1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 };
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per target within a bio.  Hopefully
68  * this will be simplified out one day.
69  */
70 struct dm_target_io {
71 	struct dm_io *io;
72 	struct dm_target *ti;
73 	union map_info info;
74 };
75 
76 /*
77  * For request-based dm.
78  * One of these is allocated per request.
79  */
80 struct dm_rq_target_io {
81 	struct mapped_device *md;
82 	struct dm_target *ti;
83 	struct request *orig, clone;
84 	int error;
85 	union map_info info;
86 };
87 
88 /*
89  * For request-based dm.
90  * One of these is allocated per bio.
91  */
92 struct dm_rq_clone_bio_info {
93 	struct bio *orig;
94 	struct dm_rq_target_io *tio;
95 };
96 
dm_get_mapinfo(struct bio * bio)97 union map_info *dm_get_mapinfo(struct bio *bio)
98 {
99 	if (bio && bio->bi_private)
100 		return &((struct dm_target_io *)bio->bi_private)->info;
101 	return NULL;
102 }
103 
dm_get_rq_mapinfo(struct request * rq)104 union map_info *dm_get_rq_mapinfo(struct request *rq)
105 {
106 	if (rq && rq->end_io_data)
107 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 	return NULL;
109 }
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
111 
112 #define MINOR_ALLOCED ((void *)-1)
113 
114 /*
115  * Bits for the md->flags field.
116  */
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
119 #define DMF_FROZEN 2
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
124 
125 /*
126  * Work processed by per-device workqueue.
127  */
128 struct mapped_device {
129 	struct rw_semaphore io_lock;
130 	struct mutex suspend_lock;
131 	rwlock_t map_lock;
132 	atomic_t holders;
133 	atomic_t open_count;
134 
135 	unsigned long flags;
136 
137 	struct request_queue *queue;
138 	unsigned type;
139 	/* Protect queue and type against concurrent access. */
140 	struct mutex type_lock;
141 
142 	struct target_type *immutable_target_type;
143 
144 	struct gendisk *disk;
145 	char name[16];
146 
147 	void *interface_ptr;
148 
149 	/*
150 	 * A list of ios that arrived while we were suspended.
151 	 */
152 	atomic_t pending[2];
153 	wait_queue_head_t wait;
154 	struct work_struct work;
155 	struct bio_list deferred;
156 	spinlock_t deferred_lock;
157 
158 	/*
159 	 * Processing queue (flush)
160 	 */
161 	struct workqueue_struct *wq;
162 
163 	/*
164 	 * The current mapping.
165 	 */
166 	struct dm_table *map;
167 
168 	/*
169 	 * io objects are allocated from here.
170 	 */
171 	mempool_t *io_pool;
172 	mempool_t *tio_pool;
173 
174 	struct bio_set *bs;
175 
176 	/*
177 	 * Event handling.
178 	 */
179 	atomic_t event_nr;
180 	wait_queue_head_t eventq;
181 	atomic_t uevent_seq;
182 	struct list_head uevent_list;
183 	spinlock_t uevent_lock; /* Protect access to uevent_list */
184 
185 	/*
186 	 * freeze/thaw support require holding onto a super block
187 	 */
188 	struct super_block *frozen_sb;
189 	struct block_device *bdev;
190 
191 	/* forced geometry settings */
192 	struct hd_geometry geometry;
193 
194 	/* kobject and completion */
195 	struct dm_kobject_holder kobj_holder;
196 
197 	/* zero-length flush that will be cloned and submitted to targets */
198 	struct bio flush_bio;
199 };
200 
201 /*
202  * For mempools pre-allocation at the table loading time.
203  */
204 struct dm_md_mempools {
205 	mempool_t *io_pool;
206 	mempool_t *tio_pool;
207 	struct bio_set *bs;
208 };
209 
210 #define MIN_IOS 256
211 static struct kmem_cache *_io_cache;
212 static struct kmem_cache *_tio_cache;
213 static struct kmem_cache *_rq_tio_cache;
214 static struct kmem_cache *_rq_bio_info_cache;
215 
local_init(void)216 static int __init local_init(void)
217 {
218 	int r = -ENOMEM;
219 
220 	/* allocate a slab for the dm_ios */
221 	_io_cache = KMEM_CACHE(dm_io, 0);
222 	if (!_io_cache)
223 		return r;
224 
225 	/* allocate a slab for the target ios */
226 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
227 	if (!_tio_cache)
228 		goto out_free_io_cache;
229 
230 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 	if (!_rq_tio_cache)
232 		goto out_free_tio_cache;
233 
234 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
235 	if (!_rq_bio_info_cache)
236 		goto out_free_rq_tio_cache;
237 
238 	r = dm_uevent_init();
239 	if (r)
240 		goto out_free_rq_bio_info_cache;
241 
242 	_major = major;
243 	r = register_blkdev(_major, _name);
244 	if (r < 0)
245 		goto out_uevent_exit;
246 
247 	if (!_major)
248 		_major = r;
249 
250 	return 0;
251 
252 out_uevent_exit:
253 	dm_uevent_exit();
254 out_free_rq_bio_info_cache:
255 	kmem_cache_destroy(_rq_bio_info_cache);
256 out_free_rq_tio_cache:
257 	kmem_cache_destroy(_rq_tio_cache);
258 out_free_tio_cache:
259 	kmem_cache_destroy(_tio_cache);
260 out_free_io_cache:
261 	kmem_cache_destroy(_io_cache);
262 
263 	return r;
264 }
265 
local_exit(void)266 static void local_exit(void)
267 {
268 	kmem_cache_destroy(_rq_bio_info_cache);
269 	kmem_cache_destroy(_rq_tio_cache);
270 	kmem_cache_destroy(_tio_cache);
271 	kmem_cache_destroy(_io_cache);
272 	unregister_blkdev(_major, _name);
273 	dm_uevent_exit();
274 
275 	_major = 0;
276 
277 	DMINFO("cleaned up");
278 }
279 
280 static int (*_inits[])(void) __initdata = {
281 	local_init,
282 	dm_target_init,
283 	dm_linear_init,
284 	dm_stripe_init,
285 	dm_io_init,
286 	dm_kcopyd_init,
287 	dm_interface_init,
288 };
289 
290 static void (*_exits[])(void) = {
291 	local_exit,
292 	dm_target_exit,
293 	dm_linear_exit,
294 	dm_stripe_exit,
295 	dm_io_exit,
296 	dm_kcopyd_exit,
297 	dm_interface_exit,
298 };
299 
dm_init(void)300 static int __init dm_init(void)
301 {
302 	const int count = ARRAY_SIZE(_inits);
303 
304 	int r, i;
305 
306 	for (i = 0; i < count; i++) {
307 		r = _inits[i]();
308 		if (r)
309 			goto bad;
310 	}
311 
312 	return 0;
313 
314       bad:
315 	while (i--)
316 		_exits[i]();
317 
318 	return r;
319 }
320 
dm_exit(void)321 static void __exit dm_exit(void)
322 {
323 	int i = ARRAY_SIZE(_exits);
324 
325 	while (i--)
326 		_exits[i]();
327 
328 	/*
329 	 * Should be empty by this point.
330 	 */
331 	idr_remove_all(&_minor_idr);
332 	idr_destroy(&_minor_idr);
333 }
334 
335 /*
336  * Block device functions
337  */
dm_deleting_md(struct mapped_device * md)338 int dm_deleting_md(struct mapped_device *md)
339 {
340 	return test_bit(DMF_DELETING, &md->flags);
341 }
342 
dm_blk_open(struct block_device * bdev,fmode_t mode)343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = bdev->bd_disk->private_data;
350 	if (!md)
351 		goto out;
352 
353 	if (test_bit(DMF_FREEING, &md->flags) ||
354 	    dm_deleting_md(md)) {
355 		md = NULL;
356 		goto out;
357 	}
358 
359 	dm_get(md);
360 	atomic_inc(&md->open_count);
361 
362 out:
363 	spin_unlock(&_minor_lock);
364 
365 	return md ? 0 : -ENXIO;
366 }
367 
dm_blk_close(struct gendisk * disk,fmode_t mode)368 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
369 {
370 	struct mapped_device *md = disk->private_data;
371 
372 	spin_lock(&_minor_lock);
373 
374 	atomic_dec(&md->open_count);
375 	dm_put(md);
376 
377 	spin_unlock(&_minor_lock);
378 
379 	return 0;
380 }
381 
dm_open_count(struct mapped_device * md)382 int dm_open_count(struct mapped_device *md)
383 {
384 	return atomic_read(&md->open_count);
385 }
386 
387 /*
388  * Guarantees nothing is using the device before it's deleted.
389  */
dm_lock_for_deletion(struct mapped_device * md)390 int dm_lock_for_deletion(struct mapped_device *md)
391 {
392 	int r = 0;
393 
394 	spin_lock(&_minor_lock);
395 
396 	if (dm_open_count(md))
397 		r = -EBUSY;
398 	else
399 		set_bit(DMF_DELETING, &md->flags);
400 
401 	spin_unlock(&_minor_lock);
402 
403 	return r;
404 }
405 
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 	struct mapped_device *md = bdev->bd_disk->private_data;
409 
410 	return dm_get_geometry(md, geo);
411 }
412 
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)413 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
414 			unsigned int cmd, unsigned long arg)
415 {
416 	struct mapped_device *md = bdev->bd_disk->private_data;
417 	struct dm_table *map = dm_get_live_table(md);
418 	struct dm_target *tgt;
419 	int r = -ENOTTY;
420 
421 	if (!map || !dm_table_get_size(map))
422 		goto out;
423 
424 	/* We only support devices that have a single target */
425 	if (dm_table_get_num_targets(map) != 1)
426 		goto out;
427 
428 	tgt = dm_table_get_target(map, 0);
429 
430 	if (dm_suspended_md(md)) {
431 		r = -EAGAIN;
432 		goto out;
433 	}
434 
435 	if (tgt->type->ioctl)
436 		r = tgt->type->ioctl(tgt, cmd, arg);
437 
438 out:
439 	dm_table_put(map);
440 
441 	return r;
442 }
443 
alloc_io(struct mapped_device * md)444 static struct dm_io *alloc_io(struct mapped_device *md)
445 {
446 	return mempool_alloc(md->io_pool, GFP_NOIO);
447 }
448 
free_io(struct mapped_device * md,struct dm_io * io)449 static void free_io(struct mapped_device *md, struct dm_io *io)
450 {
451 	mempool_free(io, md->io_pool);
452 }
453 
free_tio(struct mapped_device * md,struct dm_target_io * tio)454 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
455 {
456 	mempool_free(tio, md->tio_pool);
457 }
458 
alloc_rq_tio(struct mapped_device * md,gfp_t gfp_mask)459 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
460 					    gfp_t gfp_mask)
461 {
462 	return mempool_alloc(md->tio_pool, gfp_mask);
463 }
464 
free_rq_tio(struct dm_rq_target_io * tio)465 static void free_rq_tio(struct dm_rq_target_io *tio)
466 {
467 	mempool_free(tio, tio->md->tio_pool);
468 }
469 
alloc_bio_info(struct mapped_device * md)470 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
471 {
472 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
473 }
474 
free_bio_info(struct dm_rq_clone_bio_info * info)475 static void free_bio_info(struct dm_rq_clone_bio_info *info)
476 {
477 	mempool_free(info, info->tio->md->io_pool);
478 }
479 
md_in_flight(struct mapped_device * md)480 static int md_in_flight(struct mapped_device *md)
481 {
482 	return atomic_read(&md->pending[READ]) +
483 	       atomic_read(&md->pending[WRITE]);
484 }
485 
start_io_acct(struct dm_io * io)486 static void start_io_acct(struct dm_io *io)
487 {
488 	struct mapped_device *md = io->md;
489 	int cpu;
490 	int rw = bio_data_dir(io->bio);
491 
492 	io->start_time = jiffies;
493 
494 	cpu = part_stat_lock();
495 	part_round_stats(cpu, &dm_disk(md)->part0);
496 	part_stat_unlock();
497 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
498 		atomic_inc_return(&md->pending[rw]));
499 }
500 
end_io_acct(struct dm_io * io)501 static void end_io_acct(struct dm_io *io)
502 {
503 	struct mapped_device *md = io->md;
504 	struct bio *bio = io->bio;
505 	unsigned long duration = jiffies - io->start_time;
506 	int pending, cpu;
507 	int rw = bio_data_dir(bio);
508 
509 	cpu = part_stat_lock();
510 	part_round_stats(cpu, &dm_disk(md)->part0);
511 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 	part_stat_unlock();
513 
514 	/*
515 	 * After this is decremented the bio must not be touched if it is
516 	 * a flush.
517 	 */
518 	pending = atomic_dec_return(&md->pending[rw]);
519 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
520 	pending += atomic_read(&md->pending[rw^0x1]);
521 
522 	/* nudge anyone waiting on suspend queue */
523 	if (!pending)
524 		wake_up(&md->wait);
525 }
526 
527 /*
528  * Add the bio to the list of deferred io.
529  */
queue_io(struct mapped_device * md,struct bio * bio)530 static void queue_io(struct mapped_device *md, struct bio *bio)
531 {
532 	unsigned long flags;
533 
534 	spin_lock_irqsave(&md->deferred_lock, flags);
535 	bio_list_add(&md->deferred, bio);
536 	spin_unlock_irqrestore(&md->deferred_lock, flags);
537 	queue_work(md->wq, &md->work);
538 }
539 
540 /*
541  * Everyone (including functions in this file), should use this
542  * function to access the md->map field, and make sure they call
543  * dm_table_put() when finished.
544  */
dm_get_live_table(struct mapped_device * md)545 struct dm_table *dm_get_live_table(struct mapped_device *md)
546 {
547 	struct dm_table *t;
548 	unsigned long flags;
549 
550 	read_lock_irqsave(&md->map_lock, flags);
551 	t = md->map;
552 	if (t)
553 		dm_table_get(t);
554 	read_unlock_irqrestore(&md->map_lock, flags);
555 
556 	return t;
557 }
558 
559 /*
560  * Get the geometry associated with a dm device
561  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
563 {
564 	*geo = md->geometry;
565 
566 	return 0;
567 }
568 
569 /*
570  * Set the geometry of a device.
571  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
573 {
574 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
575 
576 	if (geo->start > sz) {
577 		DMWARN("Start sector is beyond the geometry limits.");
578 		return -EINVAL;
579 	}
580 
581 	md->geometry = *geo;
582 
583 	return 0;
584 }
585 
586 /*-----------------------------------------------------------------
587  * CRUD START:
588  *   A more elegant soln is in the works that uses the queue
589  *   merge fn, unfortunately there are a couple of changes to
590  *   the block layer that I want to make for this.  So in the
591  *   interests of getting something for people to use I give
592  *   you this clearly demarcated crap.
593  *---------------------------------------------------------------*/
594 
__noflush_suspending(struct mapped_device * md)595 static int __noflush_suspending(struct mapped_device *md)
596 {
597 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
598 }
599 
600 /*
601  * Decrements the number of outstanding ios that a bio has been
602  * cloned into, completing the original io if necc.
603  */
dec_pending(struct dm_io * io,int error)604 static void dec_pending(struct dm_io *io, int error)
605 {
606 	unsigned long flags;
607 	int io_error;
608 	struct bio *bio;
609 	struct mapped_device *md = io->md;
610 
611 	/* Push-back supersedes any I/O errors */
612 	if (unlikely(error)) {
613 		spin_lock_irqsave(&io->endio_lock, flags);
614 		if (!(io->error > 0 && __noflush_suspending(md)))
615 			io->error = error;
616 		spin_unlock_irqrestore(&io->endio_lock, flags);
617 	}
618 
619 	if (atomic_dec_and_test(&io->io_count)) {
620 		if (io->error == DM_ENDIO_REQUEUE) {
621 			/*
622 			 * Target requested pushing back the I/O.
623 			 */
624 			spin_lock_irqsave(&md->deferred_lock, flags);
625 			if (__noflush_suspending(md))
626 				bio_list_add_head(&md->deferred, io->bio);
627 			else
628 				/* noflush suspend was interrupted. */
629 				io->error = -EIO;
630 			spin_unlock_irqrestore(&md->deferred_lock, flags);
631 		}
632 
633 		io_error = io->error;
634 		bio = io->bio;
635 		end_io_acct(io);
636 		free_io(md, io);
637 
638 		if (io_error == DM_ENDIO_REQUEUE)
639 			return;
640 
641 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
642 			/*
643 			 * Preflush done for flush with data, reissue
644 			 * without REQ_FLUSH.
645 			 */
646 			bio->bi_rw &= ~REQ_FLUSH;
647 			queue_io(md, bio);
648 		} else {
649 			/* done with normal IO or empty flush */
650 			trace_block_bio_complete(md->queue, bio, io_error);
651 			bio_endio(bio, io_error);
652 		}
653 	}
654 }
655 
clone_endio(struct bio * bio,int error)656 static void clone_endio(struct bio *bio, int error)
657 {
658 	int r = 0;
659 	struct dm_target_io *tio = bio->bi_private;
660 	struct dm_io *io = tio->io;
661 	struct mapped_device *md = tio->io->md;
662 	dm_endio_fn endio = tio->ti->type->end_io;
663 
664 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
665 		error = -EIO;
666 
667 	if (endio) {
668 		r = endio(tio->ti, bio, error, &tio->info);
669 		if (r < 0 || r == DM_ENDIO_REQUEUE)
670 			/*
671 			 * error and requeue request are handled
672 			 * in dec_pending().
673 			 */
674 			error = r;
675 		else if (r == DM_ENDIO_INCOMPLETE)
676 			/* The target will handle the io */
677 			return;
678 		else if (r) {
679 			DMWARN("unimplemented target endio return value: %d", r);
680 			BUG();
681 		}
682 	}
683 
684 	/*
685 	 * Store md for cleanup instead of tio which is about to get freed.
686 	 */
687 	bio->bi_private = md->bs;
688 
689 	free_tio(md, tio);
690 	bio_put(bio);
691 	dec_pending(io, error);
692 }
693 
694 /*
695  * Partial completion handling for request-based dm
696  */
end_clone_bio(struct bio * clone,int error)697 static void end_clone_bio(struct bio *clone, int error)
698 {
699 	struct dm_rq_clone_bio_info *info = clone->bi_private;
700 	struct dm_rq_target_io *tio = info->tio;
701 	struct bio *bio = info->orig;
702 	unsigned int nr_bytes = info->orig->bi_size;
703 
704 	bio_put(clone);
705 
706 	if (tio->error)
707 		/*
708 		 * An error has already been detected on the request.
709 		 * Once error occurred, just let clone->end_io() handle
710 		 * the remainder.
711 		 */
712 		return;
713 	else if (error) {
714 		/*
715 		 * Don't notice the error to the upper layer yet.
716 		 * The error handling decision is made by the target driver,
717 		 * when the request is completed.
718 		 */
719 		tio->error = error;
720 		return;
721 	}
722 
723 	/*
724 	 * I/O for the bio successfully completed.
725 	 * Notice the data completion to the upper layer.
726 	 */
727 
728 	/*
729 	 * bios are processed from the head of the list.
730 	 * So the completing bio should always be rq->bio.
731 	 * If it's not, something wrong is happening.
732 	 */
733 	if (tio->orig->bio != bio)
734 		DMERR("bio completion is going in the middle of the request");
735 
736 	/*
737 	 * Update the original request.
738 	 * Do not use blk_end_request() here, because it may complete
739 	 * the original request before the clone, and break the ordering.
740 	 */
741 	blk_update_request(tio->orig, 0, nr_bytes);
742 }
743 
744 /*
745  * Don't touch any member of the md after calling this function because
746  * the md may be freed in dm_put() at the end of this function.
747  * Or do dm_get() before calling this function and dm_put() later.
748  */
rq_completed(struct mapped_device * md,int rw,int run_queue)749 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
750 {
751 	atomic_dec(&md->pending[rw]);
752 
753 	/* nudge anyone waiting on suspend queue */
754 	if (!md_in_flight(md))
755 		wake_up(&md->wait);
756 
757 	/*
758 	 * Run this off this callpath, as drivers could invoke end_io while
759 	 * inside their request_fn (and holding the queue lock). Calling
760 	 * back into ->request_fn() could deadlock attempting to grab the
761 	 * queue lock again.
762 	 */
763 	if (run_queue)
764 		blk_run_queue_async(md->queue);
765 
766 	/*
767 	 * dm_put() must be at the end of this function. See the comment above
768 	 */
769 	dm_put(md);
770 }
771 
free_rq_clone(struct request * clone)772 static void free_rq_clone(struct request *clone)
773 {
774 	struct dm_rq_target_io *tio = clone->end_io_data;
775 
776 	blk_rq_unprep_clone(clone);
777 	free_rq_tio(tio);
778 }
779 
780 /*
781  * Complete the clone and the original request.
782  * Must be called without queue lock.
783  */
dm_end_request(struct request * clone,int error)784 static void dm_end_request(struct request *clone, int error)
785 {
786 	int rw = rq_data_dir(clone);
787 	struct dm_rq_target_io *tio = clone->end_io_data;
788 	struct mapped_device *md = tio->md;
789 	struct request *rq = tio->orig;
790 
791 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
792 		rq->errors = clone->errors;
793 		rq->resid_len = clone->resid_len;
794 
795 		if (rq->sense)
796 			/*
797 			 * We are using the sense buffer of the original
798 			 * request.
799 			 * So setting the length of the sense data is enough.
800 			 */
801 			rq->sense_len = clone->sense_len;
802 	}
803 
804 	free_rq_clone(clone);
805 	blk_end_request_all(rq, error);
806 	rq_completed(md, rw, true);
807 }
808 
dm_unprep_request(struct request * rq)809 static void dm_unprep_request(struct request *rq)
810 {
811 	struct request *clone = rq->special;
812 
813 	rq->special = NULL;
814 	rq->cmd_flags &= ~REQ_DONTPREP;
815 
816 	free_rq_clone(clone);
817 }
818 
819 /*
820  * Requeue the original request of a clone.
821  */
dm_requeue_unmapped_request(struct request * clone)822 void dm_requeue_unmapped_request(struct request *clone)
823 {
824 	int rw = rq_data_dir(clone);
825 	struct dm_rq_target_io *tio = clone->end_io_data;
826 	struct mapped_device *md = tio->md;
827 	struct request *rq = tio->orig;
828 	struct request_queue *q = rq->q;
829 	unsigned long flags;
830 
831 	dm_unprep_request(rq);
832 
833 	spin_lock_irqsave(q->queue_lock, flags);
834 	blk_requeue_request(q, rq);
835 	spin_unlock_irqrestore(q->queue_lock, flags);
836 
837 	rq_completed(md, rw, 0);
838 }
839 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
840 
__stop_queue(struct request_queue * q)841 static void __stop_queue(struct request_queue *q)
842 {
843 	blk_stop_queue(q);
844 }
845 
stop_queue(struct request_queue * q)846 static void stop_queue(struct request_queue *q)
847 {
848 	unsigned long flags;
849 
850 	spin_lock_irqsave(q->queue_lock, flags);
851 	__stop_queue(q);
852 	spin_unlock_irqrestore(q->queue_lock, flags);
853 }
854 
__start_queue(struct request_queue * q)855 static void __start_queue(struct request_queue *q)
856 {
857 	if (blk_queue_stopped(q))
858 		blk_start_queue(q);
859 }
860 
start_queue(struct request_queue * q)861 static void start_queue(struct request_queue *q)
862 {
863 	unsigned long flags;
864 
865 	spin_lock_irqsave(q->queue_lock, flags);
866 	__start_queue(q);
867 	spin_unlock_irqrestore(q->queue_lock, flags);
868 }
869 
dm_done(struct request * clone,int error,bool mapped)870 static void dm_done(struct request *clone, int error, bool mapped)
871 {
872 	int r = error;
873 	struct dm_rq_target_io *tio = clone->end_io_data;
874 	dm_request_endio_fn rq_end_io = NULL;
875 
876 	if (tio->ti) {
877 		rq_end_io = tio->ti->type->rq_end_io;
878 
879 		if (mapped && rq_end_io)
880 			r = rq_end_io(tio->ti, clone, error, &tio->info);
881 	}
882 
883 	if (r <= 0)
884 		/* The target wants to complete the I/O */
885 		dm_end_request(clone, r);
886 	else if (r == DM_ENDIO_INCOMPLETE)
887 		/* The target will handle the I/O */
888 		return;
889 	else if (r == DM_ENDIO_REQUEUE)
890 		/* The target wants to requeue the I/O */
891 		dm_requeue_unmapped_request(clone);
892 	else {
893 		DMWARN("unimplemented target endio return value: %d", r);
894 		BUG();
895 	}
896 }
897 
898 /*
899  * Request completion handler for request-based dm
900  */
dm_softirq_done(struct request * rq)901 static void dm_softirq_done(struct request *rq)
902 {
903 	bool mapped = true;
904 	struct request *clone = rq->completion_data;
905 	struct dm_rq_target_io *tio = clone->end_io_data;
906 
907 	if (rq->cmd_flags & REQ_FAILED)
908 		mapped = false;
909 
910 	dm_done(clone, tio->error, mapped);
911 }
912 
913 /*
914  * Complete the clone and the original request with the error status
915  * through softirq context.
916  */
dm_complete_request(struct request * clone,int error)917 static void dm_complete_request(struct request *clone, int error)
918 {
919 	struct dm_rq_target_io *tio = clone->end_io_data;
920 	struct request *rq = tio->orig;
921 
922 	tio->error = error;
923 	rq->completion_data = clone;
924 	blk_complete_request(rq);
925 }
926 
927 /*
928  * Complete the not-mapped clone and the original request with the error status
929  * through softirq context.
930  * Target's rq_end_io() function isn't called.
931  * This may be used when the target's map_rq() function fails.
932  */
dm_kill_unmapped_request(struct request * clone,int error)933 void dm_kill_unmapped_request(struct request *clone, int error)
934 {
935 	struct dm_rq_target_io *tio = clone->end_io_data;
936 	struct request *rq = tio->orig;
937 
938 	rq->cmd_flags |= REQ_FAILED;
939 	dm_complete_request(clone, error);
940 }
941 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
942 
943 /*
944  * Called with the queue lock held
945  */
end_clone_request(struct request * clone,int error)946 static void end_clone_request(struct request *clone, int error)
947 {
948 	/*
949 	 * For just cleaning up the information of the queue in which
950 	 * the clone was dispatched.
951 	 * The clone is *NOT* freed actually here because it is alloced from
952 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
953 	 */
954 	__blk_put_request(clone->q, clone);
955 
956 	/*
957 	 * Actual request completion is done in a softirq context which doesn't
958 	 * hold the queue lock.  Otherwise, deadlock could occur because:
959 	 *     - another request may be submitted by the upper level driver
960 	 *       of the stacking during the completion
961 	 *     - the submission which requires queue lock may be done
962 	 *       against this queue
963 	 */
964 	dm_complete_request(clone, error);
965 }
966 
967 /*
968  * Return maximum size of I/O possible at the supplied sector up to the current
969  * target boundary.
970  */
max_io_len_target_boundary(sector_t sector,struct dm_target * ti)971 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
972 {
973 	sector_t target_offset = dm_target_offset(ti, sector);
974 
975 	return ti->len - target_offset;
976 }
977 
max_io_len(sector_t sector,struct dm_target * ti)978 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
979 {
980 	sector_t len = max_io_len_target_boundary(sector, ti);
981 
982 	/*
983 	 * Does the target need to split even further ?
984 	 */
985 	if (ti->split_io) {
986 		sector_t boundary;
987 		sector_t offset = dm_target_offset(ti, sector);
988 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
989 			   - offset;
990 		if (len > boundary)
991 			len = boundary;
992 	}
993 
994 	return len;
995 }
996 
__map_bio(struct dm_target * ti,struct bio * clone,struct dm_target_io * tio)997 static void __map_bio(struct dm_target *ti, struct bio *clone,
998 		      struct dm_target_io *tio)
999 {
1000 	int r;
1001 	sector_t sector;
1002 	struct mapped_device *md;
1003 
1004 	clone->bi_end_io = clone_endio;
1005 	clone->bi_private = tio;
1006 
1007 	/*
1008 	 * Map the clone.  If r == 0 we don't need to do
1009 	 * anything, the target has assumed ownership of
1010 	 * this io.
1011 	 */
1012 	atomic_inc(&tio->io->io_count);
1013 	sector = clone->bi_sector;
1014 	r = ti->type->map(ti, clone, &tio->info);
1015 	if (r == DM_MAPIO_REMAPPED) {
1016 		/* the bio has been remapped so dispatch it */
1017 
1018 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1019 				      tio->io->bio->bi_bdev->bd_dev, sector);
1020 
1021 		generic_make_request(clone);
1022 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1023 		/* error the io and bail out, or requeue it if needed */
1024 		md = tio->io->md;
1025 		dec_pending(tio->io, r);
1026 		/*
1027 		 * Store bio_set for cleanup.
1028 		 */
1029 		clone->bi_end_io = NULL;
1030 		clone->bi_private = md->bs;
1031 		bio_put(clone);
1032 		free_tio(md, tio);
1033 	} else if (r) {
1034 		DMWARN("unimplemented target map return value: %d", r);
1035 		BUG();
1036 	}
1037 }
1038 
1039 struct clone_info {
1040 	struct mapped_device *md;
1041 	struct dm_table *map;
1042 	struct bio *bio;
1043 	struct dm_io *io;
1044 	sector_t sector;
1045 	sector_t sector_count;
1046 	unsigned short idx;
1047 };
1048 
dm_bio_destructor(struct bio * bio)1049 static void dm_bio_destructor(struct bio *bio)
1050 {
1051 	struct bio_set *bs = bio->bi_private;
1052 
1053 	bio_free(bio, bs);
1054 }
1055 
1056 /*
1057  * Creates a little bio that just does part of a bvec.
1058  */
split_bvec(struct bio * bio,sector_t sector,unsigned short idx,unsigned int offset,unsigned int len,struct bio_set * bs)1059 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1060 			      unsigned short idx, unsigned int offset,
1061 			      unsigned int len, struct bio_set *bs)
1062 {
1063 	struct bio *clone;
1064 	struct bio_vec *bv = bio->bi_io_vec + idx;
1065 
1066 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1067 	clone->bi_destructor = dm_bio_destructor;
1068 	*clone->bi_io_vec = *bv;
1069 
1070 	clone->bi_sector = sector;
1071 	clone->bi_bdev = bio->bi_bdev;
1072 	clone->bi_rw = bio->bi_rw;
1073 	clone->bi_vcnt = 1;
1074 	clone->bi_size = to_bytes(len);
1075 	clone->bi_io_vec->bv_offset = offset;
1076 	clone->bi_io_vec->bv_len = clone->bi_size;
1077 	clone->bi_flags |= 1 << BIO_CLONED;
1078 
1079 	if (bio_integrity(bio)) {
1080 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1081 		bio_integrity_trim(clone,
1082 				   bio_sector_offset(bio, idx, offset), len);
1083 	}
1084 
1085 	return clone;
1086 }
1087 
1088 /*
1089  * Creates a bio that consists of range of complete bvecs.
1090  */
clone_bio(struct bio * bio,sector_t sector,unsigned short idx,unsigned short bv_count,unsigned int len,struct bio_set * bs)1091 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1092 			     unsigned short idx, unsigned short bv_count,
1093 			     unsigned int len, struct bio_set *bs)
1094 {
1095 	struct bio *clone;
1096 
1097 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1098 	__bio_clone(clone, bio);
1099 	clone->bi_destructor = dm_bio_destructor;
1100 	clone->bi_sector = sector;
1101 	clone->bi_idx = idx;
1102 	clone->bi_vcnt = idx + bv_count;
1103 	clone->bi_size = to_bytes(len);
1104 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1105 
1106 	if (bio_integrity(bio)) {
1107 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1108 
1109 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1110 			bio_integrity_trim(clone,
1111 					   bio_sector_offset(bio, idx, 0), len);
1112 	}
1113 
1114 	return clone;
1115 }
1116 
alloc_tio(struct clone_info * ci,struct dm_target * ti)1117 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1118 				      struct dm_target *ti)
1119 {
1120 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1121 
1122 	tio->io = ci->io;
1123 	tio->ti = ti;
1124 	memset(&tio->info, 0, sizeof(tio->info));
1125 
1126 	return tio;
1127 }
1128 
__issue_target_request(struct clone_info * ci,struct dm_target * ti,unsigned request_nr,sector_t len)1129 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1130 				   unsigned request_nr, sector_t len)
1131 {
1132 	struct dm_target_io *tio = alloc_tio(ci, ti);
1133 	struct bio *clone;
1134 
1135 	tio->info.target_request_nr = request_nr;
1136 
1137 	/*
1138 	 * Discard requests require the bio's inline iovecs be initialized.
1139 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1140 	 * and discard, so no need for concern about wasted bvec allocations.
1141 	 */
1142 	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1143 	__bio_clone(clone, ci->bio);
1144 	clone->bi_destructor = dm_bio_destructor;
1145 	if (len) {
1146 		clone->bi_sector = ci->sector;
1147 		clone->bi_size = to_bytes(len);
1148 	}
1149 
1150 	__map_bio(ti, clone, tio);
1151 }
1152 
__issue_target_requests(struct clone_info * ci,struct dm_target * ti,unsigned num_requests,sector_t len)1153 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1154 				    unsigned num_requests, sector_t len)
1155 {
1156 	unsigned request_nr;
1157 
1158 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1159 		__issue_target_request(ci, ti, request_nr, len);
1160 }
1161 
__clone_and_map_empty_flush(struct clone_info * ci)1162 static int __clone_and_map_empty_flush(struct clone_info *ci)
1163 {
1164 	unsigned target_nr = 0;
1165 	struct dm_target *ti;
1166 
1167 	BUG_ON(bio_has_data(ci->bio));
1168 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1169 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1170 
1171 	return 0;
1172 }
1173 
1174 /*
1175  * Perform all io with a single clone.
1176  */
__clone_and_map_simple(struct clone_info * ci,struct dm_target * ti)1177 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1178 {
1179 	struct bio *clone, *bio = ci->bio;
1180 	struct dm_target_io *tio;
1181 
1182 	tio = alloc_tio(ci, ti);
1183 	clone = clone_bio(bio, ci->sector, ci->idx,
1184 			  bio->bi_vcnt - ci->idx, ci->sector_count,
1185 			  ci->md->bs);
1186 	__map_bio(ti, clone, tio);
1187 	ci->sector_count = 0;
1188 }
1189 
__clone_and_map_discard(struct clone_info * ci)1190 static int __clone_and_map_discard(struct clone_info *ci)
1191 {
1192 	struct dm_target *ti;
1193 	sector_t len;
1194 
1195 	do {
1196 		ti = dm_table_find_target(ci->map, ci->sector);
1197 		if (!dm_target_is_valid(ti))
1198 			return -EIO;
1199 
1200 		/*
1201 		 * Even though the device advertised discard support,
1202 		 * that does not mean every target supports it, and
1203 		 * reconfiguration might also have changed that since the
1204 		 * check was performed.
1205 		 */
1206 		if (!ti->num_discard_requests)
1207 			return -EOPNOTSUPP;
1208 
1209 		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1210 
1211 		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1212 
1213 		ci->sector += len;
1214 	} while (ci->sector_count -= len);
1215 
1216 	return 0;
1217 }
1218 
__clone_and_map(struct clone_info * ci)1219 static int __clone_and_map(struct clone_info *ci)
1220 {
1221 	struct bio *clone, *bio = ci->bio;
1222 	struct dm_target *ti;
1223 	sector_t len = 0, max;
1224 	struct dm_target_io *tio;
1225 
1226 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1227 		return __clone_and_map_discard(ci);
1228 
1229 	ti = dm_table_find_target(ci->map, ci->sector);
1230 	if (!dm_target_is_valid(ti))
1231 		return -EIO;
1232 
1233 	max = max_io_len(ci->sector, ti);
1234 
1235 	if (ci->sector_count <= max) {
1236 		/*
1237 		 * Optimise for the simple case where we can do all of
1238 		 * the remaining io with a single clone.
1239 		 */
1240 		__clone_and_map_simple(ci, ti);
1241 
1242 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1243 		/*
1244 		 * There are some bvecs that don't span targets.
1245 		 * Do as many of these as possible.
1246 		 */
1247 		int i;
1248 		sector_t remaining = max;
1249 		sector_t bv_len;
1250 
1251 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1252 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1253 
1254 			if (bv_len > remaining)
1255 				break;
1256 
1257 			remaining -= bv_len;
1258 			len += bv_len;
1259 		}
1260 
1261 		tio = alloc_tio(ci, ti);
1262 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1263 				  ci->md->bs);
1264 		__map_bio(ti, clone, tio);
1265 
1266 		ci->sector += len;
1267 		ci->sector_count -= len;
1268 		ci->idx = i;
1269 
1270 	} else {
1271 		/*
1272 		 * Handle a bvec that must be split between two or more targets.
1273 		 */
1274 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1275 		sector_t remaining = to_sector(bv->bv_len);
1276 		unsigned int offset = 0;
1277 
1278 		do {
1279 			if (offset) {
1280 				ti = dm_table_find_target(ci->map, ci->sector);
1281 				if (!dm_target_is_valid(ti))
1282 					return -EIO;
1283 
1284 				max = max_io_len(ci->sector, ti);
1285 			}
1286 
1287 			len = min(remaining, max);
1288 
1289 			tio = alloc_tio(ci, ti);
1290 			clone = split_bvec(bio, ci->sector, ci->idx,
1291 					   bv->bv_offset + offset, len,
1292 					   ci->md->bs);
1293 
1294 			__map_bio(ti, clone, tio);
1295 
1296 			ci->sector += len;
1297 			ci->sector_count -= len;
1298 			offset += to_bytes(len);
1299 		} while (remaining -= len);
1300 
1301 		ci->idx++;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 /*
1308  * Split the bio into several clones and submit it to targets.
1309  */
__split_and_process_bio(struct mapped_device * md,struct bio * bio)1310 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1311 {
1312 	struct clone_info ci;
1313 	int error = 0;
1314 
1315 	ci.map = dm_get_live_table(md);
1316 	if (unlikely(!ci.map)) {
1317 		bio_io_error(bio);
1318 		return;
1319 	}
1320 
1321 	ci.md = md;
1322 	ci.io = alloc_io(md);
1323 	ci.io->error = 0;
1324 	atomic_set(&ci.io->io_count, 1);
1325 	ci.io->bio = bio;
1326 	ci.io->md = md;
1327 	spin_lock_init(&ci.io->endio_lock);
1328 	ci.sector = bio->bi_sector;
1329 	ci.idx = bio->bi_idx;
1330 
1331 	start_io_acct(ci.io);
1332 	if (bio->bi_rw & REQ_FLUSH) {
1333 		ci.bio = &ci.md->flush_bio;
1334 		ci.sector_count = 0;
1335 		error = __clone_and_map_empty_flush(&ci);
1336 		/* dec_pending submits any data associated with flush */
1337 	} else {
1338 		ci.bio = bio;
1339 		ci.sector_count = bio_sectors(bio);
1340 		while (ci.sector_count && !error)
1341 			error = __clone_and_map(&ci);
1342 	}
1343 
1344 	/* drop the extra reference count */
1345 	dec_pending(ci.io, error);
1346 	dm_table_put(ci.map);
1347 }
1348 /*-----------------------------------------------------------------
1349  * CRUD END
1350  *---------------------------------------------------------------*/
1351 
dm_merge_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)1352 static int dm_merge_bvec(struct request_queue *q,
1353 			 struct bvec_merge_data *bvm,
1354 			 struct bio_vec *biovec)
1355 {
1356 	struct mapped_device *md = q->queuedata;
1357 	struct dm_table *map = dm_get_live_table(md);
1358 	struct dm_target *ti;
1359 	sector_t max_sectors;
1360 	int max_size = 0;
1361 
1362 	if (unlikely(!map))
1363 		goto out;
1364 
1365 	ti = dm_table_find_target(map, bvm->bi_sector);
1366 	if (!dm_target_is_valid(ti))
1367 		goto out_table;
1368 
1369 	/*
1370 	 * Find maximum amount of I/O that won't need splitting
1371 	 */
1372 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1373 			  (sector_t) BIO_MAX_SECTORS);
1374 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1375 	if (max_size < 0)
1376 		max_size = 0;
1377 
1378 	/*
1379 	 * merge_bvec_fn() returns number of bytes
1380 	 * it can accept at this offset
1381 	 * max is precomputed maximal io size
1382 	 */
1383 	if (max_size && ti->type->merge)
1384 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1385 	/*
1386 	 * If the target doesn't support merge method and some of the devices
1387 	 * provided their merge_bvec method (we know this by looking at
1388 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1389 	 * entries.  So always set max_size to 0, and the code below allows
1390 	 * just one page.
1391 	 */
1392 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1393 
1394 		max_size = 0;
1395 
1396 out_table:
1397 	dm_table_put(map);
1398 
1399 out:
1400 	/*
1401 	 * Always allow an entire first page
1402 	 */
1403 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1404 		max_size = biovec->bv_len;
1405 
1406 	return max_size;
1407 }
1408 
1409 /*
1410  * The request function that just remaps the bio built up by
1411  * dm_merge_bvec.
1412  */
_dm_request(struct request_queue * q,struct bio * bio)1413 static void _dm_request(struct request_queue *q, struct bio *bio)
1414 {
1415 	int rw = bio_data_dir(bio);
1416 	struct mapped_device *md = q->queuedata;
1417 	int cpu;
1418 
1419 	down_read(&md->io_lock);
1420 
1421 	cpu = part_stat_lock();
1422 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1423 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1424 	part_stat_unlock();
1425 
1426 	/* if we're suspended, we have to queue this io for later */
1427 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1428 		up_read(&md->io_lock);
1429 
1430 		if (bio_rw(bio) != READA)
1431 			queue_io(md, bio);
1432 		else
1433 			bio_io_error(bio);
1434 		return;
1435 	}
1436 
1437 	__split_and_process_bio(md, bio);
1438 	up_read(&md->io_lock);
1439 	return;
1440 }
1441 
dm_request_based(struct mapped_device * md)1442 static int dm_request_based(struct mapped_device *md)
1443 {
1444 	return blk_queue_stackable(md->queue);
1445 }
1446 
dm_request(struct request_queue * q,struct bio * bio)1447 static void dm_request(struct request_queue *q, struct bio *bio)
1448 {
1449 	struct mapped_device *md = q->queuedata;
1450 
1451 	if (dm_request_based(md))
1452 		blk_queue_bio(q, bio);
1453 	else
1454 		_dm_request(q, bio);
1455 }
1456 
dm_dispatch_request(struct request * rq)1457 void dm_dispatch_request(struct request *rq)
1458 {
1459 	int r;
1460 
1461 	if (blk_queue_io_stat(rq->q))
1462 		rq->cmd_flags |= REQ_IO_STAT;
1463 
1464 	rq->start_time = jiffies;
1465 	r = blk_insert_cloned_request(rq->q, rq);
1466 	if (r)
1467 		dm_complete_request(rq, r);
1468 }
1469 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1470 
dm_rq_bio_destructor(struct bio * bio)1471 static void dm_rq_bio_destructor(struct bio *bio)
1472 {
1473 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1474 	struct mapped_device *md = info->tio->md;
1475 
1476 	free_bio_info(info);
1477 	bio_free(bio, md->bs);
1478 }
1479 
dm_rq_bio_constructor(struct bio * bio,struct bio * bio_orig,void * data)1480 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1481 				 void *data)
1482 {
1483 	struct dm_rq_target_io *tio = data;
1484 	struct mapped_device *md = tio->md;
1485 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1486 
1487 	if (!info)
1488 		return -ENOMEM;
1489 
1490 	info->orig = bio_orig;
1491 	info->tio = tio;
1492 	bio->bi_end_io = end_clone_bio;
1493 	bio->bi_private = info;
1494 	bio->bi_destructor = dm_rq_bio_destructor;
1495 
1496 	return 0;
1497 }
1498 
setup_clone(struct request * clone,struct request * rq,struct dm_rq_target_io * tio)1499 static int setup_clone(struct request *clone, struct request *rq,
1500 		       struct dm_rq_target_io *tio)
1501 {
1502 	int r;
1503 
1504 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1505 			      dm_rq_bio_constructor, tio);
1506 	if (r)
1507 		return r;
1508 
1509 	clone->cmd = rq->cmd;
1510 	clone->cmd_len = rq->cmd_len;
1511 	clone->sense = rq->sense;
1512 	clone->buffer = rq->buffer;
1513 	clone->end_io = end_clone_request;
1514 	clone->end_io_data = tio;
1515 
1516 	return 0;
1517 }
1518 
clone_rq(struct request * rq,struct mapped_device * md,gfp_t gfp_mask)1519 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1520 				gfp_t gfp_mask)
1521 {
1522 	struct request *clone;
1523 	struct dm_rq_target_io *tio;
1524 
1525 	tio = alloc_rq_tio(md, gfp_mask);
1526 	if (!tio)
1527 		return NULL;
1528 
1529 	tio->md = md;
1530 	tio->ti = NULL;
1531 	tio->orig = rq;
1532 	tio->error = 0;
1533 	memset(&tio->info, 0, sizeof(tio->info));
1534 
1535 	clone = &tio->clone;
1536 	if (setup_clone(clone, rq, tio)) {
1537 		/* -ENOMEM */
1538 		free_rq_tio(tio);
1539 		return NULL;
1540 	}
1541 
1542 	return clone;
1543 }
1544 
1545 /*
1546  * Called with the queue lock held.
1547  */
dm_prep_fn(struct request_queue * q,struct request * rq)1548 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1549 {
1550 	struct mapped_device *md = q->queuedata;
1551 	struct request *clone;
1552 
1553 	if (unlikely(rq->special)) {
1554 		DMWARN("Already has something in rq->special.");
1555 		return BLKPREP_KILL;
1556 	}
1557 
1558 	clone = clone_rq(rq, md, GFP_ATOMIC);
1559 	if (!clone)
1560 		return BLKPREP_DEFER;
1561 
1562 	rq->special = clone;
1563 	rq->cmd_flags |= REQ_DONTPREP;
1564 
1565 	return BLKPREP_OK;
1566 }
1567 
1568 /*
1569  * Returns:
1570  * 0  : the request has been processed (not requeued)
1571  * !0 : the request has been requeued
1572  */
map_request(struct dm_target * ti,struct request * clone,struct mapped_device * md)1573 static int map_request(struct dm_target *ti, struct request *clone,
1574 		       struct mapped_device *md)
1575 {
1576 	int r, requeued = 0;
1577 	struct dm_rq_target_io *tio = clone->end_io_data;
1578 
1579 	tio->ti = ti;
1580 	r = ti->type->map_rq(ti, clone, &tio->info);
1581 	switch (r) {
1582 	case DM_MAPIO_SUBMITTED:
1583 		/* The target has taken the I/O to submit by itself later */
1584 		break;
1585 	case DM_MAPIO_REMAPPED:
1586 		/* The target has remapped the I/O so dispatch it */
1587 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1588 				     blk_rq_pos(tio->orig));
1589 		dm_dispatch_request(clone);
1590 		break;
1591 	case DM_MAPIO_REQUEUE:
1592 		/* The target wants to requeue the I/O */
1593 		dm_requeue_unmapped_request(clone);
1594 		requeued = 1;
1595 		break;
1596 	default:
1597 		if (r > 0) {
1598 			DMWARN("unimplemented target map return value: %d", r);
1599 			BUG();
1600 		}
1601 
1602 		/* The target wants to complete the I/O */
1603 		dm_kill_unmapped_request(clone, r);
1604 		break;
1605 	}
1606 
1607 	return requeued;
1608 }
1609 
dm_start_request(struct mapped_device * md,struct request * orig)1610 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1611 {
1612 	struct request *clone;
1613 
1614 	blk_start_request(orig);
1615 	clone = orig->special;
1616 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1617 
1618 	/*
1619 	 * Hold the md reference here for the in-flight I/O.
1620 	 * We can't rely on the reference count by device opener,
1621 	 * because the device may be closed during the request completion
1622 	 * when all bios are completed.
1623 	 * See the comment in rq_completed() too.
1624 	 */
1625 	dm_get(md);
1626 
1627 	return clone;
1628 }
1629 
1630 /*
1631  * q->request_fn for request-based dm.
1632  * Called with the queue lock held.
1633  */
dm_request_fn(struct request_queue * q)1634 static void dm_request_fn(struct request_queue *q)
1635 {
1636 	struct mapped_device *md = q->queuedata;
1637 	struct dm_table *map = dm_get_live_table(md);
1638 	struct dm_target *ti;
1639 	struct request *rq, *clone;
1640 	sector_t pos;
1641 
1642 	/*
1643 	 * For suspend, check blk_queue_stopped() and increment
1644 	 * ->pending within a single queue_lock not to increment the
1645 	 * number of in-flight I/Os after the queue is stopped in
1646 	 * dm_suspend().
1647 	 */
1648 	while (!blk_queue_stopped(q)) {
1649 		rq = blk_peek_request(q);
1650 		if (!rq)
1651 			goto delay_and_out;
1652 
1653 		/* always use block 0 to find the target for flushes for now */
1654 		pos = 0;
1655 		if (!(rq->cmd_flags & REQ_FLUSH))
1656 			pos = blk_rq_pos(rq);
1657 
1658 		ti = dm_table_find_target(map, pos);
1659 		if (!dm_target_is_valid(ti)) {
1660 			/*
1661 			 * Must perform setup, that dm_done() requires,
1662 			 * before calling dm_kill_unmapped_request
1663 			 */
1664 			DMERR_LIMIT("request attempted access beyond the end of device");
1665 			clone = dm_start_request(md, rq);
1666 			dm_kill_unmapped_request(clone, -EIO);
1667 			continue;
1668 		}
1669 
1670 		if (ti->type->busy && ti->type->busy(ti))
1671 			goto delay_and_out;
1672 
1673 		clone = dm_start_request(md, rq);
1674 
1675 		spin_unlock(q->queue_lock);
1676 		if (map_request(ti, clone, md))
1677 			goto requeued;
1678 
1679 		BUG_ON(!irqs_disabled());
1680 		spin_lock(q->queue_lock);
1681 	}
1682 
1683 	goto out;
1684 
1685 requeued:
1686 	BUG_ON(!irqs_disabled());
1687 	spin_lock(q->queue_lock);
1688 
1689 delay_and_out:
1690 	blk_delay_queue(q, HZ / 10);
1691 out:
1692 	dm_table_put(map);
1693 }
1694 
dm_underlying_device_busy(struct request_queue * q)1695 int dm_underlying_device_busy(struct request_queue *q)
1696 {
1697 	return blk_lld_busy(q);
1698 }
1699 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1700 
dm_lld_busy(struct request_queue * q)1701 static int dm_lld_busy(struct request_queue *q)
1702 {
1703 	int r;
1704 	struct mapped_device *md = q->queuedata;
1705 	struct dm_table *map = dm_get_live_table(md);
1706 
1707 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1708 		r = 1;
1709 	else
1710 		r = dm_table_any_busy_target(map);
1711 
1712 	dm_table_put(map);
1713 
1714 	return r;
1715 }
1716 
dm_any_congested(void * congested_data,int bdi_bits)1717 static int dm_any_congested(void *congested_data, int bdi_bits)
1718 {
1719 	int r = bdi_bits;
1720 	struct mapped_device *md = congested_data;
1721 	struct dm_table *map;
1722 
1723 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1724 		map = dm_get_live_table(md);
1725 		if (map) {
1726 			/*
1727 			 * Request-based dm cares about only own queue for
1728 			 * the query about congestion status of request_queue
1729 			 */
1730 			if (dm_request_based(md))
1731 				r = md->queue->backing_dev_info.state &
1732 				    bdi_bits;
1733 			else
1734 				r = dm_table_any_congested(map, bdi_bits);
1735 
1736 			dm_table_put(map);
1737 		}
1738 	}
1739 
1740 	return r;
1741 }
1742 
1743 /*-----------------------------------------------------------------
1744  * An IDR is used to keep track of allocated minor numbers.
1745  *---------------------------------------------------------------*/
free_minor(int minor)1746 static void free_minor(int minor)
1747 {
1748 	spin_lock(&_minor_lock);
1749 	idr_remove(&_minor_idr, minor);
1750 	spin_unlock(&_minor_lock);
1751 }
1752 
1753 /*
1754  * See if the device with a specific minor # is free.
1755  */
specific_minor(int minor)1756 static int specific_minor(int minor)
1757 {
1758 	int r, m;
1759 
1760 	if (minor >= (1 << MINORBITS))
1761 		return -EINVAL;
1762 
1763 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1764 	if (!r)
1765 		return -ENOMEM;
1766 
1767 	spin_lock(&_minor_lock);
1768 
1769 	if (idr_find(&_minor_idr, minor)) {
1770 		r = -EBUSY;
1771 		goto out;
1772 	}
1773 
1774 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1775 	if (r)
1776 		goto out;
1777 
1778 	if (m != minor) {
1779 		idr_remove(&_minor_idr, m);
1780 		r = -EBUSY;
1781 		goto out;
1782 	}
1783 
1784 out:
1785 	spin_unlock(&_minor_lock);
1786 	return r;
1787 }
1788 
next_free_minor(int * minor)1789 static int next_free_minor(int *minor)
1790 {
1791 	int r, m;
1792 
1793 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1794 	if (!r)
1795 		return -ENOMEM;
1796 
1797 	spin_lock(&_minor_lock);
1798 
1799 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1800 	if (r)
1801 		goto out;
1802 
1803 	if (m >= (1 << MINORBITS)) {
1804 		idr_remove(&_minor_idr, m);
1805 		r = -ENOSPC;
1806 		goto out;
1807 	}
1808 
1809 	*minor = m;
1810 
1811 out:
1812 	spin_unlock(&_minor_lock);
1813 	return r;
1814 }
1815 
1816 static const struct block_device_operations dm_blk_dops;
1817 
1818 static void dm_wq_work(struct work_struct *work);
1819 
dm_init_md_queue(struct mapped_device * md)1820 static void dm_init_md_queue(struct mapped_device *md)
1821 {
1822 	/*
1823 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1824 	 * devices.  The type of this dm device has not been decided yet.
1825 	 * The type is decided at the first table loading time.
1826 	 * To prevent problematic device stacking, clear the queue flag
1827 	 * for request stacking support until then.
1828 	 *
1829 	 * This queue is new, so no concurrency on the queue_flags.
1830 	 */
1831 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1832 
1833 	md->queue->queuedata = md;
1834 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1835 	md->queue->backing_dev_info.congested_data = md;
1836 	blk_queue_make_request(md->queue, dm_request);
1837 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1838 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1839 }
1840 
1841 /*
1842  * Allocate and initialise a blank device with a given minor.
1843  */
alloc_dev(int minor)1844 static struct mapped_device *alloc_dev(int minor)
1845 {
1846 	int r;
1847 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1848 	void *old_md;
1849 
1850 	if (!md) {
1851 		DMWARN("unable to allocate device, out of memory.");
1852 		return NULL;
1853 	}
1854 
1855 	if (!try_module_get(THIS_MODULE))
1856 		goto bad_module_get;
1857 
1858 	/* get a minor number for the dev */
1859 	if (minor == DM_ANY_MINOR)
1860 		r = next_free_minor(&minor);
1861 	else
1862 		r = specific_minor(minor);
1863 	if (r < 0)
1864 		goto bad_minor;
1865 
1866 	md->type = DM_TYPE_NONE;
1867 	init_rwsem(&md->io_lock);
1868 	mutex_init(&md->suspend_lock);
1869 	mutex_init(&md->type_lock);
1870 	spin_lock_init(&md->deferred_lock);
1871 	rwlock_init(&md->map_lock);
1872 	atomic_set(&md->holders, 1);
1873 	atomic_set(&md->open_count, 0);
1874 	atomic_set(&md->event_nr, 0);
1875 	atomic_set(&md->uevent_seq, 0);
1876 	INIT_LIST_HEAD(&md->uevent_list);
1877 	spin_lock_init(&md->uevent_lock);
1878 
1879 	md->queue = blk_alloc_queue(GFP_KERNEL);
1880 	if (!md->queue)
1881 		goto bad_queue;
1882 
1883 	dm_init_md_queue(md);
1884 
1885 	md->disk = alloc_disk(1);
1886 	if (!md->disk)
1887 		goto bad_disk;
1888 
1889 	atomic_set(&md->pending[0], 0);
1890 	atomic_set(&md->pending[1], 0);
1891 	init_waitqueue_head(&md->wait);
1892 	INIT_WORK(&md->work, dm_wq_work);
1893 	init_waitqueue_head(&md->eventq);
1894 	init_completion(&md->kobj_holder.completion);
1895 
1896 	md->disk->major = _major;
1897 	md->disk->first_minor = minor;
1898 	md->disk->fops = &dm_blk_dops;
1899 	md->disk->queue = md->queue;
1900 	md->disk->private_data = md;
1901 	sprintf(md->disk->disk_name, "dm-%d", minor);
1902 	add_disk(md->disk);
1903 	format_dev_t(md->name, MKDEV(_major, minor));
1904 
1905 	md->wq = alloc_workqueue("kdmflush",
1906 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1907 	if (!md->wq)
1908 		goto bad_thread;
1909 
1910 	md->bdev = bdget_disk(md->disk, 0);
1911 	if (!md->bdev)
1912 		goto bad_bdev;
1913 
1914 	bio_init(&md->flush_bio);
1915 	md->flush_bio.bi_bdev = md->bdev;
1916 	md->flush_bio.bi_rw = WRITE_FLUSH;
1917 
1918 	/* Populate the mapping, nobody knows we exist yet */
1919 	spin_lock(&_minor_lock);
1920 	old_md = idr_replace(&_minor_idr, md, minor);
1921 	spin_unlock(&_minor_lock);
1922 
1923 	BUG_ON(old_md != MINOR_ALLOCED);
1924 
1925 	return md;
1926 
1927 bad_bdev:
1928 	destroy_workqueue(md->wq);
1929 bad_thread:
1930 	del_gendisk(md->disk);
1931 	put_disk(md->disk);
1932 bad_disk:
1933 	blk_cleanup_queue(md->queue);
1934 bad_queue:
1935 	free_minor(minor);
1936 bad_minor:
1937 	module_put(THIS_MODULE);
1938 bad_module_get:
1939 	kfree(md);
1940 	return NULL;
1941 }
1942 
1943 static void unlock_fs(struct mapped_device *md);
1944 
free_dev(struct mapped_device * md)1945 static void free_dev(struct mapped_device *md)
1946 {
1947 	int minor = MINOR(disk_devt(md->disk));
1948 
1949 	unlock_fs(md);
1950 	bdput(md->bdev);
1951 	destroy_workqueue(md->wq);
1952 	if (md->tio_pool)
1953 		mempool_destroy(md->tio_pool);
1954 	if (md->io_pool)
1955 		mempool_destroy(md->io_pool);
1956 	if (md->bs)
1957 		bioset_free(md->bs);
1958 	blk_integrity_unregister(md->disk);
1959 	del_gendisk(md->disk);
1960 	free_minor(minor);
1961 
1962 	spin_lock(&_minor_lock);
1963 	md->disk->private_data = NULL;
1964 	spin_unlock(&_minor_lock);
1965 
1966 	put_disk(md->disk);
1967 	blk_cleanup_queue(md->queue);
1968 	module_put(THIS_MODULE);
1969 	kfree(md);
1970 }
1971 
__bind_mempools(struct mapped_device * md,struct dm_table * t)1972 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1973 {
1974 	struct dm_md_mempools *p;
1975 
1976 	if (md->io_pool && md->tio_pool && md->bs)
1977 		/* the md already has necessary mempools */
1978 		goto out;
1979 
1980 	p = dm_table_get_md_mempools(t);
1981 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1982 
1983 	md->io_pool = p->io_pool;
1984 	p->io_pool = NULL;
1985 	md->tio_pool = p->tio_pool;
1986 	p->tio_pool = NULL;
1987 	md->bs = p->bs;
1988 	p->bs = NULL;
1989 
1990 out:
1991 	/* mempool bind completed, now no need any mempools in the table */
1992 	dm_table_free_md_mempools(t);
1993 }
1994 
1995 /*
1996  * Bind a table to the device.
1997  */
event_callback(void * context)1998 static void event_callback(void *context)
1999 {
2000 	unsigned long flags;
2001 	LIST_HEAD(uevents);
2002 	struct mapped_device *md = (struct mapped_device *) context;
2003 
2004 	spin_lock_irqsave(&md->uevent_lock, flags);
2005 	list_splice_init(&md->uevent_list, &uevents);
2006 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2007 
2008 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2009 
2010 	atomic_inc(&md->event_nr);
2011 	wake_up(&md->eventq);
2012 }
2013 
2014 /*
2015  * Protected by md->suspend_lock obtained by dm_swap_table().
2016  */
__set_size(struct mapped_device * md,sector_t size)2017 static void __set_size(struct mapped_device *md, sector_t size)
2018 {
2019 	set_capacity(md->disk, size);
2020 
2021 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2022 }
2023 
2024 /*
2025  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2026  *
2027  * If this function returns 0, then the device is either a non-dm
2028  * device without a merge_bvec_fn, or it is a dm device that is
2029  * able to split any bios it receives that are too big.
2030  */
dm_queue_merge_is_compulsory(struct request_queue * q)2031 int dm_queue_merge_is_compulsory(struct request_queue *q)
2032 {
2033 	struct mapped_device *dev_md;
2034 
2035 	if (!q->merge_bvec_fn)
2036 		return 0;
2037 
2038 	if (q->make_request_fn == dm_request) {
2039 		dev_md = q->queuedata;
2040 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2041 			return 0;
2042 	}
2043 
2044 	return 1;
2045 }
2046 
dm_device_merge_is_compulsory(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2047 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2048 					 struct dm_dev *dev, sector_t start,
2049 					 sector_t len, void *data)
2050 {
2051 	struct block_device *bdev = dev->bdev;
2052 	struct request_queue *q = bdev_get_queue(bdev);
2053 
2054 	return dm_queue_merge_is_compulsory(q);
2055 }
2056 
2057 /*
2058  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2059  * on the properties of the underlying devices.
2060  */
dm_table_merge_is_optional(struct dm_table * table)2061 static int dm_table_merge_is_optional(struct dm_table *table)
2062 {
2063 	unsigned i = 0;
2064 	struct dm_target *ti;
2065 
2066 	while (i < dm_table_get_num_targets(table)) {
2067 		ti = dm_table_get_target(table, i++);
2068 
2069 		if (ti->type->iterate_devices &&
2070 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2071 			return 0;
2072 	}
2073 
2074 	return 1;
2075 }
2076 
2077 /*
2078  * Returns old map, which caller must destroy.
2079  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2080 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2081 			       struct queue_limits *limits)
2082 {
2083 	struct dm_table *old_map;
2084 	struct request_queue *q = md->queue;
2085 	sector_t size;
2086 	unsigned long flags;
2087 	int merge_is_optional;
2088 
2089 	size = dm_table_get_size(t);
2090 
2091 	/*
2092 	 * Wipe any geometry if the size of the table changed.
2093 	 */
2094 	if (size != get_capacity(md->disk))
2095 		memset(&md->geometry, 0, sizeof(md->geometry));
2096 
2097 	__set_size(md, size);
2098 
2099 	dm_table_event_callback(t, event_callback, md);
2100 
2101 	/*
2102 	 * The queue hasn't been stopped yet, if the old table type wasn't
2103 	 * for request-based during suspension.  So stop it to prevent
2104 	 * I/O mapping before resume.
2105 	 * This must be done before setting the queue restrictions,
2106 	 * because request-based dm may be run just after the setting.
2107 	 */
2108 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2109 		stop_queue(q);
2110 
2111 	__bind_mempools(md, t);
2112 
2113 	merge_is_optional = dm_table_merge_is_optional(t);
2114 
2115 	write_lock_irqsave(&md->map_lock, flags);
2116 	old_map = md->map;
2117 	md->map = t;
2118 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2119 
2120 	dm_table_set_restrictions(t, q, limits);
2121 	if (merge_is_optional)
2122 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2123 	else
2124 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2125 	write_unlock_irqrestore(&md->map_lock, flags);
2126 
2127 	return old_map;
2128 }
2129 
2130 /*
2131  * Returns unbound table for the caller to free.
2132  */
__unbind(struct mapped_device * md)2133 static struct dm_table *__unbind(struct mapped_device *md)
2134 {
2135 	struct dm_table *map = md->map;
2136 	unsigned long flags;
2137 
2138 	if (!map)
2139 		return NULL;
2140 
2141 	dm_table_event_callback(map, NULL, NULL);
2142 	write_lock_irqsave(&md->map_lock, flags);
2143 	md->map = NULL;
2144 	write_unlock_irqrestore(&md->map_lock, flags);
2145 
2146 	return map;
2147 }
2148 
2149 /*
2150  * Constructor for a new device.
2151  */
dm_create(int minor,struct mapped_device ** result)2152 int dm_create(int minor, struct mapped_device **result)
2153 {
2154 	struct mapped_device *md;
2155 
2156 	md = alloc_dev(minor);
2157 	if (!md)
2158 		return -ENXIO;
2159 
2160 	dm_sysfs_init(md);
2161 
2162 	*result = md;
2163 	return 0;
2164 }
2165 
2166 /*
2167  * Functions to manage md->type.
2168  * All are required to hold md->type_lock.
2169  */
dm_lock_md_type(struct mapped_device * md)2170 void dm_lock_md_type(struct mapped_device *md)
2171 {
2172 	mutex_lock(&md->type_lock);
2173 }
2174 
dm_unlock_md_type(struct mapped_device * md)2175 void dm_unlock_md_type(struct mapped_device *md)
2176 {
2177 	mutex_unlock(&md->type_lock);
2178 }
2179 
dm_set_md_type(struct mapped_device * md,unsigned type)2180 void dm_set_md_type(struct mapped_device *md, unsigned type)
2181 {
2182 	md->type = type;
2183 }
2184 
dm_get_md_type(struct mapped_device * md)2185 unsigned dm_get_md_type(struct mapped_device *md)
2186 {
2187 	return md->type;
2188 }
2189 
dm_get_immutable_target_type(struct mapped_device * md)2190 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2191 {
2192 	return md->immutable_target_type;
2193 }
2194 
2195 /*
2196  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2197  */
dm_init_request_based_queue(struct mapped_device * md)2198 static int dm_init_request_based_queue(struct mapped_device *md)
2199 {
2200 	struct request_queue *q = NULL;
2201 
2202 	if (md->queue->elevator)
2203 		return 1;
2204 
2205 	/* Fully initialize the queue */
2206 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2207 	if (!q)
2208 		return 0;
2209 
2210 	md->queue = q;
2211 	dm_init_md_queue(md);
2212 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2213 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2214 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2215 
2216 	elv_register_queue(md->queue);
2217 
2218 	return 1;
2219 }
2220 
2221 /*
2222  * Setup the DM device's queue based on md's type
2223  */
dm_setup_md_queue(struct mapped_device * md)2224 int dm_setup_md_queue(struct mapped_device *md)
2225 {
2226 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2227 	    !dm_init_request_based_queue(md)) {
2228 		DMWARN("Cannot initialize queue for request-based mapped device");
2229 		return -EINVAL;
2230 	}
2231 
2232 	return 0;
2233 }
2234 
dm_find_md(dev_t dev)2235 static struct mapped_device *dm_find_md(dev_t dev)
2236 {
2237 	struct mapped_device *md;
2238 	unsigned minor = MINOR(dev);
2239 
2240 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2241 		return NULL;
2242 
2243 	spin_lock(&_minor_lock);
2244 
2245 	md = idr_find(&_minor_idr, minor);
2246 	if (md && (md == MINOR_ALLOCED ||
2247 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2248 		   dm_deleting_md(md) ||
2249 		   test_bit(DMF_FREEING, &md->flags))) {
2250 		md = NULL;
2251 		goto out;
2252 	}
2253 
2254 out:
2255 	spin_unlock(&_minor_lock);
2256 
2257 	return md;
2258 }
2259 
dm_get_md(dev_t dev)2260 struct mapped_device *dm_get_md(dev_t dev)
2261 {
2262 	struct mapped_device *md = dm_find_md(dev);
2263 
2264 	if (md)
2265 		dm_get(md);
2266 
2267 	return md;
2268 }
2269 EXPORT_SYMBOL_GPL(dm_get_md);
2270 
dm_get_mdptr(struct mapped_device * md)2271 void *dm_get_mdptr(struct mapped_device *md)
2272 {
2273 	return md->interface_ptr;
2274 }
2275 
dm_set_mdptr(struct mapped_device * md,void * ptr)2276 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2277 {
2278 	md->interface_ptr = ptr;
2279 }
2280 
dm_get(struct mapped_device * md)2281 void dm_get(struct mapped_device *md)
2282 {
2283 	atomic_inc(&md->holders);
2284 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2285 }
2286 
dm_device_name(struct mapped_device * md)2287 const char *dm_device_name(struct mapped_device *md)
2288 {
2289 	return md->name;
2290 }
2291 EXPORT_SYMBOL_GPL(dm_device_name);
2292 
__dm_destroy(struct mapped_device * md,bool wait)2293 static void __dm_destroy(struct mapped_device *md, bool wait)
2294 {
2295 	struct dm_table *map;
2296 
2297 	might_sleep();
2298 
2299 	spin_lock(&_minor_lock);
2300 	map = dm_get_live_table(md);
2301 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2302 	set_bit(DMF_FREEING, &md->flags);
2303 	spin_unlock(&_minor_lock);
2304 
2305 	if (!dm_suspended_md(md)) {
2306 		dm_table_presuspend_targets(map);
2307 		dm_table_postsuspend_targets(map);
2308 	}
2309 
2310 	/*
2311 	 * Rare, but there may be I/O requests still going to complete,
2312 	 * for example.  Wait for all references to disappear.
2313 	 * No one should increment the reference count of the mapped_device,
2314 	 * after the mapped_device state becomes DMF_FREEING.
2315 	 */
2316 	if (wait)
2317 		while (atomic_read(&md->holders))
2318 			msleep(1);
2319 	else if (atomic_read(&md->holders))
2320 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2321 		       dm_device_name(md), atomic_read(&md->holders));
2322 
2323 	dm_sysfs_exit(md);
2324 	dm_table_put(map);
2325 	dm_table_destroy(__unbind(md));
2326 	free_dev(md);
2327 }
2328 
dm_destroy(struct mapped_device * md)2329 void dm_destroy(struct mapped_device *md)
2330 {
2331 	__dm_destroy(md, true);
2332 }
2333 
dm_destroy_immediate(struct mapped_device * md)2334 void dm_destroy_immediate(struct mapped_device *md)
2335 {
2336 	__dm_destroy(md, false);
2337 }
2338 
dm_put(struct mapped_device * md)2339 void dm_put(struct mapped_device *md)
2340 {
2341 	atomic_dec(&md->holders);
2342 }
2343 EXPORT_SYMBOL_GPL(dm_put);
2344 
dm_wait_for_completion(struct mapped_device * md,int interruptible)2345 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2346 {
2347 	int r = 0;
2348 	DECLARE_WAITQUEUE(wait, current);
2349 
2350 	add_wait_queue(&md->wait, &wait);
2351 
2352 	while (1) {
2353 		set_current_state(interruptible);
2354 
2355 		if (!md_in_flight(md))
2356 			break;
2357 
2358 		if (interruptible == TASK_INTERRUPTIBLE &&
2359 		    signal_pending(current)) {
2360 			r = -EINTR;
2361 			break;
2362 		}
2363 
2364 		io_schedule();
2365 	}
2366 	set_current_state(TASK_RUNNING);
2367 
2368 	remove_wait_queue(&md->wait, &wait);
2369 
2370 	return r;
2371 }
2372 
2373 /*
2374  * Process the deferred bios
2375  */
dm_wq_work(struct work_struct * work)2376 static void dm_wq_work(struct work_struct *work)
2377 {
2378 	struct mapped_device *md = container_of(work, struct mapped_device,
2379 						work);
2380 	struct bio *c;
2381 
2382 	down_read(&md->io_lock);
2383 
2384 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2385 		spin_lock_irq(&md->deferred_lock);
2386 		c = bio_list_pop(&md->deferred);
2387 		spin_unlock_irq(&md->deferred_lock);
2388 
2389 		if (!c)
2390 			break;
2391 
2392 		up_read(&md->io_lock);
2393 
2394 		if (dm_request_based(md))
2395 			generic_make_request(c);
2396 		else
2397 			__split_and_process_bio(md, c);
2398 
2399 		down_read(&md->io_lock);
2400 	}
2401 
2402 	up_read(&md->io_lock);
2403 }
2404 
dm_queue_flush(struct mapped_device * md)2405 static void dm_queue_flush(struct mapped_device *md)
2406 {
2407 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2408 	smp_mb__after_clear_bit();
2409 	queue_work(md->wq, &md->work);
2410 }
2411 
2412 /*
2413  * Swap in a new table, returning the old one for the caller to destroy.
2414  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2415 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2416 {
2417 	struct dm_table *map = ERR_PTR(-EINVAL);
2418 	struct queue_limits limits;
2419 	int r;
2420 
2421 	mutex_lock(&md->suspend_lock);
2422 
2423 	/* device must be suspended */
2424 	if (!dm_suspended_md(md))
2425 		goto out;
2426 
2427 	r = dm_calculate_queue_limits(table, &limits);
2428 	if (r) {
2429 		map = ERR_PTR(r);
2430 		goto out;
2431 	}
2432 
2433 	map = __bind(md, table, &limits);
2434 
2435 out:
2436 	mutex_unlock(&md->suspend_lock);
2437 	return map;
2438 }
2439 
2440 /*
2441  * Functions to lock and unlock any filesystem running on the
2442  * device.
2443  */
lock_fs(struct mapped_device * md)2444 static int lock_fs(struct mapped_device *md)
2445 {
2446 	int r;
2447 
2448 	WARN_ON(md->frozen_sb);
2449 
2450 	md->frozen_sb = freeze_bdev(md->bdev);
2451 	if (IS_ERR(md->frozen_sb)) {
2452 		r = PTR_ERR(md->frozen_sb);
2453 		md->frozen_sb = NULL;
2454 		return r;
2455 	}
2456 
2457 	set_bit(DMF_FROZEN, &md->flags);
2458 
2459 	return 0;
2460 }
2461 
unlock_fs(struct mapped_device * md)2462 static void unlock_fs(struct mapped_device *md)
2463 {
2464 	if (!test_bit(DMF_FROZEN, &md->flags))
2465 		return;
2466 
2467 	thaw_bdev(md->bdev, md->frozen_sb);
2468 	md->frozen_sb = NULL;
2469 	clear_bit(DMF_FROZEN, &md->flags);
2470 }
2471 
2472 /*
2473  * We need to be able to change a mapping table under a mounted
2474  * filesystem.  For example we might want to move some data in
2475  * the background.  Before the table can be swapped with
2476  * dm_bind_table, dm_suspend must be called to flush any in
2477  * flight bios and ensure that any further io gets deferred.
2478  */
2479 /*
2480  * Suspend mechanism in request-based dm.
2481  *
2482  * 1. Flush all I/Os by lock_fs() if needed.
2483  * 2. Stop dispatching any I/O by stopping the request_queue.
2484  * 3. Wait for all in-flight I/Os to be completed or requeued.
2485  *
2486  * To abort suspend, start the request_queue.
2487  */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2488 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2489 {
2490 	struct dm_table *map = NULL;
2491 	int r = 0;
2492 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2493 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2494 
2495 	mutex_lock(&md->suspend_lock);
2496 
2497 	if (dm_suspended_md(md)) {
2498 		r = -EINVAL;
2499 		goto out_unlock;
2500 	}
2501 
2502 	map = dm_get_live_table(md);
2503 
2504 	/*
2505 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2506 	 * This flag is cleared before dm_suspend returns.
2507 	 */
2508 	if (noflush)
2509 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2510 
2511 	/* This does not get reverted if there's an error later. */
2512 	dm_table_presuspend_targets(map);
2513 
2514 	/*
2515 	 * Flush I/O to the device.
2516 	 * Any I/O submitted after lock_fs() may not be flushed.
2517 	 * noflush takes precedence over do_lockfs.
2518 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2519 	 */
2520 	if (!noflush && do_lockfs) {
2521 		r = lock_fs(md);
2522 		if (r)
2523 			goto out;
2524 	}
2525 
2526 	/*
2527 	 * Here we must make sure that no processes are submitting requests
2528 	 * to target drivers i.e. no one may be executing
2529 	 * __split_and_process_bio. This is called from dm_request and
2530 	 * dm_wq_work.
2531 	 *
2532 	 * To get all processes out of __split_and_process_bio in dm_request,
2533 	 * we take the write lock. To prevent any process from reentering
2534 	 * __split_and_process_bio from dm_request and quiesce the thread
2535 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2536 	 * flush_workqueue(md->wq).
2537 	 */
2538 	down_write(&md->io_lock);
2539 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2540 	up_write(&md->io_lock);
2541 
2542 	/*
2543 	 * Stop md->queue before flushing md->wq in case request-based
2544 	 * dm defers requests to md->wq from md->queue.
2545 	 */
2546 	if (dm_request_based(md))
2547 		stop_queue(md->queue);
2548 
2549 	flush_workqueue(md->wq);
2550 
2551 	/*
2552 	 * At this point no more requests are entering target request routines.
2553 	 * We call dm_wait_for_completion to wait for all existing requests
2554 	 * to finish.
2555 	 */
2556 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2557 
2558 	down_write(&md->io_lock);
2559 	if (noflush)
2560 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2561 	up_write(&md->io_lock);
2562 
2563 	/* were we interrupted ? */
2564 	if (r < 0) {
2565 		dm_queue_flush(md);
2566 
2567 		if (dm_request_based(md))
2568 			start_queue(md->queue);
2569 
2570 		unlock_fs(md);
2571 		goto out; /* pushback list is already flushed, so skip flush */
2572 	}
2573 
2574 	/*
2575 	 * If dm_wait_for_completion returned 0, the device is completely
2576 	 * quiescent now. There is no request-processing activity. All new
2577 	 * requests are being added to md->deferred list.
2578 	 */
2579 
2580 	set_bit(DMF_SUSPENDED, &md->flags);
2581 
2582 	dm_table_postsuspend_targets(map);
2583 
2584 out:
2585 	dm_table_put(map);
2586 
2587 out_unlock:
2588 	mutex_unlock(&md->suspend_lock);
2589 	return r;
2590 }
2591 
dm_resume(struct mapped_device * md)2592 int dm_resume(struct mapped_device *md)
2593 {
2594 	int r = -EINVAL;
2595 	struct dm_table *map = NULL;
2596 
2597 	mutex_lock(&md->suspend_lock);
2598 	if (!dm_suspended_md(md))
2599 		goto out;
2600 
2601 	map = dm_get_live_table(md);
2602 	if (!map || !dm_table_get_size(map))
2603 		goto out;
2604 
2605 	r = dm_table_resume_targets(map);
2606 	if (r)
2607 		goto out;
2608 
2609 	dm_queue_flush(md);
2610 
2611 	/*
2612 	 * Flushing deferred I/Os must be done after targets are resumed
2613 	 * so that mapping of targets can work correctly.
2614 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2615 	 */
2616 	if (dm_request_based(md))
2617 		start_queue(md->queue);
2618 
2619 	unlock_fs(md);
2620 
2621 	clear_bit(DMF_SUSPENDED, &md->flags);
2622 
2623 	r = 0;
2624 out:
2625 	dm_table_put(map);
2626 	mutex_unlock(&md->suspend_lock);
2627 
2628 	return r;
2629 }
2630 
2631 /*-----------------------------------------------------------------
2632  * Event notification.
2633  *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2634 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2635 		       unsigned cookie)
2636 {
2637 	char udev_cookie[DM_COOKIE_LENGTH];
2638 	char *envp[] = { udev_cookie, NULL };
2639 
2640 	if (!cookie)
2641 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2642 	else {
2643 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2644 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2645 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2646 					  action, envp);
2647 	}
2648 }
2649 
dm_next_uevent_seq(struct mapped_device * md)2650 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2651 {
2652 	return atomic_add_return(1, &md->uevent_seq);
2653 }
2654 
dm_get_event_nr(struct mapped_device * md)2655 uint32_t dm_get_event_nr(struct mapped_device *md)
2656 {
2657 	return atomic_read(&md->event_nr);
2658 }
2659 
dm_wait_event(struct mapped_device * md,int event_nr)2660 int dm_wait_event(struct mapped_device *md, int event_nr)
2661 {
2662 	return wait_event_interruptible(md->eventq,
2663 			(event_nr != atomic_read(&md->event_nr)));
2664 }
2665 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2666 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2667 {
2668 	unsigned long flags;
2669 
2670 	spin_lock_irqsave(&md->uevent_lock, flags);
2671 	list_add(elist, &md->uevent_list);
2672 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2673 }
2674 
2675 /*
2676  * The gendisk is only valid as long as you have a reference
2677  * count on 'md'.
2678  */
dm_disk(struct mapped_device * md)2679 struct gendisk *dm_disk(struct mapped_device *md)
2680 {
2681 	return md->disk;
2682 }
2683 
dm_kobject(struct mapped_device * md)2684 struct kobject *dm_kobject(struct mapped_device *md)
2685 {
2686 	return &md->kobj_holder.kobj;
2687 }
2688 
dm_get_from_kobject(struct kobject * kobj)2689 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2690 {
2691 	struct mapped_device *md;
2692 
2693 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2694 
2695 	if (test_bit(DMF_FREEING, &md->flags) ||
2696 	    dm_deleting_md(md))
2697 		return NULL;
2698 
2699 	dm_get(md);
2700 	return md;
2701 }
2702 
dm_suspended_md(struct mapped_device * md)2703 int dm_suspended_md(struct mapped_device *md)
2704 {
2705 	return test_bit(DMF_SUSPENDED, &md->flags);
2706 }
2707 
dm_suspended(struct dm_target * ti)2708 int dm_suspended(struct dm_target *ti)
2709 {
2710 	return dm_suspended_md(dm_table_get_md(ti->table));
2711 }
2712 EXPORT_SYMBOL_GPL(dm_suspended);
2713 
dm_noflush_suspending(struct dm_target * ti)2714 int dm_noflush_suspending(struct dm_target *ti)
2715 {
2716 	return __noflush_suspending(dm_table_get_md(ti->table));
2717 }
2718 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2719 
dm_alloc_md_mempools(unsigned type,unsigned integrity)2720 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2721 {
2722 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2723 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2724 
2725 	if (!pools)
2726 		return NULL;
2727 
2728 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2729 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2730 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2731 	if (!pools->io_pool)
2732 		goto free_pools_and_out;
2733 
2734 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2735 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2736 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2737 	if (!pools->tio_pool)
2738 		goto free_io_pool_and_out;
2739 
2740 	pools->bs = bioset_create(pool_size, 0);
2741 	if (!pools->bs)
2742 		goto free_tio_pool_and_out;
2743 
2744 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2745 		goto free_bioset_and_out;
2746 
2747 	return pools;
2748 
2749 free_bioset_and_out:
2750 	bioset_free(pools->bs);
2751 
2752 free_tio_pool_and_out:
2753 	mempool_destroy(pools->tio_pool);
2754 
2755 free_io_pool_and_out:
2756 	mempool_destroy(pools->io_pool);
2757 
2758 free_pools_and_out:
2759 	kfree(pools);
2760 
2761 	return NULL;
2762 }
2763 
dm_free_md_mempools(struct dm_md_mempools * pools)2764 void dm_free_md_mempools(struct dm_md_mempools *pools)
2765 {
2766 	if (!pools)
2767 		return;
2768 
2769 	if (pools->io_pool)
2770 		mempool_destroy(pools->io_pool);
2771 
2772 	if (pools->tio_pool)
2773 		mempool_destroy(pools->tio_pool);
2774 
2775 	if (pools->bs)
2776 		bioset_free(pools->bs);
2777 
2778 	kfree(pools);
2779 }
2780 
2781 static const struct block_device_operations dm_blk_dops = {
2782 	.open = dm_blk_open,
2783 	.release = dm_blk_close,
2784 	.ioctl = dm_blk_ioctl,
2785 	.getgeo = dm_blk_getgeo,
2786 	.owner = THIS_MODULE
2787 };
2788 
2789 EXPORT_SYMBOL(dm_get_mapinfo);
2790 
2791 /*
2792  * module hooks
2793  */
2794 module_init(dm_init);
2795 module_exit(dm_exit);
2796 
2797 module_param(major, uint, 0);
2798 MODULE_PARM_DESC(major, "The major number of the device mapper");
2799 MODULE_DESCRIPTION(DM_NAME " driver");
2800 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2801 MODULE_LICENSE("GPL");
2802