1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17
18 #define DM_MSG_PREFIX "bufio"
19
20 /*
21 * Memory management policy:
22 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26 * dirty buffers.
27 */
28 #define DM_BUFIO_MIN_BUFFERS 8
29
30 #define DM_BUFIO_MEMORY_PERCENT 2
31 #define DM_BUFIO_VMALLOC_PERCENT 25
32 #define DM_BUFIO_WRITEBACK_PERCENT 75
33
34 /*
35 * Check buffer ages in this interval (seconds)
36 */
37 #define DM_BUFIO_WORK_TIMER_SECS 10
38
39 /*
40 * Free buffers when they are older than this (seconds)
41 */
42 #define DM_BUFIO_DEFAULT_AGE_SECS 60
43
44 /*
45 * The number of bvec entries that are embedded directly in the buffer.
46 * If the chunk size is larger, dm-io is used to do the io.
47 */
48 #define DM_BUFIO_INLINE_VECS 16
49
50 /*
51 * Buffer hash
52 */
53 #define DM_BUFIO_HASH_BITS 20
54 #define DM_BUFIO_HASH(block) \
55 ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56 ((1 << DM_BUFIO_HASH_BITS) - 1))
57
58 /*
59 * Don't try to use kmem_cache_alloc for blocks larger than this.
60 * For explanation, see alloc_buffer_data below.
61 */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
64
65 /*
66 * dm_buffer->list_mode
67 */
68 #define LIST_CLEAN 0
69 #define LIST_DIRTY 1
70 #define LIST_SIZE 2
71
72 /*
73 * Linking of buffers:
74 * All buffers are linked to cache_hash with their hash_list field.
75 *
76 * Clean buffers that are not being written (B_WRITING not set)
77 * are linked to lru[LIST_CLEAN] with their lru_list field.
78 *
79 * Dirty and clean buffers that are being written are linked to
80 * lru[LIST_DIRTY] with their lru_list field. When the write
81 * finishes, the buffer cannot be relinked immediately (because we
82 * are in an interrupt context and relinking requires process
83 * context), so some clean-not-writing buffers can be held on
84 * dirty_lru too. They are later added to lru in the process
85 * context.
86 */
87 struct dm_bufio_client {
88 struct mutex lock;
89
90 struct list_head lru[LIST_SIZE];
91 unsigned long n_buffers[LIST_SIZE];
92
93 struct block_device *bdev;
94 unsigned block_size;
95 unsigned char sectors_per_block_bits;
96 unsigned char pages_per_block_bits;
97 unsigned char blocks_per_page_bits;
98 unsigned aux_size;
99 void (*alloc_callback)(struct dm_buffer *);
100 void (*write_callback)(struct dm_buffer *);
101
102 struct dm_io_client *dm_io;
103
104 struct list_head reserved_buffers;
105 unsigned need_reserved_buffers;
106
107 struct hlist_head *cache_hash;
108 wait_queue_head_t free_buffer_wait;
109
110 int async_write_error;
111
112 struct list_head client_list;
113 struct shrinker shrinker;
114 };
115
116 /*
117 * Buffer state bits.
118 */
119 #define B_READING 0
120 #define B_WRITING 1
121 #define B_DIRTY 2
122
123 /*
124 * Describes how the block was allocated:
125 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
126 * See the comment at alloc_buffer_data.
127 */
128 enum data_mode {
129 DATA_MODE_SLAB = 0,
130 DATA_MODE_GET_FREE_PAGES = 1,
131 DATA_MODE_VMALLOC = 2,
132 DATA_MODE_LIMIT = 3
133 };
134
135 struct dm_buffer {
136 struct hlist_node hash_list;
137 struct list_head lru_list;
138 sector_t block;
139 void *data;
140 enum data_mode data_mode;
141 unsigned char list_mode; /* LIST_* */
142 unsigned hold_count;
143 int read_error;
144 int write_error;
145 unsigned long state;
146 unsigned long last_accessed;
147 struct dm_bufio_client *c;
148 struct bio bio;
149 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
150 };
151
152 /*----------------------------------------------------------------*/
153
154 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
155 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
156
dm_bufio_cache_index(struct dm_bufio_client * c)157 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
158 {
159 unsigned ret = c->blocks_per_page_bits - 1;
160
161 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
162
163 return ret;
164 }
165
166 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
167 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
168
169 #define dm_bufio_in_request() (!!current->bio_list)
170
dm_bufio_lock(struct dm_bufio_client * c)171 static void dm_bufio_lock(struct dm_bufio_client *c)
172 {
173 mutex_lock_nested(&c->lock, dm_bufio_in_request());
174 }
175
dm_bufio_trylock(struct dm_bufio_client * c)176 static int dm_bufio_trylock(struct dm_bufio_client *c)
177 {
178 return mutex_trylock(&c->lock);
179 }
180
dm_bufio_unlock(struct dm_bufio_client * c)181 static void dm_bufio_unlock(struct dm_bufio_client *c)
182 {
183 mutex_unlock(&c->lock);
184 }
185
186 /*
187 * FIXME Move to sched.h?
188 */
189 #ifdef CONFIG_PREEMPT_VOLUNTARY
190 # define dm_bufio_cond_resched() \
191 do { \
192 if (unlikely(need_resched())) \
193 _cond_resched(); \
194 } while (0)
195 #else
196 # define dm_bufio_cond_resched() do { } while (0)
197 #endif
198
199 /*----------------------------------------------------------------*/
200
201 /*
202 * Default cache size: available memory divided by the ratio.
203 */
204 static unsigned long dm_bufio_default_cache_size;
205
206 /*
207 * Total cache size set by the user.
208 */
209 static unsigned long dm_bufio_cache_size;
210
211 /*
212 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
213 * at any time. If it disagrees, the user has changed cache size.
214 */
215 static unsigned long dm_bufio_cache_size_latch;
216
217 static DEFINE_SPINLOCK(param_spinlock);
218
219 /*
220 * Buffers are freed after this timeout
221 */
222 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
223
224 static unsigned long dm_bufio_peak_allocated;
225 static unsigned long dm_bufio_allocated_kmem_cache;
226 static unsigned long dm_bufio_allocated_get_free_pages;
227 static unsigned long dm_bufio_allocated_vmalloc;
228 static unsigned long dm_bufio_current_allocated;
229
230 /*----------------------------------------------------------------*/
231
232 /*
233 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
234 */
235 static unsigned long dm_bufio_cache_size_per_client;
236
237 /*
238 * The current number of clients.
239 */
240 static int dm_bufio_client_count;
241
242 /*
243 * The list of all clients.
244 */
245 static LIST_HEAD(dm_bufio_all_clients);
246
247 /*
248 * This mutex protects dm_bufio_cache_size_latch,
249 * dm_bufio_cache_size_per_client and dm_bufio_client_count
250 */
251 static DEFINE_MUTEX(dm_bufio_clients_lock);
252
253 /*----------------------------------------------------------------*/
254
adjust_total_allocated(enum data_mode data_mode,long diff)255 static void adjust_total_allocated(enum data_mode data_mode, long diff)
256 {
257 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
258 &dm_bufio_allocated_kmem_cache,
259 &dm_bufio_allocated_get_free_pages,
260 &dm_bufio_allocated_vmalloc,
261 };
262
263 spin_lock(¶m_spinlock);
264
265 *class_ptr[data_mode] += diff;
266
267 dm_bufio_current_allocated += diff;
268
269 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
270 dm_bufio_peak_allocated = dm_bufio_current_allocated;
271
272 spin_unlock(¶m_spinlock);
273 }
274
275 /*
276 * Change the number of clients and recalculate per-client limit.
277 */
__cache_size_refresh(void)278 static void __cache_size_refresh(void)
279 {
280 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
281 BUG_ON(dm_bufio_client_count < 0);
282
283 dm_bufio_cache_size_latch = dm_bufio_cache_size;
284
285 barrier();
286
287 /*
288 * Use default if set to 0 and report the actual cache size used.
289 */
290 if (!dm_bufio_cache_size_latch) {
291 (void)cmpxchg(&dm_bufio_cache_size, 0,
292 dm_bufio_default_cache_size);
293 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
294 }
295
296 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
297 (dm_bufio_client_count ? : 1);
298 }
299
300 /*
301 * Allocating buffer data.
302 *
303 * Small buffers are allocated with kmem_cache, to use space optimally.
304 *
305 * For large buffers, we choose between get_free_pages and vmalloc.
306 * Each has advantages and disadvantages.
307 *
308 * __get_free_pages can randomly fail if the memory is fragmented.
309 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
310 * as low as 128M) so using it for caching is not appropriate.
311 *
312 * If the allocation may fail we use __get_free_pages. Memory fragmentation
313 * won't have a fatal effect here, but it just causes flushes of some other
314 * buffers and more I/O will be performed. Don't use __get_free_pages if it
315 * always fails (i.e. order >= MAX_ORDER).
316 *
317 * If the allocation shouldn't fail we use __vmalloc. This is only for the
318 * initial reserve allocation, so there's no risk of wasting all vmalloc
319 * space.
320 */
alloc_buffer_data(struct dm_bufio_client * c,gfp_t gfp_mask,enum data_mode * data_mode)321 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
322 enum data_mode *data_mode)
323 {
324 unsigned noio_flag;
325 void *ptr;
326
327 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
328 *data_mode = DATA_MODE_SLAB;
329 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
330 }
331
332 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
333 gfp_mask & __GFP_NORETRY) {
334 *data_mode = DATA_MODE_GET_FREE_PAGES;
335 return (void *)__get_free_pages(gfp_mask,
336 c->pages_per_block_bits);
337 }
338
339 *data_mode = DATA_MODE_VMALLOC;
340
341 /*
342 * __vmalloc allocates the data pages and auxiliary structures with
343 * gfp_flags that were specified, but pagetables are always allocated
344 * with GFP_KERNEL, no matter what was specified as gfp_mask.
345 *
346 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
347 * all allocations done by this process (including pagetables) are done
348 * as if GFP_NOIO was specified.
349 */
350
351 if (gfp_mask & __GFP_NORETRY) {
352 noio_flag = current->flags & PF_MEMALLOC;
353 current->flags |= PF_MEMALLOC;
354 }
355
356 ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
357
358 if (gfp_mask & __GFP_NORETRY)
359 current->flags = (current->flags & ~PF_MEMALLOC) | noio_flag;
360
361 return ptr;
362 }
363
364 /*
365 * Free buffer's data.
366 */
free_buffer_data(struct dm_bufio_client * c,void * data,enum data_mode data_mode)367 static void free_buffer_data(struct dm_bufio_client *c,
368 void *data, enum data_mode data_mode)
369 {
370 switch (data_mode) {
371 case DATA_MODE_SLAB:
372 kmem_cache_free(DM_BUFIO_CACHE(c), data);
373 break;
374
375 case DATA_MODE_GET_FREE_PAGES:
376 free_pages((unsigned long)data, c->pages_per_block_bits);
377 break;
378
379 case DATA_MODE_VMALLOC:
380 vfree(data);
381 break;
382
383 default:
384 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
385 data_mode);
386 BUG();
387 }
388 }
389
390 /*
391 * Allocate buffer and its data.
392 */
alloc_buffer(struct dm_bufio_client * c,gfp_t gfp_mask)393 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
394 {
395 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
396 gfp_mask);
397
398 if (!b)
399 return NULL;
400
401 b->c = c;
402
403 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
404 if (!b->data) {
405 kfree(b);
406 return NULL;
407 }
408
409 adjust_total_allocated(b->data_mode, (long)c->block_size);
410
411 return b;
412 }
413
414 /*
415 * Free buffer and its data.
416 */
free_buffer(struct dm_buffer * b)417 static void free_buffer(struct dm_buffer *b)
418 {
419 struct dm_bufio_client *c = b->c;
420
421 adjust_total_allocated(b->data_mode, -(long)c->block_size);
422
423 free_buffer_data(c, b->data, b->data_mode);
424 kfree(b);
425 }
426
427 /*
428 * Link buffer to the hash list and clean or dirty queue.
429 */
__link_buffer(struct dm_buffer * b,sector_t block,int dirty)430 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
431 {
432 struct dm_bufio_client *c = b->c;
433
434 c->n_buffers[dirty]++;
435 b->block = block;
436 b->list_mode = dirty;
437 list_add(&b->lru_list, &c->lru[dirty]);
438 hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
439 b->last_accessed = jiffies;
440 }
441
442 /*
443 * Unlink buffer from the hash list and dirty or clean queue.
444 */
__unlink_buffer(struct dm_buffer * b)445 static void __unlink_buffer(struct dm_buffer *b)
446 {
447 struct dm_bufio_client *c = b->c;
448
449 BUG_ON(!c->n_buffers[b->list_mode]);
450
451 c->n_buffers[b->list_mode]--;
452 hlist_del(&b->hash_list);
453 list_del(&b->lru_list);
454 }
455
456 /*
457 * Place the buffer to the head of dirty or clean LRU queue.
458 */
__relink_lru(struct dm_buffer * b,int dirty)459 static void __relink_lru(struct dm_buffer *b, int dirty)
460 {
461 struct dm_bufio_client *c = b->c;
462
463 BUG_ON(!c->n_buffers[b->list_mode]);
464
465 c->n_buffers[b->list_mode]--;
466 c->n_buffers[dirty]++;
467 b->list_mode = dirty;
468 list_del(&b->lru_list);
469 list_add(&b->lru_list, &c->lru[dirty]);
470 }
471
472 /*----------------------------------------------------------------
473 * Submit I/O on the buffer.
474 *
475 * Bio interface is faster but it has some problems:
476 * the vector list is limited (increasing this limit increases
477 * memory-consumption per buffer, so it is not viable);
478 *
479 * the memory must be direct-mapped, not vmalloced;
480 *
481 * the I/O driver can reject requests spuriously if it thinks that
482 * the requests are too big for the device or if they cross a
483 * controller-defined memory boundary.
484 *
485 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
486 * it is not vmalloced, try using the bio interface.
487 *
488 * If the buffer is big, if it is vmalloced or if the underlying device
489 * rejects the bio because it is too large, use dm-io layer to do the I/O.
490 * The dm-io layer splits the I/O into multiple requests, avoiding the above
491 * shortcomings.
492 *--------------------------------------------------------------*/
493
494 /*
495 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
496 * that the request was handled directly with bio interface.
497 */
dmio_complete(unsigned long error,void * context)498 static void dmio_complete(unsigned long error, void *context)
499 {
500 struct dm_buffer *b = context;
501
502 b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
503 }
504
use_dmio(struct dm_buffer * b,int rw,sector_t block,bio_end_io_t * end_io)505 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
506 bio_end_io_t *end_io)
507 {
508 int r;
509 struct dm_io_request io_req = {
510 .bi_rw = rw,
511 .notify.fn = dmio_complete,
512 .notify.context = b,
513 .client = b->c->dm_io,
514 };
515 struct dm_io_region region = {
516 .bdev = b->c->bdev,
517 .sector = block << b->c->sectors_per_block_bits,
518 .count = b->c->block_size >> SECTOR_SHIFT,
519 };
520
521 if (b->data_mode != DATA_MODE_VMALLOC) {
522 io_req.mem.type = DM_IO_KMEM;
523 io_req.mem.ptr.addr = b->data;
524 } else {
525 io_req.mem.type = DM_IO_VMA;
526 io_req.mem.ptr.vma = b->data;
527 }
528
529 b->bio.bi_end_io = end_io;
530
531 r = dm_io(&io_req, 1, ®ion, NULL);
532 if (r)
533 end_io(&b->bio, r);
534 }
535
use_inline_bio(struct dm_buffer * b,int rw,sector_t block,bio_end_io_t * end_io)536 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
537 bio_end_io_t *end_io)
538 {
539 char *ptr;
540 int len;
541
542 bio_init(&b->bio);
543 b->bio.bi_io_vec = b->bio_vec;
544 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
545 b->bio.bi_sector = block << b->c->sectors_per_block_bits;
546 b->bio.bi_bdev = b->c->bdev;
547 b->bio.bi_end_io = end_io;
548
549 /*
550 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
551 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
552 */
553 ptr = b->data;
554 len = b->c->block_size;
555
556 if (len >= PAGE_SIZE)
557 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
558 else
559 BUG_ON((unsigned long)ptr & (len - 1));
560
561 do {
562 if (!bio_add_page(&b->bio, virt_to_page(ptr),
563 len < PAGE_SIZE ? len : PAGE_SIZE,
564 virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
565 BUG_ON(b->c->block_size <= PAGE_SIZE);
566 use_dmio(b, rw, block, end_io);
567 return;
568 }
569
570 len -= PAGE_SIZE;
571 ptr += PAGE_SIZE;
572 } while (len > 0);
573
574 submit_bio(rw, &b->bio);
575 }
576
submit_io(struct dm_buffer * b,int rw,sector_t block,bio_end_io_t * end_io)577 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
578 bio_end_io_t *end_io)
579 {
580 if (rw == WRITE && b->c->write_callback)
581 b->c->write_callback(b);
582
583 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
584 b->data_mode != DATA_MODE_VMALLOC)
585 use_inline_bio(b, rw, block, end_io);
586 else
587 use_dmio(b, rw, block, end_io);
588 }
589
590 /*----------------------------------------------------------------
591 * Writing dirty buffers
592 *--------------------------------------------------------------*/
593
594 /*
595 * The endio routine for write.
596 *
597 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
598 * it.
599 */
write_endio(struct bio * bio,int error)600 static void write_endio(struct bio *bio, int error)
601 {
602 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
603
604 b->write_error = error;
605 if (unlikely(error)) {
606 struct dm_bufio_client *c = b->c;
607 (void)cmpxchg(&c->async_write_error, 0, error);
608 }
609
610 BUG_ON(!test_bit(B_WRITING, &b->state));
611
612 smp_mb__before_clear_bit();
613 clear_bit(B_WRITING, &b->state);
614 smp_mb__after_clear_bit();
615
616 wake_up_bit(&b->state, B_WRITING);
617 }
618
619 /*
620 * This function is called when wait_on_bit is actually waiting.
621 */
do_io_schedule(void * word)622 static int do_io_schedule(void *word)
623 {
624 io_schedule();
625
626 return 0;
627 }
628
629 /*
630 * Initiate a write on a dirty buffer, but don't wait for it.
631 *
632 * - If the buffer is not dirty, exit.
633 * - If there some previous write going on, wait for it to finish (we can't
634 * have two writes on the same buffer simultaneously).
635 * - Submit our write and don't wait on it. We set B_WRITING indicating
636 * that there is a write in progress.
637 */
__write_dirty_buffer(struct dm_buffer * b)638 static void __write_dirty_buffer(struct dm_buffer *b)
639 {
640 if (!test_bit(B_DIRTY, &b->state))
641 return;
642
643 clear_bit(B_DIRTY, &b->state);
644 wait_on_bit_lock(&b->state, B_WRITING,
645 do_io_schedule, TASK_UNINTERRUPTIBLE);
646
647 submit_io(b, WRITE, b->block, write_endio);
648 }
649
650 /*
651 * Wait until any activity on the buffer finishes. Possibly write the
652 * buffer if it is dirty. When this function finishes, there is no I/O
653 * running on the buffer and the buffer is not dirty.
654 */
__make_buffer_clean(struct dm_buffer * b)655 static void __make_buffer_clean(struct dm_buffer *b)
656 {
657 BUG_ON(b->hold_count);
658
659 if (!b->state) /* fast case */
660 return;
661
662 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
663 __write_dirty_buffer(b);
664 wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
665 }
666
667 /*
668 * Find some buffer that is not held by anybody, clean it, unlink it and
669 * return it.
670 */
__get_unclaimed_buffer(struct dm_bufio_client * c)671 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
672 {
673 struct dm_buffer *b;
674
675 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
676 BUG_ON(test_bit(B_WRITING, &b->state));
677 BUG_ON(test_bit(B_DIRTY, &b->state));
678
679 if (!b->hold_count) {
680 __make_buffer_clean(b);
681 __unlink_buffer(b);
682 return b;
683 }
684 dm_bufio_cond_resched();
685 }
686
687 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
688 BUG_ON(test_bit(B_READING, &b->state));
689
690 if (!b->hold_count) {
691 __make_buffer_clean(b);
692 __unlink_buffer(b);
693 return b;
694 }
695 dm_bufio_cond_resched();
696 }
697
698 return NULL;
699 }
700
701 /*
702 * Wait until some other threads free some buffer or release hold count on
703 * some buffer.
704 *
705 * This function is entered with c->lock held, drops it and regains it
706 * before exiting.
707 */
__wait_for_free_buffer(struct dm_bufio_client * c)708 static void __wait_for_free_buffer(struct dm_bufio_client *c)
709 {
710 DECLARE_WAITQUEUE(wait, current);
711
712 add_wait_queue(&c->free_buffer_wait, &wait);
713 set_task_state(current, TASK_UNINTERRUPTIBLE);
714 dm_bufio_unlock(c);
715
716 io_schedule();
717
718 set_task_state(current, TASK_RUNNING);
719 remove_wait_queue(&c->free_buffer_wait, &wait);
720
721 dm_bufio_lock(c);
722 }
723
724 enum new_flag {
725 NF_FRESH = 0,
726 NF_READ = 1,
727 NF_GET = 2,
728 NF_PREFETCH = 3
729 };
730
731 /*
732 * Allocate a new buffer. If the allocation is not possible, wait until
733 * some other thread frees a buffer.
734 *
735 * May drop the lock and regain it.
736 */
__alloc_buffer_wait_no_callback(struct dm_bufio_client * c,enum new_flag nf)737 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
738 {
739 struct dm_buffer *b;
740
741 /*
742 * dm-bufio is resistant to allocation failures (it just keeps
743 * one buffer reserved in cases all the allocations fail).
744 * So set flags to not try too hard:
745 * GFP_NOIO: don't recurse into the I/O layer
746 * __GFP_NORETRY: don't retry and rather return failure
747 * __GFP_NOMEMALLOC: don't use emergency reserves
748 * __GFP_NOWARN: don't print a warning in case of failure
749 *
750 * For debugging, if we set the cache size to 1, no new buffers will
751 * be allocated.
752 */
753 while (1) {
754 if (dm_bufio_cache_size_latch != 1) {
755 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
756 if (b)
757 return b;
758 }
759
760 if (nf == NF_PREFETCH)
761 return NULL;
762
763 if (!list_empty(&c->reserved_buffers)) {
764 b = list_entry(c->reserved_buffers.next,
765 struct dm_buffer, lru_list);
766 list_del(&b->lru_list);
767 c->need_reserved_buffers++;
768
769 return b;
770 }
771
772 b = __get_unclaimed_buffer(c);
773 if (b)
774 return b;
775
776 __wait_for_free_buffer(c);
777 }
778 }
779
__alloc_buffer_wait(struct dm_bufio_client * c,enum new_flag nf)780 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
781 {
782 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
783
784 if (!b)
785 return NULL;
786
787 if (c->alloc_callback)
788 c->alloc_callback(b);
789
790 return b;
791 }
792
793 /*
794 * Free a buffer and wake other threads waiting for free buffers.
795 */
__free_buffer_wake(struct dm_buffer * b)796 static void __free_buffer_wake(struct dm_buffer *b)
797 {
798 struct dm_bufio_client *c = b->c;
799
800 if (!c->need_reserved_buffers)
801 free_buffer(b);
802 else {
803 list_add(&b->lru_list, &c->reserved_buffers);
804 c->need_reserved_buffers--;
805 }
806
807 wake_up(&c->free_buffer_wait);
808 }
809
__write_dirty_buffers_async(struct dm_bufio_client * c,int no_wait)810 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait)
811 {
812 struct dm_buffer *b, *tmp;
813
814 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
815 BUG_ON(test_bit(B_READING, &b->state));
816
817 if (!test_bit(B_DIRTY, &b->state) &&
818 !test_bit(B_WRITING, &b->state)) {
819 __relink_lru(b, LIST_CLEAN);
820 continue;
821 }
822
823 if (no_wait && test_bit(B_WRITING, &b->state))
824 return;
825
826 __write_dirty_buffer(b);
827 dm_bufio_cond_resched();
828 }
829 }
830
831 /*
832 * Get writeback threshold and buffer limit for a given client.
833 */
__get_memory_limit(struct dm_bufio_client * c,unsigned long * threshold_buffers,unsigned long * limit_buffers)834 static void __get_memory_limit(struct dm_bufio_client *c,
835 unsigned long *threshold_buffers,
836 unsigned long *limit_buffers)
837 {
838 unsigned long buffers;
839
840 if (dm_bufio_cache_size != dm_bufio_cache_size_latch) {
841 mutex_lock(&dm_bufio_clients_lock);
842 __cache_size_refresh();
843 mutex_unlock(&dm_bufio_clients_lock);
844 }
845
846 buffers = dm_bufio_cache_size_per_client >>
847 (c->sectors_per_block_bits + SECTOR_SHIFT);
848
849 if (buffers < DM_BUFIO_MIN_BUFFERS)
850 buffers = DM_BUFIO_MIN_BUFFERS;
851
852 *limit_buffers = buffers;
853 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
854 }
855
856 /*
857 * Check if we're over watermark.
858 * If we are over threshold_buffers, start freeing buffers.
859 * If we're over "limit_buffers", block until we get under the limit.
860 */
__check_watermark(struct dm_bufio_client * c)861 static void __check_watermark(struct dm_bufio_client *c)
862 {
863 unsigned long threshold_buffers, limit_buffers;
864
865 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
866
867 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
868 limit_buffers) {
869
870 struct dm_buffer *b = __get_unclaimed_buffer(c);
871
872 if (!b)
873 return;
874
875 __free_buffer_wake(b);
876 dm_bufio_cond_resched();
877 }
878
879 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
880 __write_dirty_buffers_async(c, 1);
881 }
882
883 /*
884 * Find a buffer in the hash.
885 */
__find(struct dm_bufio_client * c,sector_t block)886 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
887 {
888 struct dm_buffer *b;
889 struct hlist_node *hn;
890
891 hlist_for_each_entry(b, hn, &c->cache_hash[DM_BUFIO_HASH(block)],
892 hash_list) {
893 dm_bufio_cond_resched();
894 if (b->block == block)
895 return b;
896 }
897
898 return NULL;
899 }
900
901 /*----------------------------------------------------------------
902 * Getting a buffer
903 *--------------------------------------------------------------*/
904
__bufio_new(struct dm_bufio_client * c,sector_t block,enum new_flag nf,int * need_submit)905 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
906 enum new_flag nf, int *need_submit)
907 {
908 struct dm_buffer *b, *new_b = NULL;
909
910 *need_submit = 0;
911
912 b = __find(c, block);
913 if (b)
914 goto found_buffer;
915
916 if (nf == NF_GET)
917 return NULL;
918
919 new_b = __alloc_buffer_wait(c, nf);
920 if (!new_b)
921 return NULL;
922
923 /*
924 * We've had a period where the mutex was unlocked, so need to
925 * recheck the hash table.
926 */
927 b = __find(c, block);
928 if (b) {
929 __free_buffer_wake(new_b);
930 goto found_buffer;
931 }
932
933 __check_watermark(c);
934
935 b = new_b;
936 b->hold_count = 1;
937 b->read_error = 0;
938 b->write_error = 0;
939 __link_buffer(b, block, LIST_CLEAN);
940
941 if (nf == NF_FRESH) {
942 b->state = 0;
943 return b;
944 }
945
946 b->state = 1 << B_READING;
947 *need_submit = 1;
948
949 return b;
950
951 found_buffer:
952 if (nf == NF_PREFETCH)
953 return NULL;
954 /*
955 * Note: it is essential that we don't wait for the buffer to be
956 * read if dm_bufio_get function is used. Both dm_bufio_get and
957 * dm_bufio_prefetch can be used in the driver request routine.
958 * If the user called both dm_bufio_prefetch and dm_bufio_get on
959 * the same buffer, it would deadlock if we waited.
960 */
961 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
962 return NULL;
963
964 b->hold_count++;
965 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
966 test_bit(B_WRITING, &b->state));
967 return b;
968 }
969
970 /*
971 * The endio routine for reading: set the error, clear the bit and wake up
972 * anyone waiting on the buffer.
973 */
read_endio(struct bio * bio,int error)974 static void read_endio(struct bio *bio, int error)
975 {
976 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
977
978 b->read_error = error;
979
980 BUG_ON(!test_bit(B_READING, &b->state));
981
982 smp_mb__before_clear_bit();
983 clear_bit(B_READING, &b->state);
984 smp_mb__after_clear_bit();
985
986 wake_up_bit(&b->state, B_READING);
987 }
988
989 /*
990 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
991 * functions is similar except that dm_bufio_new doesn't read the
992 * buffer from the disk (assuming that the caller overwrites all the data
993 * and uses dm_bufio_mark_buffer_dirty to write new data back).
994 */
new_read(struct dm_bufio_client * c,sector_t block,enum new_flag nf,struct dm_buffer ** bp)995 static void *new_read(struct dm_bufio_client *c, sector_t block,
996 enum new_flag nf, struct dm_buffer **bp)
997 {
998 int need_submit;
999 struct dm_buffer *b;
1000
1001 dm_bufio_lock(c);
1002 b = __bufio_new(c, block, nf, &need_submit);
1003 dm_bufio_unlock(c);
1004
1005 if (!b)
1006 return b;
1007
1008 if (need_submit)
1009 submit_io(b, READ, b->block, read_endio);
1010
1011 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
1012
1013 if (b->read_error) {
1014 int error = b->read_error;
1015
1016 dm_bufio_release(b);
1017
1018 return ERR_PTR(error);
1019 }
1020
1021 *bp = b;
1022
1023 return b->data;
1024 }
1025
dm_bufio_get(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1026 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1027 struct dm_buffer **bp)
1028 {
1029 return new_read(c, block, NF_GET, bp);
1030 }
1031 EXPORT_SYMBOL_GPL(dm_bufio_get);
1032
dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1033 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1034 struct dm_buffer **bp)
1035 {
1036 BUG_ON(dm_bufio_in_request());
1037
1038 return new_read(c, block, NF_READ, bp);
1039 }
1040 EXPORT_SYMBOL_GPL(dm_bufio_read);
1041
dm_bufio_new(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1042 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1043 struct dm_buffer **bp)
1044 {
1045 BUG_ON(dm_bufio_in_request());
1046
1047 return new_read(c, block, NF_FRESH, bp);
1048 }
1049 EXPORT_SYMBOL_GPL(dm_bufio_new);
1050
dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned n_blocks)1051 void dm_bufio_prefetch(struct dm_bufio_client *c,
1052 sector_t block, unsigned n_blocks)
1053 {
1054 struct blk_plug plug;
1055
1056 blk_start_plug(&plug);
1057 dm_bufio_lock(c);
1058
1059 for (; n_blocks--; block++) {
1060 int need_submit;
1061 struct dm_buffer *b;
1062 b = __bufio_new(c, block, NF_PREFETCH, &need_submit);
1063 if (unlikely(b != NULL)) {
1064 dm_bufio_unlock(c);
1065
1066 if (need_submit)
1067 submit_io(b, READ, b->block, read_endio);
1068 dm_bufio_release(b);
1069
1070 dm_bufio_cond_resched();
1071
1072 if (!n_blocks)
1073 goto flush_plug;
1074 dm_bufio_lock(c);
1075 }
1076
1077 }
1078
1079 dm_bufio_unlock(c);
1080
1081 flush_plug:
1082 blk_finish_plug(&plug);
1083 }
1084 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1085
dm_bufio_release(struct dm_buffer * b)1086 void dm_bufio_release(struct dm_buffer *b)
1087 {
1088 struct dm_bufio_client *c = b->c;
1089
1090 dm_bufio_lock(c);
1091
1092 BUG_ON(!b->hold_count);
1093
1094 b->hold_count--;
1095 if (!b->hold_count) {
1096 wake_up(&c->free_buffer_wait);
1097
1098 /*
1099 * If there were errors on the buffer, and the buffer is not
1100 * to be written, free the buffer. There is no point in caching
1101 * invalid buffer.
1102 */
1103 if ((b->read_error || b->write_error) &&
1104 !test_bit(B_READING, &b->state) &&
1105 !test_bit(B_WRITING, &b->state) &&
1106 !test_bit(B_DIRTY, &b->state)) {
1107 __unlink_buffer(b);
1108 __free_buffer_wake(b);
1109 }
1110 }
1111
1112 dm_bufio_unlock(c);
1113 }
1114 EXPORT_SYMBOL_GPL(dm_bufio_release);
1115
dm_bufio_mark_buffer_dirty(struct dm_buffer * b)1116 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1117 {
1118 struct dm_bufio_client *c = b->c;
1119
1120 dm_bufio_lock(c);
1121
1122 BUG_ON(test_bit(B_READING, &b->state));
1123
1124 if (!test_and_set_bit(B_DIRTY, &b->state))
1125 __relink_lru(b, LIST_DIRTY);
1126
1127 dm_bufio_unlock(c);
1128 }
1129 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1130
dm_bufio_write_dirty_buffers_async(struct dm_bufio_client * c)1131 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1132 {
1133 BUG_ON(dm_bufio_in_request());
1134
1135 dm_bufio_lock(c);
1136 __write_dirty_buffers_async(c, 0);
1137 dm_bufio_unlock(c);
1138 }
1139 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1140
1141 /*
1142 * For performance, it is essential that the buffers are written asynchronously
1143 * and simultaneously (so that the block layer can merge the writes) and then
1144 * waited upon.
1145 *
1146 * Finally, we flush hardware disk cache.
1147 */
dm_bufio_write_dirty_buffers(struct dm_bufio_client * c)1148 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1149 {
1150 int a, f;
1151 unsigned long buffers_processed = 0;
1152 struct dm_buffer *b, *tmp;
1153
1154 dm_bufio_lock(c);
1155 __write_dirty_buffers_async(c, 0);
1156
1157 again:
1158 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1159 int dropped_lock = 0;
1160
1161 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1162 buffers_processed++;
1163
1164 BUG_ON(test_bit(B_READING, &b->state));
1165
1166 if (test_bit(B_WRITING, &b->state)) {
1167 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1168 dropped_lock = 1;
1169 b->hold_count++;
1170 dm_bufio_unlock(c);
1171 wait_on_bit(&b->state, B_WRITING,
1172 do_io_schedule,
1173 TASK_UNINTERRUPTIBLE);
1174 dm_bufio_lock(c);
1175 b->hold_count--;
1176 } else
1177 wait_on_bit(&b->state, B_WRITING,
1178 do_io_schedule,
1179 TASK_UNINTERRUPTIBLE);
1180 }
1181
1182 if (!test_bit(B_DIRTY, &b->state) &&
1183 !test_bit(B_WRITING, &b->state))
1184 __relink_lru(b, LIST_CLEAN);
1185
1186 dm_bufio_cond_resched();
1187
1188 /*
1189 * If we dropped the lock, the list is no longer consistent,
1190 * so we must restart the search.
1191 *
1192 * In the most common case, the buffer just processed is
1193 * relinked to the clean list, so we won't loop scanning the
1194 * same buffer again and again.
1195 *
1196 * This may livelock if there is another thread simultaneously
1197 * dirtying buffers, so we count the number of buffers walked
1198 * and if it exceeds the total number of buffers, it means that
1199 * someone is doing some writes simultaneously with us. In
1200 * this case, stop, dropping the lock.
1201 */
1202 if (dropped_lock)
1203 goto again;
1204 }
1205 wake_up(&c->free_buffer_wait);
1206 dm_bufio_unlock(c);
1207
1208 a = xchg(&c->async_write_error, 0);
1209 f = dm_bufio_issue_flush(c);
1210 if (a)
1211 return a;
1212
1213 return f;
1214 }
1215 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1216
1217 /*
1218 * Use dm-io to send and empty barrier flush the device.
1219 */
dm_bufio_issue_flush(struct dm_bufio_client * c)1220 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1221 {
1222 struct dm_io_request io_req = {
1223 .bi_rw = REQ_FLUSH,
1224 .mem.type = DM_IO_KMEM,
1225 .mem.ptr.addr = NULL,
1226 .client = c->dm_io,
1227 };
1228 struct dm_io_region io_reg = {
1229 .bdev = c->bdev,
1230 .sector = 0,
1231 .count = 0,
1232 };
1233
1234 BUG_ON(dm_bufio_in_request());
1235
1236 return dm_io(&io_req, 1, &io_reg, NULL);
1237 }
1238 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1239
1240 /*
1241 * We first delete any other buffer that may be at that new location.
1242 *
1243 * Then, we write the buffer to the original location if it was dirty.
1244 *
1245 * Then, if we are the only one who is holding the buffer, relink the buffer
1246 * in the hash queue for the new location.
1247 *
1248 * If there was someone else holding the buffer, we write it to the new
1249 * location but not relink it, because that other user needs to have the buffer
1250 * at the same place.
1251 */
dm_bufio_release_move(struct dm_buffer * b,sector_t new_block)1252 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1253 {
1254 struct dm_bufio_client *c = b->c;
1255 struct dm_buffer *new;
1256
1257 BUG_ON(dm_bufio_in_request());
1258
1259 dm_bufio_lock(c);
1260
1261 retry:
1262 new = __find(c, new_block);
1263 if (new) {
1264 if (new->hold_count) {
1265 __wait_for_free_buffer(c);
1266 goto retry;
1267 }
1268
1269 /*
1270 * FIXME: Is there any point waiting for a write that's going
1271 * to be overwritten in a bit?
1272 */
1273 __make_buffer_clean(new);
1274 __unlink_buffer(new);
1275 __free_buffer_wake(new);
1276 }
1277
1278 BUG_ON(!b->hold_count);
1279 BUG_ON(test_bit(B_READING, &b->state));
1280
1281 __write_dirty_buffer(b);
1282 if (b->hold_count == 1) {
1283 wait_on_bit(&b->state, B_WRITING,
1284 do_io_schedule, TASK_UNINTERRUPTIBLE);
1285 set_bit(B_DIRTY, &b->state);
1286 __unlink_buffer(b);
1287 __link_buffer(b, new_block, LIST_DIRTY);
1288 } else {
1289 sector_t old_block;
1290 wait_on_bit_lock(&b->state, B_WRITING,
1291 do_io_schedule, TASK_UNINTERRUPTIBLE);
1292 /*
1293 * Relink buffer to "new_block" so that write_callback
1294 * sees "new_block" as a block number.
1295 * After the write, link the buffer back to old_block.
1296 * All this must be done in bufio lock, so that block number
1297 * change isn't visible to other threads.
1298 */
1299 old_block = b->block;
1300 __unlink_buffer(b);
1301 __link_buffer(b, new_block, b->list_mode);
1302 submit_io(b, WRITE, new_block, write_endio);
1303 wait_on_bit(&b->state, B_WRITING,
1304 do_io_schedule, TASK_UNINTERRUPTIBLE);
1305 __unlink_buffer(b);
1306 __link_buffer(b, old_block, b->list_mode);
1307 }
1308
1309 dm_bufio_unlock(c);
1310 dm_bufio_release(b);
1311 }
1312 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1313
dm_bufio_get_block_size(struct dm_bufio_client * c)1314 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1315 {
1316 return c->block_size;
1317 }
1318 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1319
dm_bufio_get_device_size(struct dm_bufio_client * c)1320 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1321 {
1322 return i_size_read(c->bdev->bd_inode) >>
1323 (SECTOR_SHIFT + c->sectors_per_block_bits);
1324 }
1325 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1326
dm_bufio_get_block_number(struct dm_buffer * b)1327 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1328 {
1329 return b->block;
1330 }
1331 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1332
dm_bufio_get_block_data(struct dm_buffer * b)1333 void *dm_bufio_get_block_data(struct dm_buffer *b)
1334 {
1335 return b->data;
1336 }
1337 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1338
dm_bufio_get_aux_data(struct dm_buffer * b)1339 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1340 {
1341 return b + 1;
1342 }
1343 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1344
dm_bufio_get_client(struct dm_buffer * b)1345 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1346 {
1347 return b->c;
1348 }
1349 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1350
drop_buffers(struct dm_bufio_client * c)1351 static void drop_buffers(struct dm_bufio_client *c)
1352 {
1353 struct dm_buffer *b;
1354 int i;
1355
1356 BUG_ON(dm_bufio_in_request());
1357
1358 /*
1359 * An optimization so that the buffers are not written one-by-one.
1360 */
1361 dm_bufio_write_dirty_buffers_async(c);
1362
1363 dm_bufio_lock(c);
1364
1365 while ((b = __get_unclaimed_buffer(c)))
1366 __free_buffer_wake(b);
1367
1368 for (i = 0; i < LIST_SIZE; i++)
1369 list_for_each_entry(b, &c->lru[i], lru_list)
1370 DMERR("leaked buffer %llx, hold count %u, list %d",
1371 (unsigned long long)b->block, b->hold_count, i);
1372
1373 for (i = 0; i < LIST_SIZE; i++)
1374 BUG_ON(!list_empty(&c->lru[i]));
1375
1376 dm_bufio_unlock(c);
1377 }
1378
1379 /*
1380 * Test if the buffer is unused and too old, and commit it.
1381 * At if noio is set, we must not do any I/O because we hold
1382 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1383 * different bufio client.
1384 */
__cleanup_old_buffer(struct dm_buffer * b,gfp_t gfp,unsigned long max_jiffies)1385 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1386 unsigned long max_jiffies)
1387 {
1388 if (jiffies - b->last_accessed < max_jiffies)
1389 return 1;
1390
1391 if (!(gfp & __GFP_IO)) {
1392 if (test_bit(B_READING, &b->state) ||
1393 test_bit(B_WRITING, &b->state) ||
1394 test_bit(B_DIRTY, &b->state))
1395 return 1;
1396 }
1397
1398 if (b->hold_count)
1399 return 1;
1400
1401 __make_buffer_clean(b);
1402 __unlink_buffer(b);
1403 __free_buffer_wake(b);
1404
1405 return 0;
1406 }
1407
__scan(struct dm_bufio_client * c,unsigned long nr_to_scan,struct shrink_control * sc)1408 static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1409 struct shrink_control *sc)
1410 {
1411 int l;
1412 struct dm_buffer *b, *tmp;
1413
1414 for (l = 0; l < LIST_SIZE; l++) {
1415 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list)
1416 if (!__cleanup_old_buffer(b, sc->gfp_mask, 0) &&
1417 !--nr_to_scan)
1418 return;
1419 dm_bufio_cond_resched();
1420 }
1421 }
1422
shrink(struct shrinker * shrinker,struct shrink_control * sc)1423 static int shrink(struct shrinker *shrinker, struct shrink_control *sc)
1424 {
1425 struct dm_bufio_client *c =
1426 container_of(shrinker, struct dm_bufio_client, shrinker);
1427 unsigned long r;
1428 unsigned long nr_to_scan = sc->nr_to_scan;
1429
1430 if (sc->gfp_mask & __GFP_IO)
1431 dm_bufio_lock(c);
1432 else if (!dm_bufio_trylock(c))
1433 return !nr_to_scan ? 0 : -1;
1434
1435 if (nr_to_scan)
1436 __scan(c, nr_to_scan, sc);
1437
1438 r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1439 if (r > INT_MAX)
1440 r = INT_MAX;
1441
1442 dm_bufio_unlock(c);
1443
1444 return r;
1445 }
1446
1447 /*
1448 * Create the buffering interface
1449 */
dm_bufio_client_create(struct block_device * bdev,unsigned block_size,unsigned reserved_buffers,unsigned aux_size,void (* alloc_callback)(struct dm_buffer *),void (* write_callback)(struct dm_buffer *))1450 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1451 unsigned reserved_buffers, unsigned aux_size,
1452 void (*alloc_callback)(struct dm_buffer *),
1453 void (*write_callback)(struct dm_buffer *))
1454 {
1455 int r;
1456 struct dm_bufio_client *c;
1457 unsigned i;
1458
1459 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1460 (block_size & (block_size - 1)));
1461
1462 c = kmalloc(sizeof(*c), GFP_KERNEL);
1463 if (!c) {
1464 r = -ENOMEM;
1465 goto bad_client;
1466 }
1467 c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1468 if (!c->cache_hash) {
1469 r = -ENOMEM;
1470 goto bad_hash;
1471 }
1472
1473 c->bdev = bdev;
1474 c->block_size = block_size;
1475 c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1476 c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1477 ffs(block_size) - 1 - PAGE_SHIFT : 0;
1478 c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1479 PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1480
1481 c->aux_size = aux_size;
1482 c->alloc_callback = alloc_callback;
1483 c->write_callback = write_callback;
1484
1485 for (i = 0; i < LIST_SIZE; i++) {
1486 INIT_LIST_HEAD(&c->lru[i]);
1487 c->n_buffers[i] = 0;
1488 }
1489
1490 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1491 INIT_HLIST_HEAD(&c->cache_hash[i]);
1492
1493 mutex_init(&c->lock);
1494 INIT_LIST_HEAD(&c->reserved_buffers);
1495 c->need_reserved_buffers = reserved_buffers;
1496
1497 init_waitqueue_head(&c->free_buffer_wait);
1498 c->async_write_error = 0;
1499
1500 c->dm_io = dm_io_client_create();
1501 if (IS_ERR(c->dm_io)) {
1502 r = PTR_ERR(c->dm_io);
1503 goto bad_dm_io;
1504 }
1505
1506 mutex_lock(&dm_bufio_clients_lock);
1507 if (c->blocks_per_page_bits) {
1508 if (!DM_BUFIO_CACHE_NAME(c)) {
1509 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1510 if (!DM_BUFIO_CACHE_NAME(c)) {
1511 r = -ENOMEM;
1512 mutex_unlock(&dm_bufio_clients_lock);
1513 goto bad_cache;
1514 }
1515 }
1516
1517 if (!DM_BUFIO_CACHE(c)) {
1518 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1519 c->block_size,
1520 c->block_size, 0, NULL);
1521 if (!DM_BUFIO_CACHE(c)) {
1522 r = -ENOMEM;
1523 mutex_unlock(&dm_bufio_clients_lock);
1524 goto bad_cache;
1525 }
1526 }
1527 }
1528 mutex_unlock(&dm_bufio_clients_lock);
1529
1530 while (c->need_reserved_buffers) {
1531 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1532
1533 if (!b) {
1534 r = -ENOMEM;
1535 goto bad_buffer;
1536 }
1537 __free_buffer_wake(b);
1538 }
1539
1540 mutex_lock(&dm_bufio_clients_lock);
1541 dm_bufio_client_count++;
1542 list_add(&c->client_list, &dm_bufio_all_clients);
1543 __cache_size_refresh();
1544 mutex_unlock(&dm_bufio_clients_lock);
1545
1546 c->shrinker.shrink = shrink;
1547 c->shrinker.seeks = 1;
1548 c->shrinker.batch = 0;
1549 register_shrinker(&c->shrinker);
1550
1551 return c;
1552
1553 bad_buffer:
1554 bad_cache:
1555 while (!list_empty(&c->reserved_buffers)) {
1556 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1557 struct dm_buffer, lru_list);
1558 list_del(&b->lru_list);
1559 free_buffer(b);
1560 }
1561 dm_io_client_destroy(c->dm_io);
1562 bad_dm_io:
1563 vfree(c->cache_hash);
1564 bad_hash:
1565 kfree(c);
1566 bad_client:
1567 return ERR_PTR(r);
1568 }
1569 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1570
1571 /*
1572 * Free the buffering interface.
1573 * It is required that there are no references on any buffers.
1574 */
dm_bufio_client_destroy(struct dm_bufio_client * c)1575 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1576 {
1577 unsigned i;
1578
1579 drop_buffers(c);
1580
1581 unregister_shrinker(&c->shrinker);
1582
1583 mutex_lock(&dm_bufio_clients_lock);
1584
1585 list_del(&c->client_list);
1586 dm_bufio_client_count--;
1587 __cache_size_refresh();
1588
1589 mutex_unlock(&dm_bufio_clients_lock);
1590
1591 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1592 BUG_ON(!hlist_empty(&c->cache_hash[i]));
1593
1594 BUG_ON(c->need_reserved_buffers);
1595
1596 while (!list_empty(&c->reserved_buffers)) {
1597 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1598 struct dm_buffer, lru_list);
1599 list_del(&b->lru_list);
1600 free_buffer(b);
1601 }
1602
1603 for (i = 0; i < LIST_SIZE; i++)
1604 if (c->n_buffers[i])
1605 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1606
1607 for (i = 0; i < LIST_SIZE; i++)
1608 BUG_ON(c->n_buffers[i]);
1609
1610 dm_io_client_destroy(c->dm_io);
1611 vfree(c->cache_hash);
1612 kfree(c);
1613 }
1614 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1615
cleanup_old_buffers(void)1616 static void cleanup_old_buffers(void)
1617 {
1618 unsigned long max_age = dm_bufio_max_age;
1619 struct dm_bufio_client *c;
1620
1621 barrier();
1622
1623 if (max_age > ULONG_MAX / HZ)
1624 max_age = ULONG_MAX / HZ;
1625
1626 mutex_lock(&dm_bufio_clients_lock);
1627 list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1628 if (!dm_bufio_trylock(c))
1629 continue;
1630
1631 while (!list_empty(&c->lru[LIST_CLEAN])) {
1632 struct dm_buffer *b;
1633 b = list_entry(c->lru[LIST_CLEAN].prev,
1634 struct dm_buffer, lru_list);
1635 if (__cleanup_old_buffer(b, 0, max_age * HZ))
1636 break;
1637 dm_bufio_cond_resched();
1638 }
1639
1640 dm_bufio_unlock(c);
1641 dm_bufio_cond_resched();
1642 }
1643 mutex_unlock(&dm_bufio_clients_lock);
1644 }
1645
1646 static struct workqueue_struct *dm_bufio_wq;
1647 static struct delayed_work dm_bufio_work;
1648
work_fn(struct work_struct * w)1649 static void work_fn(struct work_struct *w)
1650 {
1651 cleanup_old_buffers();
1652
1653 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1654 DM_BUFIO_WORK_TIMER_SECS * HZ);
1655 }
1656
1657 /*----------------------------------------------------------------
1658 * Module setup
1659 *--------------------------------------------------------------*/
1660
1661 /*
1662 * This is called only once for the whole dm_bufio module.
1663 * It initializes memory limit.
1664 */
dm_bufio_init(void)1665 static int __init dm_bufio_init(void)
1666 {
1667 __u64 mem;
1668
1669 dm_bufio_allocated_kmem_cache = 0;
1670 dm_bufio_allocated_get_free_pages = 0;
1671 dm_bufio_allocated_vmalloc = 0;
1672 dm_bufio_current_allocated = 0;
1673
1674 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1675 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1676
1677 mem = (__u64)((totalram_pages - totalhigh_pages) *
1678 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1679
1680 if (mem > ULONG_MAX)
1681 mem = ULONG_MAX;
1682
1683 #ifdef CONFIG_MMU
1684 /*
1685 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1686 * in fs/proc/internal.h
1687 */
1688 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1689 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1690 #endif
1691
1692 dm_bufio_default_cache_size = mem;
1693
1694 mutex_lock(&dm_bufio_clients_lock);
1695 __cache_size_refresh();
1696 mutex_unlock(&dm_bufio_clients_lock);
1697
1698 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1699 if (!dm_bufio_wq)
1700 return -ENOMEM;
1701
1702 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1703 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1704 DM_BUFIO_WORK_TIMER_SECS * HZ);
1705
1706 return 0;
1707 }
1708
1709 /*
1710 * This is called once when unloading the dm_bufio module.
1711 */
dm_bufio_exit(void)1712 static void __exit dm_bufio_exit(void)
1713 {
1714 int bug = 0;
1715 int i;
1716
1717 cancel_delayed_work_sync(&dm_bufio_work);
1718 destroy_workqueue(dm_bufio_wq);
1719
1720 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1721 struct kmem_cache *kc = dm_bufio_caches[i];
1722
1723 if (kc)
1724 kmem_cache_destroy(kc);
1725 }
1726
1727 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1728 kfree(dm_bufio_cache_names[i]);
1729
1730 if (dm_bufio_client_count) {
1731 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1732 __func__, dm_bufio_client_count);
1733 bug = 1;
1734 }
1735
1736 if (dm_bufio_current_allocated) {
1737 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1738 __func__, dm_bufio_current_allocated);
1739 bug = 1;
1740 }
1741
1742 if (dm_bufio_allocated_get_free_pages) {
1743 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1744 __func__, dm_bufio_allocated_get_free_pages);
1745 bug = 1;
1746 }
1747
1748 if (dm_bufio_allocated_vmalloc) {
1749 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1750 __func__, dm_bufio_allocated_vmalloc);
1751 bug = 1;
1752 }
1753
1754 if (bug)
1755 BUG();
1756 }
1757
1758 module_init(dm_bufio_init)
1759 module_exit(dm_bufio_exit)
1760
1761 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1762 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1763
1764 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1765 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1766
1767 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1768 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1769
1770 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1771 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1772
1773 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1774 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1775
1776 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1777 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1778
1779 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1780 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1781
1782 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1783 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1784 MODULE_LICENSE("GPL");
1785