1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23 
24 #include <trace/events/block.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 /*
29  * Cookies are numeric values sent with CHANGE and REMOVE
30  * uevents while resuming, removing or renaming the device.
31  */
32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33 #define DM_COOKIE_LENGTH 24
34 
35 static const char *_name = DM_NAME;
36 
37 static unsigned int major = 0;
38 static unsigned int _major = 0;
39 
40 static DEFINE_SPINLOCK(_minor_lock);
41 /*
42  * For bio-based dm.
43  * One of these is allocated per bio.
44  */
45 struct dm_io {
46 	struct mapped_device *md;
47 	int error;
48 	atomic_t io_count;
49 	struct bio *bio;
50 	unsigned long start_time;
51 	spinlock_t endio_lock;
52 };
53 
54 /*
55  * For bio-based dm.
56  * One of these is allocated per target within a bio.  Hopefully
57  * this will be simplified out one day.
58  */
59 struct dm_target_io {
60 	struct dm_io *io;
61 	struct dm_target *ti;
62 	union map_info info;
63 };
64 
65 /*
66  * For request-based dm.
67  * One of these is allocated per request.
68  */
69 struct dm_rq_target_io {
70 	struct mapped_device *md;
71 	struct dm_target *ti;
72 	struct request *orig, clone;
73 	int error;
74 	union map_info info;
75 };
76 
77 /*
78  * For request-based dm.
79  * One of these is allocated per bio.
80  */
81 struct dm_rq_clone_bio_info {
82 	struct bio *orig;
83 	struct dm_rq_target_io *tio;
84 };
85 
dm_get_mapinfo(struct bio * bio)86 union map_info *dm_get_mapinfo(struct bio *bio)
87 {
88 	if (bio && bio->bi_private)
89 		return &((struct dm_target_io *)bio->bi_private)->info;
90 	return NULL;
91 }
92 
dm_get_rq_mapinfo(struct request * rq)93 union map_info *dm_get_rq_mapinfo(struct request *rq)
94 {
95 	if (rq && rq->end_io_data)
96 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
97 	return NULL;
98 }
99 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
100 
101 #define MINOR_ALLOCED ((void *)-1)
102 
103 /*
104  * Bits for the md->flags field.
105  */
106 #define DMF_BLOCK_IO_FOR_SUSPEND 0
107 #define DMF_SUSPENDED 1
108 #define DMF_FROZEN 2
109 #define DMF_FREEING 3
110 #define DMF_DELETING 4
111 #define DMF_NOFLUSH_SUSPENDING 5
112 
113 /*
114  * Work processed by per-device workqueue.
115  */
116 struct mapped_device {
117 	struct rw_semaphore io_lock;
118 	struct mutex suspend_lock;
119 	rwlock_t map_lock;
120 	atomic_t holders;
121 	atomic_t open_count;
122 
123 	unsigned long flags;
124 
125 	struct request_queue *queue;
126 	unsigned type;
127 	/* Protect queue and type against concurrent access. */
128 	struct mutex type_lock;
129 
130 	struct gendisk *disk;
131 	char name[16];
132 
133 	void *interface_ptr;
134 
135 	/*
136 	 * A list of ios that arrived while we were suspended.
137 	 */
138 	atomic_t pending[2];
139 	wait_queue_head_t wait;
140 	struct work_struct work;
141 	struct bio_list deferred;
142 	spinlock_t deferred_lock;
143 
144 	/*
145 	 * Processing queue (flush)
146 	 */
147 	struct workqueue_struct *wq;
148 
149 	/*
150 	 * The current mapping.
151 	 */
152 	struct dm_table *map;
153 
154 	/*
155 	 * io objects are allocated from here.
156 	 */
157 	mempool_t *io_pool;
158 	mempool_t *tio_pool;
159 
160 	struct bio_set *bs;
161 
162 	/*
163 	 * Event handling.
164 	 */
165 	atomic_t event_nr;
166 	wait_queue_head_t eventq;
167 	atomic_t uevent_seq;
168 	struct list_head uevent_list;
169 	spinlock_t uevent_lock; /* Protect access to uevent_list */
170 
171 	/*
172 	 * freeze/thaw support require holding onto a super block
173 	 */
174 	struct super_block *frozen_sb;
175 	struct block_device *bdev;
176 
177 	/* forced geometry settings */
178 	struct hd_geometry geometry;
179 
180 	/* For saving the address of __make_request for request based dm */
181 	make_request_fn *saved_make_request_fn;
182 
183 	/* sysfs handle */
184 	struct kobject kobj;
185 
186 	/* zero-length flush that will be cloned and submitted to targets */
187 	struct bio flush_bio;
188 };
189 
190 /*
191  * For mempools pre-allocation at the table loading time.
192  */
193 struct dm_md_mempools {
194 	mempool_t *io_pool;
195 	mempool_t *tio_pool;
196 	struct bio_set *bs;
197 };
198 
199 #define MIN_IOS 256
200 static struct kmem_cache *_io_cache;
201 static struct kmem_cache *_tio_cache;
202 static struct kmem_cache *_rq_tio_cache;
203 static struct kmem_cache *_rq_bio_info_cache;
204 
local_init(void)205 static int __init local_init(void)
206 {
207 	int r = -ENOMEM;
208 
209 	/* allocate a slab for the dm_ios */
210 	_io_cache = KMEM_CACHE(dm_io, 0);
211 	if (!_io_cache)
212 		return r;
213 
214 	/* allocate a slab for the target ios */
215 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
216 	if (!_tio_cache)
217 		goto out_free_io_cache;
218 
219 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
220 	if (!_rq_tio_cache)
221 		goto out_free_tio_cache;
222 
223 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
224 	if (!_rq_bio_info_cache)
225 		goto out_free_rq_tio_cache;
226 
227 	r = dm_uevent_init();
228 	if (r)
229 		goto out_free_rq_bio_info_cache;
230 
231 	_major = major;
232 	r = register_blkdev(_major, _name);
233 	if (r < 0)
234 		goto out_uevent_exit;
235 
236 	if (!_major)
237 		_major = r;
238 
239 	return 0;
240 
241 out_uevent_exit:
242 	dm_uevent_exit();
243 out_free_rq_bio_info_cache:
244 	kmem_cache_destroy(_rq_bio_info_cache);
245 out_free_rq_tio_cache:
246 	kmem_cache_destroy(_rq_tio_cache);
247 out_free_tio_cache:
248 	kmem_cache_destroy(_tio_cache);
249 out_free_io_cache:
250 	kmem_cache_destroy(_io_cache);
251 
252 	return r;
253 }
254 
local_exit(void)255 static void local_exit(void)
256 {
257 	kmem_cache_destroy(_rq_bio_info_cache);
258 	kmem_cache_destroy(_rq_tio_cache);
259 	kmem_cache_destroy(_tio_cache);
260 	kmem_cache_destroy(_io_cache);
261 	unregister_blkdev(_major, _name);
262 	dm_uevent_exit();
263 
264 	_major = 0;
265 
266 	DMINFO("cleaned up");
267 }
268 
269 static int (*_inits[])(void) __initdata = {
270 	local_init,
271 	dm_target_init,
272 	dm_linear_init,
273 	dm_stripe_init,
274 	dm_io_init,
275 	dm_kcopyd_init,
276 	dm_interface_init,
277 };
278 
279 static void (*_exits[])(void) = {
280 	local_exit,
281 	dm_target_exit,
282 	dm_linear_exit,
283 	dm_stripe_exit,
284 	dm_io_exit,
285 	dm_kcopyd_exit,
286 	dm_interface_exit,
287 };
288 
dm_init(void)289 static int __init dm_init(void)
290 {
291 	const int count = ARRAY_SIZE(_inits);
292 
293 	int r, i;
294 
295 	for (i = 0; i < count; i++) {
296 		r = _inits[i]();
297 		if (r)
298 			goto bad;
299 	}
300 
301 	return 0;
302 
303       bad:
304 	while (i--)
305 		_exits[i]();
306 
307 	return r;
308 }
309 
dm_exit(void)310 static void __exit dm_exit(void)
311 {
312 	int i = ARRAY_SIZE(_exits);
313 
314 	while (i--)
315 		_exits[i]();
316 }
317 
318 /*
319  * Block device functions
320  */
dm_deleting_md(struct mapped_device * md)321 int dm_deleting_md(struct mapped_device *md)
322 {
323 	return test_bit(DMF_DELETING, &md->flags);
324 }
325 
dm_blk_open(struct block_device * bdev,fmode_t mode)326 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
327 {
328 	struct mapped_device *md;
329 
330 	spin_lock(&_minor_lock);
331 
332 	md = bdev->bd_disk->private_data;
333 	if (!md)
334 		goto out;
335 
336 	if (test_bit(DMF_FREEING, &md->flags) ||
337 	    dm_deleting_md(md)) {
338 		md = NULL;
339 		goto out;
340 	}
341 
342 	dm_get(md);
343 	atomic_inc(&md->open_count);
344 
345 out:
346 	spin_unlock(&_minor_lock);
347 
348 	return md ? 0 : -ENXIO;
349 }
350 
dm_blk_close(struct gendisk * disk,fmode_t mode)351 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
352 {
353 	struct mapped_device *md = disk->private_data;
354 
355 	spin_lock(&_minor_lock);
356 
357 	atomic_dec(&md->open_count);
358 	dm_put(md);
359 
360 	spin_unlock(&_minor_lock);
361 
362 	return 0;
363 }
364 
dm_open_count(struct mapped_device * md)365 int dm_open_count(struct mapped_device *md)
366 {
367 	return atomic_read(&md->open_count);
368 }
369 
370 /*
371  * Guarantees nothing is using the device before it's deleted.
372  */
dm_lock_for_deletion(struct mapped_device * md)373 int dm_lock_for_deletion(struct mapped_device *md)
374 {
375 	int r = 0;
376 
377 	spin_lock(&_minor_lock);
378 
379 	if (dm_open_count(md))
380 		r = -EBUSY;
381 	else
382 		set_bit(DMF_DELETING, &md->flags);
383 
384 	spin_unlock(&_minor_lock);
385 
386 	return r;
387 }
388 
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)389 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
390 {
391 	struct mapped_device *md = bdev->bd_disk->private_data;
392 
393 	return dm_get_geometry(md, geo);
394 }
395 
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)396 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
397 			unsigned int cmd, unsigned long arg)
398 {
399 	struct mapped_device *md = bdev->bd_disk->private_data;
400 	struct dm_table *map = dm_get_live_table(md);
401 	struct dm_target *tgt;
402 	int r = -ENOTTY;
403 
404 	if (!map || !dm_table_get_size(map))
405 		goto out;
406 
407 	/* We only support devices that have a single target */
408 	if (dm_table_get_num_targets(map) != 1)
409 		goto out;
410 
411 	tgt = dm_table_get_target(map, 0);
412 
413 	if (dm_suspended_md(md)) {
414 		r = -EAGAIN;
415 		goto out;
416 	}
417 
418 	if (tgt->type->ioctl)
419 		r = tgt->type->ioctl(tgt, cmd, arg);
420 
421 out:
422 	dm_table_put(map);
423 
424 	return r;
425 }
426 
alloc_io(struct mapped_device * md)427 static struct dm_io *alloc_io(struct mapped_device *md)
428 {
429 	return mempool_alloc(md->io_pool, GFP_NOIO);
430 }
431 
free_io(struct mapped_device * md,struct dm_io * io)432 static void free_io(struct mapped_device *md, struct dm_io *io)
433 {
434 	mempool_free(io, md->io_pool);
435 }
436 
free_tio(struct mapped_device * md,struct dm_target_io * tio)437 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
438 {
439 	mempool_free(tio, md->tio_pool);
440 }
441 
alloc_rq_tio(struct mapped_device * md,gfp_t gfp_mask)442 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
443 					    gfp_t gfp_mask)
444 {
445 	return mempool_alloc(md->tio_pool, gfp_mask);
446 }
447 
free_rq_tio(struct dm_rq_target_io * tio)448 static void free_rq_tio(struct dm_rq_target_io *tio)
449 {
450 	mempool_free(tio, tio->md->tio_pool);
451 }
452 
alloc_bio_info(struct mapped_device * md)453 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
454 {
455 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
456 }
457 
free_bio_info(struct dm_rq_clone_bio_info * info)458 static void free_bio_info(struct dm_rq_clone_bio_info *info)
459 {
460 	mempool_free(info, info->tio->md->io_pool);
461 }
462 
md_in_flight(struct mapped_device * md)463 static int md_in_flight(struct mapped_device *md)
464 {
465 	return atomic_read(&md->pending[READ]) +
466 	       atomic_read(&md->pending[WRITE]);
467 }
468 
start_io_acct(struct dm_io * io)469 static void start_io_acct(struct dm_io *io)
470 {
471 	struct mapped_device *md = io->md;
472 	int cpu;
473 	int rw = bio_data_dir(io->bio);
474 
475 	io->start_time = jiffies;
476 
477 	cpu = part_stat_lock();
478 	part_round_stats(cpu, &dm_disk(md)->part0);
479 	part_stat_unlock();
480 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
481 		atomic_inc_return(&md->pending[rw]));
482 }
483 
end_io_acct(struct dm_io * io)484 static void end_io_acct(struct dm_io *io)
485 {
486 	struct mapped_device *md = io->md;
487 	struct bio *bio = io->bio;
488 	unsigned long duration = jiffies - io->start_time;
489 	int pending, cpu;
490 	int rw = bio_data_dir(bio);
491 
492 	cpu = part_stat_lock();
493 	part_round_stats(cpu, &dm_disk(md)->part0);
494 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
495 	part_stat_unlock();
496 
497 	/*
498 	 * After this is decremented the bio must not be touched if it is
499 	 * a flush.
500 	 */
501 	pending = atomic_dec_return(&md->pending[rw]);
502 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
503 	pending += atomic_read(&md->pending[rw^0x1]);
504 
505 	/* nudge anyone waiting on suspend queue */
506 	if (!pending)
507 		wake_up(&md->wait);
508 }
509 
510 /*
511  * Add the bio to the list of deferred io.
512  */
queue_io(struct mapped_device * md,struct bio * bio)513 static void queue_io(struct mapped_device *md, struct bio *bio)
514 {
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&md->deferred_lock, flags);
518 	bio_list_add(&md->deferred, bio);
519 	spin_unlock_irqrestore(&md->deferred_lock, flags);
520 	queue_work(md->wq, &md->work);
521 }
522 
523 /*
524  * Everyone (including functions in this file), should use this
525  * function to access the md->map field, and make sure they call
526  * dm_table_put() when finished.
527  */
dm_get_live_table(struct mapped_device * md)528 struct dm_table *dm_get_live_table(struct mapped_device *md)
529 {
530 	struct dm_table *t;
531 	unsigned long flags;
532 
533 	read_lock_irqsave(&md->map_lock, flags);
534 	t = md->map;
535 	if (t)
536 		dm_table_get(t);
537 	read_unlock_irqrestore(&md->map_lock, flags);
538 
539 	return t;
540 }
541 
542 /*
543  * Get the geometry associated with a dm device
544  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)545 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
546 {
547 	*geo = md->geometry;
548 
549 	return 0;
550 }
551 
552 /*
553  * Set the geometry of a device.
554  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)555 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
556 {
557 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
558 
559 	if (geo->start > sz) {
560 		DMWARN("Start sector is beyond the geometry limits.");
561 		return -EINVAL;
562 	}
563 
564 	md->geometry = *geo;
565 
566 	return 0;
567 }
568 
569 /*-----------------------------------------------------------------
570  * CRUD START:
571  *   A more elegant soln is in the works that uses the queue
572  *   merge fn, unfortunately there are a couple of changes to
573  *   the block layer that I want to make for this.  So in the
574  *   interests of getting something for people to use I give
575  *   you this clearly demarcated crap.
576  *---------------------------------------------------------------*/
577 
__noflush_suspending(struct mapped_device * md)578 static int __noflush_suspending(struct mapped_device *md)
579 {
580 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
581 }
582 
583 /*
584  * Decrements the number of outstanding ios that a bio has been
585  * cloned into, completing the original io if necc.
586  */
dec_pending(struct dm_io * io,int error)587 static void dec_pending(struct dm_io *io, int error)
588 {
589 	unsigned long flags;
590 	int io_error;
591 	struct bio *bio;
592 	struct mapped_device *md = io->md;
593 
594 	/* Push-back supersedes any I/O errors */
595 	if (unlikely(error)) {
596 		spin_lock_irqsave(&io->endio_lock, flags);
597 		if (!(io->error > 0 && __noflush_suspending(md)))
598 			io->error = error;
599 		spin_unlock_irqrestore(&io->endio_lock, flags);
600 	}
601 
602 	if (atomic_dec_and_test(&io->io_count)) {
603 		if (io->error == DM_ENDIO_REQUEUE) {
604 			/*
605 			 * Target requested pushing back the I/O.
606 			 */
607 			spin_lock_irqsave(&md->deferred_lock, flags);
608 			if (__noflush_suspending(md))
609 				bio_list_add_head(&md->deferred, io->bio);
610 			else
611 				/* noflush suspend was interrupted. */
612 				io->error = -EIO;
613 			spin_unlock_irqrestore(&md->deferred_lock, flags);
614 		}
615 
616 		io_error = io->error;
617 		bio = io->bio;
618 		end_io_acct(io);
619 		free_io(md, io);
620 
621 		if (io_error == DM_ENDIO_REQUEUE)
622 			return;
623 
624 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
625 			/*
626 			 * Preflush done for flush with data, reissue
627 			 * without REQ_FLUSH.
628 			 */
629 			bio->bi_rw &= ~REQ_FLUSH;
630 			queue_io(md, bio);
631 		} else {
632 			/* done with normal IO or empty flush */
633 			trace_block_bio_complete(md->queue, bio, io_error);
634 			bio_endio(bio, io_error);
635 		}
636 	}
637 }
638 
clone_endio(struct bio * bio,int error)639 static void clone_endio(struct bio *bio, int error)
640 {
641 	int r = 0;
642 	struct dm_target_io *tio = bio->bi_private;
643 	struct dm_io *io = tio->io;
644 	struct mapped_device *md = tio->io->md;
645 	dm_endio_fn endio = tio->ti->type->end_io;
646 
647 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
648 		error = -EIO;
649 
650 	if (endio) {
651 		r = endio(tio->ti, bio, error, &tio->info);
652 		if (r < 0 || r == DM_ENDIO_REQUEUE)
653 			/*
654 			 * error and requeue request are handled
655 			 * in dec_pending().
656 			 */
657 			error = r;
658 		else if (r == DM_ENDIO_INCOMPLETE)
659 			/* The target will handle the io */
660 			return;
661 		else if (r) {
662 			DMWARN("unimplemented target endio return value: %d", r);
663 			BUG();
664 		}
665 	}
666 
667 	/*
668 	 * Store md for cleanup instead of tio which is about to get freed.
669 	 */
670 	bio->bi_private = md->bs;
671 
672 	free_tio(md, tio);
673 	bio_put(bio);
674 	dec_pending(io, error);
675 }
676 
677 /*
678  * Partial completion handling for request-based dm
679  */
end_clone_bio(struct bio * clone,int error)680 static void end_clone_bio(struct bio *clone, int error)
681 {
682 	struct dm_rq_clone_bio_info *info = clone->bi_private;
683 	struct dm_rq_target_io *tio = info->tio;
684 	struct bio *bio = info->orig;
685 	unsigned int nr_bytes = info->orig->bi_size;
686 
687 	bio_put(clone);
688 
689 	if (tio->error)
690 		/*
691 		 * An error has already been detected on the request.
692 		 * Once error occurred, just let clone->end_io() handle
693 		 * the remainder.
694 		 */
695 		return;
696 	else if (error) {
697 		/*
698 		 * Don't notice the error to the upper layer yet.
699 		 * The error handling decision is made by the target driver,
700 		 * when the request is completed.
701 		 */
702 		tio->error = error;
703 		return;
704 	}
705 
706 	/*
707 	 * I/O for the bio successfully completed.
708 	 * Notice the data completion to the upper layer.
709 	 */
710 
711 	/*
712 	 * bios are processed from the head of the list.
713 	 * So the completing bio should always be rq->bio.
714 	 * If it's not, something wrong is happening.
715 	 */
716 	if (tio->orig->bio != bio)
717 		DMERR("bio completion is going in the middle of the request");
718 
719 	/*
720 	 * Update the original request.
721 	 * Do not use blk_end_request() here, because it may complete
722 	 * the original request before the clone, and break the ordering.
723 	 */
724 	blk_update_request(tio->orig, 0, nr_bytes);
725 }
726 
727 /*
728  * Don't touch any member of the md after calling this function because
729  * the md may be freed in dm_put() at the end of this function.
730  * Or do dm_get() before calling this function and dm_put() later.
731  */
rq_completed(struct mapped_device * md,int rw,int run_queue)732 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
733 {
734 	atomic_dec(&md->pending[rw]);
735 
736 	/* nudge anyone waiting on suspend queue */
737 	if (!md_in_flight(md))
738 		wake_up(&md->wait);
739 
740 	if (run_queue)
741 		blk_run_queue(md->queue);
742 
743 	/*
744 	 * dm_put() must be at the end of this function. See the comment above
745 	 */
746 	dm_put(md);
747 }
748 
free_rq_clone(struct request * clone)749 static void free_rq_clone(struct request *clone)
750 {
751 	struct dm_rq_target_io *tio = clone->end_io_data;
752 
753 	blk_rq_unprep_clone(clone);
754 	free_rq_tio(tio);
755 }
756 
757 /*
758  * Complete the clone and the original request.
759  * Must be called without queue lock.
760  */
dm_end_request(struct request * clone,int error)761 static void dm_end_request(struct request *clone, int error)
762 {
763 	int rw = rq_data_dir(clone);
764 	struct dm_rq_target_io *tio = clone->end_io_data;
765 	struct mapped_device *md = tio->md;
766 	struct request *rq = tio->orig;
767 
768 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
769 		rq->errors = clone->errors;
770 		rq->resid_len = clone->resid_len;
771 
772 		if (rq->sense)
773 			/*
774 			 * We are using the sense buffer of the original
775 			 * request.
776 			 * So setting the length of the sense data is enough.
777 			 */
778 			rq->sense_len = clone->sense_len;
779 	}
780 
781 	free_rq_clone(clone);
782 	blk_end_request_all(rq, error);
783 	rq_completed(md, rw, true);
784 }
785 
dm_unprep_request(struct request * rq)786 static void dm_unprep_request(struct request *rq)
787 {
788 	struct request *clone = rq->special;
789 
790 	rq->special = NULL;
791 	rq->cmd_flags &= ~REQ_DONTPREP;
792 
793 	free_rq_clone(clone);
794 }
795 
796 /*
797  * Requeue the original request of a clone.
798  */
dm_requeue_unmapped_request(struct request * clone)799 void dm_requeue_unmapped_request(struct request *clone)
800 {
801 	int rw = rq_data_dir(clone);
802 	struct dm_rq_target_io *tio = clone->end_io_data;
803 	struct mapped_device *md = tio->md;
804 	struct request *rq = tio->orig;
805 	struct request_queue *q = rq->q;
806 	unsigned long flags;
807 
808 	dm_unprep_request(rq);
809 
810 	spin_lock_irqsave(q->queue_lock, flags);
811 	blk_requeue_request(q, rq);
812 	spin_unlock_irqrestore(q->queue_lock, flags);
813 
814 	rq_completed(md, rw, 0);
815 }
816 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
817 
__stop_queue(struct request_queue * q)818 static void __stop_queue(struct request_queue *q)
819 {
820 	blk_stop_queue(q);
821 }
822 
stop_queue(struct request_queue * q)823 static void stop_queue(struct request_queue *q)
824 {
825 	unsigned long flags;
826 
827 	spin_lock_irqsave(q->queue_lock, flags);
828 	__stop_queue(q);
829 	spin_unlock_irqrestore(q->queue_lock, flags);
830 }
831 
__start_queue(struct request_queue * q)832 static void __start_queue(struct request_queue *q)
833 {
834 	if (blk_queue_stopped(q))
835 		blk_start_queue(q);
836 }
837 
start_queue(struct request_queue * q)838 static void start_queue(struct request_queue *q)
839 {
840 	unsigned long flags;
841 
842 	spin_lock_irqsave(q->queue_lock, flags);
843 	__start_queue(q);
844 	spin_unlock_irqrestore(q->queue_lock, flags);
845 }
846 
dm_done(struct request * clone,int error,bool mapped)847 static void dm_done(struct request *clone, int error, bool mapped)
848 {
849 	int r = error;
850 	struct dm_rq_target_io *tio = clone->end_io_data;
851 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
852 
853 	if (mapped && rq_end_io)
854 		r = rq_end_io(tio->ti, clone, error, &tio->info);
855 
856 	if (r <= 0)
857 		/* The target wants to complete the I/O */
858 		dm_end_request(clone, r);
859 	else if (r == DM_ENDIO_INCOMPLETE)
860 		/* The target will handle the I/O */
861 		return;
862 	else if (r == DM_ENDIO_REQUEUE)
863 		/* The target wants to requeue the I/O */
864 		dm_requeue_unmapped_request(clone);
865 	else {
866 		DMWARN("unimplemented target endio return value: %d", r);
867 		BUG();
868 	}
869 }
870 
871 /*
872  * Request completion handler for request-based dm
873  */
dm_softirq_done(struct request * rq)874 static void dm_softirq_done(struct request *rq)
875 {
876 	bool mapped = true;
877 	struct request *clone = rq->completion_data;
878 	struct dm_rq_target_io *tio = clone->end_io_data;
879 
880 	if (rq->cmd_flags & REQ_FAILED)
881 		mapped = false;
882 
883 	dm_done(clone, tio->error, mapped);
884 }
885 
886 /*
887  * Complete the clone and the original request with the error status
888  * through softirq context.
889  */
dm_complete_request(struct request * clone,int error)890 static void dm_complete_request(struct request *clone, int error)
891 {
892 	struct dm_rq_target_io *tio = clone->end_io_data;
893 	struct request *rq = tio->orig;
894 
895 	tio->error = error;
896 	rq->completion_data = clone;
897 	blk_complete_request(rq);
898 }
899 
900 /*
901  * Complete the not-mapped clone and the original request with the error status
902  * through softirq context.
903  * Target's rq_end_io() function isn't called.
904  * This may be used when the target's map_rq() function fails.
905  */
dm_kill_unmapped_request(struct request * clone,int error)906 void dm_kill_unmapped_request(struct request *clone, int error)
907 {
908 	struct dm_rq_target_io *tio = clone->end_io_data;
909 	struct request *rq = tio->orig;
910 
911 	rq->cmd_flags |= REQ_FAILED;
912 	dm_complete_request(clone, error);
913 }
914 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
915 
916 /*
917  * Called with the queue lock held
918  */
end_clone_request(struct request * clone,int error)919 static void end_clone_request(struct request *clone, int error)
920 {
921 	/*
922 	 * For just cleaning up the information of the queue in which
923 	 * the clone was dispatched.
924 	 * The clone is *NOT* freed actually here because it is alloced from
925 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
926 	 */
927 	__blk_put_request(clone->q, clone);
928 
929 	/*
930 	 * Actual request completion is done in a softirq context which doesn't
931 	 * hold the queue lock.  Otherwise, deadlock could occur because:
932 	 *     - another request may be submitted by the upper level driver
933 	 *       of the stacking during the completion
934 	 *     - the submission which requires queue lock may be done
935 	 *       against this queue
936 	 */
937 	dm_complete_request(clone, error);
938 }
939 
940 /*
941  * Return maximum size of I/O possible at the supplied sector up to the current
942  * target boundary.
943  */
max_io_len_target_boundary(sector_t sector,struct dm_target * ti)944 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
945 {
946 	sector_t target_offset = dm_target_offset(ti, sector);
947 
948 	return ti->len - target_offset;
949 }
950 
max_io_len(sector_t sector,struct dm_target * ti)951 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
952 {
953 	sector_t len = max_io_len_target_boundary(sector, ti);
954 
955 	/*
956 	 * Does the target need to split even further ?
957 	 */
958 	if (ti->split_io) {
959 		sector_t boundary;
960 		sector_t offset = dm_target_offset(ti, sector);
961 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
962 			   - offset;
963 		if (len > boundary)
964 			len = boundary;
965 	}
966 
967 	return len;
968 }
969 
__map_bio(struct dm_target * ti,struct bio * clone,struct dm_target_io * tio)970 static void __map_bio(struct dm_target *ti, struct bio *clone,
971 		      struct dm_target_io *tio)
972 {
973 	int r;
974 	sector_t sector;
975 	struct mapped_device *md;
976 
977 	clone->bi_end_io = clone_endio;
978 	clone->bi_private = tio;
979 
980 	/*
981 	 * Map the clone.  If r == 0 we don't need to do
982 	 * anything, the target has assumed ownership of
983 	 * this io.
984 	 */
985 	atomic_inc(&tio->io->io_count);
986 	sector = clone->bi_sector;
987 	r = ti->type->map(ti, clone, &tio->info);
988 	if (r == DM_MAPIO_REMAPPED) {
989 		/* the bio has been remapped so dispatch it */
990 
991 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
992 				      tio->io->bio->bi_bdev->bd_dev, sector);
993 
994 		generic_make_request(clone);
995 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
996 		/* error the io and bail out, or requeue it if needed */
997 		md = tio->io->md;
998 		dec_pending(tio->io, r);
999 		/*
1000 		 * Store bio_set for cleanup.
1001 		 */
1002 		clone->bi_private = md->bs;
1003 		bio_put(clone);
1004 		free_tio(md, tio);
1005 	} else if (r) {
1006 		DMWARN("unimplemented target map return value: %d", r);
1007 		BUG();
1008 	}
1009 }
1010 
1011 struct clone_info {
1012 	struct mapped_device *md;
1013 	struct dm_table *map;
1014 	struct bio *bio;
1015 	struct dm_io *io;
1016 	sector_t sector;
1017 	sector_t sector_count;
1018 	unsigned short idx;
1019 };
1020 
dm_bio_destructor(struct bio * bio)1021 static void dm_bio_destructor(struct bio *bio)
1022 {
1023 	struct bio_set *bs = bio->bi_private;
1024 
1025 	bio_free(bio, bs);
1026 }
1027 
1028 /*
1029  * Creates a little bio that just does part of a bvec.
1030  */
split_bvec(struct bio * bio,sector_t sector,unsigned short idx,unsigned int offset,unsigned int len,struct bio_set * bs)1031 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1032 			      unsigned short idx, unsigned int offset,
1033 			      unsigned int len, struct bio_set *bs)
1034 {
1035 	struct bio *clone;
1036 	struct bio_vec *bv = bio->bi_io_vec + idx;
1037 
1038 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1039 	clone->bi_destructor = dm_bio_destructor;
1040 	*clone->bi_io_vec = *bv;
1041 
1042 	clone->bi_sector = sector;
1043 	clone->bi_bdev = bio->bi_bdev;
1044 	clone->bi_rw = bio->bi_rw;
1045 	clone->bi_vcnt = 1;
1046 	clone->bi_size = to_bytes(len);
1047 	clone->bi_io_vec->bv_offset = offset;
1048 	clone->bi_io_vec->bv_len = clone->bi_size;
1049 	clone->bi_flags |= 1 << BIO_CLONED;
1050 
1051 	if (bio_integrity(bio)) {
1052 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1053 		bio_integrity_trim(clone,
1054 				   bio_sector_offset(bio, idx, offset), len);
1055 	}
1056 
1057 	return clone;
1058 }
1059 
1060 /*
1061  * Creates a bio that consists of range of complete bvecs.
1062  */
clone_bio(struct bio * bio,sector_t sector,unsigned short idx,unsigned short bv_count,unsigned int len,struct bio_set * bs)1063 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1064 			     unsigned short idx, unsigned short bv_count,
1065 			     unsigned int len, struct bio_set *bs)
1066 {
1067 	struct bio *clone;
1068 
1069 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1070 	__bio_clone(clone, bio);
1071 	clone->bi_destructor = dm_bio_destructor;
1072 	clone->bi_sector = sector;
1073 	clone->bi_idx = idx;
1074 	clone->bi_vcnt = idx + bv_count;
1075 	clone->bi_size = to_bytes(len);
1076 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1077 
1078 	if (bio_integrity(bio)) {
1079 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1080 
1081 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1082 			bio_integrity_trim(clone,
1083 					   bio_sector_offset(bio, idx, 0), len);
1084 	}
1085 
1086 	return clone;
1087 }
1088 
alloc_tio(struct clone_info * ci,struct dm_target * ti)1089 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1090 				      struct dm_target *ti)
1091 {
1092 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1093 
1094 	tio->io = ci->io;
1095 	tio->ti = ti;
1096 	memset(&tio->info, 0, sizeof(tio->info));
1097 
1098 	return tio;
1099 }
1100 
__issue_target_request(struct clone_info * ci,struct dm_target * ti,unsigned request_nr,sector_t len)1101 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1102 				   unsigned request_nr, sector_t len)
1103 {
1104 	struct dm_target_io *tio = alloc_tio(ci, ti);
1105 	struct bio *clone;
1106 
1107 	tio->info.target_request_nr = request_nr;
1108 
1109 	/*
1110 	 * Discard requests require the bio's inline iovecs be initialized.
1111 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1112 	 * and discard, so no need for concern about wasted bvec allocations.
1113 	 */
1114 	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1115 	__bio_clone(clone, ci->bio);
1116 	clone->bi_destructor = dm_bio_destructor;
1117 	if (len) {
1118 		clone->bi_sector = ci->sector;
1119 		clone->bi_size = to_bytes(len);
1120 	}
1121 
1122 	__map_bio(ti, clone, tio);
1123 }
1124 
__issue_target_requests(struct clone_info * ci,struct dm_target * ti,unsigned num_requests,sector_t len)1125 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1126 				    unsigned num_requests, sector_t len)
1127 {
1128 	unsigned request_nr;
1129 
1130 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1131 		__issue_target_request(ci, ti, request_nr, len);
1132 }
1133 
__clone_and_map_empty_flush(struct clone_info * ci)1134 static int __clone_and_map_empty_flush(struct clone_info *ci)
1135 {
1136 	unsigned target_nr = 0;
1137 	struct dm_target *ti;
1138 
1139 	BUG_ON(bio_has_data(ci->bio));
1140 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1141 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1142 
1143 	return 0;
1144 }
1145 
1146 /*
1147  * Perform all io with a single clone.
1148  */
__clone_and_map_simple(struct clone_info * ci,struct dm_target * ti)1149 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1150 {
1151 	struct bio *clone, *bio = ci->bio;
1152 	struct dm_target_io *tio;
1153 
1154 	tio = alloc_tio(ci, ti);
1155 	clone = clone_bio(bio, ci->sector, ci->idx,
1156 			  bio->bi_vcnt - ci->idx, ci->sector_count,
1157 			  ci->md->bs);
1158 	__map_bio(ti, clone, tio);
1159 	ci->sector_count = 0;
1160 }
1161 
__clone_and_map_discard(struct clone_info * ci)1162 static int __clone_and_map_discard(struct clone_info *ci)
1163 {
1164 	struct dm_target *ti;
1165 	sector_t len;
1166 
1167 	do {
1168 		ti = dm_table_find_target(ci->map, ci->sector);
1169 		if (!dm_target_is_valid(ti))
1170 			return -EIO;
1171 
1172 		/*
1173 		 * Even though the device advertised discard support,
1174 		 * reconfiguration might have changed that since the
1175 		 * check was performed.
1176 		 */
1177 		if (!ti->num_discard_requests)
1178 			return -EOPNOTSUPP;
1179 
1180 		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1181 
1182 		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1183 
1184 		ci->sector += len;
1185 	} while (ci->sector_count -= len);
1186 
1187 	return 0;
1188 }
1189 
__clone_and_map(struct clone_info * ci)1190 static int __clone_and_map(struct clone_info *ci)
1191 {
1192 	struct bio *clone, *bio = ci->bio;
1193 	struct dm_target *ti;
1194 	sector_t len = 0, max;
1195 	struct dm_target_io *tio;
1196 
1197 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1198 		return __clone_and_map_discard(ci);
1199 
1200 	ti = dm_table_find_target(ci->map, ci->sector);
1201 	if (!dm_target_is_valid(ti))
1202 		return -EIO;
1203 
1204 	max = max_io_len(ci->sector, ti);
1205 
1206 	if (ci->sector_count <= max) {
1207 		/*
1208 		 * Optimise for the simple case where we can do all of
1209 		 * the remaining io with a single clone.
1210 		 */
1211 		__clone_and_map_simple(ci, ti);
1212 
1213 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1214 		/*
1215 		 * There are some bvecs that don't span targets.
1216 		 * Do as many of these as possible.
1217 		 */
1218 		int i;
1219 		sector_t remaining = max;
1220 		sector_t bv_len;
1221 
1222 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1223 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1224 
1225 			if (bv_len > remaining)
1226 				break;
1227 
1228 			remaining -= bv_len;
1229 			len += bv_len;
1230 		}
1231 
1232 		tio = alloc_tio(ci, ti);
1233 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1234 				  ci->md->bs);
1235 		__map_bio(ti, clone, tio);
1236 
1237 		ci->sector += len;
1238 		ci->sector_count -= len;
1239 		ci->idx = i;
1240 
1241 	} else {
1242 		/*
1243 		 * Handle a bvec that must be split between two or more targets.
1244 		 */
1245 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1246 		sector_t remaining = to_sector(bv->bv_len);
1247 		unsigned int offset = 0;
1248 
1249 		do {
1250 			if (offset) {
1251 				ti = dm_table_find_target(ci->map, ci->sector);
1252 				if (!dm_target_is_valid(ti))
1253 					return -EIO;
1254 
1255 				max = max_io_len(ci->sector, ti);
1256 			}
1257 
1258 			len = min(remaining, max);
1259 
1260 			tio = alloc_tio(ci, ti);
1261 			clone = split_bvec(bio, ci->sector, ci->idx,
1262 					   bv->bv_offset + offset, len,
1263 					   ci->md->bs);
1264 
1265 			__map_bio(ti, clone, tio);
1266 
1267 			ci->sector += len;
1268 			ci->sector_count -= len;
1269 			offset += to_bytes(len);
1270 		} while (remaining -= len);
1271 
1272 		ci->idx++;
1273 	}
1274 
1275 	return 0;
1276 }
1277 
1278 /*
1279  * Split the bio into several clones and submit it to targets.
1280  */
__split_and_process_bio(struct mapped_device * md,struct bio * bio)1281 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1282 {
1283 	struct clone_info ci;
1284 	int error = 0;
1285 
1286 	ci.map = dm_get_live_table(md);
1287 	if (unlikely(!ci.map)) {
1288 		bio_io_error(bio);
1289 		return;
1290 	}
1291 
1292 	ci.md = md;
1293 	ci.io = alloc_io(md);
1294 	ci.io->error = 0;
1295 	atomic_set(&ci.io->io_count, 1);
1296 	ci.io->bio = bio;
1297 	ci.io->md = md;
1298 	spin_lock_init(&ci.io->endio_lock);
1299 	ci.sector = bio->bi_sector;
1300 	ci.idx = bio->bi_idx;
1301 
1302 	start_io_acct(ci.io);
1303 	if (bio->bi_rw & REQ_FLUSH) {
1304 		ci.bio = &ci.md->flush_bio;
1305 		ci.sector_count = 0;
1306 		error = __clone_and_map_empty_flush(&ci);
1307 		/* dec_pending submits any data associated with flush */
1308 	} else {
1309 		ci.bio = bio;
1310 		ci.sector_count = bio_sectors(bio);
1311 		while (ci.sector_count && !error)
1312 			error = __clone_and_map(&ci);
1313 	}
1314 
1315 	/* drop the extra reference count */
1316 	dec_pending(ci.io, error);
1317 	dm_table_put(ci.map);
1318 }
1319 /*-----------------------------------------------------------------
1320  * CRUD END
1321  *---------------------------------------------------------------*/
1322 
dm_merge_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)1323 static int dm_merge_bvec(struct request_queue *q,
1324 			 struct bvec_merge_data *bvm,
1325 			 struct bio_vec *biovec)
1326 {
1327 	struct mapped_device *md = q->queuedata;
1328 	struct dm_table *map = dm_get_live_table(md);
1329 	struct dm_target *ti;
1330 	sector_t max_sectors;
1331 	int max_size = 0;
1332 
1333 	if (unlikely(!map))
1334 		goto out;
1335 
1336 	ti = dm_table_find_target(map, bvm->bi_sector);
1337 	if (!dm_target_is_valid(ti))
1338 		goto out_table;
1339 
1340 	/*
1341 	 * Find maximum amount of I/O that won't need splitting
1342 	 */
1343 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1344 			  (sector_t) BIO_MAX_SECTORS);
1345 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1346 	if (max_size < 0)
1347 		max_size = 0;
1348 
1349 	/*
1350 	 * merge_bvec_fn() returns number of bytes
1351 	 * it can accept at this offset
1352 	 * max is precomputed maximal io size
1353 	 */
1354 	if (max_size && ti->type->merge)
1355 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1356 	/*
1357 	 * If the target doesn't support merge method and some of the devices
1358 	 * provided their merge_bvec method (we know this by looking at
1359 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1360 	 * entries.  So always set max_size to 0, and the code below allows
1361 	 * just one page.
1362 	 */
1363 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1364 
1365 		max_size = 0;
1366 
1367 out_table:
1368 	dm_table_put(map);
1369 
1370 out:
1371 	/*
1372 	 * Always allow an entire first page
1373 	 */
1374 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1375 		max_size = biovec->bv_len;
1376 
1377 	return max_size;
1378 }
1379 
1380 /*
1381  * The request function that just remaps the bio built up by
1382  * dm_merge_bvec.
1383  */
_dm_request(struct request_queue * q,struct bio * bio)1384 static int _dm_request(struct request_queue *q, struct bio *bio)
1385 {
1386 	int rw = bio_data_dir(bio);
1387 	struct mapped_device *md = q->queuedata;
1388 	int cpu;
1389 
1390 	down_read(&md->io_lock);
1391 
1392 	cpu = part_stat_lock();
1393 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1394 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1395 	part_stat_unlock();
1396 
1397 	/* if we're suspended, we have to queue this io for later */
1398 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1399 		up_read(&md->io_lock);
1400 
1401 		if (bio_rw(bio) != READA)
1402 			queue_io(md, bio);
1403 		else
1404 			bio_io_error(bio);
1405 		return 0;
1406 	}
1407 
1408 	__split_and_process_bio(md, bio);
1409 	up_read(&md->io_lock);
1410 	return 0;
1411 }
1412 
dm_make_request(struct request_queue * q,struct bio * bio)1413 static int dm_make_request(struct request_queue *q, struct bio *bio)
1414 {
1415 	struct mapped_device *md = q->queuedata;
1416 
1417 	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1418 }
1419 
dm_request_based(struct mapped_device * md)1420 static int dm_request_based(struct mapped_device *md)
1421 {
1422 	return blk_queue_stackable(md->queue);
1423 }
1424 
dm_request(struct request_queue * q,struct bio * bio)1425 static int dm_request(struct request_queue *q, struct bio *bio)
1426 {
1427 	struct mapped_device *md = q->queuedata;
1428 
1429 	if (dm_request_based(md))
1430 		return dm_make_request(q, bio);
1431 
1432 	return _dm_request(q, bio);
1433 }
1434 
dm_dispatch_request(struct request * rq)1435 void dm_dispatch_request(struct request *rq)
1436 {
1437 	int r;
1438 
1439 	if (blk_queue_io_stat(rq->q))
1440 		rq->cmd_flags |= REQ_IO_STAT;
1441 
1442 	rq->start_time = jiffies;
1443 	r = blk_insert_cloned_request(rq->q, rq);
1444 	if (r)
1445 		dm_complete_request(rq, r);
1446 }
1447 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1448 
dm_rq_bio_destructor(struct bio * bio)1449 static void dm_rq_bio_destructor(struct bio *bio)
1450 {
1451 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1452 	struct mapped_device *md = info->tio->md;
1453 
1454 	free_bio_info(info);
1455 	bio_free(bio, md->bs);
1456 }
1457 
dm_rq_bio_constructor(struct bio * bio,struct bio * bio_orig,void * data)1458 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1459 				 void *data)
1460 {
1461 	struct dm_rq_target_io *tio = data;
1462 	struct mapped_device *md = tio->md;
1463 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1464 
1465 	if (!info)
1466 		return -ENOMEM;
1467 
1468 	info->orig = bio_orig;
1469 	info->tio = tio;
1470 	bio->bi_end_io = end_clone_bio;
1471 	bio->bi_private = info;
1472 	bio->bi_destructor = dm_rq_bio_destructor;
1473 
1474 	return 0;
1475 }
1476 
setup_clone(struct request * clone,struct request * rq,struct dm_rq_target_io * tio)1477 static int setup_clone(struct request *clone, struct request *rq,
1478 		       struct dm_rq_target_io *tio)
1479 {
1480 	int r;
1481 
1482 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1483 			      dm_rq_bio_constructor, tio);
1484 	if (r)
1485 		return r;
1486 
1487 	clone->cmd = rq->cmd;
1488 	clone->cmd_len = rq->cmd_len;
1489 	clone->sense = rq->sense;
1490 	clone->buffer = rq->buffer;
1491 	clone->end_io = end_clone_request;
1492 	clone->end_io_data = tio;
1493 
1494 	return 0;
1495 }
1496 
clone_rq(struct request * rq,struct mapped_device * md,gfp_t gfp_mask)1497 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1498 				gfp_t gfp_mask)
1499 {
1500 	struct request *clone;
1501 	struct dm_rq_target_io *tio;
1502 
1503 	tio = alloc_rq_tio(md, gfp_mask);
1504 	if (!tio)
1505 		return NULL;
1506 
1507 	tio->md = md;
1508 	tio->ti = NULL;
1509 	tio->orig = rq;
1510 	tio->error = 0;
1511 	memset(&tio->info, 0, sizeof(tio->info));
1512 
1513 	clone = &tio->clone;
1514 	if (setup_clone(clone, rq, tio)) {
1515 		/* -ENOMEM */
1516 		free_rq_tio(tio);
1517 		return NULL;
1518 	}
1519 
1520 	return clone;
1521 }
1522 
1523 /*
1524  * Called with the queue lock held.
1525  */
dm_prep_fn(struct request_queue * q,struct request * rq)1526 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1527 {
1528 	struct mapped_device *md = q->queuedata;
1529 	struct request *clone;
1530 
1531 	if (unlikely(rq->special)) {
1532 		DMWARN("Already has something in rq->special.");
1533 		return BLKPREP_KILL;
1534 	}
1535 
1536 	clone = clone_rq(rq, md, GFP_ATOMIC);
1537 	if (!clone)
1538 		return BLKPREP_DEFER;
1539 
1540 	rq->special = clone;
1541 	rq->cmd_flags |= REQ_DONTPREP;
1542 
1543 	return BLKPREP_OK;
1544 }
1545 
1546 /*
1547  * Returns:
1548  * 0  : the request has been processed (not requeued)
1549  * !0 : the request has been requeued
1550  */
map_request(struct dm_target * ti,struct request * clone,struct mapped_device * md)1551 static int map_request(struct dm_target *ti, struct request *clone,
1552 		       struct mapped_device *md)
1553 {
1554 	int r, requeued = 0;
1555 	struct dm_rq_target_io *tio = clone->end_io_data;
1556 
1557 	/*
1558 	 * Hold the md reference here for the in-flight I/O.
1559 	 * We can't rely on the reference count by device opener,
1560 	 * because the device may be closed during the request completion
1561 	 * when all bios are completed.
1562 	 * See the comment in rq_completed() too.
1563 	 */
1564 	dm_get(md);
1565 
1566 	tio->ti = ti;
1567 	r = ti->type->map_rq(ti, clone, &tio->info);
1568 	switch (r) {
1569 	case DM_MAPIO_SUBMITTED:
1570 		/* The target has taken the I/O to submit by itself later */
1571 		break;
1572 	case DM_MAPIO_REMAPPED:
1573 		/* The target has remapped the I/O so dispatch it */
1574 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1575 				     blk_rq_pos(tio->orig));
1576 		dm_dispatch_request(clone);
1577 		break;
1578 	case DM_MAPIO_REQUEUE:
1579 		/* The target wants to requeue the I/O */
1580 		dm_requeue_unmapped_request(clone);
1581 		requeued = 1;
1582 		break;
1583 	default:
1584 		if (r > 0) {
1585 			DMWARN("unimplemented target map return value: %d", r);
1586 			BUG();
1587 		}
1588 
1589 		/* The target wants to complete the I/O */
1590 		dm_kill_unmapped_request(clone, r);
1591 		break;
1592 	}
1593 
1594 	return requeued;
1595 }
1596 
1597 /*
1598  * q->request_fn for request-based dm.
1599  * Called with the queue lock held.
1600  */
dm_request_fn(struct request_queue * q)1601 static void dm_request_fn(struct request_queue *q)
1602 {
1603 	struct mapped_device *md = q->queuedata;
1604 	struct dm_table *map = dm_get_live_table(md);
1605 	struct dm_target *ti;
1606 	struct request *rq, *clone;
1607 	sector_t pos;
1608 
1609 	/*
1610 	 * For suspend, check blk_queue_stopped() and increment
1611 	 * ->pending within a single queue_lock not to increment the
1612 	 * number of in-flight I/Os after the queue is stopped in
1613 	 * dm_suspend().
1614 	 */
1615 	while (!blk_queue_stopped(q)) {
1616 		rq = blk_peek_request(q);
1617 		if (!rq)
1618 			goto delay_and_out;
1619 
1620 		/* always use block 0 to find the target for flushes for now */
1621 		pos = 0;
1622 		if (!(rq->cmd_flags & REQ_FLUSH))
1623 			pos = blk_rq_pos(rq);
1624 
1625 		ti = dm_table_find_target(map, pos);
1626 		BUG_ON(!dm_target_is_valid(ti));
1627 
1628 		if (ti->type->busy && ti->type->busy(ti))
1629 			goto delay_and_out;
1630 
1631 		blk_start_request(rq);
1632 		clone = rq->special;
1633 		atomic_inc(&md->pending[rq_data_dir(clone)]);
1634 
1635 		spin_unlock(q->queue_lock);
1636 		if (map_request(ti, clone, md))
1637 			goto requeued;
1638 
1639 		BUG_ON(!irqs_disabled());
1640 		spin_lock(q->queue_lock);
1641 	}
1642 
1643 	goto out;
1644 
1645 requeued:
1646 	BUG_ON(!irqs_disabled());
1647 	spin_lock(q->queue_lock);
1648 
1649 delay_and_out:
1650 	blk_delay_queue(q, HZ / 10);
1651 out:
1652 	dm_table_put(map);
1653 
1654 	return;
1655 }
1656 
dm_underlying_device_busy(struct request_queue * q)1657 int dm_underlying_device_busy(struct request_queue *q)
1658 {
1659 	return blk_lld_busy(q);
1660 }
1661 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1662 
dm_lld_busy(struct request_queue * q)1663 static int dm_lld_busy(struct request_queue *q)
1664 {
1665 	int r;
1666 	struct mapped_device *md = q->queuedata;
1667 	struct dm_table *map = dm_get_live_table(md);
1668 
1669 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1670 		r = 1;
1671 	else
1672 		r = dm_table_any_busy_target(map);
1673 
1674 	dm_table_put(map);
1675 
1676 	return r;
1677 }
1678 
dm_any_congested(void * congested_data,int bdi_bits)1679 static int dm_any_congested(void *congested_data, int bdi_bits)
1680 {
1681 	int r = bdi_bits;
1682 	struct mapped_device *md = congested_data;
1683 	struct dm_table *map;
1684 
1685 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1686 		map = dm_get_live_table(md);
1687 		if (map) {
1688 			/*
1689 			 * Request-based dm cares about only own queue for
1690 			 * the query about congestion status of request_queue
1691 			 */
1692 			if (dm_request_based(md))
1693 				r = md->queue->backing_dev_info.state &
1694 				    bdi_bits;
1695 			else
1696 				r = dm_table_any_congested(map, bdi_bits);
1697 
1698 			dm_table_put(map);
1699 		}
1700 	}
1701 
1702 	return r;
1703 }
1704 
1705 /*-----------------------------------------------------------------
1706  * An IDR is used to keep track of allocated minor numbers.
1707  *---------------------------------------------------------------*/
1708 static DEFINE_IDR(_minor_idr);
1709 
free_minor(int minor)1710 static void free_minor(int minor)
1711 {
1712 	spin_lock(&_minor_lock);
1713 	idr_remove(&_minor_idr, minor);
1714 	spin_unlock(&_minor_lock);
1715 }
1716 
1717 /*
1718  * See if the device with a specific minor # is free.
1719  */
specific_minor(int minor)1720 static int specific_minor(int minor)
1721 {
1722 	int r, m;
1723 
1724 	if (minor >= (1 << MINORBITS))
1725 		return -EINVAL;
1726 
1727 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1728 	if (!r)
1729 		return -ENOMEM;
1730 
1731 	spin_lock(&_minor_lock);
1732 
1733 	if (idr_find(&_minor_idr, minor)) {
1734 		r = -EBUSY;
1735 		goto out;
1736 	}
1737 
1738 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1739 	if (r)
1740 		goto out;
1741 
1742 	if (m != minor) {
1743 		idr_remove(&_minor_idr, m);
1744 		r = -EBUSY;
1745 		goto out;
1746 	}
1747 
1748 out:
1749 	spin_unlock(&_minor_lock);
1750 	return r;
1751 }
1752 
next_free_minor(int * minor)1753 static int next_free_minor(int *minor)
1754 {
1755 	int r, m;
1756 
1757 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1758 	if (!r)
1759 		return -ENOMEM;
1760 
1761 	spin_lock(&_minor_lock);
1762 
1763 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1764 	if (r)
1765 		goto out;
1766 
1767 	if (m >= (1 << MINORBITS)) {
1768 		idr_remove(&_minor_idr, m);
1769 		r = -ENOSPC;
1770 		goto out;
1771 	}
1772 
1773 	*minor = m;
1774 
1775 out:
1776 	spin_unlock(&_minor_lock);
1777 	return r;
1778 }
1779 
1780 static const struct block_device_operations dm_blk_dops;
1781 
1782 static void dm_wq_work(struct work_struct *work);
1783 
dm_init_md_queue(struct mapped_device * md)1784 static void dm_init_md_queue(struct mapped_device *md)
1785 {
1786 	/*
1787 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1788 	 * devices.  The type of this dm device has not been decided yet.
1789 	 * The type is decided at the first table loading time.
1790 	 * To prevent problematic device stacking, clear the queue flag
1791 	 * for request stacking support until then.
1792 	 *
1793 	 * This queue is new, so no concurrency on the queue_flags.
1794 	 */
1795 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1796 
1797 	md->queue->queuedata = md;
1798 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1799 	md->queue->backing_dev_info.congested_data = md;
1800 	blk_queue_make_request(md->queue, dm_request);
1801 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1802 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1803 	blk_queue_flush(md->queue, REQ_FLUSH | REQ_FUA);
1804 }
1805 
1806 /*
1807  * Allocate and initialise a blank device with a given minor.
1808  */
alloc_dev(int minor)1809 static struct mapped_device *alloc_dev(int minor)
1810 {
1811 	int r;
1812 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1813 	void *old_md;
1814 
1815 	if (!md) {
1816 		DMWARN("unable to allocate device, out of memory.");
1817 		return NULL;
1818 	}
1819 
1820 	if (!try_module_get(THIS_MODULE))
1821 		goto bad_module_get;
1822 
1823 	/* get a minor number for the dev */
1824 	if (minor == DM_ANY_MINOR)
1825 		r = next_free_minor(&minor);
1826 	else
1827 		r = specific_minor(minor);
1828 	if (r < 0)
1829 		goto bad_minor;
1830 
1831 	md->type = DM_TYPE_NONE;
1832 	init_rwsem(&md->io_lock);
1833 	mutex_init(&md->suspend_lock);
1834 	mutex_init(&md->type_lock);
1835 	spin_lock_init(&md->deferred_lock);
1836 	rwlock_init(&md->map_lock);
1837 	atomic_set(&md->holders, 1);
1838 	atomic_set(&md->open_count, 0);
1839 	atomic_set(&md->event_nr, 0);
1840 	atomic_set(&md->uevent_seq, 0);
1841 	INIT_LIST_HEAD(&md->uevent_list);
1842 	spin_lock_init(&md->uevent_lock);
1843 
1844 	md->queue = blk_alloc_queue(GFP_KERNEL);
1845 	if (!md->queue)
1846 		goto bad_queue;
1847 
1848 	dm_init_md_queue(md);
1849 
1850 	md->disk = alloc_disk(1);
1851 	if (!md->disk)
1852 		goto bad_disk;
1853 
1854 	atomic_set(&md->pending[0], 0);
1855 	atomic_set(&md->pending[1], 0);
1856 	init_waitqueue_head(&md->wait);
1857 	INIT_WORK(&md->work, dm_wq_work);
1858 	init_waitqueue_head(&md->eventq);
1859 
1860 	md->disk->major = _major;
1861 	md->disk->first_minor = minor;
1862 	md->disk->fops = &dm_blk_dops;
1863 	md->disk->queue = md->queue;
1864 	md->disk->private_data = md;
1865 	sprintf(md->disk->disk_name, "dm-%d", minor);
1866 	add_disk(md->disk);
1867 	format_dev_t(md->name, MKDEV(_major, minor));
1868 
1869 	md->wq = alloc_workqueue("kdmflush",
1870 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1871 	if (!md->wq)
1872 		goto bad_thread;
1873 
1874 	md->bdev = bdget_disk(md->disk, 0);
1875 	if (!md->bdev)
1876 		goto bad_bdev;
1877 
1878 	bio_init(&md->flush_bio);
1879 	md->flush_bio.bi_bdev = md->bdev;
1880 	md->flush_bio.bi_rw = WRITE_FLUSH;
1881 
1882 	/* Populate the mapping, nobody knows we exist yet */
1883 	spin_lock(&_minor_lock);
1884 	old_md = idr_replace(&_minor_idr, md, minor);
1885 	spin_unlock(&_minor_lock);
1886 
1887 	BUG_ON(old_md != MINOR_ALLOCED);
1888 
1889 	return md;
1890 
1891 bad_bdev:
1892 	destroy_workqueue(md->wq);
1893 bad_thread:
1894 	del_gendisk(md->disk);
1895 	put_disk(md->disk);
1896 bad_disk:
1897 	blk_cleanup_queue(md->queue);
1898 bad_queue:
1899 	free_minor(minor);
1900 bad_minor:
1901 	module_put(THIS_MODULE);
1902 bad_module_get:
1903 	kfree(md);
1904 	return NULL;
1905 }
1906 
1907 static void unlock_fs(struct mapped_device *md);
1908 
free_dev(struct mapped_device * md)1909 static void free_dev(struct mapped_device *md)
1910 {
1911 	int minor = MINOR(disk_devt(md->disk));
1912 
1913 	unlock_fs(md);
1914 	bdput(md->bdev);
1915 	destroy_workqueue(md->wq);
1916 	if (md->tio_pool)
1917 		mempool_destroy(md->tio_pool);
1918 	if (md->io_pool)
1919 		mempool_destroy(md->io_pool);
1920 	if (md->bs)
1921 		bioset_free(md->bs);
1922 	blk_integrity_unregister(md->disk);
1923 	del_gendisk(md->disk);
1924 	free_minor(minor);
1925 
1926 	spin_lock(&_minor_lock);
1927 	md->disk->private_data = NULL;
1928 	spin_unlock(&_minor_lock);
1929 
1930 	put_disk(md->disk);
1931 	blk_cleanup_queue(md->queue);
1932 	module_put(THIS_MODULE);
1933 	kfree(md);
1934 }
1935 
__bind_mempools(struct mapped_device * md,struct dm_table * t)1936 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1937 {
1938 	struct dm_md_mempools *p;
1939 
1940 	if (md->io_pool && md->tio_pool && md->bs)
1941 		/* the md already has necessary mempools */
1942 		goto out;
1943 
1944 	p = dm_table_get_md_mempools(t);
1945 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1946 
1947 	md->io_pool = p->io_pool;
1948 	p->io_pool = NULL;
1949 	md->tio_pool = p->tio_pool;
1950 	p->tio_pool = NULL;
1951 	md->bs = p->bs;
1952 	p->bs = NULL;
1953 
1954 out:
1955 	/* mempool bind completed, now no need any mempools in the table */
1956 	dm_table_free_md_mempools(t);
1957 }
1958 
1959 /*
1960  * Bind a table to the device.
1961  */
event_callback(void * context)1962 static void event_callback(void *context)
1963 {
1964 	unsigned long flags;
1965 	LIST_HEAD(uevents);
1966 	struct mapped_device *md = (struct mapped_device *) context;
1967 
1968 	spin_lock_irqsave(&md->uevent_lock, flags);
1969 	list_splice_init(&md->uevent_list, &uevents);
1970 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1971 
1972 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1973 
1974 	atomic_inc(&md->event_nr);
1975 	wake_up(&md->eventq);
1976 }
1977 
1978 /*
1979  * Protected by md->suspend_lock obtained by dm_swap_table().
1980  */
__set_size(struct mapped_device * md,sector_t size)1981 static void __set_size(struct mapped_device *md, sector_t size)
1982 {
1983 	set_capacity(md->disk, size);
1984 
1985 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1986 }
1987 
1988 /*
1989  * Returns old map, which caller must destroy.
1990  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)1991 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1992 			       struct queue_limits *limits)
1993 {
1994 	struct dm_table *old_map;
1995 	struct request_queue *q = md->queue;
1996 	sector_t size;
1997 	unsigned long flags;
1998 
1999 	size = dm_table_get_size(t);
2000 
2001 	/*
2002 	 * Wipe any geometry if the size of the table changed.
2003 	 */
2004 	if (size != get_capacity(md->disk))
2005 		memset(&md->geometry, 0, sizeof(md->geometry));
2006 
2007 	__set_size(md, size);
2008 
2009 	dm_table_event_callback(t, event_callback, md);
2010 
2011 	/*
2012 	 * The queue hasn't been stopped yet, if the old table type wasn't
2013 	 * for request-based during suspension.  So stop it to prevent
2014 	 * I/O mapping before resume.
2015 	 * This must be done before setting the queue restrictions,
2016 	 * because request-based dm may be run just after the setting.
2017 	 */
2018 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2019 		stop_queue(q);
2020 
2021 	__bind_mempools(md, t);
2022 
2023 	write_lock_irqsave(&md->map_lock, flags);
2024 	old_map = md->map;
2025 	md->map = t;
2026 	dm_table_set_restrictions(t, q, limits);
2027 	write_unlock_irqrestore(&md->map_lock, flags);
2028 
2029 	return old_map;
2030 }
2031 
2032 /*
2033  * Returns unbound table for the caller to free.
2034  */
__unbind(struct mapped_device * md)2035 static struct dm_table *__unbind(struct mapped_device *md)
2036 {
2037 	struct dm_table *map = md->map;
2038 	unsigned long flags;
2039 
2040 	if (!map)
2041 		return NULL;
2042 
2043 	dm_table_event_callback(map, NULL, NULL);
2044 	write_lock_irqsave(&md->map_lock, flags);
2045 	md->map = NULL;
2046 	write_unlock_irqrestore(&md->map_lock, flags);
2047 
2048 	return map;
2049 }
2050 
2051 /*
2052  * Constructor for a new device.
2053  */
dm_create(int minor,struct mapped_device ** result)2054 int dm_create(int minor, struct mapped_device **result)
2055 {
2056 	struct mapped_device *md;
2057 
2058 	md = alloc_dev(minor);
2059 	if (!md)
2060 		return -ENXIO;
2061 
2062 	dm_sysfs_init(md);
2063 
2064 	*result = md;
2065 	return 0;
2066 }
2067 
2068 /*
2069  * Functions to manage md->type.
2070  * All are required to hold md->type_lock.
2071  */
dm_lock_md_type(struct mapped_device * md)2072 void dm_lock_md_type(struct mapped_device *md)
2073 {
2074 	mutex_lock(&md->type_lock);
2075 }
2076 
dm_unlock_md_type(struct mapped_device * md)2077 void dm_unlock_md_type(struct mapped_device *md)
2078 {
2079 	mutex_unlock(&md->type_lock);
2080 }
2081 
dm_set_md_type(struct mapped_device * md,unsigned type)2082 void dm_set_md_type(struct mapped_device *md, unsigned type)
2083 {
2084 	md->type = type;
2085 }
2086 
dm_get_md_type(struct mapped_device * md)2087 unsigned dm_get_md_type(struct mapped_device *md)
2088 {
2089 	return md->type;
2090 }
2091 
2092 /*
2093  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2094  */
dm_init_request_based_queue(struct mapped_device * md)2095 static int dm_init_request_based_queue(struct mapped_device *md)
2096 {
2097 	struct request_queue *q = NULL;
2098 
2099 	if (md->queue->elevator)
2100 		return 1;
2101 
2102 	/* Fully initialize the queue */
2103 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2104 	if (!q)
2105 		return 0;
2106 
2107 	md->queue = q;
2108 	md->saved_make_request_fn = md->queue->make_request_fn;
2109 	dm_init_md_queue(md);
2110 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2111 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2112 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2113 
2114 	elv_register_queue(md->queue);
2115 
2116 	return 1;
2117 }
2118 
2119 /*
2120  * Setup the DM device's queue based on md's type
2121  */
dm_setup_md_queue(struct mapped_device * md)2122 int dm_setup_md_queue(struct mapped_device *md)
2123 {
2124 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2125 	    !dm_init_request_based_queue(md)) {
2126 		DMWARN("Cannot initialize queue for request-based mapped device");
2127 		return -EINVAL;
2128 	}
2129 
2130 	return 0;
2131 }
2132 
dm_find_md(dev_t dev)2133 static struct mapped_device *dm_find_md(dev_t dev)
2134 {
2135 	struct mapped_device *md;
2136 	unsigned minor = MINOR(dev);
2137 
2138 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2139 		return NULL;
2140 
2141 	spin_lock(&_minor_lock);
2142 
2143 	md = idr_find(&_minor_idr, minor);
2144 	if (md && (md == MINOR_ALLOCED ||
2145 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2146 		   dm_deleting_md(md) ||
2147 		   test_bit(DMF_FREEING, &md->flags))) {
2148 		md = NULL;
2149 		goto out;
2150 	}
2151 
2152 out:
2153 	spin_unlock(&_minor_lock);
2154 
2155 	return md;
2156 }
2157 
dm_get_md(dev_t dev)2158 struct mapped_device *dm_get_md(dev_t dev)
2159 {
2160 	struct mapped_device *md = dm_find_md(dev);
2161 
2162 	if (md)
2163 		dm_get(md);
2164 
2165 	return md;
2166 }
2167 
dm_get_mdptr(struct mapped_device * md)2168 void *dm_get_mdptr(struct mapped_device *md)
2169 {
2170 	return md->interface_ptr;
2171 }
2172 
dm_set_mdptr(struct mapped_device * md,void * ptr)2173 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2174 {
2175 	md->interface_ptr = ptr;
2176 }
2177 
dm_get(struct mapped_device * md)2178 void dm_get(struct mapped_device *md)
2179 {
2180 	atomic_inc(&md->holders);
2181 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2182 }
2183 
dm_device_name(struct mapped_device * md)2184 const char *dm_device_name(struct mapped_device *md)
2185 {
2186 	return md->name;
2187 }
2188 EXPORT_SYMBOL_GPL(dm_device_name);
2189 
__dm_destroy(struct mapped_device * md,bool wait)2190 static void __dm_destroy(struct mapped_device *md, bool wait)
2191 {
2192 	struct dm_table *map;
2193 
2194 	might_sleep();
2195 
2196 	spin_lock(&_minor_lock);
2197 	map = dm_get_live_table(md);
2198 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2199 	set_bit(DMF_FREEING, &md->flags);
2200 	spin_unlock(&_minor_lock);
2201 
2202 	if (!dm_suspended_md(md)) {
2203 		dm_table_presuspend_targets(map);
2204 		dm_table_postsuspend_targets(map);
2205 	}
2206 
2207 	/*
2208 	 * Rare, but there may be I/O requests still going to complete,
2209 	 * for example.  Wait for all references to disappear.
2210 	 * No one should increment the reference count of the mapped_device,
2211 	 * after the mapped_device state becomes DMF_FREEING.
2212 	 */
2213 	if (wait)
2214 		while (atomic_read(&md->holders))
2215 			msleep(1);
2216 	else if (atomic_read(&md->holders))
2217 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2218 		       dm_device_name(md), atomic_read(&md->holders));
2219 
2220 	dm_sysfs_exit(md);
2221 	dm_table_put(map);
2222 	dm_table_destroy(__unbind(md));
2223 	free_dev(md);
2224 }
2225 
dm_destroy(struct mapped_device * md)2226 void dm_destroy(struct mapped_device *md)
2227 {
2228 	__dm_destroy(md, true);
2229 }
2230 
dm_destroy_immediate(struct mapped_device * md)2231 void dm_destroy_immediate(struct mapped_device *md)
2232 {
2233 	__dm_destroy(md, false);
2234 }
2235 
dm_put(struct mapped_device * md)2236 void dm_put(struct mapped_device *md)
2237 {
2238 	atomic_dec(&md->holders);
2239 }
2240 EXPORT_SYMBOL_GPL(dm_put);
2241 
dm_wait_for_completion(struct mapped_device * md,int interruptible)2242 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2243 {
2244 	int r = 0;
2245 	DECLARE_WAITQUEUE(wait, current);
2246 
2247 	add_wait_queue(&md->wait, &wait);
2248 
2249 	while (1) {
2250 		set_current_state(interruptible);
2251 
2252 		smp_mb();
2253 		if (!md_in_flight(md))
2254 			break;
2255 
2256 		if (interruptible == TASK_INTERRUPTIBLE &&
2257 		    signal_pending(current)) {
2258 			r = -EINTR;
2259 			break;
2260 		}
2261 
2262 		io_schedule();
2263 	}
2264 	set_current_state(TASK_RUNNING);
2265 
2266 	remove_wait_queue(&md->wait, &wait);
2267 
2268 	return r;
2269 }
2270 
2271 /*
2272  * Process the deferred bios
2273  */
dm_wq_work(struct work_struct * work)2274 static void dm_wq_work(struct work_struct *work)
2275 {
2276 	struct mapped_device *md = container_of(work, struct mapped_device,
2277 						work);
2278 	struct bio *c;
2279 
2280 	down_read(&md->io_lock);
2281 
2282 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2283 		spin_lock_irq(&md->deferred_lock);
2284 		c = bio_list_pop(&md->deferred);
2285 		spin_unlock_irq(&md->deferred_lock);
2286 
2287 		if (!c)
2288 			break;
2289 
2290 		up_read(&md->io_lock);
2291 
2292 		if (dm_request_based(md))
2293 			generic_make_request(c);
2294 		else
2295 			__split_and_process_bio(md, c);
2296 
2297 		down_read(&md->io_lock);
2298 	}
2299 
2300 	up_read(&md->io_lock);
2301 }
2302 
dm_queue_flush(struct mapped_device * md)2303 static void dm_queue_flush(struct mapped_device *md)
2304 {
2305 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2306 	smp_mb__after_clear_bit();
2307 	queue_work(md->wq, &md->work);
2308 }
2309 
2310 /*
2311  * Swap in a new table, returning the old one for the caller to destroy.
2312  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2313 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2314 {
2315 	struct dm_table *map = ERR_PTR(-EINVAL);
2316 	struct queue_limits limits;
2317 	int r;
2318 
2319 	mutex_lock(&md->suspend_lock);
2320 
2321 	/* device must be suspended */
2322 	if (!dm_suspended_md(md))
2323 		goto out;
2324 
2325 	r = dm_calculate_queue_limits(table, &limits);
2326 	if (r) {
2327 		map = ERR_PTR(r);
2328 		goto out;
2329 	}
2330 
2331 	map = __bind(md, table, &limits);
2332 
2333 out:
2334 	mutex_unlock(&md->suspend_lock);
2335 	return map;
2336 }
2337 
2338 /*
2339  * Functions to lock and unlock any filesystem running on the
2340  * device.
2341  */
lock_fs(struct mapped_device * md)2342 static int lock_fs(struct mapped_device *md)
2343 {
2344 	int r;
2345 
2346 	WARN_ON(md->frozen_sb);
2347 
2348 	md->frozen_sb = freeze_bdev(md->bdev);
2349 	if (IS_ERR(md->frozen_sb)) {
2350 		r = PTR_ERR(md->frozen_sb);
2351 		md->frozen_sb = NULL;
2352 		return r;
2353 	}
2354 
2355 	set_bit(DMF_FROZEN, &md->flags);
2356 
2357 	return 0;
2358 }
2359 
unlock_fs(struct mapped_device * md)2360 static void unlock_fs(struct mapped_device *md)
2361 {
2362 	if (!test_bit(DMF_FROZEN, &md->flags))
2363 		return;
2364 
2365 	thaw_bdev(md->bdev, md->frozen_sb);
2366 	md->frozen_sb = NULL;
2367 	clear_bit(DMF_FROZEN, &md->flags);
2368 }
2369 
2370 /*
2371  * We need to be able to change a mapping table under a mounted
2372  * filesystem.  For example we might want to move some data in
2373  * the background.  Before the table can be swapped with
2374  * dm_bind_table, dm_suspend must be called to flush any in
2375  * flight bios and ensure that any further io gets deferred.
2376  */
2377 /*
2378  * Suspend mechanism in request-based dm.
2379  *
2380  * 1. Flush all I/Os by lock_fs() if needed.
2381  * 2. Stop dispatching any I/O by stopping the request_queue.
2382  * 3. Wait for all in-flight I/Os to be completed or requeued.
2383  *
2384  * To abort suspend, start the request_queue.
2385  */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2386 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2387 {
2388 	struct dm_table *map = NULL;
2389 	int r = 0;
2390 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2391 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2392 
2393 	mutex_lock(&md->suspend_lock);
2394 
2395 	if (dm_suspended_md(md)) {
2396 		r = -EINVAL;
2397 		goto out_unlock;
2398 	}
2399 
2400 	map = dm_get_live_table(md);
2401 
2402 	/*
2403 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2404 	 * This flag is cleared before dm_suspend returns.
2405 	 */
2406 	if (noflush)
2407 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2408 
2409 	/* This does not get reverted if there's an error later. */
2410 	dm_table_presuspend_targets(map);
2411 
2412 	/*
2413 	 * Flush I/O to the device.
2414 	 * Any I/O submitted after lock_fs() may not be flushed.
2415 	 * noflush takes precedence over do_lockfs.
2416 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2417 	 */
2418 	if (!noflush && do_lockfs) {
2419 		r = lock_fs(md);
2420 		if (r)
2421 			goto out;
2422 	}
2423 
2424 	/*
2425 	 * Here we must make sure that no processes are submitting requests
2426 	 * to target drivers i.e. no one may be executing
2427 	 * __split_and_process_bio. This is called from dm_request and
2428 	 * dm_wq_work.
2429 	 *
2430 	 * To get all processes out of __split_and_process_bio in dm_request,
2431 	 * we take the write lock. To prevent any process from reentering
2432 	 * __split_and_process_bio from dm_request and quiesce the thread
2433 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2434 	 * flush_workqueue(md->wq).
2435 	 */
2436 	down_write(&md->io_lock);
2437 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2438 	up_write(&md->io_lock);
2439 
2440 	/*
2441 	 * Stop md->queue before flushing md->wq in case request-based
2442 	 * dm defers requests to md->wq from md->queue.
2443 	 */
2444 	if (dm_request_based(md))
2445 		stop_queue(md->queue);
2446 
2447 	flush_workqueue(md->wq);
2448 
2449 	/*
2450 	 * At this point no more requests are entering target request routines.
2451 	 * We call dm_wait_for_completion to wait for all existing requests
2452 	 * to finish.
2453 	 */
2454 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2455 
2456 	down_write(&md->io_lock);
2457 	if (noflush)
2458 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2459 	up_write(&md->io_lock);
2460 
2461 	/* were we interrupted ? */
2462 	if (r < 0) {
2463 		dm_queue_flush(md);
2464 
2465 		if (dm_request_based(md))
2466 			start_queue(md->queue);
2467 
2468 		unlock_fs(md);
2469 		goto out; /* pushback list is already flushed, so skip flush */
2470 	}
2471 
2472 	/*
2473 	 * If dm_wait_for_completion returned 0, the device is completely
2474 	 * quiescent now. There is no request-processing activity. All new
2475 	 * requests are being added to md->deferred list.
2476 	 */
2477 
2478 	set_bit(DMF_SUSPENDED, &md->flags);
2479 
2480 	dm_table_postsuspend_targets(map);
2481 
2482 out:
2483 	dm_table_put(map);
2484 
2485 out_unlock:
2486 	mutex_unlock(&md->suspend_lock);
2487 	return r;
2488 }
2489 
dm_resume(struct mapped_device * md)2490 int dm_resume(struct mapped_device *md)
2491 {
2492 	int r = -EINVAL;
2493 	struct dm_table *map = NULL;
2494 
2495 	mutex_lock(&md->suspend_lock);
2496 	if (!dm_suspended_md(md))
2497 		goto out;
2498 
2499 	map = dm_get_live_table(md);
2500 	if (!map || !dm_table_get_size(map))
2501 		goto out;
2502 
2503 	r = dm_table_resume_targets(map);
2504 	if (r)
2505 		goto out;
2506 
2507 	dm_queue_flush(md);
2508 
2509 	/*
2510 	 * Flushing deferred I/Os must be done after targets are resumed
2511 	 * so that mapping of targets can work correctly.
2512 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2513 	 */
2514 	if (dm_request_based(md))
2515 		start_queue(md->queue);
2516 
2517 	unlock_fs(md);
2518 
2519 	clear_bit(DMF_SUSPENDED, &md->flags);
2520 
2521 	r = 0;
2522 out:
2523 	dm_table_put(map);
2524 	mutex_unlock(&md->suspend_lock);
2525 
2526 	return r;
2527 }
2528 
2529 /*-----------------------------------------------------------------
2530  * Event notification.
2531  *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2532 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2533 		       unsigned cookie)
2534 {
2535 	char udev_cookie[DM_COOKIE_LENGTH];
2536 	char *envp[] = { udev_cookie, NULL };
2537 
2538 	if (!cookie)
2539 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2540 	else {
2541 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2542 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2543 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2544 					  action, envp);
2545 	}
2546 }
2547 
dm_next_uevent_seq(struct mapped_device * md)2548 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2549 {
2550 	return atomic_add_return(1, &md->uevent_seq);
2551 }
2552 
dm_get_event_nr(struct mapped_device * md)2553 uint32_t dm_get_event_nr(struct mapped_device *md)
2554 {
2555 	return atomic_read(&md->event_nr);
2556 }
2557 
dm_wait_event(struct mapped_device * md,int event_nr)2558 int dm_wait_event(struct mapped_device *md, int event_nr)
2559 {
2560 	return wait_event_interruptible(md->eventq,
2561 			(event_nr != atomic_read(&md->event_nr)));
2562 }
2563 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2564 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2565 {
2566 	unsigned long flags;
2567 
2568 	spin_lock_irqsave(&md->uevent_lock, flags);
2569 	list_add(elist, &md->uevent_list);
2570 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2571 }
2572 
2573 /*
2574  * The gendisk is only valid as long as you have a reference
2575  * count on 'md'.
2576  */
dm_disk(struct mapped_device * md)2577 struct gendisk *dm_disk(struct mapped_device *md)
2578 {
2579 	return md->disk;
2580 }
2581 
dm_kobject(struct mapped_device * md)2582 struct kobject *dm_kobject(struct mapped_device *md)
2583 {
2584 	return &md->kobj;
2585 }
2586 
2587 /*
2588  * struct mapped_device should not be exported outside of dm.c
2589  * so use this check to verify that kobj is part of md structure
2590  */
dm_get_from_kobject(struct kobject * kobj)2591 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2592 {
2593 	struct mapped_device *md;
2594 
2595 	md = container_of(kobj, struct mapped_device, kobj);
2596 	if (&md->kobj != kobj)
2597 		return NULL;
2598 
2599 	if (test_bit(DMF_FREEING, &md->flags) ||
2600 	    dm_deleting_md(md))
2601 		return NULL;
2602 
2603 	dm_get(md);
2604 	return md;
2605 }
2606 
dm_suspended_md(struct mapped_device * md)2607 int dm_suspended_md(struct mapped_device *md)
2608 {
2609 	return test_bit(DMF_SUSPENDED, &md->flags);
2610 }
2611 
dm_suspended(struct dm_target * ti)2612 int dm_suspended(struct dm_target *ti)
2613 {
2614 	return dm_suspended_md(dm_table_get_md(ti->table));
2615 }
2616 EXPORT_SYMBOL_GPL(dm_suspended);
2617 
dm_noflush_suspending(struct dm_target * ti)2618 int dm_noflush_suspending(struct dm_target *ti)
2619 {
2620 	return __noflush_suspending(dm_table_get_md(ti->table));
2621 }
2622 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2623 
dm_alloc_md_mempools(unsigned type,unsigned integrity)2624 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2625 {
2626 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2627 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2628 
2629 	if (!pools)
2630 		return NULL;
2631 
2632 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2633 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2634 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2635 	if (!pools->io_pool)
2636 		goto free_pools_and_out;
2637 
2638 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2639 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2640 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2641 	if (!pools->tio_pool)
2642 		goto free_io_pool_and_out;
2643 
2644 	pools->bs = bioset_create(pool_size, 0);
2645 	if (!pools->bs)
2646 		goto free_tio_pool_and_out;
2647 
2648 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2649 		goto free_bioset_and_out;
2650 
2651 	return pools;
2652 
2653 free_bioset_and_out:
2654 	bioset_free(pools->bs);
2655 
2656 free_tio_pool_and_out:
2657 	mempool_destroy(pools->tio_pool);
2658 
2659 free_io_pool_and_out:
2660 	mempool_destroy(pools->io_pool);
2661 
2662 free_pools_and_out:
2663 	kfree(pools);
2664 
2665 	return NULL;
2666 }
2667 
dm_free_md_mempools(struct dm_md_mempools * pools)2668 void dm_free_md_mempools(struct dm_md_mempools *pools)
2669 {
2670 	if (!pools)
2671 		return;
2672 
2673 	if (pools->io_pool)
2674 		mempool_destroy(pools->io_pool);
2675 
2676 	if (pools->tio_pool)
2677 		mempool_destroy(pools->tio_pool);
2678 
2679 	if (pools->bs)
2680 		bioset_free(pools->bs);
2681 
2682 	kfree(pools);
2683 }
2684 
2685 static const struct block_device_operations dm_blk_dops = {
2686 	.open = dm_blk_open,
2687 	.release = dm_blk_close,
2688 	.ioctl = dm_blk_ioctl,
2689 	.getgeo = dm_blk_getgeo,
2690 	.owner = THIS_MODULE
2691 };
2692 
2693 EXPORT_SYMBOL(dm_get_mapinfo);
2694 
2695 /*
2696  * module hooks
2697  */
2698 module_init(dm_init);
2699 module_exit(dm_exit);
2700 
2701 module_param(major, uint, 0);
2702 MODULE_PARM_DESC(major, "The major number of the device mapper");
2703 MODULE_DESCRIPTION(DM_NAME " driver");
2704 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2705 MODULE_LICENSE("GPL");
2706