bdi_bits)
1718 {
1719 int r = bdi_bits;
1720 struct mapped_device *md = congested_data;
1721 struct dm_table *map;
1722
1723 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1724 map = dm_get_live_table(md);
1725 if (map) {
1726 /*
1727 * Request-based dm cares about only own queue for
1728 * the query about congestion status of request_queue
1729 */
1730 if (dm_request_based(md))
1731 r = md->queue->backing_dev_info.state &
1732 bdi_bits;
1733 else
1734 r = dm_table_any_congested(map, bdi_bits);
1735
1736 dm_table_put(map);
1737 }
1738 }
1739
1740 return r;
1741 }
1742
1743 /*-----------------------------------------------------------------
1744 * An IDR is used to keep track of allocated minor numbers.
1745 *---------------------------------------------------------------*/
free_minor(int minor)1746 static void free_minor(int minor)
1747 {
1748 spin_lock(&_minor_lock);
1749 idr_remove(&_minor_idr, minor);
1750 spin_unlock(&_minor_lock);
1751 }
1752
1753 /*
1754 * See if the device with a specific minor # is free.
1755 */
specific_minor(int minor)1756 static int specific_minor(int minor)
1757 {
1758 int r, m;
1759
1760 if (minor >= (1 << MINORBITS))
1761 return -EINVAL;
1762
1763 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1764 if (!r)
1765 return -ENOMEM;
1766
1767 spin_lock(&_minor_lock);
1768
1769 if (idr_find(&_minor_idr, minor)) {
1770 r = -EBUSY;
1771 goto out;
1772 }
1773
1774 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1775 if (r)
1776 goto out;
1777
1778 if (m != minor) {
1779 idr_remove(&_minor_idr, m);
1780 r = -EBUSY;
1781 goto out;
1782 }
1783
1784 out:
1785 spin_unlock(&_minor_lock);
1786 return r;
1787 }
1788
next_free_minor(int * minor)1789 static int next_free_minor(int *minor)
1790 {
1791 int r, m;
1792
1793 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1794 if (!r)
1795 return -ENOMEM;
1796
1797 spin_lock(&_minor_lock);
1798
1799 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1800 if (r)
1801 goto out;
1802
1803 if (m >= (1 << MINORBITS)) {
1804 idr_remove(&_minor_idr, m);
1805 r = -ENOSPC;
1806 goto out;
1807 }
1808
1809 *minor = m;
1810
1811 out:
1812 spin_unlock(&_minor_lock);
1813 return r;
1814 }
1815
1816 static const struct block_device_operations dm_blk_dops;
1817
1818 static void dm_wq_work(struct work_struct *work);
1819
dm_init_md_queue(struct mapped_device * md)1820 static void dm_init_md_queue(struct mapped_device *md)
1821 {
1822 /*
1823 * Request-based dm devices cannot be stacked on top of bio-based dm
1824 * devices. The type of this dm device has not been decided yet.
1825 * The type is decided at the first table loading time.
1826 * To prevent problematic device stacking, clear the queue flag
1827 * for request stacking support until then.
1828 *
1829 * This queue is new, so no concurrency on the queue_flags.
1830 */
1831 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1832
1833 md->queue->queuedata = md;
1834 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1835 md->queue->backing_dev_info.congested_data = md;
1836 blk_queue_make_request(md->queue, dm_request);
1837 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1838 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1839 }
1840
1841 /*
1842 * Allocate and initialise a blank device with a given minor.
1843 */
alloc_dev(int minor)1844 static struct mapped_device *alloc_dev(int minor)
1845 {
1846 int r;
1847 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1848 void *old_md;
1849
1850 if (!md) {
1851 DMWARN("unable to allocate device, out of memory.");
1852 return NULL;
1853 }
1854
1855 if (!try_module_get(THIS_MODULE))
1856 goto bad_module_get;
1857
1858 /* get a minor number for the dev */
1859 if (minor == DM_ANY_MINOR)
1860 r = next_free_minor(&minor);
1861 else
1862 r = specific_minor(minor);
1863 if (r < 0)
1864 goto bad_minor;
1865
1866 md->type = DM_TYPE_NONE;
1867 init_rwsem(&md->io_lock);
1868 mutex_init(&md->suspend_lock);
1869 mutex_init(&md->type_lock);
1870 spin_lock_init(&md->deferred_lock);
1871 rwlock_init(&md->map_lock);
1872 atomic_set(&md->holders, 1);
1873 atomic_set(&md->open_count, 0);
1874 atomic_set(&md->event_nr, 0);
1875 atomic_set(&md->uevent_seq, 0);
1876 INIT_LIST_HEAD(&md->uevent_list);
1877 spin_lock_init(&md->uevent_lock);
1878
1879 md->queue = blk_alloc_queue(GFP_KERNEL);
1880 if (!md->queue)
1881 goto bad_queue;
1882
1883 dm_init_md_queue(md);
1884
1885 md->disk = alloc_disk(1);
1886 if (!md->disk)
1887 goto bad_disk;
1888
1889 atomic_set(&md->pending[0], 0);
1890 atomic_set(&md->pending[1], 0);
1891 init_waitqueue_head(&md->wait);
1892 INIT_WORK(&md->work, dm_wq_work);
1893 init_waitqueue_head(&md->eventq);
1894 init_completion(&md->kobj_holder.completion);
1895
1896 md->disk->major = _major;
1897 md->disk->first_minor = minor;
1898 md->disk->fops = &dm_blk_dops;
1899 md->disk->queue = md->queue;
1900 md->disk->private_data = md;
1901 sprintf(md->disk->disk_name, "dm-%d", minor);
1902 add_disk(md->disk);
1903 format_dev_t(md->name, MKDEV(_major, minor));
1904
1905 md->wq = alloc_workqueue("kdmflush",
1906 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1907 if (!md->wq)
1908 goto bad_thread;
1909
1910 md->bdev = bdget_disk(md->disk, 0);
1911 if (!md->bdev)
1912 goto bad_bdev;
1913
1914 bio_init(&md->flush_bio);
1915 md->flush_bio.bi_bdev = md->bdev;
1916 md->flush_bio.bi_rw = WRITE_FLUSH;
1917
1918 /* Populate the mapping, nobody knows we exist yet */
1919 spin_lock(&_minor_lock);
1920 old_md = idr_replace(&_minor_idr, md, minor);
1921 spin_unlock(&_minor_lock);
1922
1923 BUG_ON(old_md != MINOR_ALLOCED);
1924
1925 return md;
1926
1927 bad_bdev:
1928 destroy_workqueue(md->wq);
1929 bad_thread:
1930 del_gendisk(md->disk);
1931 put_disk(md->disk);
1932 bad_disk:
1933 blk_cleanup_queue(md->queue);
1934 bad_queue:
1935 free_minor(minor);
1936 bad_minor:
1937 module_put(THIS_MODULE);
1938 bad_module_get:
1939 kfree(md);
1940 return NULL;
1941 }
1942
1943 static void unlock_fs(struct mapped_device *md);
1944
free_dev(struct mapped_device * md)1945 static void free_dev(struct mapped_device *md)
1946 {
1947 int minor = MINOR(disk_devt(md->disk));
1948
1949 unlock_fs(md);
1950 bdput(md->bdev);
1951 destroy_workqueue(md->wq);
1952 if (md->tio_pool)
1953 mempool_destroy(md->tio_pool);
1954 if (md->io_pool)
1955 mempool_destroy(md->io_pool);
1956 if (md->bs)
1957 bioset_free(md->bs);
1958 blk_integrity_unregister(md->disk);
1959 del_gendisk(md->disk);
1960 free_minor(minor);
1961
1962 spin_lock(&_minor_lock);
1963 md->disk->private_data = NULL;
1964 spin_unlock(&_minor_lock);
1965
1966 put_disk(md->disk);
1967 blk_cleanup_queue(md->queue);
1968 module_put(THIS_MODULE);
1969 kfree(md);
1970 }
1971
__bind_mempools(struct mapped_device * md,struct dm_table * t)1972 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1973 {
1974 struct dm_md_mempools *p;
1975
1976 if (md->io_pool && md->tio_pool && md->bs)
1977 /* the md already has necessary mempools */
1978 goto out;
1979
1980 p = dm_table_get_md_mempools(t);
1981 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1982
1983 md->io_pool = p->io_pool;
1984 p->io_pool = NULL;
1985 md->tio_pool = p->tio_pool;
1986 p->tio_pool = NULL;
1987 md->bs = p->bs;
1988 p->bs = NULL;
1989
1990 out:
1991 /* mempool bind completed, now no need any mempools in the table */
1992 dm_table_free_md_mempools(t);
1993 }
1994
1995 /*
1996 * Bind a table to the device.
1997 */
event_callback(void * context)1998 static void event_callback(void *context)
1999 {
2000 unsigned long flags;
2001 LIST_HEAD(uevents);
2002 struct mapped_device *md = (struct mapped_device *) context;
2003
2004 spin_lock_irqsave(&md->uevent_lock, flags);
2005 list_splice_init(&md->uevent_list, &uevents);
2006 spin_unlock_irqrestore(&md->uevent_lock, flags);
2007
2008 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2009
2010 atomic_inc(&md->event_nr);
2011 wake_up(&md->eventq);
2012 }
2013
2014 /*
2015 * Protected by md->suspend_lock obtained by dm_swap_table().
2016 */
__set_size(struct mapped_device * md,sector_t size)2017 static void __set_size(struct mapped_device *md, sector_t size)
2018 {
2019 set_capacity(md->disk, size);
2020
2021 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2022 }
2023
2024 /*
2025 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2026 *
2027 * If this function returns 0, then the device is either a non-dm
2028 * device without a merge_bvec_fn, or it is a dm device that is
2029 * able to split any bios it receives that are too big.
2030 */
dm_queue_merge_is_compulsory(struct request_queue * q)2031 int dm_queue_merge_is_compulsory(struct request_queue *q)
2032 {
2033 struct mapped_device *dev_md;
2034
2035 if (!q->merge_bvec_fn)
2036 return 0;
2037
2038 if (q->make_request_fn == dm_request) {
2039 dev_md = q->queuedata;
2040 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2041 return 0;
2042 }
2043
2044 return 1;
2045 }
2046
dm_device_merge_is_compulsory(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2047 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2048 struct dm_dev *dev, sector_t start,
2049 sector_t len, void *data)
2050 {
2051 struct block_device *bdev = dev->bdev;
2052 struct request_queue *q = bdev_get_queue(bdev);
2053
2054 return dm_queue_merge_is_compulsory(q);
2055 }
2056
2057 /*
2058 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2059 * on the properties of the underlying devices.
2060 */
dm_table_merge_is_optional(struct dm_table * table)2061 static int dm_table_merge_is_optional(struct dm_table *table)
2062 {
2063 unsigned i = 0;
2064 struct dm_target *ti;
2065
2066 while (i < dm_table_get_num_targets(table)) {
2067 ti = dm_table_get_target(table, i++);
2068
2069 if (ti->type->iterate_devices &&
2070 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2071 return 0;
2072 }
2073
2074 return 1;
2075 }
2076
2077 /*
2078 * Returns old map, which caller must destroy.
2079 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2080 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2081 struct queue_limits *limits)
2082 {
2083 struct dm_table *old_map;
2084 struct request_queue *q = md->queue;
2085 sector_t size;
2086 unsigned long flags;
2087 int merge_is_optional;
2088
2089 size = dm_table_get_size(t);
2090
2091 /*
2092 * Wipe any geometry if the size of the table changed.
2093 */
2094 if (size != get_capacity(md->disk))
2095 memset(&md->geometry, 0, sizeof(md->geometry));
2096
2097 __set_size(md, size);
2098
2099 dm_table_event_callback(t, event_callback, md);
2100
2101 /*
2102 * The queue hasn't been stopped yet, if the old table type wasn't
2103 * for request-based during suspension. So stop it to prevent
2104 * I/O mapping before resume.
2105 * This must be done before setting the queue restrictions,
2106 * because request-based dm may be run just after the setting.
2107 */
2108 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2109 stop_queue(q);
2110
2111 __bind_mempools(md, t);
2112
2113 merge_is_optional = dm_table_merge_is_optional(t);
2114
2115 write_lock_irqsave(&md->map_lock, flags);
2116 old_map = md->map;
2117 md->map = t;
2118 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2119
2120 dm_table_set_restrictions(t, q, limits);
2121 if (merge_is_optional)
2122 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2123 else
2124 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2125 write_unlock_irqrestore(&md->map_lock, flags);
2126
2127 return old_map;
2128 }
2129
2130 /*
2131 * Returns unbound table for the caller to free.
2132 */
__unbind(struct mapped_device * md)2133 static struct dm_table *__unbind(struct mapped_device *md)
2134 {
2135 struct dm_table *map = md->map;
2136 unsigned long flags;
2137
2138 if (!map)
2139 return NULL;
2140
2141 dm_table_event_callback(map, NULL, NULL);
2142 write_lock_irqsave(&md->map_lock, flags);
2143 md->map = NULL;
2144 write_unlock_irqrestore(&md->map_lock, flags);
2145
2146 return map;
2147 }
2148
2149 /*
2150 * Constructor for a new device.
2151 */
dm_create(int minor,struct mapped_device ** result)2152 int dm_create(int minor, struct mapped_device **result)
2153 {
2154 struct mapped_device *md;
2155
2156 md = alloc_dev(minor);
2157 if (!md)
2158 return -ENXIO;
2159
2160 dm_sysfs_init(md);
2161
2162 *result = md;
2163 return 0;
2164 }
2165
2166 /*
2167 * Functions to manage md->type.
2168 * All are required to hold md->type_lock.
2169 */
dm_lock_md_type(struct mapped_device * md)2170 void dm_lock_md_type(struct mapped_device *md)
2171 {
2172 mutex_lock(&md->type_lock);
2173 }
2174
dm_unlock_md_type(struct mapped_device * md)2175 void dm_unlock_md_type(struct mapped_device *md)
2176 {
2177 mutex_unlock(&md->type_lock);
2178 }
2179
dm_set_md_type(struct mapped_device * md,unsigned type)2180 void dm_set_md_type(struct mapped_device *md, unsigned type)
2181 {
2182 md->type = type;
2183 }
2184
dm_get_md_type(struct mapped_device * md)2185 unsigned dm_get_md_type(struct mapped_device *md)
2186 {
2187 return md->type;
2188 }
2189
dm_get_immutable_target_type(struct mapped_device * md)2190 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2191 {
2192 return md->immutable_target_type;
2193 }
2194
2195 /*
2196 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2197 */
dm_init_request_based_queue(struct mapped_device * md)2198 static int dm_init_request_based_queue(struct mapped_device *md)
2199 {
2200 struct request_queue *q = NULL;
2201
2202 if (md->queue->elevator)
2203 return 1;
2204
2205 /* Fully initialize the queue */
2206 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2207 if (!q)
2208 return 0;
2209
2210 md->queue = q;
2211 dm_init_md_queue(md);
2212 blk_queue_softirq_done(md->queue, dm_softirq_done);
2213 blk_queue_prep_rq(md->queue, dm_prep_fn);
2214 blk_queue_lld_busy(md->queue, dm_lld_busy);
2215
2216 elv_register_queue(md->queue);
2217
2218 return 1;
2219 }
2220
2221 /*
2222 * Setup the DM device's queue based on md's type
2223 */
dm_setup_md_queue(struct mapped_device * md)2224 int dm_setup_md_queue(struct mapped_device *md)
2225 {
2226 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2227 !dm_init_request_based_queue(md)) {
2228 DMWARN("Cannot initialize queue for request-based mapped device");
2229 return -EINVAL;
2230 }
2231
2232 return 0;
2233 }
2234
dm_find_md(dev_t dev)2235 static struct mapped_device *dm_find_md(dev_t dev)
2236 {
2237 struct mapped_device *md;
2238 unsigned minor = MINOR(dev);
2239
2240 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2241 return NULL;
2242
2243 spin_lock(&_minor_lock);
2244
2245 md = idr_find(&_minor_idr, minor);
2246 if (md && (md == MINOR_ALLOCED ||
2247 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2248 dm_deleting_md(md) ||
2249 test_bit(DMF_FREEING, &md->flags))) {
2250 md = NULL;
2251 goto out;
2252 }
2253
2254 out:
2255 spin_unlock(&_minor_lock);
2256
2257 return md;
2258 }
2259
dm_get_md(dev_t dev)2260 struct mapped_device *dm_get_md(dev_t dev)
2261 {
2262 struct mapped_device *md = dm_find_md(dev);
2263
2264 if (md)
2265 dm_get(md);
2266
2267 return md;
2268 }
2269 EXPORT_SYMBOL_GPL(dm_get_md);
2270
dm_get_mdptr(struct mapped_device * md)2271 void *dm_get_mdptr(struct mapped_device *md)
2272 {
2273 return md->interface_ptr;
2274 }
2275
dm_set_mdptr(struct mapped_device * md,void * ptr)2276 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2277 {
2278 md->interface_ptr = ptr;
2279 }
2280
dm_get(struct mapped_device * md)2281 void dm_get(struct mapped_device *md)
2282 {
2283 atomic_inc(&md->holders);
2284 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2285 }
2286
dm_device_name(struct mapped_device * md)2287 const char *dm_device_name(struct mapped_device *md)
2288 {
2289 return md->name;
2290 }
2291 EXPORT_SYMBOL_GPL(dm_device_name);
2292
__dm_destroy(struct mapped_device * md,bool wait)2293 static void __dm_destroy(struct mapped_device *md, bool wait)
2294 {
2295 struct dm_table *map;
2296
2297 might_sleep();
2298
2299 spin_lock(&_minor_lock);
2300 map = dm_get_live_table(md);
2301 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2302 set_bit(DMF_FREEING, &md->flags);
2303 spin_unlock(&_minor_lock);
2304
2305 if (!dm_suspended_md(md)) {
2306 dm_table_presuspend_targets(map);
2307 dm_table_postsuspend_targets(map);
2308 }
2309
2310 /*
2311 * Rare, but there may be I/O requests still going to complete,
2312 * for example. Wait for all references to disappear.
2313 * No one should increment the reference count of the mapped_device,
2314 * after the mapped_device state becomes DMF_FREEING.
2315 */
2316 if (wait)
2317 while (atomic_read(&md->holders))
2318 msleep(1);
2319 else if (atomic_read(&md->holders))
2320 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2321 dm_device_name(md), atomic_read(&md->holders));
2322
2323 dm_sysfs_exit(md);
2324 dm_table_put(map);
2325 dm_table_destroy(__unbind(md));
2326 free_dev(md);
2327 }
2328
dm_destroy(struct mapped_device * md)2329 void dm_destroy(struct mapped_device *md)
2330 {
2331 __dm_destroy(md, true);
2332 }
2333
dm_destroy_immediate(struct mapped_device * md)2334 void dm_destroy_immediate(struct mapped_device *md)
2335 {
2336 __dm_destroy(md, false);
2337 }
2338
dm_put(struct mapped_device * md)2339 void dm_put(struct mapped_device *md)
2340 {
2341 atomic_dec(&md->holders);
2342 }
2343 EXPORT_SYMBOL_GPL(dm_put);
2344
dm_wait_for_completion(struct mapped_device * md,int interruptible)2345 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2346 {
2347 int r = 0;
2348 DECLARE_WAITQUEUE(wait, current);
2349
2350 add_wait_queue(&md->wait, &wait);
2351
2352 while (1) {
2353 set_current_state(interruptible);
2354
2355 if (!md_in_flight(md))
2356 break;
2357
2358 if (interruptible == TASK_INTERRUPTIBLE &&
2359 signal_pending(current)) {
2360 r = -EINTR;
2361 break;
2362 }
2363
2364 io_schedule();
2365 }
2366 set_current_state(TASK_RUNNING);
2367
2368 remove_wait_queue(&md->wait, &wait);
2369
2370 return r;
2371 }
2372
2373 /*
2374 * Process the deferred bios
2375 */
dm_wq_work(struct work_struct * work)2376 static void dm_wq_work(struct work_struct *work)
2377 {
2378 struct mapped_device *md = container_of(work, struct mapped_device,
2379 work);
2380 struct bio *c;
2381
2382 down_read(&md->io_lock);
2383
2384 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2385 spin_lock_irq(&md->deferred_lock);
2386 c = bio_list_pop(&md->deferred);
2387 spin_unlock_irq(&md->deferred_lock);
2388
2389 if (!c)
2390 break;
2391
2392 up_read(&md->io_lock);
2393
2394 if (dm_request_based(md))
2395 generic_make_request(c);
2396 else
2397 __split_and_process_bio(md, c);
2398
2399 down_read(&md->io_lock);
2400 }
2401
2402 up_read(&md->io_lock);
2403 }
2404
dm_queue_flush(struct mapped_device * md)2405 static void dm_queue_flush(struct mapped_device *md)
2406 {
2407 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2408 smp_mb__after_clear_bit();
2409 queue_work(md->wq, &md->work);
2410 }
2411
2412 /*
2413 * Swap in a new table, returning the old one for the caller to destroy.
2414 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2415 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2416 {
2417 struct dm_table *map = ERR_PTR(-EINVAL);
2418 struct queue_limits limits;
2419 int r;
2420
2421 mutex_lock(&md->suspend_lock);
2422
2423 /* device must be suspended */
2424 if (!dm_suspended_md(md))
2425 goto out;
2426
2427 r = dm_calculate_queue_limits(table, &limits);
2428 if (r) {
2429 map = ERR_PTR(r);
2430 goto out;
2431 }
2432
2433 map = __bind(md, table, &limits);
2434
2435 out:
2436 mutex_unlock(&md->suspend_lock);
2437 return map;
2438 }
2439
2440 /*
2441 * Functions to lock and unlock any filesystem running on the
2442 * device.
2443 */
lock_fs(struct mapped_device * md)2444 static int lock_fs(struct mapped_device *md)
2445 {
2446 int r;
2447
2448 WARN_ON(md->frozen_sb);
2449
2450 md->frozen_sb = freeze_bdev(md->bdev);
2451 if (IS_ERR(md->frozen_sb)) {
2452 r = PTR_ERR(md->frozen_sb);
2453 md->frozen_sb = NULL;
2454 return r;
2455 }
2456
2457 set_bit(DMF_FROZEN, &md->flags);
2458
2459 return 0;
2460 }
2461
unlock_fs(struct mapped_device * md)2462 static void unlock_fs(struct mapped_device *md)
2463 {
2464 if (!test_bit(DMF_FROZEN, &md->flags))
2465 return;
2466
2467 thaw_bdev(md->bdev, md->frozen_sb);
2468 md->frozen_sb = NULL;
2469 clear_bit(DMF_FROZEN, &md->flags);
2470 }
2471
2472 /*
2473 * We need to be able to change a mapping table under a mounted
2474 * filesystem. For example we might want to move some data in
2475 * the background. Before the table can be swapped with
2476 * dm_bind_table, dm_suspend must be called to flush any in
2477 * flight bios and ensure that any further io gets deferred.
2478 */
2479 /*
2480 * Suspend mechanism in request-based dm.
2481 *
2482 * 1. Flush all I/Os by lock_fs() if needed.
2483 * 2. Stop dispatching any I/O by stopping the request_queue.
2484 * 3. Wait for all in-flight I/Os to be completed or requeued.
2485 *
2486 * To abort suspend, start the request_queue.
2487 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2488 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2489 {
2490 struct dm_table *map = NULL;
2491 int r = 0;
2492 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2493 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2494
2495 mutex_lock(&md->suspend_lock);
2496
2497 if (dm_suspended_md(md)) {
2498 r = -EINVAL;
2499 goto out_unlock;
2500 }
2501
2502 map = dm_get_live_table(md);
2503
2504 /*
2505 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2506 * This flag is cleared before dm_suspend returns.
2507 */
2508 if (noflush)
2509 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2510
2511 /* This does not get reverted if there's an error later. */
2512 dm_table_presuspend_targets(map);
2513
2514 /*
2515 * Flush I/O to the device.
2516 * Any I/O submitted after lock_fs() may not be flushed.
2517 * noflush takes precedence over do_lockfs.
2518 * (lock_fs() flushes I/Os and waits for them to complete.)
2519 */
2520 if (!noflush && do_lockfs) {
2521 r = lock_fs(md);
2522 if (r)
2523 goto out;
2524 }
2525
2526 /*
2527 * Here we must make sure that no processes are submitting requests
2528 * to target drivers i.e. no one may be executing
2529 * __split_and_process_bio. This is called from dm_request and
2530 * dm_wq_work.
2531 *
2532 * To get all processes out of __split_and_process_bio in dm_request,
2533 * we take the write lock. To prevent any process from reentering
2534 * __split_and_process_bio from dm_request and quiesce the thread
2535 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2536 * flush_workqueue(md->wq).
2537 */
2538 down_write(&md->io_lock);
2539 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2540 up_write(&md->io_lock);
2541
2542 /*
2543 * Stop md->queue before flushing md->wq in case request-based
2544 * dm defers requests to md->wq from md->queue.
2545 */
2546 if (dm_request_based(md))
2547 stop_queue(md->queue);
2548
2549 flush_workqueue(md->wq);
2550
2551 /*
2552 * At this point no more requests are entering target request routines.
2553 * We call dm_wait_for_completion to wait for all existing requests
2554 * to finish.
2555 */
2556 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2557
2558 down_write(&md->io_lock);
2559 if (noflush)
2560 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2561 up_write(&md->io_lock);
2562
2563 /* were we interrupted ? */
2564 if (r < 0) {
2565 dm_queue_flush(md);
2566
2567 if (dm_request_based(md))
2568 start_queue(md->queue);
2569
2570 unlock_fs(md);
2571 goto out; /* pushback list is already flushed, so skip flush */
2572 }
2573
2574 /*
2575 * If dm_wait_for_completion returned 0, the device is completely
2576 * quiescent now. There is no request-processing activity. All new
2577 * requests are being added to md->deferred list.
2578 */
2579
2580 set_bit(DMF_SUSPENDED, &md->flags);
2581
2582 dm_table_postsuspend_targets(map);
2583
2584 out:
2585 dm_table_put(map);
2586
2587 out_unlock:
2588 mutex_unlock(&md->suspend_lock);
2589 return r;
2590 }
2591
dm_resume(struct mapped_device * md)2592 int dm_resume(struct mapped_device *md)
2593 {
2594 int r = -EINVAL;
2595 struct dm_table *map = NULL;
2596
2597 mutex_lock(&md->suspend_lock);
2598 if (!dm_suspended_md(md))
2599 goto out;
2600
2601 map = dm_get_live_table(md);
2602 if (!map || !dm_table_get_size(map))
2603 goto out;
2604
2605 r = dm_table_resume_targets(map);
2606 if (r)
2607 goto out;
2608
2609 dm_queue_flush(md);
2610
2611 /*
2612 * Flushing deferred I/Os must be done after targets are resumed
2613 * so that mapping of targets can work correctly.
2614 * Request-based dm is queueing the deferred I/Os in its request_queue.
2615 */
2616 if (dm_request_based(md))
2617 start_queue(md->queue);
2618
2619 unlock_fs(md);
2620
2621 clear_bit(DMF_SUSPENDED, &md->flags);
2622
2623 r = 0;
2624 out:
2625 dm_table_put(map);
2626 mutex_unlock(&md->suspend_lock);
2627
2628 return r;
2629 }
2630
2631 /*-----------------------------------------------------------------
2632 * Event notification.
2633 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2634 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2635 unsigned cookie)
2636 {
2637 char udev_cookie[DM_COOKIE_LENGTH];
2638 char *envp[] = { udev_cookie, NULL };
2639
2640 if (!cookie)
2641 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2642 else {
2643 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2644 DM_COOKIE_ENV_VAR_NAME, cookie);
2645 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2646 action, envp);
2647 }
2648 }
2649
dm_next_uevent_seq(struct mapped_device * md)2650 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2651 {
2652 return atomic_add_return(1, &md->uevent_seq);
2653 }
2654
dm_get_event_nr(struct mapped_device * md)2655 uint32_t dm_get_event_nr(struct mapped_device *md)
2656 {
2657 return atomic_read(&md->event_nr);
2658 }
2659
dm_wait_event(struct mapped_device * md,int event_nr)2660 int dm_wait_event(struct mapped_device *md, int event_nr)
2661 {
2662 return wait_event_interruptible(md->eventq,
2663 (event_nr != atomic_read(&md->event_nr)));
2664 }
2665
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2666 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2667 {
2668 unsigned long flags;
2669
2670 spin_lock_irqsave(&md->uevent_lock, flags);
2671 list_add(elist, &md->uevent_list);
2672 spin_unlock_irqrestore(&md->uevent_lock, flags);
2673 }
2674
2675 /*
2676 * The gendisk is only valid as long as you have a reference
2677 * count on 'md'.
2678 */
dm_disk(struct mapped_device * md)2679 struct gendisk *dm_disk(struct mapped_device *md)
2680 {
2681 return md->disk;
2682 }
2683
dm_kobject(struct mapped_device * md)2684 struct kobject *dm_kobject(struct mapped_device *md)
2685 {
2686 return &md->kobj_holder.kobj;
2687 }
2688
dm_get_from_kobject(struct kobject * kobj)2689 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2690 {
2691 struct mapped_device *md;
2692
2693 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2694
2695 if (test_bit(DMF_FREEING, &md->flags) ||
2696 dm_deleting_md(md))
2697 return NULL;
2698
2699 dm_get(md);
2700 return md;
2701 }
2702
dm_suspended_md(struct mapped_device * md)2703 int dm_suspended_md(struct mapped_device *md)
2704 {
2705 return test_bit(DMF_SUSPENDED, &md->flags);
2706 }
2707
dm_suspended(struct dm_target * ti)2708 int dm_suspended(struct dm_target *ti)
2709 {
2710 return dm_suspended_md(dm_table_get_md(ti->table));
2711 }
2712 EXPORT_SYMBOL_GPL(dm_suspended);
2713
dm_noflush_suspending(struct dm_target * ti)2714 int dm_noflush_suspending(struct dm_target *ti)
2715 {
2716 return __noflush_suspending(dm_table_get_md(ti->table));
2717 }
2718 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2719
dm_alloc_md_mempools(unsigned type,unsigned integrity)2720 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2721 {
2722 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2723 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2724
2725 if (!pools)
2726 return NULL;
2727
2728 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2729 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2730 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2731 if (!pools->io_pool)
2732 goto free_pools_and_out;
2733
2734 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2735 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2736 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2737 if (!pools->tio_pool)
2738 goto free_io_pool_and_out;
2739
2740 pools->bs = bioset_create(pool_size, 0);
2741 if (!pools->bs)
2742 goto free_tio_pool_and_out;
2743
2744 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2745 goto free_bioset_and_out;
2746
2747 return pools;
2748
2749 free_bioset_and_out:
2750 bioset_free(pools->bs);
2751
2752 free_tio_pool_and_out:
2753 mempool_destroy(pools->tio_pool);
2754
2755 free_io_pool_and_out:
2756 mempool_destroy(pools->io_pool);
2757
2758 free_pools_and_out:
2759 kfree(pools);
2760
2761 return NULL;
2762 }
2763
dm_free_md_mempools(struct dm_md_mempools * pools)2764 void dm_free_md_mempools(struct dm_md_mempools *pools)
2765 {
2766 if (!pools)
2767 return;
2768
2769 if (pools->io_pool)
2770 mempool_destroy(pools->io_pool);
2771
2772 if (pools->tio_pool)
2773 mempool_destroy(pools->tio_pool);
2774
2775 if (pools->bs)
2776 bioset_free(pools->bs);
2777
2778 kfree(pools);
2779 }
2780
2781 static const struct block_device_operations dm_blk_dops = {
2782 .open = dm_blk_open,
2783 .release = dm_blk_close,
2784 .ioctl = dm_blk_ioctl,
2785 .getgeo = dm_blk_getgeo,
2786 .owner = THIS_MODULE
2787 };
2788
2789 EXPORT_SYMBOL(dm_get_mapinfo);
2790
2791 /*
2792 * module hooks
2793 */
2794 module_init(dm_init);
2795 module_exit(dm_exit);
2796
2797 module_param(major, uint, 0);
2798 MODULE_PARM_DESC(major, "The major number of the device mapper");
2799 MODULE_DESCRIPTION(DM_NAME " driver");
2800 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2801 MODULE_LICENSE("GPL");
2802