1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
dm_issue_global_event(void)68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
77 
78 /*
79  * One of these is allocated (on-stack) per original bio.
80  */
81 struct clone_info {
82 	struct dm_table *map;
83 	struct bio *bio;
84 	struct dm_io *io;
85 	sector_t sector;
86 	unsigned sector_count;
87 	bool is_abnormal_io:1;
88 	bool submit_as_polled:1;
89 };
90 
91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
92 #define DM_IO_BIO_OFFSET \
93 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
94 
clone_to_tio(struct bio * clone)95 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
96 {
97 	return container_of(clone, struct dm_target_io, clone);
98 }
99 
dm_per_bio_data(struct bio * bio,size_t data_size)100 void *dm_per_bio_data(struct bio *bio, size_t data_size)
101 {
102 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
103 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
104 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
105 }
106 EXPORT_SYMBOL_GPL(dm_per_bio_data);
107 
dm_bio_from_per_bio_data(void * data,size_t data_size)108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
109 {
110 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
111 	if (io->magic == DM_IO_MAGIC)
112 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
113 	BUG_ON(io->magic != DM_TIO_MAGIC);
114 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
115 }
116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
117 
dm_bio_get_target_bio_nr(const struct bio * bio)118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
119 {
120 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
123 
124 #define MINOR_ALLOCED ((void *)-1)
125 
126 #define DM_NUMA_NODE NUMA_NO_NODE
127 static int dm_numa_node = DM_NUMA_NODE;
128 
129 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
130 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)131 static int get_swap_bios(void)
132 {
133 	int latch = READ_ONCE(swap_bios);
134 	if (unlikely(latch <= 0))
135 		latch = DEFAULT_SWAP_BIOS;
136 	return latch;
137 }
138 
139 struct table_device {
140 	struct list_head list;
141 	refcount_t count;
142 	struct dm_dev dm_dev;
143 };
144 
145 /*
146  * Bio-based DM's mempools' reserved IOs set by the user.
147  */
148 #define RESERVED_BIO_BASED_IOS		16
149 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150 
__dm_get_module_param_int(int * module_param,int min,int max)151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 	int param = READ_ONCE(*module_param);
154 	int modified_param = 0;
155 	bool modified = true;
156 
157 	if (param < min)
158 		modified_param = min;
159 	else if (param > max)
160 		modified_param = max;
161 	else
162 		modified = false;
163 
164 	if (modified) {
165 		(void)cmpxchg(module_param, param, modified_param);
166 		param = modified_param;
167 	}
168 
169 	return param;
170 }
171 
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)172 unsigned __dm_get_module_param(unsigned *module_param,
173 			       unsigned def, unsigned max)
174 {
175 	unsigned param = READ_ONCE(*module_param);
176 	unsigned modified_param = 0;
177 
178 	if (!param)
179 		modified_param = def;
180 	else if (param > max)
181 		modified_param = max;
182 
183 	if (modified_param) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
dm_get_reserved_bio_based_ios(void)191 unsigned dm_get_reserved_bio_based_ios(void)
192 {
193 	return __dm_get_module_param(&reserved_bio_based_ios,
194 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
195 }
196 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
197 
dm_get_numa_node(void)198 static unsigned dm_get_numa_node(void)
199 {
200 	return __dm_get_module_param_int(&dm_numa_node,
201 					 DM_NUMA_NODE, num_online_nodes() - 1);
202 }
203 
local_init(void)204 static int __init local_init(void)
205 {
206 	int r;
207 
208 	r = dm_uevent_init();
209 	if (r)
210 		return r;
211 
212 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
213 	if (!deferred_remove_workqueue) {
214 		r = -ENOMEM;
215 		goto out_uevent_exit;
216 	}
217 
218 	_major = major;
219 	r = register_blkdev(_major, _name);
220 	if (r < 0)
221 		goto out_free_workqueue;
222 
223 	if (!_major)
224 		_major = r;
225 
226 	return 0;
227 
228 out_free_workqueue:
229 	destroy_workqueue(deferred_remove_workqueue);
230 out_uevent_exit:
231 	dm_uevent_exit();
232 
233 	return r;
234 }
235 
local_exit(void)236 static void local_exit(void)
237 {
238 	flush_scheduled_work();
239 	destroy_workqueue(deferred_remove_workqueue);
240 
241 	unregister_blkdev(_major, _name);
242 	dm_uevent_exit();
243 
244 	_major = 0;
245 
246 	DMINFO("cleaned up");
247 }
248 
249 static int (*_inits[])(void) __initdata = {
250 	local_init,
251 	dm_target_init,
252 	dm_linear_init,
253 	dm_stripe_init,
254 	dm_io_init,
255 	dm_kcopyd_init,
256 	dm_interface_init,
257 	dm_statistics_init,
258 };
259 
260 static void (*_exits[])(void) = {
261 	local_exit,
262 	dm_target_exit,
263 	dm_linear_exit,
264 	dm_stripe_exit,
265 	dm_io_exit,
266 	dm_kcopyd_exit,
267 	dm_interface_exit,
268 	dm_statistics_exit,
269 };
270 
dm_init(void)271 static int __init dm_init(void)
272 {
273 	const int count = ARRAY_SIZE(_inits);
274 	int r, i;
275 
276 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
277 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
278 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
279 #endif
280 
281 	for (i = 0; i < count; i++) {
282 		r = _inits[i]();
283 		if (r)
284 			goto bad;
285 	}
286 
287 	return 0;
288 bad:
289 	while (i--)
290 		_exits[i]();
291 
292 	return r;
293 }
294 
dm_exit(void)295 static void __exit dm_exit(void)
296 {
297 	int i = ARRAY_SIZE(_exits);
298 
299 	while (i--)
300 		_exits[i]();
301 
302 	/*
303 	 * Should be empty by this point.
304 	 */
305 	idr_destroy(&_minor_idr);
306 }
307 
308 /*
309  * Block device functions
310  */
dm_deleting_md(struct mapped_device * md)311 int dm_deleting_md(struct mapped_device *md)
312 {
313 	return test_bit(DMF_DELETING, &md->flags);
314 }
315 
dm_blk_open(struct block_device * bdev,fmode_t mode)316 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
317 {
318 	struct mapped_device *md;
319 
320 	spin_lock(&_minor_lock);
321 
322 	md = bdev->bd_disk->private_data;
323 	if (!md)
324 		goto out;
325 
326 	if (test_bit(DMF_FREEING, &md->flags) ||
327 	    dm_deleting_md(md)) {
328 		md = NULL;
329 		goto out;
330 	}
331 
332 	dm_get(md);
333 	atomic_inc(&md->open_count);
334 out:
335 	spin_unlock(&_minor_lock);
336 
337 	return md ? 0 : -ENXIO;
338 }
339 
dm_blk_close(struct gendisk * disk,fmode_t mode)340 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
341 {
342 	struct mapped_device *md;
343 
344 	spin_lock(&_minor_lock);
345 
346 	md = disk->private_data;
347 	if (WARN_ON(!md))
348 		goto out;
349 
350 	if (atomic_dec_and_test(&md->open_count) &&
351 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
352 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
353 
354 	dm_put(md);
355 out:
356 	spin_unlock(&_minor_lock);
357 }
358 
dm_open_count(struct mapped_device * md)359 int dm_open_count(struct mapped_device *md)
360 {
361 	return atomic_read(&md->open_count);
362 }
363 
364 /*
365  * Guarantees nothing is using the device before it's deleted.
366  */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)367 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
368 {
369 	int r = 0;
370 
371 	spin_lock(&_minor_lock);
372 
373 	if (dm_open_count(md)) {
374 		r = -EBUSY;
375 		if (mark_deferred)
376 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
377 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
378 		r = -EEXIST;
379 	else
380 		set_bit(DMF_DELETING, &md->flags);
381 
382 	spin_unlock(&_minor_lock);
383 
384 	return r;
385 }
386 
dm_cancel_deferred_remove(struct mapped_device * md)387 int dm_cancel_deferred_remove(struct mapped_device *md)
388 {
389 	int r = 0;
390 
391 	spin_lock(&_minor_lock);
392 
393 	if (test_bit(DMF_DELETING, &md->flags))
394 		r = -EBUSY;
395 	else
396 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
397 
398 	spin_unlock(&_minor_lock);
399 
400 	return r;
401 }
402 
do_deferred_remove(struct work_struct * w)403 static void do_deferred_remove(struct work_struct *w)
404 {
405 	dm_deferred_remove();
406 }
407 
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 	struct mapped_device *md = bdev->bd_disk->private_data;
411 
412 	return dm_get_geometry(md, geo);
413 }
414 
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)415 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
416 			    struct block_device **bdev)
417 {
418 	struct dm_target *tgt;
419 	struct dm_table *map;
420 	int r;
421 
422 retry:
423 	r = -ENOTTY;
424 	map = dm_get_live_table(md, srcu_idx);
425 	if (!map || !dm_table_get_size(map))
426 		return r;
427 
428 	/* We only support devices that have a single target */
429 	if (dm_table_get_num_targets(map) != 1)
430 		return r;
431 
432 	tgt = dm_table_get_target(map, 0);
433 	if (!tgt->type->prepare_ioctl)
434 		return r;
435 
436 	if (dm_suspended_md(md))
437 		return -EAGAIN;
438 
439 	r = tgt->type->prepare_ioctl(tgt, bdev);
440 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
441 		dm_put_live_table(md, *srcu_idx);
442 		msleep(10);
443 		goto retry;
444 	}
445 
446 	return r;
447 }
448 
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)449 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
450 {
451 	dm_put_live_table(md, srcu_idx);
452 }
453 
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
455 			unsigned int cmd, unsigned long arg)
456 {
457 	struct mapped_device *md = bdev->bd_disk->private_data;
458 	int r, srcu_idx;
459 
460 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
461 	if (r < 0)
462 		goto out;
463 
464 	if (r > 0) {
465 		/*
466 		 * Target determined this ioctl is being issued against a
467 		 * subset of the parent bdev; require extra privileges.
468 		 */
469 		if (!capable(CAP_SYS_RAWIO)) {
470 			DMDEBUG_LIMIT(
471 	"%s: sending ioctl %x to DM device without required privilege.",
472 				current->comm, cmd);
473 			r = -ENOIOCTLCMD;
474 			goto out;
475 		}
476 	}
477 
478 	if (!bdev->bd_disk->fops->ioctl)
479 		r = -ENOTTY;
480 	else
481 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
482 out:
483 	dm_unprepare_ioctl(md, srcu_idx);
484 	return r;
485 }
486 
dm_start_time_ns_from_clone(struct bio * bio)487 u64 dm_start_time_ns_from_clone(struct bio *bio)
488 {
489 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
490 }
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
492 
bio_is_flush_with_data(struct bio * bio)493 static bool bio_is_flush_with_data(struct bio *bio)
494 {
495 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
496 }
497 
dm_io_acct(struct dm_io * io,bool end)498 static void dm_io_acct(struct dm_io *io, bool end)
499 {
500 	struct dm_stats_aux *stats_aux = &io->stats_aux;
501 	unsigned long start_time = io->start_time;
502 	struct mapped_device *md = io->md;
503 	struct bio *bio = io->orig_bio;
504 	unsigned int sectors;
505 
506 	/*
507 	 * If REQ_PREFLUSH set, don't account payload, it will be
508 	 * submitted (and accounted) after this flush completes.
509 	 */
510 	if (bio_is_flush_with_data(bio))
511 		sectors = 0;
512 	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
513 		sectors = bio_sectors(bio);
514 	else
515 		sectors = io->sectors;
516 
517 	if (!end)
518 		bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
519 				   start_time);
520 	else
521 		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
522 
523 	if (static_branch_unlikely(&stats_enabled) &&
524 	    unlikely(dm_stats_used(&md->stats))) {
525 		sector_t sector;
526 
527 		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
528 			sector = bio->bi_iter.bi_sector;
529 		else
530 			sector = bio_end_sector(bio) - io->sector_offset;
531 
532 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
533 				    sector, sectors,
534 				    end, start_time, stats_aux);
535 	}
536 }
537 
__dm_start_io_acct(struct dm_io * io)538 static void __dm_start_io_acct(struct dm_io *io)
539 {
540 	dm_io_acct(io, false);
541 }
542 
dm_start_io_acct(struct dm_io * io,struct bio * clone)543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
544 {
545 	/*
546 	 * Ensure IO accounting is only ever started once.
547 	 */
548 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
549 		return;
550 
551 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
553 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
554 	} else {
555 		unsigned long flags;
556 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 		spin_lock_irqsave(&io->lock, flags);
558 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
559 			spin_unlock_irqrestore(&io->lock, flags);
560 			return;
561 		}
562 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
563 		spin_unlock_irqrestore(&io->lock, flags);
564 	}
565 
566 	__dm_start_io_acct(io);
567 }
568 
dm_end_io_acct(struct dm_io * io)569 static void dm_end_io_acct(struct dm_io *io)
570 {
571 	dm_io_acct(io, true);
572 }
573 
alloc_io(struct mapped_device * md,struct bio * bio)574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
575 {
576 	struct dm_io *io;
577 	struct dm_target_io *tio;
578 	struct bio *clone;
579 
580 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
581 	tio = clone_to_tio(clone);
582 	tio->flags = 0;
583 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
584 	tio->io = NULL;
585 
586 	io = container_of(tio, struct dm_io, tio);
587 	io->magic = DM_IO_MAGIC;
588 	io->status = BLK_STS_OK;
589 
590 	/* one ref is for submission, the other is for completion */
591 	atomic_set(&io->io_count, 2);
592 	this_cpu_inc(*md->pending_io);
593 	io->orig_bio = bio;
594 	io->split_bio = NULL;
595 	io->md = md;
596 	spin_lock_init(&io->lock);
597 	io->start_time = jiffies;
598 	io->flags = 0;
599 
600 	if (static_branch_unlikely(&stats_enabled))
601 		dm_stats_record_start(&md->stats, &io->stats_aux);
602 
603 	return io;
604 }
605 
free_io(struct dm_io * io)606 static void free_io(struct dm_io *io)
607 {
608 	bio_put(&io->tio.clone);
609 }
610 
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,unsigned * len,gfp_t gfp_mask)611 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
612 			     unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
613 {
614 	struct mapped_device *md = ci->io->md;
615 	struct dm_target_io *tio;
616 	struct bio *clone;
617 
618 	if (!ci->io->tio.io) {
619 		/* the dm_target_io embedded in ci->io is available */
620 		tio = &ci->io->tio;
621 		/* alloc_io() already initialized embedded clone */
622 		clone = &tio->clone;
623 	} else {
624 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
625 					&md->mempools->bs);
626 		if (!clone)
627 			return NULL;
628 
629 		/* REQ_DM_POLL_LIST shouldn't be inherited */
630 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
631 
632 		tio = clone_to_tio(clone);
633 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
634 	}
635 
636 	tio->magic = DM_TIO_MAGIC;
637 	tio->io = ci->io;
638 	tio->ti = ti;
639 	tio->target_bio_nr = target_bio_nr;
640 	tio->len_ptr = len;
641 	tio->old_sector = 0;
642 
643 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
644 	clone->bi_bdev = md->disk->part0;
645 	if (unlikely(ti->needs_bio_set_dev))
646 		bio_set_dev(clone, md->disk->part0);
647 
648 	if (len) {
649 		clone->bi_iter.bi_size = to_bytes(*len);
650 		if (bio_integrity(clone))
651 			bio_integrity_trim(clone);
652 	}
653 
654 	return clone;
655 }
656 
free_tio(struct bio * clone)657 static void free_tio(struct bio *clone)
658 {
659 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
660 		return;
661 	bio_put(clone);
662 }
663 
664 /*
665  * Add the bio to the list of deferred io.
666  */
queue_io(struct mapped_device * md,struct bio * bio)667 static void queue_io(struct mapped_device *md, struct bio *bio)
668 {
669 	unsigned long flags;
670 
671 	spin_lock_irqsave(&md->deferred_lock, flags);
672 	bio_list_add(&md->deferred, bio);
673 	spin_unlock_irqrestore(&md->deferred_lock, flags);
674 	queue_work(md->wq, &md->work);
675 }
676 
677 /*
678  * Everyone (including functions in this file), should use this
679  * function to access the md->map field, and make sure they call
680  * dm_put_live_table() when finished.
681  */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)682 struct dm_table *dm_get_live_table(struct mapped_device *md,
683 				   int *srcu_idx) __acquires(md->io_barrier)
684 {
685 	*srcu_idx = srcu_read_lock(&md->io_barrier);
686 
687 	return srcu_dereference(md->map, &md->io_barrier);
688 }
689 
dm_put_live_table(struct mapped_device * md,int srcu_idx)690 void dm_put_live_table(struct mapped_device *md,
691 		       int srcu_idx) __releases(md->io_barrier)
692 {
693 	srcu_read_unlock(&md->io_barrier, srcu_idx);
694 }
695 
dm_sync_table(struct mapped_device * md)696 void dm_sync_table(struct mapped_device *md)
697 {
698 	synchronize_srcu(&md->io_barrier);
699 	synchronize_rcu_expedited();
700 }
701 
702 /*
703  * A fast alternative to dm_get_live_table/dm_put_live_table.
704  * The caller must not block between these two functions.
705  */
dm_get_live_table_fast(struct mapped_device * md)706 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
707 {
708 	rcu_read_lock();
709 	return rcu_dereference(md->map);
710 }
711 
dm_put_live_table_fast(struct mapped_device * md)712 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
713 {
714 	rcu_read_unlock();
715 }
716 
dm_get_live_table_bio(struct mapped_device * md,int * srcu_idx,unsigned bio_opf)717 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
718 						     int *srcu_idx, unsigned bio_opf)
719 {
720 	if (bio_opf & REQ_NOWAIT)
721 		return dm_get_live_table_fast(md);
722 	else
723 		return dm_get_live_table(md, srcu_idx);
724 }
725 
dm_put_live_table_bio(struct mapped_device * md,int srcu_idx,unsigned bio_opf)726 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
727 					 unsigned bio_opf)
728 {
729 	if (bio_opf & REQ_NOWAIT)
730 		dm_put_live_table_fast(md);
731 	else
732 		dm_put_live_table(md, srcu_idx);
733 }
734 
735 static char *_dm_claim_ptr = "I belong to device-mapper";
736 
737 /*
738  * Open a table device so we can use it as a map destination.
739  */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)740 static int open_table_device(struct table_device *td, dev_t dev,
741 			     struct mapped_device *md)
742 {
743 	struct block_device *bdev;
744 	u64 part_off;
745 	int r;
746 
747 	BUG_ON(td->dm_dev.bdev);
748 
749 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
750 	if (IS_ERR(bdev))
751 		return PTR_ERR(bdev);
752 
753 	r = bd_link_disk_holder(bdev, dm_disk(md));
754 	if (r) {
755 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
756 		return r;
757 	}
758 
759 	td->dm_dev.bdev = bdev;
760 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
761 	return 0;
762 }
763 
764 /*
765  * Close a table device that we've been using.
766  */
close_table_device(struct table_device * td,struct mapped_device * md)767 static void close_table_device(struct table_device *td, struct mapped_device *md)
768 {
769 	if (!td->dm_dev.bdev)
770 		return;
771 
772 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
773 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
774 	put_dax(td->dm_dev.dax_dev);
775 	td->dm_dev.bdev = NULL;
776 	td->dm_dev.dax_dev = NULL;
777 }
778 
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)779 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
780 					      fmode_t mode)
781 {
782 	struct table_device *td;
783 
784 	list_for_each_entry(td, l, list)
785 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
786 			return td;
787 
788 	return NULL;
789 }
790 
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)791 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
792 			struct dm_dev **result)
793 {
794 	int r;
795 	struct table_device *td;
796 
797 	mutex_lock(&md->table_devices_lock);
798 	td = find_table_device(&md->table_devices, dev, mode);
799 	if (!td) {
800 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
801 		if (!td) {
802 			mutex_unlock(&md->table_devices_lock);
803 			return -ENOMEM;
804 		}
805 
806 		td->dm_dev.mode = mode;
807 		td->dm_dev.bdev = NULL;
808 
809 		if ((r = open_table_device(td, dev, md))) {
810 			mutex_unlock(&md->table_devices_lock);
811 			kfree(td);
812 			return r;
813 		}
814 
815 		format_dev_t(td->dm_dev.name, dev);
816 
817 		refcount_set(&td->count, 1);
818 		list_add(&td->list, &md->table_devices);
819 	} else {
820 		refcount_inc(&td->count);
821 	}
822 	mutex_unlock(&md->table_devices_lock);
823 
824 	*result = &td->dm_dev;
825 	return 0;
826 }
827 
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829 {
830 	struct table_device *td = container_of(d, struct table_device, dm_dev);
831 
832 	mutex_lock(&md->table_devices_lock);
833 	if (refcount_dec_and_test(&td->count)) {
834 		close_table_device(td, md);
835 		list_del(&td->list);
836 		kfree(td);
837 	}
838 	mutex_unlock(&md->table_devices_lock);
839 }
840 
free_table_devices(struct list_head * devices)841 static void free_table_devices(struct list_head *devices)
842 {
843 	struct list_head *tmp, *next;
844 
845 	list_for_each_safe(tmp, next, devices) {
846 		struct table_device *td = list_entry(tmp, struct table_device, list);
847 
848 		DMWARN("dm_destroy: %s still exists with %d references",
849 		       td->dm_dev.name, refcount_read(&td->count));
850 		kfree(td);
851 	}
852 }
853 
854 /*
855  * Get the geometry associated with a dm device
856  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
858 {
859 	*geo = md->geometry;
860 
861 	return 0;
862 }
863 
864 /*
865  * Set the geometry of a device.
866  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
870 
871 	if (geo->start > sz) {
872 		DMWARN("Start sector is beyond the geometry limits.");
873 		return -EINVAL;
874 	}
875 
876 	md->geometry = *geo;
877 
878 	return 0;
879 }
880 
__noflush_suspending(struct mapped_device * md)881 static int __noflush_suspending(struct mapped_device *md)
882 {
883 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
884 }
885 
dm_io_complete(struct dm_io * io)886 static void dm_io_complete(struct dm_io *io)
887 {
888 	blk_status_t io_error;
889 	struct mapped_device *md = io->md;
890 	struct bio *bio = io->split_bio ? io->split_bio : io->orig_bio;
891 
892 	if (io->status == BLK_STS_DM_REQUEUE) {
893 		unsigned long flags;
894 		/*
895 		 * Target requested pushing back the I/O.
896 		 */
897 		spin_lock_irqsave(&md->deferred_lock, flags);
898 		if (__noflush_suspending(md) &&
899 		    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
900 			/* NOTE early return due to BLK_STS_DM_REQUEUE below */
901 			bio_list_add_head(&md->deferred, bio);
902 		} else {
903 			/*
904 			 * noflush suspend was interrupted or this is
905 			 * a write to a zoned target.
906 			 */
907 			io->status = BLK_STS_IOERR;
908 		}
909 		spin_unlock_irqrestore(&md->deferred_lock, flags);
910 	}
911 
912 	io_error = io->status;
913 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
914 		dm_end_io_acct(io);
915 	else if (!io_error) {
916 		/*
917 		 * Must handle target that DM_MAPIO_SUBMITTED only to
918 		 * then bio_endio() rather than dm_submit_bio_remap()
919 		 */
920 		__dm_start_io_acct(io);
921 		dm_end_io_acct(io);
922 	}
923 	free_io(io);
924 	smp_wmb();
925 	this_cpu_dec(*md->pending_io);
926 
927 	/* nudge anyone waiting on suspend queue */
928 	if (unlikely(wq_has_sleeper(&md->wait)))
929 		wake_up(&md->wait);
930 
931 	if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) {
932 		if (bio->bi_opf & REQ_POLLED) {
933 			/*
934 			 * Upper layer won't help us poll split bio (io->orig_bio
935 			 * may only reflect a subset of the pre-split original)
936 			 * so clear REQ_POLLED in case of requeue.
937 			 */
938 			bio_clear_polled(bio);
939 			if (io_error == BLK_STS_AGAIN) {
940 				/* io_uring doesn't handle BLK_STS_AGAIN (yet) */
941 				queue_io(md, bio);
942 				return;
943 			}
944 		}
945 		if (io_error == BLK_STS_DM_REQUEUE)
946 			return;
947 	}
948 
949 	if (bio_is_flush_with_data(bio)) {
950 		/*
951 		 * Preflush done for flush with data, reissue
952 		 * without REQ_PREFLUSH.
953 		 */
954 		bio->bi_opf &= ~REQ_PREFLUSH;
955 		queue_io(md, bio);
956 	} else {
957 		/* done with normal IO or empty flush */
958 		if (io_error)
959 			bio->bi_status = io_error;
960 		bio_endio(bio);
961 	}
962 }
963 
964 /*
965  * Decrements the number of outstanding ios that a bio has been
966  * cloned into, completing the original io if necc.
967  */
__dm_io_dec_pending(struct dm_io * io)968 static inline void __dm_io_dec_pending(struct dm_io *io)
969 {
970 	if (atomic_dec_and_test(&io->io_count))
971 		dm_io_complete(io);
972 }
973 
dm_io_set_error(struct dm_io * io,blk_status_t error)974 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
975 {
976 	unsigned long flags;
977 
978 	/* Push-back supersedes any I/O errors */
979 	spin_lock_irqsave(&io->lock, flags);
980 	if (!(io->status == BLK_STS_DM_REQUEUE &&
981 	      __noflush_suspending(io->md))) {
982 		io->status = error;
983 	}
984 	spin_unlock_irqrestore(&io->lock, flags);
985 }
986 
dm_io_dec_pending(struct dm_io * io,blk_status_t error)987 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
988 {
989 	if (unlikely(error))
990 		dm_io_set_error(io, error);
991 
992 	__dm_io_dec_pending(io);
993 }
994 
disable_discard(struct mapped_device * md)995 void disable_discard(struct mapped_device *md)
996 {
997 	struct queue_limits *limits = dm_get_queue_limits(md);
998 
999 	/* device doesn't really support DISCARD, disable it */
1000 	limits->max_discard_sectors = 0;
1001 }
1002 
disable_write_zeroes(struct mapped_device * md)1003 void disable_write_zeroes(struct mapped_device *md)
1004 {
1005 	struct queue_limits *limits = dm_get_queue_limits(md);
1006 
1007 	/* device doesn't really support WRITE ZEROES, disable it */
1008 	limits->max_write_zeroes_sectors = 0;
1009 }
1010 
swap_bios_limit(struct dm_target * ti,struct bio * bio)1011 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1012 {
1013 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1014 }
1015 
clone_endio(struct bio * bio)1016 static void clone_endio(struct bio *bio)
1017 {
1018 	blk_status_t error = bio->bi_status;
1019 	struct dm_target_io *tio = clone_to_tio(bio);
1020 	struct dm_target *ti = tio->ti;
1021 	dm_endio_fn endio = ti->type->end_io;
1022 	struct dm_io *io = tio->io;
1023 	struct mapped_device *md = io->md;
1024 
1025 	if (unlikely(error == BLK_STS_TARGET)) {
1026 		if (bio_op(bio) == REQ_OP_DISCARD &&
1027 		    !bdev_max_discard_sectors(bio->bi_bdev))
1028 			disable_discard(md);
1029 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1030 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1031 			disable_write_zeroes(md);
1032 	}
1033 
1034 	if (static_branch_unlikely(&zoned_enabled) &&
1035 	    unlikely(blk_queue_is_zoned(bdev_get_queue(bio->bi_bdev))))
1036 		dm_zone_endio(io, bio);
1037 
1038 	if (endio) {
1039 		int r = endio(ti, bio, &error);
1040 		switch (r) {
1041 		case DM_ENDIO_REQUEUE:
1042 			if (static_branch_unlikely(&zoned_enabled)) {
1043 				/*
1044 				 * Requeuing writes to a sequential zone of a zoned
1045 				 * target will break the sequential write pattern:
1046 				 * fail such IO.
1047 				 */
1048 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1049 					error = BLK_STS_IOERR;
1050 				else
1051 					error = BLK_STS_DM_REQUEUE;
1052 			} else
1053 				error = BLK_STS_DM_REQUEUE;
1054 			fallthrough;
1055 		case DM_ENDIO_DONE:
1056 			break;
1057 		case DM_ENDIO_INCOMPLETE:
1058 			/* The target will handle the io */
1059 			return;
1060 		default:
1061 			DMWARN("unimplemented target endio return value: %d", r);
1062 			BUG();
1063 		}
1064 	}
1065 
1066 	if (static_branch_unlikely(&swap_bios_enabled) &&
1067 	    unlikely(swap_bios_limit(ti, bio)))
1068 		up(&md->swap_bios_semaphore);
1069 
1070 	free_tio(bio);
1071 	dm_io_dec_pending(io, error);
1072 }
1073 
1074 /*
1075  * Return maximum size of I/O possible at the supplied sector up to the current
1076  * target boundary.
1077  */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1078 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1079 						  sector_t target_offset)
1080 {
1081 	return ti->len - target_offset;
1082 }
1083 
max_io_len(struct dm_target * ti,sector_t sector)1084 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1085 {
1086 	sector_t target_offset = dm_target_offset(ti, sector);
1087 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1088 	sector_t max_len;
1089 
1090 	/*
1091 	 * Does the target need to split IO even further?
1092 	 * - varied (per target) IO splitting is a tenet of DM; this
1093 	 *   explains why stacked chunk_sectors based splitting via
1094 	 *   blk_max_size_offset() isn't possible here. So pass in
1095 	 *   ti->max_io_len to override stacked chunk_sectors.
1096 	 */
1097 	if (ti->max_io_len) {
1098 		max_len = blk_max_size_offset(ti->table->md->queue,
1099 					      target_offset, ti->max_io_len);
1100 		if (len > max_len)
1101 			len = max_len;
1102 	}
1103 
1104 	return len;
1105 }
1106 
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1107 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1108 {
1109 	if (len > UINT_MAX) {
1110 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1111 		      (unsigned long long)len, UINT_MAX);
1112 		ti->error = "Maximum size of target IO is too large";
1113 		return -EINVAL;
1114 	}
1115 
1116 	ti->max_io_len = (uint32_t) len;
1117 
1118 	return 0;
1119 }
1120 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1121 
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1122 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1123 						sector_t sector, int *srcu_idx)
1124 	__acquires(md->io_barrier)
1125 {
1126 	struct dm_table *map;
1127 	struct dm_target *ti;
1128 
1129 	map = dm_get_live_table(md, srcu_idx);
1130 	if (!map)
1131 		return NULL;
1132 
1133 	ti = dm_table_find_target(map, sector);
1134 	if (!ti)
1135 		return NULL;
1136 
1137 	return ti;
1138 }
1139 
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)1140 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1141 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1142 		pfn_t *pfn)
1143 {
1144 	struct mapped_device *md = dax_get_private(dax_dev);
1145 	sector_t sector = pgoff * PAGE_SECTORS;
1146 	struct dm_target *ti;
1147 	long len, ret = -EIO;
1148 	int srcu_idx;
1149 
1150 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1151 
1152 	if (!ti)
1153 		goto out;
1154 	if (!ti->type->direct_access)
1155 		goto out;
1156 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1157 	if (len < 1)
1158 		goto out;
1159 	nr_pages = min(len, nr_pages);
1160 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1161 
1162  out:
1163 	dm_put_live_table(md, srcu_idx);
1164 
1165 	return ret;
1166 }
1167 
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1168 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1169 				  size_t nr_pages)
1170 {
1171 	struct mapped_device *md = dax_get_private(dax_dev);
1172 	sector_t sector = pgoff * PAGE_SECTORS;
1173 	struct dm_target *ti;
1174 	int ret = -EIO;
1175 	int srcu_idx;
1176 
1177 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1178 
1179 	if (!ti)
1180 		goto out;
1181 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1182 		/*
1183 		 * ->zero_page_range() is mandatory dax operation. If we are
1184 		 *  here, something is wrong.
1185 		 */
1186 		goto out;
1187 	}
1188 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1189  out:
1190 	dm_put_live_table(md, srcu_idx);
1191 
1192 	return ret;
1193 }
1194 
dm_dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1195 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1196 		void *addr, size_t bytes, struct iov_iter *i)
1197 {
1198 	struct mapped_device *md = dax_get_private(dax_dev);
1199 	sector_t sector = pgoff * PAGE_SECTORS;
1200 	struct dm_target *ti;
1201 	int srcu_idx;
1202 	long ret = 0;
1203 
1204 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1205 	if (!ti || !ti->type->dax_recovery_write)
1206 		goto out;
1207 
1208 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1209 out:
1210 	dm_put_live_table(md, srcu_idx);
1211 	return ret;
1212 }
1213 
1214 /*
1215  * A target may call dm_accept_partial_bio only from the map routine.  It is
1216  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1217  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1218  * __send_duplicate_bios().
1219  *
1220  * dm_accept_partial_bio informs the dm that the target only wants to process
1221  * additional n_sectors sectors of the bio and the rest of the data should be
1222  * sent in a next bio.
1223  *
1224  * A diagram that explains the arithmetics:
1225  * +--------------------+---------------+-------+
1226  * |         1          |       2       |   3   |
1227  * +--------------------+---------------+-------+
1228  *
1229  * <-------------- *tio->len_ptr --------------->
1230  *                      <----- bio_sectors ----->
1231  *                      <-- n_sectors -->
1232  *
1233  * Region 1 was already iterated over with bio_advance or similar function.
1234  *	(it may be empty if the target doesn't use bio_advance)
1235  * Region 2 is the remaining bio size that the target wants to process.
1236  *	(it may be empty if region 1 is non-empty, although there is no reason
1237  *	 to make it empty)
1238  * The target requires that region 3 is to be sent in the next bio.
1239  *
1240  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1241  * the partially processed part (the sum of regions 1+2) must be the same for all
1242  * copies of the bio.
1243  */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1244 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1245 {
1246 	struct dm_target_io *tio = clone_to_tio(bio);
1247 	unsigned bio_sectors = bio_sectors(bio);
1248 
1249 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1250 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1251 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1252 	BUG_ON(bio_sectors > *tio->len_ptr);
1253 	BUG_ON(n_sectors > bio_sectors);
1254 
1255 	*tio->len_ptr -= bio_sectors - n_sectors;
1256 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1257 
1258 	/*
1259 	 * __split_and_process_bio() may have already saved mapped part
1260 	 * for accounting but it is being reduced so update accordingly.
1261 	 */
1262 	dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT);
1263 	tio->io->sectors = n_sectors;
1264 }
1265 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1266 
1267 /*
1268  * @clone: clone bio that DM core passed to target's .map function
1269  * @tgt_clone: clone of @clone bio that target needs submitted
1270  *
1271  * Targets should use this interface to submit bios they take
1272  * ownership of when returning DM_MAPIO_SUBMITTED.
1273  *
1274  * Target should also enable ti->accounts_remapped_io
1275  */
dm_submit_bio_remap(struct bio * clone,struct bio * tgt_clone)1276 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1277 {
1278 	struct dm_target_io *tio = clone_to_tio(clone);
1279 	struct dm_io *io = tio->io;
1280 
1281 	/* establish bio that will get submitted */
1282 	if (!tgt_clone)
1283 		tgt_clone = clone;
1284 
1285 	/*
1286 	 * Account io->origin_bio to DM dev on behalf of target
1287 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1288 	 */
1289 	dm_start_io_acct(io, clone);
1290 
1291 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1292 			      tio->old_sector);
1293 	submit_bio_noacct(tgt_clone);
1294 }
1295 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1296 
__set_swap_bios_limit(struct mapped_device * md,int latch)1297 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1298 {
1299 	mutex_lock(&md->swap_bios_lock);
1300 	while (latch < md->swap_bios) {
1301 		cond_resched();
1302 		down(&md->swap_bios_semaphore);
1303 		md->swap_bios--;
1304 	}
1305 	while (latch > md->swap_bios) {
1306 		cond_resched();
1307 		up(&md->swap_bios_semaphore);
1308 		md->swap_bios++;
1309 	}
1310 	mutex_unlock(&md->swap_bios_lock);
1311 }
1312 
__map_bio(struct bio * clone)1313 static void __map_bio(struct bio *clone)
1314 {
1315 	struct dm_target_io *tio = clone_to_tio(clone);
1316 	struct dm_target *ti = tio->ti;
1317 	struct dm_io *io = tio->io;
1318 	struct mapped_device *md = io->md;
1319 	int r;
1320 
1321 	clone->bi_end_io = clone_endio;
1322 
1323 	/*
1324 	 * Map the clone.
1325 	 */
1326 	tio->old_sector = clone->bi_iter.bi_sector;
1327 
1328 	if (static_branch_unlikely(&swap_bios_enabled) &&
1329 	    unlikely(swap_bios_limit(ti, clone))) {
1330 		int latch = get_swap_bios();
1331 		if (unlikely(latch != md->swap_bios))
1332 			__set_swap_bios_limit(md, latch);
1333 		down(&md->swap_bios_semaphore);
1334 	}
1335 
1336 	if (static_branch_unlikely(&zoned_enabled)) {
1337 		/*
1338 		 * Check if the IO needs a special mapping due to zone append
1339 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1340 		 * calls the target map operation.
1341 		 */
1342 		if (unlikely(dm_emulate_zone_append(md)))
1343 			r = dm_zone_map_bio(tio);
1344 		else
1345 			r = ti->type->map(ti, clone);
1346 	} else
1347 		r = ti->type->map(ti, clone);
1348 
1349 	switch (r) {
1350 	case DM_MAPIO_SUBMITTED:
1351 		/* target has assumed ownership of this io */
1352 		if (!ti->accounts_remapped_io)
1353 			dm_start_io_acct(io, clone);
1354 		break;
1355 	case DM_MAPIO_REMAPPED:
1356 		dm_submit_bio_remap(clone, NULL);
1357 		break;
1358 	case DM_MAPIO_KILL:
1359 	case DM_MAPIO_REQUEUE:
1360 		if (static_branch_unlikely(&swap_bios_enabled) &&
1361 		    unlikely(swap_bios_limit(ti, clone)))
1362 			up(&md->swap_bios_semaphore);
1363 		free_tio(clone);
1364 		if (r == DM_MAPIO_KILL)
1365 			dm_io_dec_pending(io, BLK_STS_IOERR);
1366 		else
1367 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1368 		break;
1369 	default:
1370 		DMWARN("unimplemented target map return value: %d", r);
1371 		BUG();
1372 	}
1373 }
1374 
setup_split_accounting(struct clone_info * ci,unsigned len)1375 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1376 {
1377 	struct dm_io *io = ci->io;
1378 
1379 	if (ci->sector_count > len) {
1380 		/*
1381 		 * Split needed, save the mapped part for accounting.
1382 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1383 		 */
1384 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1385 		io->sectors = len;
1386 	}
1387 
1388 	if (static_branch_unlikely(&stats_enabled) &&
1389 	    unlikely(dm_stats_used(&io->md->stats))) {
1390 		/*
1391 		 * Save bi_sector in terms of its offset from end of
1392 		 * original bio, only needed for DM-stats' benefit.
1393 		 * - saved regardless of whether split needed so that
1394 		 *   dm_accept_partial_bio() doesn't need to.
1395 		 */
1396 		io->sector_offset = bio_end_sector(ci->bio) - ci->sector;
1397 	}
1398 }
1399 
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1400 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1401 				struct dm_target *ti, unsigned num_bios)
1402 {
1403 	struct bio *bio;
1404 	int try;
1405 
1406 	for (try = 0; try < 2; try++) {
1407 		int bio_nr;
1408 
1409 		if (try)
1410 			mutex_lock(&ci->io->md->table_devices_lock);
1411 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1412 			bio = alloc_tio(ci, ti, bio_nr, NULL,
1413 					try ? GFP_NOIO : GFP_NOWAIT);
1414 			if (!bio)
1415 				break;
1416 
1417 			bio_list_add(blist, bio);
1418 		}
1419 		if (try)
1420 			mutex_unlock(&ci->io->md->table_devices_lock);
1421 		if (bio_nr == num_bios)
1422 			return;
1423 
1424 		while ((bio = bio_list_pop(blist)))
1425 			free_tio(bio);
1426 	}
1427 }
1428 
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1429 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1430 				  unsigned num_bios, unsigned *len)
1431 {
1432 	struct bio_list blist = BIO_EMPTY_LIST;
1433 	struct bio *clone;
1434 	int ret = 0;
1435 
1436 	switch (num_bios) {
1437 	case 0:
1438 		break;
1439 	case 1:
1440 		if (len)
1441 			setup_split_accounting(ci, *len);
1442 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1443 		__map_bio(clone);
1444 		ret = 1;
1445 		break;
1446 	default:
1447 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1448 		alloc_multiple_bios(&blist, ci, ti, num_bios);
1449 		while ((clone = bio_list_pop(&blist))) {
1450 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1451 			__map_bio(clone);
1452 			ret += 1;
1453 		}
1454 		break;
1455 	}
1456 
1457 	return ret;
1458 }
1459 
__send_empty_flush(struct clone_info * ci)1460 static void __send_empty_flush(struct clone_info *ci)
1461 {
1462 	unsigned target_nr = 0;
1463 	struct dm_target *ti;
1464 	struct bio flush_bio;
1465 
1466 	/*
1467 	 * Use an on-stack bio for this, it's safe since we don't
1468 	 * need to reference it after submit. It's just used as
1469 	 * the basis for the clone(s).
1470 	 */
1471 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1472 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1473 
1474 	ci->bio = &flush_bio;
1475 	ci->sector_count = 0;
1476 	ci->io->tio.clone.bi_iter.bi_size = 0;
1477 
1478 	while ((ti = dm_table_get_target(ci->map, target_nr++))) {
1479 		int bios;
1480 
1481 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1482 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1483 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1484 	}
1485 
1486 	/*
1487 	 * alloc_io() takes one extra reference for submission, so the
1488 	 * reference won't reach 0 without the following subtraction
1489 	 */
1490 	atomic_sub(1, &ci->io->io_count);
1491 
1492 	bio_uninit(ci->bio);
1493 }
1494 
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1495 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1496 					unsigned num_bios)
1497 {
1498 	unsigned len;
1499 	int bios;
1500 
1501 	len = min_t(sector_t, ci->sector_count,
1502 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1503 
1504 	atomic_add(num_bios, &ci->io->io_count);
1505 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1506 	/*
1507 	 * alloc_io() takes one extra reference for submission, so the
1508 	 * reference won't reach 0 without the following (+1) subtraction
1509 	 */
1510 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1511 
1512 	ci->sector += len;
1513 	ci->sector_count -= len;
1514 }
1515 
is_abnormal_io(struct bio * bio)1516 static bool is_abnormal_io(struct bio *bio)
1517 {
1518 	unsigned int op = bio_op(bio);
1519 
1520 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1521 		switch (op) {
1522 		case REQ_OP_DISCARD:
1523 		case REQ_OP_SECURE_ERASE:
1524 		case REQ_OP_WRITE_ZEROES:
1525 			return true;
1526 		default:
1527 			break;
1528 		}
1529 	}
1530 
1531 	return false;
1532 }
1533 
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti)1534 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1535 					  struct dm_target *ti)
1536 {
1537 	unsigned num_bios = 0;
1538 
1539 	switch (bio_op(ci->bio)) {
1540 	case REQ_OP_DISCARD:
1541 		num_bios = ti->num_discard_bios;
1542 		break;
1543 	case REQ_OP_SECURE_ERASE:
1544 		num_bios = ti->num_secure_erase_bios;
1545 		break;
1546 	case REQ_OP_WRITE_ZEROES:
1547 		num_bios = ti->num_write_zeroes_bios;
1548 		break;
1549 	}
1550 
1551 	/*
1552 	 * Even though the device advertised support for this type of
1553 	 * request, that does not mean every target supports it, and
1554 	 * reconfiguration might also have changed that since the
1555 	 * check was performed.
1556 	 */
1557 	if (unlikely(!num_bios))
1558 		return BLK_STS_NOTSUPP;
1559 
1560 	__send_changing_extent_only(ci, ti, num_bios);
1561 	return BLK_STS_OK;
1562 }
1563 
1564 /*
1565  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1566  * associated with this bio, and this bio's bi_private needs to be
1567  * stored in dm_io->data before the reuse.
1568  *
1569  * bio->bi_private is owned by fs or upper layer, so block layer won't
1570  * touch it after splitting. Meantime it won't be changed by anyone after
1571  * bio is submitted. So this reuse is safe.
1572  */
dm_poll_list_head(struct bio * bio)1573 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1574 {
1575 	return (struct dm_io **)&bio->bi_private;
1576 }
1577 
dm_queue_poll_io(struct bio * bio,struct dm_io * io)1578 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1579 {
1580 	struct dm_io **head = dm_poll_list_head(bio);
1581 
1582 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1583 		bio->bi_opf |= REQ_DM_POLL_LIST;
1584 		/*
1585 		 * Save .bi_private into dm_io, so that we can reuse
1586 		 * .bi_private as dm_io list head for storing dm_io list
1587 		 */
1588 		io->data = bio->bi_private;
1589 
1590 		/* tell block layer to poll for completion */
1591 		bio->bi_cookie = ~BLK_QC_T_NONE;
1592 
1593 		io->next = NULL;
1594 	} else {
1595 		/*
1596 		 * bio recursed due to split, reuse original poll list,
1597 		 * and save bio->bi_private too.
1598 		 */
1599 		io->data = (*head)->data;
1600 		io->next = *head;
1601 	}
1602 
1603 	*head = io;
1604 }
1605 
1606 /*
1607  * Select the correct strategy for processing a non-flush bio.
1608  */
__split_and_process_bio(struct clone_info * ci)1609 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1610 {
1611 	struct bio *clone;
1612 	struct dm_target *ti;
1613 	unsigned len;
1614 
1615 	ti = dm_table_find_target(ci->map, ci->sector);
1616 	if (unlikely(!ti))
1617 		return BLK_STS_IOERR;
1618 
1619 	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1620 	    unlikely(!dm_target_supports_nowait(ti->type)))
1621 		return BLK_STS_NOTSUPP;
1622 
1623 	if (unlikely(ci->is_abnormal_io))
1624 		return __process_abnormal_io(ci, ti);
1625 
1626 	/*
1627 	 * Only support bio polling for normal IO, and the target io is
1628 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1629 	 */
1630 	ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1631 
1632 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1633 	setup_split_accounting(ci, len);
1634 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1635 	__map_bio(clone);
1636 
1637 	ci->sector += len;
1638 	ci->sector_count -= len;
1639 
1640 	return BLK_STS_OK;
1641 }
1642 
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio,bool is_abnormal)1643 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1644 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1645 {
1646 	ci->map = map;
1647 	ci->io = alloc_io(md, bio);
1648 	ci->bio = bio;
1649 	ci->is_abnormal_io = is_abnormal;
1650 	ci->submit_as_polled = false;
1651 	ci->sector = bio->bi_iter.bi_sector;
1652 	ci->sector_count = bio_sectors(bio);
1653 
1654 	/* Shouldn't happen but sector_count was being set to 0 so... */
1655 	if (static_branch_unlikely(&zoned_enabled) &&
1656 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1657 		ci->sector_count = 0;
1658 }
1659 
1660 /*
1661  * Entry point to split a bio into clones and submit them to the targets.
1662  */
dm_split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1663 static void dm_split_and_process_bio(struct mapped_device *md,
1664 				     struct dm_table *map, struct bio *bio)
1665 {
1666 	struct clone_info ci;
1667 	struct dm_io *io;
1668 	blk_status_t error = BLK_STS_OK;
1669 	bool is_abnormal;
1670 
1671 	is_abnormal = is_abnormal_io(bio);
1672 	if (unlikely(is_abnormal)) {
1673 		/*
1674 		 * Use blk_queue_split() for abnormal IO (e.g. discard, etc)
1675 		 * otherwise associated queue_limits won't be imposed.
1676 		 */
1677 		blk_queue_split(&bio);
1678 	}
1679 
1680 	init_clone_info(&ci, md, map, bio, is_abnormal);
1681 	io = ci.io;
1682 
1683 	if (bio->bi_opf & REQ_PREFLUSH) {
1684 		__send_empty_flush(&ci);
1685 		/* dm_io_complete submits any data associated with flush */
1686 		goto out;
1687 	}
1688 
1689 	error = __split_and_process_bio(&ci);
1690 	if (error || !ci.sector_count)
1691 		goto out;
1692 	/*
1693 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1694 	 * *after* bios already submitted have been completely processed.
1695 	 */
1696 	WARN_ON_ONCE(!dm_io_flagged(io, DM_IO_WAS_SPLIT));
1697 	io->split_bio = bio_split(bio, io->sectors, GFP_NOIO,
1698 				  &md->queue->bio_split);
1699 	bio_chain(io->split_bio, bio);
1700 	trace_block_split(io->split_bio, bio->bi_iter.bi_sector);
1701 	submit_bio_noacct(bio);
1702 out:
1703 	/*
1704 	 * Drop the extra reference count for non-POLLED bio, and hold one
1705 	 * reference for POLLED bio, which will be released in dm_poll_bio
1706 	 *
1707 	 * Add every dm_io instance into the dm_io list head which is stored
1708 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1709 	 */
1710 	if (error || !ci.submit_as_polled) {
1711 		/*
1712 		 * In case of submission failure, the extra reference for
1713 		 * submitting io isn't consumed yet
1714 		 */
1715 		if (error)
1716 			atomic_dec(&io->io_count);
1717 		dm_io_dec_pending(io, error);
1718 	} else
1719 		dm_queue_poll_io(bio, io);
1720 }
1721 
dm_submit_bio(struct bio * bio)1722 static void dm_submit_bio(struct bio *bio)
1723 {
1724 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1725 	int srcu_idx;
1726 	struct dm_table *map;
1727 	unsigned bio_opf = bio->bi_opf;
1728 
1729 	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1730 
1731 	/* If suspended, or map not yet available, queue this IO for later */
1732 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1733 	    unlikely(!map)) {
1734 		if (bio->bi_opf & REQ_NOWAIT)
1735 			bio_wouldblock_error(bio);
1736 		else if (bio->bi_opf & REQ_RAHEAD)
1737 			bio_io_error(bio);
1738 		else
1739 			queue_io(md, bio);
1740 		goto out;
1741 	}
1742 
1743 	dm_split_and_process_bio(md, map, bio);
1744 out:
1745 	dm_put_live_table_bio(md, srcu_idx, bio_opf);
1746 }
1747 
dm_poll_dm_io(struct dm_io * io,struct io_comp_batch * iob,unsigned int flags)1748 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1749 			  unsigned int flags)
1750 {
1751 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1752 
1753 	/* don't poll if the mapped io is done */
1754 	if (atomic_read(&io->io_count) > 1)
1755 		bio_poll(&io->tio.clone, iob, flags);
1756 
1757 	/* bio_poll holds the last reference */
1758 	return atomic_read(&io->io_count) == 1;
1759 }
1760 
dm_poll_bio(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)1761 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1762 		       unsigned int flags)
1763 {
1764 	struct dm_io **head = dm_poll_list_head(bio);
1765 	struct dm_io *list = *head;
1766 	struct dm_io *tmp = NULL;
1767 	struct dm_io *curr, *next;
1768 
1769 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1770 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1771 		return 0;
1772 
1773 	WARN_ON_ONCE(!list);
1774 
1775 	/*
1776 	 * Restore .bi_private before possibly completing dm_io.
1777 	 *
1778 	 * bio_poll() is only possible once @bio has been completely
1779 	 * submitted via submit_bio_noacct()'s depth-first submission.
1780 	 * So there is no dm_queue_poll_io() race associated with
1781 	 * clearing REQ_DM_POLL_LIST here.
1782 	 */
1783 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1784 	bio->bi_private = list->data;
1785 
1786 	for (curr = list, next = curr->next; curr; curr = next, next =
1787 			curr ? curr->next : NULL) {
1788 		if (dm_poll_dm_io(curr, iob, flags)) {
1789 			/*
1790 			 * clone_endio() has already occurred, so no
1791 			 * error handling is needed here.
1792 			 */
1793 			__dm_io_dec_pending(curr);
1794 		} else {
1795 			curr->next = tmp;
1796 			tmp = curr;
1797 		}
1798 	}
1799 
1800 	/* Not done? */
1801 	if (tmp) {
1802 		bio->bi_opf |= REQ_DM_POLL_LIST;
1803 		/* Reset bio->bi_private to dm_io list head */
1804 		*head = tmp;
1805 		return 0;
1806 	}
1807 	return 1;
1808 }
1809 
1810 /*-----------------------------------------------------------------
1811  * An IDR is used to keep track of allocated minor numbers.
1812  *---------------------------------------------------------------*/
free_minor(int minor)1813 static void free_minor(int minor)
1814 {
1815 	spin_lock(&_minor_lock);
1816 	idr_remove(&_minor_idr, minor);
1817 	spin_unlock(&_minor_lock);
1818 }
1819 
1820 /*
1821  * See if the device with a specific minor # is free.
1822  */
specific_minor(int minor)1823 static int specific_minor(int minor)
1824 {
1825 	int r;
1826 
1827 	if (minor >= (1 << MINORBITS))
1828 		return -EINVAL;
1829 
1830 	idr_preload(GFP_KERNEL);
1831 	spin_lock(&_minor_lock);
1832 
1833 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1834 
1835 	spin_unlock(&_minor_lock);
1836 	idr_preload_end();
1837 	if (r < 0)
1838 		return r == -ENOSPC ? -EBUSY : r;
1839 	return 0;
1840 }
1841 
next_free_minor(int * minor)1842 static int next_free_minor(int *minor)
1843 {
1844 	int r;
1845 
1846 	idr_preload(GFP_KERNEL);
1847 	spin_lock(&_minor_lock);
1848 
1849 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1850 
1851 	spin_unlock(&_minor_lock);
1852 	idr_preload_end();
1853 	if (r < 0)
1854 		return r;
1855 	*minor = r;
1856 	return 0;
1857 }
1858 
1859 static const struct block_device_operations dm_blk_dops;
1860 static const struct block_device_operations dm_rq_blk_dops;
1861 static const struct dax_operations dm_dax_ops;
1862 
1863 static void dm_wq_work(struct work_struct *work);
1864 
1865 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)1866 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1867 {
1868 	dm_destroy_crypto_profile(q->crypto_profile);
1869 }
1870 
1871 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1872 
dm_queue_destroy_crypto_profile(struct request_queue * q)1873 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1874 {
1875 }
1876 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1877 
cleanup_mapped_device(struct mapped_device * md)1878 static void cleanup_mapped_device(struct mapped_device *md)
1879 {
1880 	if (md->wq)
1881 		destroy_workqueue(md->wq);
1882 	dm_free_md_mempools(md->mempools);
1883 
1884 	if (md->dax_dev) {
1885 		dax_remove_host(md->disk);
1886 		kill_dax(md->dax_dev);
1887 		put_dax(md->dax_dev);
1888 		md->dax_dev = NULL;
1889 	}
1890 
1891 	dm_cleanup_zoned_dev(md);
1892 	if (md->disk) {
1893 		spin_lock(&_minor_lock);
1894 		md->disk->private_data = NULL;
1895 		spin_unlock(&_minor_lock);
1896 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1897 			dm_sysfs_exit(md);
1898 			del_gendisk(md->disk);
1899 		}
1900 		dm_queue_destroy_crypto_profile(md->queue);
1901 		blk_cleanup_disk(md->disk);
1902 	}
1903 
1904 	if (md->pending_io) {
1905 		free_percpu(md->pending_io);
1906 		md->pending_io = NULL;
1907 	}
1908 
1909 	cleanup_srcu_struct(&md->io_barrier);
1910 
1911 	mutex_destroy(&md->suspend_lock);
1912 	mutex_destroy(&md->type_lock);
1913 	mutex_destroy(&md->table_devices_lock);
1914 	mutex_destroy(&md->swap_bios_lock);
1915 
1916 	dm_mq_cleanup_mapped_device(md);
1917 }
1918 
1919 /*
1920  * Allocate and initialise a blank device with a given minor.
1921  */
alloc_dev(int minor)1922 static struct mapped_device *alloc_dev(int minor)
1923 {
1924 	int r, numa_node_id = dm_get_numa_node();
1925 	struct mapped_device *md;
1926 	void *old_md;
1927 
1928 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1929 	if (!md) {
1930 		DMWARN("unable to allocate device, out of memory.");
1931 		return NULL;
1932 	}
1933 
1934 	if (!try_module_get(THIS_MODULE))
1935 		goto bad_module_get;
1936 
1937 	/* get a minor number for the dev */
1938 	if (minor == DM_ANY_MINOR)
1939 		r = next_free_minor(&minor);
1940 	else
1941 		r = specific_minor(minor);
1942 	if (r < 0)
1943 		goto bad_minor;
1944 
1945 	r = init_srcu_struct(&md->io_barrier);
1946 	if (r < 0)
1947 		goto bad_io_barrier;
1948 
1949 	md->numa_node_id = numa_node_id;
1950 	md->init_tio_pdu = false;
1951 	md->type = DM_TYPE_NONE;
1952 	mutex_init(&md->suspend_lock);
1953 	mutex_init(&md->type_lock);
1954 	mutex_init(&md->table_devices_lock);
1955 	spin_lock_init(&md->deferred_lock);
1956 	atomic_set(&md->holders, 1);
1957 	atomic_set(&md->open_count, 0);
1958 	atomic_set(&md->event_nr, 0);
1959 	atomic_set(&md->uevent_seq, 0);
1960 	INIT_LIST_HEAD(&md->uevent_list);
1961 	INIT_LIST_HEAD(&md->table_devices);
1962 	spin_lock_init(&md->uevent_lock);
1963 
1964 	/*
1965 	 * default to bio-based until DM table is loaded and md->type
1966 	 * established. If request-based table is loaded: blk-mq will
1967 	 * override accordingly.
1968 	 */
1969 	md->disk = blk_alloc_disk(md->numa_node_id);
1970 	if (!md->disk)
1971 		goto bad;
1972 	md->queue = md->disk->queue;
1973 
1974 	init_waitqueue_head(&md->wait);
1975 	INIT_WORK(&md->work, dm_wq_work);
1976 	init_waitqueue_head(&md->eventq);
1977 	init_completion(&md->kobj_holder.completion);
1978 
1979 	md->swap_bios = get_swap_bios();
1980 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1981 	mutex_init(&md->swap_bios_lock);
1982 
1983 	md->disk->major = _major;
1984 	md->disk->first_minor = minor;
1985 	md->disk->minors = 1;
1986 	md->disk->flags |= GENHD_FL_NO_PART;
1987 	md->disk->fops = &dm_blk_dops;
1988 	md->disk->queue = md->queue;
1989 	md->disk->private_data = md;
1990 	sprintf(md->disk->disk_name, "dm-%d", minor);
1991 
1992 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1993 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1994 		if (IS_ERR(md->dax_dev)) {
1995 			md->dax_dev = NULL;
1996 			goto bad;
1997 		}
1998 		set_dax_nocache(md->dax_dev);
1999 		set_dax_nomc(md->dax_dev);
2000 		if (dax_add_host(md->dax_dev, md->disk))
2001 			goto bad;
2002 	}
2003 
2004 	format_dev_t(md->name, MKDEV(_major, minor));
2005 
2006 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2007 	if (!md->wq)
2008 		goto bad;
2009 
2010 	md->pending_io = alloc_percpu(unsigned long);
2011 	if (!md->pending_io)
2012 		goto bad;
2013 
2014 	dm_stats_init(&md->stats);
2015 
2016 	/* Populate the mapping, nobody knows we exist yet */
2017 	spin_lock(&_minor_lock);
2018 	old_md = idr_replace(&_minor_idr, md, minor);
2019 	spin_unlock(&_minor_lock);
2020 
2021 	BUG_ON(old_md != MINOR_ALLOCED);
2022 
2023 	return md;
2024 
2025 bad:
2026 	cleanup_mapped_device(md);
2027 bad_io_barrier:
2028 	free_minor(minor);
2029 bad_minor:
2030 	module_put(THIS_MODULE);
2031 bad_module_get:
2032 	kvfree(md);
2033 	return NULL;
2034 }
2035 
2036 static void unlock_fs(struct mapped_device *md);
2037 
free_dev(struct mapped_device * md)2038 static void free_dev(struct mapped_device *md)
2039 {
2040 	int minor = MINOR(disk_devt(md->disk));
2041 
2042 	unlock_fs(md);
2043 
2044 	cleanup_mapped_device(md);
2045 
2046 	free_table_devices(&md->table_devices);
2047 	dm_stats_cleanup(&md->stats);
2048 	free_minor(minor);
2049 
2050 	module_put(THIS_MODULE);
2051 	kvfree(md);
2052 }
2053 
2054 /*
2055  * Bind a table to the device.
2056  */
event_callback(void * context)2057 static void event_callback(void *context)
2058 {
2059 	unsigned long flags;
2060 	LIST_HEAD(uevents);
2061 	struct mapped_device *md = (struct mapped_device *) context;
2062 
2063 	spin_lock_irqsave(&md->uevent_lock, flags);
2064 	list_splice_init(&md->uevent_list, &uevents);
2065 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2066 
2067 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2068 
2069 	atomic_inc(&md->event_nr);
2070 	wake_up(&md->eventq);
2071 	dm_issue_global_event();
2072 }
2073 
2074 /*
2075  * Returns old map, which caller must destroy.
2076  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2077 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2078 			       struct queue_limits *limits)
2079 {
2080 	struct dm_table *old_map;
2081 	sector_t size;
2082 	int ret;
2083 
2084 	lockdep_assert_held(&md->suspend_lock);
2085 
2086 	size = dm_table_get_size(t);
2087 
2088 	/*
2089 	 * Wipe any geometry if the size of the table changed.
2090 	 */
2091 	if (size != dm_get_size(md))
2092 		memset(&md->geometry, 0, sizeof(md->geometry));
2093 
2094 	if (!get_capacity(md->disk))
2095 		set_capacity(md->disk, size);
2096 	else
2097 		set_capacity_and_notify(md->disk, size);
2098 
2099 	dm_table_event_callback(t, event_callback, md);
2100 
2101 	if (dm_table_request_based(t)) {
2102 		/*
2103 		 * Leverage the fact that request-based DM targets are
2104 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2105 		 */
2106 		md->immutable_target = dm_table_get_immutable_target(t);
2107 
2108 		/*
2109 		 * There is no need to reload with request-based dm because the
2110 		 * size of front_pad doesn't change.
2111 		 *
2112 		 * Note for future: If you are to reload bioset, prep-ed
2113 		 * requests in the queue may refer to bio from the old bioset,
2114 		 * so you must walk through the queue to unprep.
2115 		 */
2116 		if (!md->mempools) {
2117 			md->mempools = t->mempools;
2118 			t->mempools = NULL;
2119 		}
2120 	} else {
2121 		/*
2122 		 * The md may already have mempools that need changing.
2123 		 * If so, reload bioset because front_pad may have changed
2124 		 * because a different table was loaded.
2125 		 */
2126 		dm_free_md_mempools(md->mempools);
2127 		md->mempools = t->mempools;
2128 		t->mempools = NULL;
2129 	}
2130 
2131 	ret = dm_table_set_restrictions(t, md->queue, limits);
2132 	if (ret) {
2133 		old_map = ERR_PTR(ret);
2134 		goto out;
2135 	}
2136 
2137 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2138 	rcu_assign_pointer(md->map, (void *)t);
2139 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2140 
2141 	if (old_map)
2142 		dm_sync_table(md);
2143 out:
2144 	return old_map;
2145 }
2146 
2147 /*
2148  * Returns unbound table for the caller to free.
2149  */
__unbind(struct mapped_device * md)2150 static struct dm_table *__unbind(struct mapped_device *md)
2151 {
2152 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2153 
2154 	if (!map)
2155 		return NULL;
2156 
2157 	dm_table_event_callback(map, NULL, NULL);
2158 	RCU_INIT_POINTER(md->map, NULL);
2159 	dm_sync_table(md);
2160 
2161 	return map;
2162 }
2163 
2164 /*
2165  * Constructor for a new device.
2166  */
dm_create(int minor,struct mapped_device ** result)2167 int dm_create(int minor, struct mapped_device **result)
2168 {
2169 	struct mapped_device *md;
2170 
2171 	md = alloc_dev(minor);
2172 	if (!md)
2173 		return -ENXIO;
2174 
2175 	dm_ima_reset_data(md);
2176 
2177 	*result = md;
2178 	return 0;
2179 }
2180 
2181 /*
2182  * Functions to manage md->type.
2183  * All are required to hold md->type_lock.
2184  */
dm_lock_md_type(struct mapped_device * md)2185 void dm_lock_md_type(struct mapped_device *md)
2186 {
2187 	mutex_lock(&md->type_lock);
2188 }
2189 
dm_unlock_md_type(struct mapped_device * md)2190 void dm_unlock_md_type(struct mapped_device *md)
2191 {
2192 	mutex_unlock(&md->type_lock);
2193 }
2194 
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2195 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2196 {
2197 	BUG_ON(!mutex_is_locked(&md->type_lock));
2198 	md->type = type;
2199 }
2200 
dm_get_md_type(struct mapped_device * md)2201 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2202 {
2203 	return md->type;
2204 }
2205 
dm_get_immutable_target_type(struct mapped_device * md)2206 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2207 {
2208 	return md->immutable_target_type;
2209 }
2210 
2211 /*
2212  * The queue_limits are only valid as long as you have a reference
2213  * count on 'md'.
2214  */
dm_get_queue_limits(struct mapped_device * md)2215 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2216 {
2217 	BUG_ON(!atomic_read(&md->holders));
2218 	return &md->queue->limits;
2219 }
2220 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2221 
2222 /*
2223  * Setup the DM device's queue based on md's type
2224  */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2225 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2226 {
2227 	enum dm_queue_mode type = dm_table_get_type(t);
2228 	struct queue_limits limits;
2229 	int r;
2230 
2231 	switch (type) {
2232 	case DM_TYPE_REQUEST_BASED:
2233 		md->disk->fops = &dm_rq_blk_dops;
2234 		r = dm_mq_init_request_queue(md, t);
2235 		if (r) {
2236 			DMERR("Cannot initialize queue for request-based dm mapped device");
2237 			return r;
2238 		}
2239 		break;
2240 	case DM_TYPE_BIO_BASED:
2241 	case DM_TYPE_DAX_BIO_BASED:
2242 		break;
2243 	case DM_TYPE_NONE:
2244 		WARN_ON_ONCE(true);
2245 		break;
2246 	}
2247 
2248 	r = dm_calculate_queue_limits(t, &limits);
2249 	if (r) {
2250 		DMERR("Cannot calculate initial queue limits");
2251 		return r;
2252 	}
2253 	r = dm_table_set_restrictions(t, md->queue, &limits);
2254 	if (r)
2255 		return r;
2256 
2257 	r = add_disk(md->disk);
2258 	if (r)
2259 		return r;
2260 
2261 	r = dm_sysfs_init(md);
2262 	if (r) {
2263 		del_gendisk(md->disk);
2264 		return r;
2265 	}
2266 	md->type = type;
2267 	return 0;
2268 }
2269 
dm_get_md(dev_t dev)2270 struct mapped_device *dm_get_md(dev_t dev)
2271 {
2272 	struct mapped_device *md;
2273 	unsigned minor = MINOR(dev);
2274 
2275 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2276 		return NULL;
2277 
2278 	spin_lock(&_minor_lock);
2279 
2280 	md = idr_find(&_minor_idr, minor);
2281 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2282 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2283 		md = NULL;
2284 		goto out;
2285 	}
2286 	dm_get(md);
2287 out:
2288 	spin_unlock(&_minor_lock);
2289 
2290 	return md;
2291 }
2292 EXPORT_SYMBOL_GPL(dm_get_md);
2293 
dm_get_mdptr(struct mapped_device * md)2294 void *dm_get_mdptr(struct mapped_device *md)
2295 {
2296 	return md->interface_ptr;
2297 }
2298 
dm_set_mdptr(struct mapped_device * md,void * ptr)2299 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2300 {
2301 	md->interface_ptr = ptr;
2302 }
2303 
dm_get(struct mapped_device * md)2304 void dm_get(struct mapped_device *md)
2305 {
2306 	atomic_inc(&md->holders);
2307 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2308 }
2309 
dm_hold(struct mapped_device * md)2310 int dm_hold(struct mapped_device *md)
2311 {
2312 	spin_lock(&_minor_lock);
2313 	if (test_bit(DMF_FREEING, &md->flags)) {
2314 		spin_unlock(&_minor_lock);
2315 		return -EBUSY;
2316 	}
2317 	dm_get(md);
2318 	spin_unlock(&_minor_lock);
2319 	return 0;
2320 }
2321 EXPORT_SYMBOL_GPL(dm_hold);
2322 
dm_device_name(struct mapped_device * md)2323 const char *dm_device_name(struct mapped_device *md)
2324 {
2325 	return md->name;
2326 }
2327 EXPORT_SYMBOL_GPL(dm_device_name);
2328 
__dm_destroy(struct mapped_device * md,bool wait)2329 static void __dm_destroy(struct mapped_device *md, bool wait)
2330 {
2331 	struct dm_table *map;
2332 	int srcu_idx;
2333 
2334 	might_sleep();
2335 
2336 	spin_lock(&_minor_lock);
2337 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2338 	set_bit(DMF_FREEING, &md->flags);
2339 	spin_unlock(&_minor_lock);
2340 
2341 	blk_mark_disk_dead(md->disk);
2342 
2343 	/*
2344 	 * Take suspend_lock so that presuspend and postsuspend methods
2345 	 * do not race with internal suspend.
2346 	 */
2347 	mutex_lock(&md->suspend_lock);
2348 	map = dm_get_live_table(md, &srcu_idx);
2349 	if (!dm_suspended_md(md)) {
2350 		dm_table_presuspend_targets(map);
2351 		set_bit(DMF_SUSPENDED, &md->flags);
2352 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2353 		dm_table_postsuspend_targets(map);
2354 	}
2355 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2356 	dm_put_live_table(md, srcu_idx);
2357 	mutex_unlock(&md->suspend_lock);
2358 
2359 	/*
2360 	 * Rare, but there may be I/O requests still going to complete,
2361 	 * for example.  Wait for all references to disappear.
2362 	 * No one should increment the reference count of the mapped_device,
2363 	 * after the mapped_device state becomes DMF_FREEING.
2364 	 */
2365 	if (wait)
2366 		while (atomic_read(&md->holders))
2367 			msleep(1);
2368 	else if (atomic_read(&md->holders))
2369 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2370 		       dm_device_name(md), atomic_read(&md->holders));
2371 
2372 	dm_table_destroy(__unbind(md));
2373 	free_dev(md);
2374 }
2375 
dm_destroy(struct mapped_device * md)2376 void dm_destroy(struct mapped_device *md)
2377 {
2378 	__dm_destroy(md, true);
2379 }
2380 
dm_destroy_immediate(struct mapped_device * md)2381 void dm_destroy_immediate(struct mapped_device *md)
2382 {
2383 	__dm_destroy(md, false);
2384 }
2385 
dm_put(struct mapped_device * md)2386 void dm_put(struct mapped_device *md)
2387 {
2388 	atomic_dec(&md->holders);
2389 }
2390 EXPORT_SYMBOL_GPL(dm_put);
2391 
dm_in_flight_bios(struct mapped_device * md)2392 static bool dm_in_flight_bios(struct mapped_device *md)
2393 {
2394 	int cpu;
2395 	unsigned long sum = 0;
2396 
2397 	for_each_possible_cpu(cpu)
2398 		sum += *per_cpu_ptr(md->pending_io, cpu);
2399 
2400 	return sum != 0;
2401 }
2402 
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2403 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2404 {
2405 	int r = 0;
2406 	DEFINE_WAIT(wait);
2407 
2408 	while (true) {
2409 		prepare_to_wait(&md->wait, &wait, task_state);
2410 
2411 		if (!dm_in_flight_bios(md))
2412 			break;
2413 
2414 		if (signal_pending_state(task_state, current)) {
2415 			r = -EINTR;
2416 			break;
2417 		}
2418 
2419 		io_schedule();
2420 	}
2421 	finish_wait(&md->wait, &wait);
2422 
2423 	smp_rmb();
2424 
2425 	return r;
2426 }
2427 
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2428 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2429 {
2430 	int r = 0;
2431 
2432 	if (!queue_is_mq(md->queue))
2433 		return dm_wait_for_bios_completion(md, task_state);
2434 
2435 	while (true) {
2436 		if (!blk_mq_queue_inflight(md->queue))
2437 			break;
2438 
2439 		if (signal_pending_state(task_state, current)) {
2440 			r = -EINTR;
2441 			break;
2442 		}
2443 
2444 		msleep(5);
2445 	}
2446 
2447 	return r;
2448 }
2449 
2450 /*
2451  * Process the deferred bios
2452  */
dm_wq_work(struct work_struct * work)2453 static void dm_wq_work(struct work_struct *work)
2454 {
2455 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2456 	struct bio *bio;
2457 
2458 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2459 		spin_lock_irq(&md->deferred_lock);
2460 		bio = bio_list_pop(&md->deferred);
2461 		spin_unlock_irq(&md->deferred_lock);
2462 
2463 		if (!bio)
2464 			break;
2465 
2466 		submit_bio_noacct(bio);
2467 	}
2468 }
2469 
dm_queue_flush(struct mapped_device * md)2470 static void dm_queue_flush(struct mapped_device *md)
2471 {
2472 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2473 	smp_mb__after_atomic();
2474 	queue_work(md->wq, &md->work);
2475 }
2476 
2477 /*
2478  * Swap in a new table, returning the old one for the caller to destroy.
2479  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2480 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2481 {
2482 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2483 	struct queue_limits limits;
2484 	int r;
2485 
2486 	mutex_lock(&md->suspend_lock);
2487 
2488 	/* device must be suspended */
2489 	if (!dm_suspended_md(md))
2490 		goto out;
2491 
2492 	/*
2493 	 * If the new table has no data devices, retain the existing limits.
2494 	 * This helps multipath with queue_if_no_path if all paths disappear,
2495 	 * then new I/O is queued based on these limits, and then some paths
2496 	 * reappear.
2497 	 */
2498 	if (dm_table_has_no_data_devices(table)) {
2499 		live_map = dm_get_live_table_fast(md);
2500 		if (live_map)
2501 			limits = md->queue->limits;
2502 		dm_put_live_table_fast(md);
2503 	}
2504 
2505 	if (!live_map) {
2506 		r = dm_calculate_queue_limits(table, &limits);
2507 		if (r) {
2508 			map = ERR_PTR(r);
2509 			goto out;
2510 		}
2511 	}
2512 
2513 	map = __bind(md, table, &limits);
2514 	dm_issue_global_event();
2515 
2516 out:
2517 	mutex_unlock(&md->suspend_lock);
2518 	return map;
2519 }
2520 
2521 /*
2522  * Functions to lock and unlock any filesystem running on the
2523  * device.
2524  */
lock_fs(struct mapped_device * md)2525 static int lock_fs(struct mapped_device *md)
2526 {
2527 	int r;
2528 
2529 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2530 
2531 	r = freeze_bdev(md->disk->part0);
2532 	if (!r)
2533 		set_bit(DMF_FROZEN, &md->flags);
2534 	return r;
2535 }
2536 
unlock_fs(struct mapped_device * md)2537 static void unlock_fs(struct mapped_device *md)
2538 {
2539 	if (!test_bit(DMF_FROZEN, &md->flags))
2540 		return;
2541 	thaw_bdev(md->disk->part0);
2542 	clear_bit(DMF_FROZEN, &md->flags);
2543 }
2544 
2545 /*
2546  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2547  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2548  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2549  *
2550  * If __dm_suspend returns 0, the device is completely quiescent
2551  * now. There is no request-processing activity. All new requests
2552  * are being added to md->deferred list.
2553  */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,unsigned int task_state,int dmf_suspended_flag)2554 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2555 			unsigned suspend_flags, unsigned int task_state,
2556 			int dmf_suspended_flag)
2557 {
2558 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2559 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2560 	int r;
2561 
2562 	lockdep_assert_held(&md->suspend_lock);
2563 
2564 	/*
2565 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2566 	 * This flag is cleared before dm_suspend returns.
2567 	 */
2568 	if (noflush)
2569 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2570 	else
2571 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2572 
2573 	/*
2574 	 * This gets reverted if there's an error later and the targets
2575 	 * provide the .presuspend_undo hook.
2576 	 */
2577 	dm_table_presuspend_targets(map);
2578 
2579 	/*
2580 	 * Flush I/O to the device.
2581 	 * Any I/O submitted after lock_fs() may not be flushed.
2582 	 * noflush takes precedence over do_lockfs.
2583 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2584 	 */
2585 	if (!noflush && do_lockfs) {
2586 		r = lock_fs(md);
2587 		if (r) {
2588 			dm_table_presuspend_undo_targets(map);
2589 			return r;
2590 		}
2591 	}
2592 
2593 	/*
2594 	 * Here we must make sure that no processes are submitting requests
2595 	 * to target drivers i.e. no one may be executing
2596 	 * dm_split_and_process_bio from dm_submit_bio.
2597 	 *
2598 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2599 	 * we take the write lock. To prevent any process from reentering
2600 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2601 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2602 	 * flush_workqueue(md->wq).
2603 	 */
2604 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2605 	if (map)
2606 		synchronize_srcu(&md->io_barrier);
2607 
2608 	/*
2609 	 * Stop md->queue before flushing md->wq in case request-based
2610 	 * dm defers requests to md->wq from md->queue.
2611 	 */
2612 	if (dm_request_based(md))
2613 		dm_stop_queue(md->queue);
2614 
2615 	flush_workqueue(md->wq);
2616 
2617 	/*
2618 	 * At this point no more requests are entering target request routines.
2619 	 * We call dm_wait_for_completion to wait for all existing requests
2620 	 * to finish.
2621 	 */
2622 	r = dm_wait_for_completion(md, task_state);
2623 	if (!r)
2624 		set_bit(dmf_suspended_flag, &md->flags);
2625 
2626 	if (noflush)
2627 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2628 	if (map)
2629 		synchronize_srcu(&md->io_barrier);
2630 
2631 	/* were we interrupted ? */
2632 	if (r < 0) {
2633 		dm_queue_flush(md);
2634 
2635 		if (dm_request_based(md))
2636 			dm_start_queue(md->queue);
2637 
2638 		unlock_fs(md);
2639 		dm_table_presuspend_undo_targets(map);
2640 		/* pushback list is already flushed, so skip flush */
2641 	}
2642 
2643 	return r;
2644 }
2645 
2646 /*
2647  * We need to be able to change a mapping table under a mounted
2648  * filesystem.  For example we might want to move some data in
2649  * the background.  Before the table can be swapped with
2650  * dm_bind_table, dm_suspend must be called to flush any in
2651  * flight bios and ensure that any further io gets deferred.
2652  */
2653 /*
2654  * Suspend mechanism in request-based dm.
2655  *
2656  * 1. Flush all I/Os by lock_fs() if needed.
2657  * 2. Stop dispatching any I/O by stopping the request_queue.
2658  * 3. Wait for all in-flight I/Os to be completed or requeued.
2659  *
2660  * To abort suspend, start the request_queue.
2661  */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2662 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2663 {
2664 	struct dm_table *map = NULL;
2665 	int r = 0;
2666 
2667 retry:
2668 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2669 
2670 	if (dm_suspended_md(md)) {
2671 		r = -EINVAL;
2672 		goto out_unlock;
2673 	}
2674 
2675 	if (dm_suspended_internally_md(md)) {
2676 		/* already internally suspended, wait for internal resume */
2677 		mutex_unlock(&md->suspend_lock);
2678 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2679 		if (r)
2680 			return r;
2681 		goto retry;
2682 	}
2683 
2684 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2685 
2686 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2687 	if (r)
2688 		goto out_unlock;
2689 
2690 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2691 	dm_table_postsuspend_targets(map);
2692 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2693 
2694 out_unlock:
2695 	mutex_unlock(&md->suspend_lock);
2696 	return r;
2697 }
2698 
__dm_resume(struct mapped_device * md,struct dm_table * map)2699 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2700 {
2701 	if (map) {
2702 		int r = dm_table_resume_targets(map);
2703 		if (r)
2704 			return r;
2705 	}
2706 
2707 	dm_queue_flush(md);
2708 
2709 	/*
2710 	 * Flushing deferred I/Os must be done after targets are resumed
2711 	 * so that mapping of targets can work correctly.
2712 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2713 	 */
2714 	if (dm_request_based(md))
2715 		dm_start_queue(md->queue);
2716 
2717 	unlock_fs(md);
2718 
2719 	return 0;
2720 }
2721 
dm_resume(struct mapped_device * md)2722 int dm_resume(struct mapped_device *md)
2723 {
2724 	int r;
2725 	struct dm_table *map = NULL;
2726 
2727 retry:
2728 	r = -EINVAL;
2729 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2730 
2731 	if (!dm_suspended_md(md))
2732 		goto out;
2733 
2734 	if (dm_suspended_internally_md(md)) {
2735 		/* already internally suspended, wait for internal resume */
2736 		mutex_unlock(&md->suspend_lock);
2737 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2738 		if (r)
2739 			return r;
2740 		goto retry;
2741 	}
2742 
2743 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2744 	if (!map || !dm_table_get_size(map))
2745 		goto out;
2746 
2747 	r = __dm_resume(md, map);
2748 	if (r)
2749 		goto out;
2750 
2751 	clear_bit(DMF_SUSPENDED, &md->flags);
2752 out:
2753 	mutex_unlock(&md->suspend_lock);
2754 
2755 	return r;
2756 }
2757 
2758 /*
2759  * Internal suspend/resume works like userspace-driven suspend. It waits
2760  * until all bios finish and prevents issuing new bios to the target drivers.
2761  * It may be used only from the kernel.
2762  */
2763 
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2764 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2765 {
2766 	struct dm_table *map = NULL;
2767 
2768 	lockdep_assert_held(&md->suspend_lock);
2769 
2770 	if (md->internal_suspend_count++)
2771 		return; /* nested internal suspend */
2772 
2773 	if (dm_suspended_md(md)) {
2774 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2775 		return; /* nest suspend */
2776 	}
2777 
2778 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2779 
2780 	/*
2781 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2782 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2783 	 * would require changing .presuspend to return an error -- avoid this
2784 	 * until there is a need for more elaborate variants of internal suspend.
2785 	 */
2786 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2787 			    DMF_SUSPENDED_INTERNALLY);
2788 
2789 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2790 	dm_table_postsuspend_targets(map);
2791 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2792 }
2793 
__dm_internal_resume(struct mapped_device * md)2794 static void __dm_internal_resume(struct mapped_device *md)
2795 {
2796 	BUG_ON(!md->internal_suspend_count);
2797 
2798 	if (--md->internal_suspend_count)
2799 		return; /* resume from nested internal suspend */
2800 
2801 	if (dm_suspended_md(md))
2802 		goto done; /* resume from nested suspend */
2803 
2804 	/*
2805 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2806 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2807 	 */
2808 	(void) __dm_resume(md, NULL);
2809 
2810 done:
2811 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2812 	smp_mb__after_atomic();
2813 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2814 }
2815 
dm_internal_suspend_noflush(struct mapped_device * md)2816 void dm_internal_suspend_noflush(struct mapped_device *md)
2817 {
2818 	mutex_lock(&md->suspend_lock);
2819 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2820 	mutex_unlock(&md->suspend_lock);
2821 }
2822 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2823 
dm_internal_resume(struct mapped_device * md)2824 void dm_internal_resume(struct mapped_device *md)
2825 {
2826 	mutex_lock(&md->suspend_lock);
2827 	__dm_internal_resume(md);
2828 	mutex_unlock(&md->suspend_lock);
2829 }
2830 EXPORT_SYMBOL_GPL(dm_internal_resume);
2831 
2832 /*
2833  * Fast variants of internal suspend/resume hold md->suspend_lock,
2834  * which prevents interaction with userspace-driven suspend.
2835  */
2836 
dm_internal_suspend_fast(struct mapped_device * md)2837 void dm_internal_suspend_fast(struct mapped_device *md)
2838 {
2839 	mutex_lock(&md->suspend_lock);
2840 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2841 		return;
2842 
2843 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2844 	synchronize_srcu(&md->io_barrier);
2845 	flush_workqueue(md->wq);
2846 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2847 }
2848 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2849 
dm_internal_resume_fast(struct mapped_device * md)2850 void dm_internal_resume_fast(struct mapped_device *md)
2851 {
2852 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2853 		goto done;
2854 
2855 	dm_queue_flush(md);
2856 
2857 done:
2858 	mutex_unlock(&md->suspend_lock);
2859 }
2860 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2861 
2862 /*-----------------------------------------------------------------
2863  * Event notification.
2864  *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2865 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2866 		       unsigned cookie)
2867 {
2868 	int r;
2869 	unsigned noio_flag;
2870 	char udev_cookie[DM_COOKIE_LENGTH];
2871 	char *envp[] = { udev_cookie, NULL };
2872 
2873 	noio_flag = memalloc_noio_save();
2874 
2875 	if (!cookie)
2876 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2877 	else {
2878 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2879 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2880 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2881 				       action, envp);
2882 	}
2883 
2884 	memalloc_noio_restore(noio_flag);
2885 
2886 	return r;
2887 }
2888 
dm_next_uevent_seq(struct mapped_device * md)2889 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2890 {
2891 	return atomic_add_return(1, &md->uevent_seq);
2892 }
2893 
dm_get_event_nr(struct mapped_device * md)2894 uint32_t dm_get_event_nr(struct mapped_device *md)
2895 {
2896 	return atomic_read(&md->event_nr);
2897 }
2898 
dm_wait_event(struct mapped_device * md,int event_nr)2899 int dm_wait_event(struct mapped_device *md, int event_nr)
2900 {
2901 	return wait_event_interruptible(md->eventq,
2902 			(event_nr != atomic_read(&md->event_nr)));
2903 }
2904 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2905 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2906 {
2907 	unsigned long flags;
2908 
2909 	spin_lock_irqsave(&md->uevent_lock, flags);
2910 	list_add(elist, &md->uevent_list);
2911 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2912 }
2913 
2914 /*
2915  * The gendisk is only valid as long as you have a reference
2916  * count on 'md'.
2917  */
dm_disk(struct mapped_device * md)2918 struct gendisk *dm_disk(struct mapped_device *md)
2919 {
2920 	return md->disk;
2921 }
2922 EXPORT_SYMBOL_GPL(dm_disk);
2923 
dm_kobject(struct mapped_device * md)2924 struct kobject *dm_kobject(struct mapped_device *md)
2925 {
2926 	return &md->kobj_holder.kobj;
2927 }
2928 
dm_get_from_kobject(struct kobject * kobj)2929 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2930 {
2931 	struct mapped_device *md;
2932 
2933 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2934 
2935 	spin_lock(&_minor_lock);
2936 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2937 		md = NULL;
2938 		goto out;
2939 	}
2940 	dm_get(md);
2941 out:
2942 	spin_unlock(&_minor_lock);
2943 
2944 	return md;
2945 }
2946 
dm_suspended_md(struct mapped_device * md)2947 int dm_suspended_md(struct mapped_device *md)
2948 {
2949 	return test_bit(DMF_SUSPENDED, &md->flags);
2950 }
2951 
dm_post_suspending_md(struct mapped_device * md)2952 static int dm_post_suspending_md(struct mapped_device *md)
2953 {
2954 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2955 }
2956 
dm_suspended_internally_md(struct mapped_device * md)2957 int dm_suspended_internally_md(struct mapped_device *md)
2958 {
2959 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2960 }
2961 
dm_test_deferred_remove_flag(struct mapped_device * md)2962 int dm_test_deferred_remove_flag(struct mapped_device *md)
2963 {
2964 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2965 }
2966 
dm_suspended(struct dm_target * ti)2967 int dm_suspended(struct dm_target *ti)
2968 {
2969 	return dm_suspended_md(ti->table->md);
2970 }
2971 EXPORT_SYMBOL_GPL(dm_suspended);
2972 
dm_post_suspending(struct dm_target * ti)2973 int dm_post_suspending(struct dm_target *ti)
2974 {
2975 	return dm_post_suspending_md(ti->table->md);
2976 }
2977 EXPORT_SYMBOL_GPL(dm_post_suspending);
2978 
dm_noflush_suspending(struct dm_target * ti)2979 int dm_noflush_suspending(struct dm_target *ti)
2980 {
2981 	return __noflush_suspending(ti->table->md);
2982 }
2983 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2984 
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned per_io_data_size,unsigned min_pool_size,bool integrity,bool poll)2985 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2986 					    unsigned per_io_data_size, unsigned min_pool_size,
2987 					    bool integrity, bool poll)
2988 {
2989 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2990 	unsigned int pool_size = 0;
2991 	unsigned int front_pad, io_front_pad;
2992 	int ret;
2993 
2994 	if (!pools)
2995 		return NULL;
2996 
2997 	switch (type) {
2998 	case DM_TYPE_BIO_BASED:
2999 	case DM_TYPE_DAX_BIO_BASED:
3000 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3001 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
3002 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
3003 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0);
3004 		if (ret)
3005 			goto out;
3006 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3007 			goto out;
3008 		break;
3009 	case DM_TYPE_REQUEST_BASED:
3010 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3011 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3012 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3013 		break;
3014 	default:
3015 		BUG();
3016 	}
3017 
3018 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3019 	if (ret)
3020 		goto out;
3021 
3022 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3023 		goto out;
3024 
3025 	return pools;
3026 
3027 out:
3028 	dm_free_md_mempools(pools);
3029 
3030 	return NULL;
3031 }
3032 
dm_free_md_mempools(struct dm_md_mempools * pools)3033 void dm_free_md_mempools(struct dm_md_mempools *pools)
3034 {
3035 	if (!pools)
3036 		return;
3037 
3038 	bioset_exit(&pools->bs);
3039 	bioset_exit(&pools->io_bs);
3040 
3041 	kfree(pools);
3042 }
3043 
3044 struct dm_pr {
3045 	u64	old_key;
3046 	u64	new_key;
3047 	u32	flags;
3048 	bool	fail_early;
3049 };
3050 
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)3051 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3052 		      void *data)
3053 {
3054 	struct mapped_device *md = bdev->bd_disk->private_data;
3055 	struct dm_table *table;
3056 	struct dm_target *ti;
3057 	int ret = -ENOTTY, srcu_idx;
3058 
3059 	table = dm_get_live_table(md, &srcu_idx);
3060 	if (!table || !dm_table_get_size(table))
3061 		goto out;
3062 
3063 	/* We only support devices that have a single target */
3064 	if (dm_table_get_num_targets(table) != 1)
3065 		goto out;
3066 	ti = dm_table_get_target(table, 0);
3067 
3068 	if (dm_suspended_md(md)) {
3069 		ret = -EAGAIN;
3070 		goto out;
3071 	}
3072 
3073 	ret = -EINVAL;
3074 	if (!ti->type->iterate_devices)
3075 		goto out;
3076 
3077 	ret = ti->type->iterate_devices(ti, fn, data);
3078 out:
3079 	dm_put_live_table(md, srcu_idx);
3080 	return ret;
3081 }
3082 
3083 /*
3084  * For register / unregister we need to manually call out to every path.
3085  */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3086 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3087 			    sector_t start, sector_t len, void *data)
3088 {
3089 	struct dm_pr *pr = data;
3090 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3091 
3092 	if (!ops || !ops->pr_register)
3093 		return -EOPNOTSUPP;
3094 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3095 }
3096 
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3097 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3098 			  u32 flags)
3099 {
3100 	struct dm_pr pr = {
3101 		.old_key	= old_key,
3102 		.new_key	= new_key,
3103 		.flags		= flags,
3104 		.fail_early	= true,
3105 	};
3106 	int ret;
3107 
3108 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3109 	if (ret && new_key) {
3110 		/* unregister all paths if we failed to register any path */
3111 		pr.old_key = new_key;
3112 		pr.new_key = 0;
3113 		pr.flags = 0;
3114 		pr.fail_early = false;
3115 		dm_call_pr(bdev, __dm_pr_register, &pr);
3116 	}
3117 
3118 	return ret;
3119 }
3120 
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3121 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3122 			 u32 flags)
3123 {
3124 	struct mapped_device *md = bdev->bd_disk->private_data;
3125 	const struct pr_ops *ops;
3126 	int r, srcu_idx;
3127 
3128 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3129 	if (r < 0)
3130 		goto out;
3131 
3132 	ops = bdev->bd_disk->fops->pr_ops;
3133 	if (ops && ops->pr_reserve)
3134 		r = ops->pr_reserve(bdev, key, type, flags);
3135 	else
3136 		r = -EOPNOTSUPP;
3137 out:
3138 	dm_unprepare_ioctl(md, srcu_idx);
3139 	return r;
3140 }
3141 
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3142 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3143 {
3144 	struct mapped_device *md = bdev->bd_disk->private_data;
3145 	const struct pr_ops *ops;
3146 	int r, srcu_idx;
3147 
3148 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3149 	if (r < 0)
3150 		goto out;
3151 
3152 	ops = bdev->bd_disk->fops->pr_ops;
3153 	if (ops && ops->pr_release)
3154 		r = ops->pr_release(bdev, key, type);
3155 	else
3156 		r = -EOPNOTSUPP;
3157 out:
3158 	dm_unprepare_ioctl(md, srcu_idx);
3159 	return r;
3160 }
3161 
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3162 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3163 			 enum pr_type type, bool abort)
3164 {
3165 	struct mapped_device *md = bdev->bd_disk->private_data;
3166 	const struct pr_ops *ops;
3167 	int r, srcu_idx;
3168 
3169 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3170 	if (r < 0)
3171 		goto out;
3172 
3173 	ops = bdev->bd_disk->fops->pr_ops;
3174 	if (ops && ops->pr_preempt)
3175 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3176 	else
3177 		r = -EOPNOTSUPP;
3178 out:
3179 	dm_unprepare_ioctl(md, srcu_idx);
3180 	return r;
3181 }
3182 
dm_pr_clear(struct block_device * bdev,u64 key)3183 static int dm_pr_clear(struct block_device *bdev, u64 key)
3184 {
3185 	struct mapped_device *md = bdev->bd_disk->private_data;
3186 	const struct pr_ops *ops;
3187 	int r, srcu_idx;
3188 
3189 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3190 	if (r < 0)
3191 		goto out;
3192 
3193 	ops = bdev->bd_disk->fops->pr_ops;
3194 	if (ops && ops->pr_clear)
3195 		r = ops->pr_clear(bdev, key);
3196 	else
3197 		r = -EOPNOTSUPP;
3198 out:
3199 	dm_unprepare_ioctl(md, srcu_idx);
3200 	return r;
3201 }
3202 
3203 static const struct pr_ops dm_pr_ops = {
3204 	.pr_register	= dm_pr_register,
3205 	.pr_reserve	= dm_pr_reserve,
3206 	.pr_release	= dm_pr_release,
3207 	.pr_preempt	= dm_pr_preempt,
3208 	.pr_clear	= dm_pr_clear,
3209 };
3210 
3211 static const struct block_device_operations dm_blk_dops = {
3212 	.submit_bio = dm_submit_bio,
3213 	.poll_bio = dm_poll_bio,
3214 	.open = dm_blk_open,
3215 	.release = dm_blk_close,
3216 	.ioctl = dm_blk_ioctl,
3217 	.getgeo = dm_blk_getgeo,
3218 	.report_zones = dm_blk_report_zones,
3219 	.pr_ops = &dm_pr_ops,
3220 	.owner = THIS_MODULE
3221 };
3222 
3223 static const struct block_device_operations dm_rq_blk_dops = {
3224 	.open = dm_blk_open,
3225 	.release = dm_blk_close,
3226 	.ioctl = dm_blk_ioctl,
3227 	.getgeo = dm_blk_getgeo,
3228 	.pr_ops = &dm_pr_ops,
3229 	.owner = THIS_MODULE
3230 };
3231 
3232 static const struct dax_operations dm_dax_ops = {
3233 	.direct_access = dm_dax_direct_access,
3234 	.zero_page_range = dm_dax_zero_page_range,
3235 	.recovery_write = dm_dax_recovery_write,
3236 };
3237 
3238 /*
3239  * module hooks
3240  */
3241 module_init(dm_init);
3242 module_exit(dm_exit);
3243 
3244 module_param(major, uint, 0);
3245 MODULE_PARM_DESC(major, "The major number of the device mapper");
3246 
3247 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3248 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3249 
3250 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3251 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3252 
3253 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3254 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3255 
3256 MODULE_DESCRIPTION(DM_NAME " driver");
3257 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3258 MODULE_LICENSE("GPL");
3259