1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33
34 #define DM_MSG_PREFIX "core"
35
36 /*
37 * Cookies are numeric values sent with CHANGE and REMOVE
38 * uevents while resuming, removing or renaming the device.
39 */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42
43 /*
44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45 * dm_io into one list, and reuse bio->bi_private as the list head. Before
46 * ending this fs bio, we will recover its ->bi_private.
47 */
48 #define REQ_DM_POLL_LIST REQ_DRV
49
50 static const char *_name = DM_NAME;
51
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54
55 static DEFINE_IDR(_minor_idr);
56
57 static DEFINE_SPINLOCK(_minor_lock);
58
59 static void do_deferred_remove(struct work_struct *w);
60
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62
63 static struct workqueue_struct *deferred_remove_workqueue;
64
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67
dm_issue_global_event(void)68 void dm_issue_global_event(void)
69 {
70 atomic_inc(&dm_global_event_nr);
71 wake_up(&dm_global_eventq);
72 }
73
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
77
78 /*
79 * One of these is allocated (on-stack) per original bio.
80 */
81 struct clone_info {
82 struct dm_table *map;
83 struct bio *bio;
84 struct dm_io *io;
85 sector_t sector;
86 unsigned sector_count;
87 bool is_abnormal_io:1;
88 bool submit_as_polled:1;
89 };
90
clone_to_tio(struct bio * clone)91 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
92 {
93 return container_of(clone, struct dm_target_io, clone);
94 }
95
dm_per_bio_data(struct bio * bio,size_t data_size)96 void *dm_per_bio_data(struct bio *bio, size_t data_size)
97 {
98 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
99 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
100 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
101 }
102 EXPORT_SYMBOL_GPL(dm_per_bio_data);
103
dm_bio_from_per_bio_data(void * data,size_t data_size)104 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
105 {
106 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
107 if (io->magic == DM_IO_MAGIC)
108 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
109 BUG_ON(io->magic != DM_TIO_MAGIC);
110 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
111 }
112 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
113
dm_bio_get_target_bio_nr(const struct bio * bio)114 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
115 {
116 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
117 }
118 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
119
120 #define MINOR_ALLOCED ((void *)-1)
121
122 #define DM_NUMA_NODE NUMA_NO_NODE
123 static int dm_numa_node = DM_NUMA_NODE;
124
125 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
126 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)127 static int get_swap_bios(void)
128 {
129 int latch = READ_ONCE(swap_bios);
130 if (unlikely(latch <= 0))
131 latch = DEFAULT_SWAP_BIOS;
132 return latch;
133 }
134
135 struct table_device {
136 struct list_head list;
137 refcount_t count;
138 struct dm_dev dm_dev;
139 };
140
141 /*
142 * Bio-based DM's mempools' reserved IOs set by the user.
143 */
144 #define RESERVED_BIO_BASED_IOS 16
145 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
146
__dm_get_module_param_int(int * module_param,int min,int max)147 static int __dm_get_module_param_int(int *module_param, int min, int max)
148 {
149 int param = READ_ONCE(*module_param);
150 int modified_param = 0;
151 bool modified = true;
152
153 if (param < min)
154 modified_param = min;
155 else if (param > max)
156 modified_param = max;
157 else
158 modified = false;
159
160 if (modified) {
161 (void)cmpxchg(module_param, param, modified_param);
162 param = modified_param;
163 }
164
165 return param;
166 }
167
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)168 unsigned __dm_get_module_param(unsigned *module_param,
169 unsigned def, unsigned max)
170 {
171 unsigned param = READ_ONCE(*module_param);
172 unsigned modified_param = 0;
173
174 if (!param)
175 modified_param = def;
176 else if (param > max)
177 modified_param = max;
178
179 if (modified_param) {
180 (void)cmpxchg(module_param, param, modified_param);
181 param = modified_param;
182 }
183
184 return param;
185 }
186
dm_get_reserved_bio_based_ios(void)187 unsigned dm_get_reserved_bio_based_ios(void)
188 {
189 return __dm_get_module_param(&reserved_bio_based_ios,
190 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
191 }
192 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
193
dm_get_numa_node(void)194 static unsigned dm_get_numa_node(void)
195 {
196 return __dm_get_module_param_int(&dm_numa_node,
197 DM_NUMA_NODE, num_online_nodes() - 1);
198 }
199
local_init(void)200 static int __init local_init(void)
201 {
202 int r;
203
204 r = dm_uevent_init();
205 if (r)
206 return r;
207
208 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
209 if (!deferred_remove_workqueue) {
210 r = -ENOMEM;
211 goto out_uevent_exit;
212 }
213
214 _major = major;
215 r = register_blkdev(_major, _name);
216 if (r < 0)
217 goto out_free_workqueue;
218
219 if (!_major)
220 _major = r;
221
222 return 0;
223
224 out_free_workqueue:
225 destroy_workqueue(deferred_remove_workqueue);
226 out_uevent_exit:
227 dm_uevent_exit();
228
229 return r;
230 }
231
local_exit(void)232 static void local_exit(void)
233 {
234 flush_scheduled_work();
235 destroy_workqueue(deferred_remove_workqueue);
236
237 unregister_blkdev(_major, _name);
238 dm_uevent_exit();
239
240 _major = 0;
241
242 DMINFO("cleaned up");
243 }
244
245 static int (*_inits[])(void) __initdata = {
246 local_init,
247 dm_target_init,
248 dm_linear_init,
249 dm_stripe_init,
250 dm_io_init,
251 dm_kcopyd_init,
252 dm_interface_init,
253 dm_statistics_init,
254 };
255
256 static void (*_exits[])(void) = {
257 local_exit,
258 dm_target_exit,
259 dm_linear_exit,
260 dm_stripe_exit,
261 dm_io_exit,
262 dm_kcopyd_exit,
263 dm_interface_exit,
264 dm_statistics_exit,
265 };
266
dm_init(void)267 static int __init dm_init(void)
268 {
269 const int count = ARRAY_SIZE(_inits);
270 int r, i;
271
272 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
273 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
274 " Duplicate IMA measurements will not be recorded in the IMA log.");
275 #endif
276
277 for (i = 0; i < count; i++) {
278 r = _inits[i]();
279 if (r)
280 goto bad;
281 }
282
283 return 0;
284 bad:
285 while (i--)
286 _exits[i]();
287
288 return r;
289 }
290
dm_exit(void)291 static void __exit dm_exit(void)
292 {
293 int i = ARRAY_SIZE(_exits);
294
295 while (i--)
296 _exits[i]();
297
298 /*
299 * Should be empty by this point.
300 */
301 idr_destroy(&_minor_idr);
302 }
303
304 /*
305 * Block device functions
306 */
dm_deleting_md(struct mapped_device * md)307 int dm_deleting_md(struct mapped_device *md)
308 {
309 return test_bit(DMF_DELETING, &md->flags);
310 }
311
dm_blk_open(struct block_device * bdev,fmode_t mode)312 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
313 {
314 struct mapped_device *md;
315
316 spin_lock(&_minor_lock);
317
318 md = bdev->bd_disk->private_data;
319 if (!md)
320 goto out;
321
322 if (test_bit(DMF_FREEING, &md->flags) ||
323 dm_deleting_md(md)) {
324 md = NULL;
325 goto out;
326 }
327
328 dm_get(md);
329 atomic_inc(&md->open_count);
330 out:
331 spin_unlock(&_minor_lock);
332
333 return md ? 0 : -ENXIO;
334 }
335
dm_blk_close(struct gendisk * disk,fmode_t mode)336 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
337 {
338 struct mapped_device *md;
339
340 spin_lock(&_minor_lock);
341
342 md = disk->private_data;
343 if (WARN_ON(!md))
344 goto out;
345
346 if (atomic_dec_and_test(&md->open_count) &&
347 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
348 queue_work(deferred_remove_workqueue, &deferred_remove_work);
349
350 dm_put(md);
351 out:
352 spin_unlock(&_minor_lock);
353 }
354
dm_open_count(struct mapped_device * md)355 int dm_open_count(struct mapped_device *md)
356 {
357 return atomic_read(&md->open_count);
358 }
359
360 /*
361 * Guarantees nothing is using the device before it's deleted.
362 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)363 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
364 {
365 int r = 0;
366
367 spin_lock(&_minor_lock);
368
369 if (dm_open_count(md)) {
370 r = -EBUSY;
371 if (mark_deferred)
372 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
373 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
374 r = -EEXIST;
375 else
376 set_bit(DMF_DELETING, &md->flags);
377
378 spin_unlock(&_minor_lock);
379
380 return r;
381 }
382
dm_cancel_deferred_remove(struct mapped_device * md)383 int dm_cancel_deferred_remove(struct mapped_device *md)
384 {
385 int r = 0;
386
387 spin_lock(&_minor_lock);
388
389 if (test_bit(DMF_DELETING, &md->flags))
390 r = -EBUSY;
391 else
392 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
393
394 spin_unlock(&_minor_lock);
395
396 return r;
397 }
398
do_deferred_remove(struct work_struct * w)399 static void do_deferred_remove(struct work_struct *w)
400 {
401 dm_deferred_remove();
402 }
403
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)404 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
405 {
406 struct mapped_device *md = bdev->bd_disk->private_data;
407
408 return dm_get_geometry(md, geo);
409 }
410
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)411 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
412 struct block_device **bdev)
413 {
414 struct dm_target *ti;
415 struct dm_table *map;
416 int r;
417
418 retry:
419 r = -ENOTTY;
420 map = dm_get_live_table(md, srcu_idx);
421 if (!map || !dm_table_get_size(map))
422 return r;
423
424 /* We only support devices that have a single target */
425 if (map->num_targets != 1)
426 return r;
427
428 ti = dm_table_get_target(map, 0);
429 if (!ti->type->prepare_ioctl)
430 return r;
431
432 if (dm_suspended_md(md))
433 return -EAGAIN;
434
435 r = ti->type->prepare_ioctl(ti, bdev);
436 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
437 dm_put_live_table(md, *srcu_idx);
438 msleep(10);
439 goto retry;
440 }
441
442 return r;
443 }
444
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)445 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
446 {
447 dm_put_live_table(md, srcu_idx);
448 }
449
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)450 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
451 unsigned int cmd, unsigned long arg)
452 {
453 struct mapped_device *md = bdev->bd_disk->private_data;
454 int r, srcu_idx;
455
456 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
457 if (r < 0)
458 goto out;
459
460 if (r > 0) {
461 /*
462 * Target determined this ioctl is being issued against a
463 * subset of the parent bdev; require extra privileges.
464 */
465 if (!capable(CAP_SYS_RAWIO)) {
466 DMDEBUG_LIMIT(
467 "%s: sending ioctl %x to DM device without required privilege.",
468 current->comm, cmd);
469 r = -ENOIOCTLCMD;
470 goto out;
471 }
472 }
473
474 if (!bdev->bd_disk->fops->ioctl)
475 r = -ENOTTY;
476 else
477 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
478 out:
479 dm_unprepare_ioctl(md, srcu_idx);
480 return r;
481 }
482
dm_start_time_ns_from_clone(struct bio * bio)483 u64 dm_start_time_ns_from_clone(struct bio *bio)
484 {
485 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
486 }
487 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
488
bio_is_flush_with_data(struct bio * bio)489 static bool bio_is_flush_with_data(struct bio *bio)
490 {
491 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
492 }
493
dm_io_acct(struct dm_io * io,bool end)494 static void dm_io_acct(struct dm_io *io, bool end)
495 {
496 struct dm_stats_aux *stats_aux = &io->stats_aux;
497 unsigned long start_time = io->start_time;
498 struct mapped_device *md = io->md;
499 struct bio *bio = io->orig_bio;
500 unsigned int sectors;
501
502 /*
503 * If REQ_PREFLUSH set, don't account payload, it will be
504 * submitted (and accounted) after this flush completes.
505 */
506 if (bio_is_flush_with_data(bio))
507 sectors = 0;
508 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
509 sectors = bio_sectors(bio);
510 else
511 sectors = io->sectors;
512
513 if (!end)
514 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
515 start_time);
516 else
517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
518
519 if (static_branch_unlikely(&stats_enabled) &&
520 unlikely(dm_stats_used(&md->stats))) {
521 sector_t sector;
522
523 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
524 sector = bio->bi_iter.bi_sector;
525 else
526 sector = bio_end_sector(bio) - io->sector_offset;
527
528 dm_stats_account_io(&md->stats, bio_data_dir(bio),
529 sector, sectors,
530 end, start_time, stats_aux);
531 }
532 }
533
__dm_start_io_acct(struct dm_io * io)534 static void __dm_start_io_acct(struct dm_io *io)
535 {
536 dm_io_acct(io, false);
537 }
538
dm_start_io_acct(struct dm_io * io,struct bio * clone)539 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
540 {
541 /*
542 * Ensure IO accounting is only ever started once.
543 */
544 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
545 return;
546
547 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
548 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
549 dm_io_set_flag(io, DM_IO_ACCOUNTED);
550 } else {
551 unsigned long flags;
552 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
553 spin_lock_irqsave(&io->lock, flags);
554 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
555 spin_unlock_irqrestore(&io->lock, flags);
556 return;
557 }
558 dm_io_set_flag(io, DM_IO_ACCOUNTED);
559 spin_unlock_irqrestore(&io->lock, flags);
560 }
561
562 __dm_start_io_acct(io);
563 }
564
dm_end_io_acct(struct dm_io * io)565 static void dm_end_io_acct(struct dm_io *io)
566 {
567 dm_io_acct(io, true);
568 }
569
alloc_io(struct mapped_device * md,struct bio * bio)570 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
571 {
572 struct dm_io *io;
573 struct dm_target_io *tio;
574 struct bio *clone;
575
576 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
577 tio = clone_to_tio(clone);
578 tio->flags = 0;
579 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
580 tio->io = NULL;
581
582 io = container_of(tio, struct dm_io, tio);
583 io->magic = DM_IO_MAGIC;
584 io->status = BLK_STS_OK;
585
586 /* one ref is for submission, the other is for completion */
587 atomic_set(&io->io_count, 2);
588 this_cpu_inc(*md->pending_io);
589 io->orig_bio = bio;
590 io->md = md;
591 spin_lock_init(&io->lock);
592 io->start_time = jiffies;
593 io->flags = 0;
594
595 if (static_branch_unlikely(&stats_enabled))
596 dm_stats_record_start(&md->stats, &io->stats_aux);
597
598 return io;
599 }
600
free_io(struct dm_io * io)601 static void free_io(struct dm_io *io)
602 {
603 bio_put(&io->tio.clone);
604 }
605
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,unsigned * len,gfp_t gfp_mask)606 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
607 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
608 {
609 struct mapped_device *md = ci->io->md;
610 struct dm_target_io *tio;
611 struct bio *clone;
612
613 if (!ci->io->tio.io) {
614 /* the dm_target_io embedded in ci->io is available */
615 tio = &ci->io->tio;
616 /* alloc_io() already initialized embedded clone */
617 clone = &tio->clone;
618 } else {
619 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
620 &md->mempools->bs);
621 if (!clone)
622 return NULL;
623
624 /* REQ_DM_POLL_LIST shouldn't be inherited */
625 clone->bi_opf &= ~REQ_DM_POLL_LIST;
626
627 tio = clone_to_tio(clone);
628 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
629 }
630
631 tio->magic = DM_TIO_MAGIC;
632 tio->io = ci->io;
633 tio->ti = ti;
634 tio->target_bio_nr = target_bio_nr;
635 tio->len_ptr = len;
636 tio->old_sector = 0;
637
638 /* Set default bdev, but target must bio_set_dev() before issuing IO */
639 clone->bi_bdev = md->disk->part0;
640 if (unlikely(ti->needs_bio_set_dev))
641 bio_set_dev(clone, md->disk->part0);
642
643 if (len) {
644 clone->bi_iter.bi_size = to_bytes(*len);
645 if (bio_integrity(clone))
646 bio_integrity_trim(clone);
647 }
648
649 return clone;
650 }
651
free_tio(struct bio * clone)652 static void free_tio(struct bio *clone)
653 {
654 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
655 return;
656 bio_put(clone);
657 }
658
659 /*
660 * Add the bio to the list of deferred io.
661 */
queue_io(struct mapped_device * md,struct bio * bio)662 static void queue_io(struct mapped_device *md, struct bio *bio)
663 {
664 unsigned long flags;
665
666 spin_lock_irqsave(&md->deferred_lock, flags);
667 bio_list_add(&md->deferred, bio);
668 spin_unlock_irqrestore(&md->deferred_lock, flags);
669 queue_work(md->wq, &md->work);
670 }
671
672 /*
673 * Everyone (including functions in this file), should use this
674 * function to access the md->map field, and make sure they call
675 * dm_put_live_table() when finished.
676 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)677 struct dm_table *dm_get_live_table(struct mapped_device *md,
678 int *srcu_idx) __acquires(md->io_barrier)
679 {
680 *srcu_idx = srcu_read_lock(&md->io_barrier);
681
682 return srcu_dereference(md->map, &md->io_barrier);
683 }
684
dm_put_live_table(struct mapped_device * md,int srcu_idx)685 void dm_put_live_table(struct mapped_device *md,
686 int srcu_idx) __releases(md->io_barrier)
687 {
688 srcu_read_unlock(&md->io_barrier, srcu_idx);
689 }
690
dm_sync_table(struct mapped_device * md)691 void dm_sync_table(struct mapped_device *md)
692 {
693 synchronize_srcu(&md->io_barrier);
694 synchronize_rcu_expedited();
695 }
696
697 /*
698 * A fast alternative to dm_get_live_table/dm_put_live_table.
699 * The caller must not block between these two functions.
700 */
dm_get_live_table_fast(struct mapped_device * md)701 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
702 {
703 rcu_read_lock();
704 return rcu_dereference(md->map);
705 }
706
dm_put_live_table_fast(struct mapped_device * md)707 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
708 {
709 rcu_read_unlock();
710 }
711
dm_get_live_table_bio(struct mapped_device * md,int * srcu_idx,blk_opf_t bio_opf)712 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
713 int *srcu_idx, blk_opf_t bio_opf)
714 {
715 if (bio_opf & REQ_NOWAIT)
716 return dm_get_live_table_fast(md);
717 else
718 return dm_get_live_table(md, srcu_idx);
719 }
720
dm_put_live_table_bio(struct mapped_device * md,int srcu_idx,blk_opf_t bio_opf)721 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
722 blk_opf_t bio_opf)
723 {
724 if (bio_opf & REQ_NOWAIT)
725 dm_put_live_table_fast(md);
726 else
727 dm_put_live_table(md, srcu_idx);
728 }
729
730 static char *_dm_claim_ptr = "I belong to device-mapper";
731
732 /*
733 * Open a table device so we can use it as a map destination.
734 */
open_table_device(struct mapped_device * md,dev_t dev,fmode_t mode)735 static struct table_device *open_table_device(struct mapped_device *md,
736 dev_t dev, fmode_t mode)
737 {
738 struct table_device *td;
739 struct block_device *bdev;
740 u64 part_off;
741 int r;
742
743 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
744 if (!td)
745 return ERR_PTR(-ENOMEM);
746 refcount_set(&td->count, 1);
747
748 bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
749 if (IS_ERR(bdev)) {
750 r = PTR_ERR(bdev);
751 goto out_free_td;
752 }
753
754 /*
755 * We can be called before the dm disk is added. In that case we can't
756 * register the holder relation here. It will be done once add_disk was
757 * called.
758 */
759 if (md->disk->slave_dir) {
760 r = bd_link_disk_holder(bdev, md->disk);
761 if (r)
762 goto out_blkdev_put;
763 }
764
765 td->dm_dev.mode = mode;
766 td->dm_dev.bdev = bdev;
767 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
768 format_dev_t(td->dm_dev.name, dev);
769 list_add(&td->list, &md->table_devices);
770 return td;
771
772 out_blkdev_put:
773 blkdev_put(bdev, mode | FMODE_EXCL);
774 out_free_td:
775 kfree(td);
776 return ERR_PTR(r);
777 }
778
779 /*
780 * Close a table device that we've been using.
781 */
close_table_device(struct table_device * td,struct mapped_device * md)782 static void close_table_device(struct table_device *td, struct mapped_device *md)
783 {
784 if (md->disk->slave_dir)
785 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
786 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
787 put_dax(td->dm_dev.dax_dev);
788 list_del(&td->list);
789 kfree(td);
790 }
791
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)792 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
793 fmode_t mode)
794 {
795 struct table_device *td;
796
797 list_for_each_entry(td, l, list)
798 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
799 return td;
800
801 return NULL;
802 }
803
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)804 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
805 struct dm_dev **result)
806 {
807 struct table_device *td;
808
809 mutex_lock(&md->table_devices_lock);
810 td = find_table_device(&md->table_devices, dev, mode);
811 if (!td) {
812 td = open_table_device(md, dev, mode);
813 if (IS_ERR(td)) {
814 mutex_unlock(&md->table_devices_lock);
815 return PTR_ERR(td);
816 }
817 } else {
818 refcount_inc(&td->count);
819 }
820 mutex_unlock(&md->table_devices_lock);
821
822 *result = &td->dm_dev;
823 return 0;
824 }
825
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)826 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
827 {
828 struct table_device *td = container_of(d, struct table_device, dm_dev);
829
830 mutex_lock(&md->table_devices_lock);
831 if (refcount_dec_and_test(&td->count))
832 close_table_device(td, md);
833 mutex_unlock(&md->table_devices_lock);
834 }
835
free_table_devices(struct list_head * devices)836 static void free_table_devices(struct list_head *devices)
837 {
838 struct list_head *tmp, *next;
839
840 list_for_each_safe(tmp, next, devices) {
841 struct table_device *td = list_entry(tmp, struct table_device, list);
842
843 DMWARN("dm_destroy: %s still exists with %d references",
844 td->dm_dev.name, refcount_read(&td->count));
845 kfree(td);
846 }
847 }
848
849 /*
850 * Get the geometry associated with a dm device
851 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)852 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
853 {
854 *geo = md->geometry;
855
856 return 0;
857 }
858
859 /*
860 * Set the geometry of a device.
861 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)862 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
863 {
864 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
865
866 if (geo->start > sz) {
867 DMERR("Start sector is beyond the geometry limits.");
868 return -EINVAL;
869 }
870
871 md->geometry = *geo;
872
873 return 0;
874 }
875
__noflush_suspending(struct mapped_device * md)876 static int __noflush_suspending(struct mapped_device *md)
877 {
878 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
879 }
880
dm_requeue_add_io(struct dm_io * io,bool first_stage)881 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
882 {
883 struct mapped_device *md = io->md;
884
885 if (first_stage) {
886 struct dm_io *next = md->requeue_list;
887
888 md->requeue_list = io;
889 io->next = next;
890 } else {
891 bio_list_add_head(&md->deferred, io->orig_bio);
892 }
893 }
894
dm_kick_requeue(struct mapped_device * md,bool first_stage)895 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
896 {
897 if (first_stage)
898 queue_work(md->wq, &md->requeue_work);
899 else
900 queue_work(md->wq, &md->work);
901 }
902
903 /*
904 * Return true if the dm_io's original bio is requeued.
905 * io->status is updated with error if requeue disallowed.
906 */
dm_handle_requeue(struct dm_io * io,bool first_stage)907 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
908 {
909 struct bio *bio = io->orig_bio;
910 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
911 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
912 (bio->bi_opf & REQ_POLLED));
913 struct mapped_device *md = io->md;
914 bool requeued = false;
915
916 if (handle_requeue || handle_polled_eagain) {
917 unsigned long flags;
918
919 if (bio->bi_opf & REQ_POLLED) {
920 /*
921 * Upper layer won't help us poll split bio
922 * (io->orig_bio may only reflect a subset of the
923 * pre-split original) so clear REQ_POLLED.
924 */
925 bio_clear_polled(bio);
926 }
927
928 /*
929 * Target requested pushing back the I/O or
930 * polled IO hit BLK_STS_AGAIN.
931 */
932 spin_lock_irqsave(&md->deferred_lock, flags);
933 if ((__noflush_suspending(md) &&
934 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
935 handle_polled_eagain || first_stage) {
936 dm_requeue_add_io(io, first_stage);
937 requeued = true;
938 } else {
939 /*
940 * noflush suspend was interrupted or this is
941 * a write to a zoned target.
942 */
943 io->status = BLK_STS_IOERR;
944 }
945 spin_unlock_irqrestore(&md->deferred_lock, flags);
946 }
947
948 if (requeued)
949 dm_kick_requeue(md, first_stage);
950
951 return requeued;
952 }
953
__dm_io_complete(struct dm_io * io,bool first_stage)954 static void __dm_io_complete(struct dm_io *io, bool first_stage)
955 {
956 struct bio *bio = io->orig_bio;
957 struct mapped_device *md = io->md;
958 blk_status_t io_error;
959 bool requeued;
960
961 requeued = dm_handle_requeue(io, first_stage);
962 if (requeued && first_stage)
963 return;
964
965 io_error = io->status;
966 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
967 dm_end_io_acct(io);
968 else if (!io_error) {
969 /*
970 * Must handle target that DM_MAPIO_SUBMITTED only to
971 * then bio_endio() rather than dm_submit_bio_remap()
972 */
973 __dm_start_io_acct(io);
974 dm_end_io_acct(io);
975 }
976 free_io(io);
977 smp_wmb();
978 this_cpu_dec(*md->pending_io);
979
980 /* nudge anyone waiting on suspend queue */
981 if (unlikely(wq_has_sleeper(&md->wait)))
982 wake_up(&md->wait);
983
984 /* Return early if the original bio was requeued */
985 if (requeued)
986 return;
987
988 if (bio_is_flush_with_data(bio)) {
989 /*
990 * Preflush done for flush with data, reissue
991 * without REQ_PREFLUSH.
992 */
993 bio->bi_opf &= ~REQ_PREFLUSH;
994 queue_io(md, bio);
995 } else {
996 /* done with normal IO or empty flush */
997 if (io_error)
998 bio->bi_status = io_error;
999 bio_endio(bio);
1000 }
1001 }
1002
dm_wq_requeue_work(struct work_struct * work)1003 static void dm_wq_requeue_work(struct work_struct *work)
1004 {
1005 struct mapped_device *md = container_of(work, struct mapped_device,
1006 requeue_work);
1007 unsigned long flags;
1008 struct dm_io *io;
1009
1010 /* reuse deferred lock to simplify dm_handle_requeue */
1011 spin_lock_irqsave(&md->deferred_lock, flags);
1012 io = md->requeue_list;
1013 md->requeue_list = NULL;
1014 spin_unlock_irqrestore(&md->deferred_lock, flags);
1015
1016 while (io) {
1017 struct dm_io *next = io->next;
1018
1019 dm_io_rewind(io, &md->disk->bio_split);
1020
1021 io->next = NULL;
1022 __dm_io_complete(io, false);
1023 io = next;
1024 }
1025 }
1026
1027 /*
1028 * Two staged requeue:
1029 *
1030 * 1) io->orig_bio points to the real original bio, and the part mapped to
1031 * this io must be requeued, instead of other parts of the original bio.
1032 *
1033 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1034 */
dm_io_complete(struct dm_io * io)1035 static void dm_io_complete(struct dm_io *io)
1036 {
1037 bool first_requeue;
1038
1039 /*
1040 * Only dm_io that has been split needs two stage requeue, otherwise
1041 * we may run into long bio clone chain during suspend and OOM could
1042 * be triggered.
1043 *
1044 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1045 * also aren't handled via the first stage requeue.
1046 */
1047 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1048 first_requeue = true;
1049 else
1050 first_requeue = false;
1051
1052 __dm_io_complete(io, first_requeue);
1053 }
1054
1055 /*
1056 * Decrements the number of outstanding ios that a bio has been
1057 * cloned into, completing the original io if necc.
1058 */
__dm_io_dec_pending(struct dm_io * io)1059 static inline void __dm_io_dec_pending(struct dm_io *io)
1060 {
1061 if (atomic_dec_and_test(&io->io_count))
1062 dm_io_complete(io);
1063 }
1064
dm_io_set_error(struct dm_io * io,blk_status_t error)1065 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1066 {
1067 unsigned long flags;
1068
1069 /* Push-back supersedes any I/O errors */
1070 spin_lock_irqsave(&io->lock, flags);
1071 if (!(io->status == BLK_STS_DM_REQUEUE &&
1072 __noflush_suspending(io->md))) {
1073 io->status = error;
1074 }
1075 spin_unlock_irqrestore(&io->lock, flags);
1076 }
1077
dm_io_dec_pending(struct dm_io * io,blk_status_t error)1078 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1079 {
1080 if (unlikely(error))
1081 dm_io_set_error(io, error);
1082
1083 __dm_io_dec_pending(io);
1084 }
1085
disable_discard(struct mapped_device * md)1086 void disable_discard(struct mapped_device *md)
1087 {
1088 struct queue_limits *limits = dm_get_queue_limits(md);
1089
1090 /* device doesn't really support DISCARD, disable it */
1091 limits->max_discard_sectors = 0;
1092 }
1093
disable_write_zeroes(struct mapped_device * md)1094 void disable_write_zeroes(struct mapped_device *md)
1095 {
1096 struct queue_limits *limits = dm_get_queue_limits(md);
1097
1098 /* device doesn't really support WRITE ZEROES, disable it */
1099 limits->max_write_zeroes_sectors = 0;
1100 }
1101
swap_bios_limit(struct dm_target * ti,struct bio * bio)1102 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1103 {
1104 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1105 }
1106
clone_endio(struct bio * bio)1107 static void clone_endio(struct bio *bio)
1108 {
1109 blk_status_t error = bio->bi_status;
1110 struct dm_target_io *tio = clone_to_tio(bio);
1111 struct dm_target *ti = tio->ti;
1112 dm_endio_fn endio = ti->type->end_io;
1113 struct dm_io *io = tio->io;
1114 struct mapped_device *md = io->md;
1115
1116 if (unlikely(error == BLK_STS_TARGET)) {
1117 if (bio_op(bio) == REQ_OP_DISCARD &&
1118 !bdev_max_discard_sectors(bio->bi_bdev))
1119 disable_discard(md);
1120 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1121 !bdev_write_zeroes_sectors(bio->bi_bdev))
1122 disable_write_zeroes(md);
1123 }
1124
1125 if (static_branch_unlikely(&zoned_enabled) &&
1126 unlikely(bdev_is_zoned(bio->bi_bdev)))
1127 dm_zone_endio(io, bio);
1128
1129 if (endio) {
1130 int r = endio(ti, bio, &error);
1131 switch (r) {
1132 case DM_ENDIO_REQUEUE:
1133 if (static_branch_unlikely(&zoned_enabled)) {
1134 /*
1135 * Requeuing writes to a sequential zone of a zoned
1136 * target will break the sequential write pattern:
1137 * fail such IO.
1138 */
1139 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140 error = BLK_STS_IOERR;
1141 else
1142 error = BLK_STS_DM_REQUEUE;
1143 } else
1144 error = BLK_STS_DM_REQUEUE;
1145 fallthrough;
1146 case DM_ENDIO_DONE:
1147 break;
1148 case DM_ENDIO_INCOMPLETE:
1149 /* The target will handle the io */
1150 return;
1151 default:
1152 DMCRIT("unimplemented target endio return value: %d", r);
1153 BUG();
1154 }
1155 }
1156
1157 if (static_branch_unlikely(&swap_bios_enabled) &&
1158 unlikely(swap_bios_limit(ti, bio)))
1159 up(&md->swap_bios_semaphore);
1160
1161 free_tio(bio);
1162 dm_io_dec_pending(io, error);
1163 }
1164
1165 /*
1166 * Return maximum size of I/O possible at the supplied sector up to the current
1167 * target boundary.
1168 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1169 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170 sector_t target_offset)
1171 {
1172 return ti->len - target_offset;
1173 }
1174
max_io_len(struct dm_target * ti,sector_t sector)1175 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1176 {
1177 sector_t target_offset = dm_target_offset(ti, sector);
1178 sector_t len = max_io_len_target_boundary(ti, target_offset);
1179
1180 /*
1181 * Does the target need to split IO even further?
1182 * - varied (per target) IO splitting is a tenet of DM; this
1183 * explains why stacked chunk_sectors based splitting via
1184 * bio_split_to_limits() isn't possible here.
1185 */
1186 if (!ti->max_io_len)
1187 return len;
1188 return min_t(sector_t, len,
1189 min(queue_max_sectors(ti->table->md->queue),
1190 blk_chunk_sectors_left(target_offset, ti->max_io_len)));
1191 }
1192
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1193 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1194 {
1195 if (len > UINT_MAX) {
1196 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1197 (unsigned long long)len, UINT_MAX);
1198 ti->error = "Maximum size of target IO is too large";
1199 return -EINVAL;
1200 }
1201
1202 ti->max_io_len = (uint32_t) len;
1203
1204 return 0;
1205 }
1206 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1207
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1208 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1209 sector_t sector, int *srcu_idx)
1210 __acquires(md->io_barrier)
1211 {
1212 struct dm_table *map;
1213 struct dm_target *ti;
1214
1215 map = dm_get_live_table(md, srcu_idx);
1216 if (!map)
1217 return NULL;
1218
1219 ti = dm_table_find_target(map, sector);
1220 if (!ti)
1221 return NULL;
1222
1223 return ti;
1224 }
1225
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)1226 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1227 long nr_pages, enum dax_access_mode mode, void **kaddr,
1228 pfn_t *pfn)
1229 {
1230 struct mapped_device *md = dax_get_private(dax_dev);
1231 sector_t sector = pgoff * PAGE_SECTORS;
1232 struct dm_target *ti;
1233 long len, ret = -EIO;
1234 int srcu_idx;
1235
1236 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1237
1238 if (!ti)
1239 goto out;
1240 if (!ti->type->direct_access)
1241 goto out;
1242 len = max_io_len(ti, sector) / PAGE_SECTORS;
1243 if (len < 1)
1244 goto out;
1245 nr_pages = min(len, nr_pages);
1246 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1247
1248 out:
1249 dm_put_live_table(md, srcu_idx);
1250
1251 return ret;
1252 }
1253
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1254 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1255 size_t nr_pages)
1256 {
1257 struct mapped_device *md = dax_get_private(dax_dev);
1258 sector_t sector = pgoff * PAGE_SECTORS;
1259 struct dm_target *ti;
1260 int ret = -EIO;
1261 int srcu_idx;
1262
1263 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1264
1265 if (!ti)
1266 goto out;
1267 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1268 /*
1269 * ->zero_page_range() is mandatory dax operation. If we are
1270 * here, something is wrong.
1271 */
1272 goto out;
1273 }
1274 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1275 out:
1276 dm_put_live_table(md, srcu_idx);
1277
1278 return ret;
1279 }
1280
dm_dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1281 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1282 void *addr, size_t bytes, struct iov_iter *i)
1283 {
1284 struct mapped_device *md = dax_get_private(dax_dev);
1285 sector_t sector = pgoff * PAGE_SECTORS;
1286 struct dm_target *ti;
1287 int srcu_idx;
1288 long ret = 0;
1289
1290 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1291 if (!ti || !ti->type->dax_recovery_write)
1292 goto out;
1293
1294 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1295 out:
1296 dm_put_live_table(md, srcu_idx);
1297 return ret;
1298 }
1299
1300 /*
1301 * A target may call dm_accept_partial_bio only from the map routine. It is
1302 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1303 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1304 * __send_duplicate_bios().
1305 *
1306 * dm_accept_partial_bio informs the dm that the target only wants to process
1307 * additional n_sectors sectors of the bio and the rest of the data should be
1308 * sent in a next bio.
1309 *
1310 * A diagram that explains the arithmetics:
1311 * +--------------------+---------------+-------+
1312 * | 1 | 2 | 3 |
1313 * +--------------------+---------------+-------+
1314 *
1315 * <-------------- *tio->len_ptr --------------->
1316 * <----- bio_sectors ----->
1317 * <-- n_sectors -->
1318 *
1319 * Region 1 was already iterated over with bio_advance or similar function.
1320 * (it may be empty if the target doesn't use bio_advance)
1321 * Region 2 is the remaining bio size that the target wants to process.
1322 * (it may be empty if region 1 is non-empty, although there is no reason
1323 * to make it empty)
1324 * The target requires that region 3 is to be sent in the next bio.
1325 *
1326 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1327 * the partially processed part (the sum of regions 1+2) must be the same for all
1328 * copies of the bio.
1329 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1330 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1331 {
1332 struct dm_target_io *tio = clone_to_tio(bio);
1333 struct dm_io *io = tio->io;
1334 unsigned bio_sectors = bio_sectors(bio);
1335
1336 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1337 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1338 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1339 BUG_ON(bio_sectors > *tio->len_ptr);
1340 BUG_ON(n_sectors > bio_sectors);
1341
1342 *tio->len_ptr -= bio_sectors - n_sectors;
1343 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1344
1345 /*
1346 * __split_and_process_bio() may have already saved mapped part
1347 * for accounting but it is being reduced so update accordingly.
1348 */
1349 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1350 io->sectors = n_sectors;
1351 io->sector_offset = bio_sectors(io->orig_bio);
1352 }
1353 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1354
1355 /*
1356 * @clone: clone bio that DM core passed to target's .map function
1357 * @tgt_clone: clone of @clone bio that target needs submitted
1358 *
1359 * Targets should use this interface to submit bios they take
1360 * ownership of when returning DM_MAPIO_SUBMITTED.
1361 *
1362 * Target should also enable ti->accounts_remapped_io
1363 */
dm_submit_bio_remap(struct bio * clone,struct bio * tgt_clone)1364 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1365 {
1366 struct dm_target_io *tio = clone_to_tio(clone);
1367 struct dm_io *io = tio->io;
1368
1369 /* establish bio that will get submitted */
1370 if (!tgt_clone)
1371 tgt_clone = clone;
1372
1373 /*
1374 * Account io->origin_bio to DM dev on behalf of target
1375 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1376 */
1377 dm_start_io_acct(io, clone);
1378
1379 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1380 tio->old_sector);
1381 submit_bio_noacct(tgt_clone);
1382 }
1383 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1384
__set_swap_bios_limit(struct mapped_device * md,int latch)1385 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1386 {
1387 mutex_lock(&md->swap_bios_lock);
1388 while (latch < md->swap_bios) {
1389 cond_resched();
1390 down(&md->swap_bios_semaphore);
1391 md->swap_bios--;
1392 }
1393 while (latch > md->swap_bios) {
1394 cond_resched();
1395 up(&md->swap_bios_semaphore);
1396 md->swap_bios++;
1397 }
1398 mutex_unlock(&md->swap_bios_lock);
1399 }
1400
__map_bio(struct bio * clone)1401 static void __map_bio(struct bio *clone)
1402 {
1403 struct dm_target_io *tio = clone_to_tio(clone);
1404 struct dm_target *ti = tio->ti;
1405 struct dm_io *io = tio->io;
1406 struct mapped_device *md = io->md;
1407 int r;
1408
1409 clone->bi_end_io = clone_endio;
1410
1411 /*
1412 * Map the clone.
1413 */
1414 tio->old_sector = clone->bi_iter.bi_sector;
1415
1416 if (static_branch_unlikely(&swap_bios_enabled) &&
1417 unlikely(swap_bios_limit(ti, clone))) {
1418 int latch = get_swap_bios();
1419 if (unlikely(latch != md->swap_bios))
1420 __set_swap_bios_limit(md, latch);
1421 down(&md->swap_bios_semaphore);
1422 }
1423
1424 if (static_branch_unlikely(&zoned_enabled)) {
1425 /*
1426 * Check if the IO needs a special mapping due to zone append
1427 * emulation on zoned target. In this case, dm_zone_map_bio()
1428 * calls the target map operation.
1429 */
1430 if (unlikely(dm_emulate_zone_append(md)))
1431 r = dm_zone_map_bio(tio);
1432 else
1433 r = ti->type->map(ti, clone);
1434 } else
1435 r = ti->type->map(ti, clone);
1436
1437 switch (r) {
1438 case DM_MAPIO_SUBMITTED:
1439 /* target has assumed ownership of this io */
1440 if (!ti->accounts_remapped_io)
1441 dm_start_io_acct(io, clone);
1442 break;
1443 case DM_MAPIO_REMAPPED:
1444 dm_submit_bio_remap(clone, NULL);
1445 break;
1446 case DM_MAPIO_KILL:
1447 case DM_MAPIO_REQUEUE:
1448 if (static_branch_unlikely(&swap_bios_enabled) &&
1449 unlikely(swap_bios_limit(ti, clone)))
1450 up(&md->swap_bios_semaphore);
1451 free_tio(clone);
1452 if (r == DM_MAPIO_KILL)
1453 dm_io_dec_pending(io, BLK_STS_IOERR);
1454 else
1455 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1456 break;
1457 default:
1458 DMCRIT("unimplemented target map return value: %d", r);
1459 BUG();
1460 }
1461 }
1462
setup_split_accounting(struct clone_info * ci,unsigned len)1463 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1464 {
1465 struct dm_io *io = ci->io;
1466
1467 if (ci->sector_count > len) {
1468 /*
1469 * Split needed, save the mapped part for accounting.
1470 * NOTE: dm_accept_partial_bio() will update accordingly.
1471 */
1472 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1473 io->sectors = len;
1474 io->sector_offset = bio_sectors(ci->bio);
1475 }
1476 }
1477
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1478 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1479 struct dm_target *ti, unsigned num_bios)
1480 {
1481 struct bio *bio;
1482 int try;
1483
1484 for (try = 0; try < 2; try++) {
1485 int bio_nr;
1486
1487 if (try)
1488 mutex_lock(&ci->io->md->table_devices_lock);
1489 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1490 bio = alloc_tio(ci, ti, bio_nr, NULL,
1491 try ? GFP_NOIO : GFP_NOWAIT);
1492 if (!bio)
1493 break;
1494
1495 bio_list_add(blist, bio);
1496 }
1497 if (try)
1498 mutex_unlock(&ci->io->md->table_devices_lock);
1499 if (bio_nr == num_bios)
1500 return;
1501
1502 while ((bio = bio_list_pop(blist)))
1503 free_tio(bio);
1504 }
1505 }
1506
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned * len)1507 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1508 unsigned int num_bios, unsigned *len)
1509 {
1510 struct bio_list blist = BIO_EMPTY_LIST;
1511 struct bio *clone;
1512 unsigned int ret = 0;
1513
1514 switch (num_bios) {
1515 case 0:
1516 break;
1517 case 1:
1518 if (len)
1519 setup_split_accounting(ci, *len);
1520 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1521 __map_bio(clone);
1522 ret = 1;
1523 break;
1524 default:
1525 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1526 alloc_multiple_bios(&blist, ci, ti, num_bios);
1527 while ((clone = bio_list_pop(&blist))) {
1528 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1529 __map_bio(clone);
1530 ret += 1;
1531 }
1532 break;
1533 }
1534
1535 return ret;
1536 }
1537
__send_empty_flush(struct clone_info * ci)1538 static void __send_empty_flush(struct clone_info *ci)
1539 {
1540 struct dm_table *t = ci->map;
1541 struct bio flush_bio;
1542
1543 /*
1544 * Use an on-stack bio for this, it's safe since we don't
1545 * need to reference it after submit. It's just used as
1546 * the basis for the clone(s).
1547 */
1548 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1549 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1550
1551 ci->bio = &flush_bio;
1552 ci->sector_count = 0;
1553 ci->io->tio.clone.bi_iter.bi_size = 0;
1554
1555 for (unsigned int i = 0; i < t->num_targets; i++) {
1556 unsigned int bios;
1557 struct dm_target *ti = dm_table_get_target(t, i);
1558
1559 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1560 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1561 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1562 }
1563
1564 /*
1565 * alloc_io() takes one extra reference for submission, so the
1566 * reference won't reach 0 without the following subtraction
1567 */
1568 atomic_sub(1, &ci->io->io_count);
1569
1570 bio_uninit(ci->bio);
1571 }
1572
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1573 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1574 unsigned num_bios)
1575 {
1576 unsigned len;
1577 unsigned int bios;
1578
1579 len = min_t(sector_t, ci->sector_count,
1580 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1581
1582 atomic_add(num_bios, &ci->io->io_count);
1583 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1584 /*
1585 * alloc_io() takes one extra reference for submission, so the
1586 * reference won't reach 0 without the following (+1) subtraction
1587 */
1588 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1589
1590 ci->sector += len;
1591 ci->sector_count -= len;
1592 }
1593
is_abnormal_io(struct bio * bio)1594 static bool is_abnormal_io(struct bio *bio)
1595 {
1596 enum req_op op = bio_op(bio);
1597
1598 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1599 switch (op) {
1600 case REQ_OP_DISCARD:
1601 case REQ_OP_SECURE_ERASE:
1602 case REQ_OP_WRITE_ZEROES:
1603 return true;
1604 default:
1605 break;
1606 }
1607 }
1608
1609 return false;
1610 }
1611
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti)1612 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1613 struct dm_target *ti)
1614 {
1615 unsigned num_bios = 0;
1616
1617 switch (bio_op(ci->bio)) {
1618 case REQ_OP_DISCARD:
1619 num_bios = ti->num_discard_bios;
1620 break;
1621 case REQ_OP_SECURE_ERASE:
1622 num_bios = ti->num_secure_erase_bios;
1623 break;
1624 case REQ_OP_WRITE_ZEROES:
1625 num_bios = ti->num_write_zeroes_bios;
1626 break;
1627 default:
1628 break;
1629 }
1630
1631 /*
1632 * Even though the device advertised support for this type of
1633 * request, that does not mean every target supports it, and
1634 * reconfiguration might also have changed that since the
1635 * check was performed.
1636 */
1637 if (unlikely(!num_bios))
1638 return BLK_STS_NOTSUPP;
1639
1640 __send_changing_extent_only(ci, ti, num_bios);
1641 return BLK_STS_OK;
1642 }
1643
1644 /*
1645 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1646 * associated with this bio, and this bio's bi_private needs to be
1647 * stored in dm_io->data before the reuse.
1648 *
1649 * bio->bi_private is owned by fs or upper layer, so block layer won't
1650 * touch it after splitting. Meantime it won't be changed by anyone after
1651 * bio is submitted. So this reuse is safe.
1652 */
dm_poll_list_head(struct bio * bio)1653 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1654 {
1655 return (struct dm_io **)&bio->bi_private;
1656 }
1657
dm_queue_poll_io(struct bio * bio,struct dm_io * io)1658 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1659 {
1660 struct dm_io **head = dm_poll_list_head(bio);
1661
1662 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1663 bio->bi_opf |= REQ_DM_POLL_LIST;
1664 /*
1665 * Save .bi_private into dm_io, so that we can reuse
1666 * .bi_private as dm_io list head for storing dm_io list
1667 */
1668 io->data = bio->bi_private;
1669
1670 /* tell block layer to poll for completion */
1671 bio->bi_cookie = ~BLK_QC_T_NONE;
1672
1673 io->next = NULL;
1674 } else {
1675 /*
1676 * bio recursed due to split, reuse original poll list,
1677 * and save bio->bi_private too.
1678 */
1679 io->data = (*head)->data;
1680 io->next = *head;
1681 }
1682
1683 *head = io;
1684 }
1685
1686 /*
1687 * Select the correct strategy for processing a non-flush bio.
1688 */
__split_and_process_bio(struct clone_info * ci)1689 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1690 {
1691 struct bio *clone;
1692 struct dm_target *ti;
1693 unsigned len;
1694
1695 ti = dm_table_find_target(ci->map, ci->sector);
1696 if (unlikely(!ti))
1697 return BLK_STS_IOERR;
1698
1699 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1700 unlikely(!dm_target_supports_nowait(ti->type)))
1701 return BLK_STS_NOTSUPP;
1702
1703 if (unlikely(ci->is_abnormal_io))
1704 return __process_abnormal_io(ci, ti);
1705
1706 /*
1707 * Only support bio polling for normal IO, and the target io is
1708 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1709 */
1710 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1711
1712 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1713 setup_split_accounting(ci, len);
1714 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1715 __map_bio(clone);
1716
1717 ci->sector += len;
1718 ci->sector_count -= len;
1719
1720 return BLK_STS_OK;
1721 }
1722
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio,bool is_abnormal)1723 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1724 struct dm_table *map, struct bio *bio, bool is_abnormal)
1725 {
1726 ci->map = map;
1727 ci->io = alloc_io(md, bio);
1728 ci->bio = bio;
1729 ci->is_abnormal_io = is_abnormal;
1730 ci->submit_as_polled = false;
1731 ci->sector = bio->bi_iter.bi_sector;
1732 ci->sector_count = bio_sectors(bio);
1733
1734 /* Shouldn't happen but sector_count was being set to 0 so... */
1735 if (static_branch_unlikely(&zoned_enabled) &&
1736 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1737 ci->sector_count = 0;
1738 }
1739
1740 /*
1741 * Entry point to split a bio into clones and submit them to the targets.
1742 */
dm_split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1743 static void dm_split_and_process_bio(struct mapped_device *md,
1744 struct dm_table *map, struct bio *bio)
1745 {
1746 struct clone_info ci;
1747 struct dm_io *io;
1748 blk_status_t error = BLK_STS_OK;
1749 bool is_abnormal;
1750
1751 is_abnormal = is_abnormal_io(bio);
1752 if (unlikely(is_abnormal)) {
1753 /*
1754 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1755 * otherwise associated queue_limits won't be imposed.
1756 */
1757 bio = bio_split_to_limits(bio);
1758 if (!bio)
1759 return;
1760 }
1761
1762 init_clone_info(&ci, md, map, bio, is_abnormal);
1763 io = ci.io;
1764
1765 if (bio->bi_opf & REQ_PREFLUSH) {
1766 __send_empty_flush(&ci);
1767 /* dm_io_complete submits any data associated with flush */
1768 goto out;
1769 }
1770
1771 error = __split_and_process_bio(&ci);
1772 if (error || !ci.sector_count)
1773 goto out;
1774 /*
1775 * Remainder must be passed to submit_bio_noacct() so it gets handled
1776 * *after* bios already submitted have been completely processed.
1777 */
1778 bio_trim(bio, io->sectors, ci.sector_count);
1779 trace_block_split(bio, bio->bi_iter.bi_sector);
1780 bio_inc_remaining(bio);
1781 submit_bio_noacct(bio);
1782 out:
1783 /*
1784 * Drop the extra reference count for non-POLLED bio, and hold one
1785 * reference for POLLED bio, which will be released in dm_poll_bio
1786 *
1787 * Add every dm_io instance into the dm_io list head which is stored
1788 * in bio->bi_private, so that dm_poll_bio can poll them all.
1789 */
1790 if (error || !ci.submit_as_polled) {
1791 /*
1792 * In case of submission failure, the extra reference for
1793 * submitting io isn't consumed yet
1794 */
1795 if (error)
1796 atomic_dec(&io->io_count);
1797 dm_io_dec_pending(io, error);
1798 } else
1799 dm_queue_poll_io(bio, io);
1800 }
1801
dm_submit_bio(struct bio * bio)1802 static void dm_submit_bio(struct bio *bio)
1803 {
1804 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1805 int srcu_idx;
1806 struct dm_table *map;
1807 blk_opf_t bio_opf = bio->bi_opf;
1808
1809 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1810
1811 /* If suspended, or map not yet available, queue this IO for later */
1812 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1813 unlikely(!map)) {
1814 if (bio->bi_opf & REQ_NOWAIT)
1815 bio_wouldblock_error(bio);
1816 else if (bio->bi_opf & REQ_RAHEAD)
1817 bio_io_error(bio);
1818 else
1819 queue_io(md, bio);
1820 goto out;
1821 }
1822
1823 dm_split_and_process_bio(md, map, bio);
1824 out:
1825 dm_put_live_table_bio(md, srcu_idx, bio_opf);
1826 }
1827
dm_poll_dm_io(struct dm_io * io,struct io_comp_batch * iob,unsigned int flags)1828 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1829 unsigned int flags)
1830 {
1831 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1832
1833 /* don't poll if the mapped io is done */
1834 if (atomic_read(&io->io_count) > 1)
1835 bio_poll(&io->tio.clone, iob, flags);
1836
1837 /* bio_poll holds the last reference */
1838 return atomic_read(&io->io_count) == 1;
1839 }
1840
dm_poll_bio(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)1841 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1842 unsigned int flags)
1843 {
1844 struct dm_io **head = dm_poll_list_head(bio);
1845 struct dm_io *list = *head;
1846 struct dm_io *tmp = NULL;
1847 struct dm_io *curr, *next;
1848
1849 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1850 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1851 return 0;
1852
1853 WARN_ON_ONCE(!list);
1854
1855 /*
1856 * Restore .bi_private before possibly completing dm_io.
1857 *
1858 * bio_poll() is only possible once @bio has been completely
1859 * submitted via submit_bio_noacct()'s depth-first submission.
1860 * So there is no dm_queue_poll_io() race associated with
1861 * clearing REQ_DM_POLL_LIST here.
1862 */
1863 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1864 bio->bi_private = list->data;
1865
1866 for (curr = list, next = curr->next; curr; curr = next, next =
1867 curr ? curr->next : NULL) {
1868 if (dm_poll_dm_io(curr, iob, flags)) {
1869 /*
1870 * clone_endio() has already occurred, so no
1871 * error handling is needed here.
1872 */
1873 __dm_io_dec_pending(curr);
1874 } else {
1875 curr->next = tmp;
1876 tmp = curr;
1877 }
1878 }
1879
1880 /* Not done? */
1881 if (tmp) {
1882 bio->bi_opf |= REQ_DM_POLL_LIST;
1883 /* Reset bio->bi_private to dm_io list head */
1884 *head = tmp;
1885 return 0;
1886 }
1887 return 1;
1888 }
1889
1890 /*-----------------------------------------------------------------
1891 * An IDR is used to keep track of allocated minor numbers.
1892 *---------------------------------------------------------------*/
free_minor(int minor)1893 static void free_minor(int minor)
1894 {
1895 spin_lock(&_minor_lock);
1896 idr_remove(&_minor_idr, minor);
1897 spin_unlock(&_minor_lock);
1898 }
1899
1900 /*
1901 * See if the device with a specific minor # is free.
1902 */
specific_minor(int minor)1903 static int specific_minor(int minor)
1904 {
1905 int r;
1906
1907 if (minor >= (1 << MINORBITS))
1908 return -EINVAL;
1909
1910 idr_preload(GFP_KERNEL);
1911 spin_lock(&_minor_lock);
1912
1913 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1914
1915 spin_unlock(&_minor_lock);
1916 idr_preload_end();
1917 if (r < 0)
1918 return r == -ENOSPC ? -EBUSY : r;
1919 return 0;
1920 }
1921
next_free_minor(int * minor)1922 static int next_free_minor(int *minor)
1923 {
1924 int r;
1925
1926 idr_preload(GFP_KERNEL);
1927 spin_lock(&_minor_lock);
1928
1929 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1930
1931 spin_unlock(&_minor_lock);
1932 idr_preload_end();
1933 if (r < 0)
1934 return r;
1935 *minor = r;
1936 return 0;
1937 }
1938
1939 static const struct block_device_operations dm_blk_dops;
1940 static const struct block_device_operations dm_rq_blk_dops;
1941 static const struct dax_operations dm_dax_ops;
1942
1943 static void dm_wq_work(struct work_struct *work);
1944
1945 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)1946 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1947 {
1948 dm_destroy_crypto_profile(q->crypto_profile);
1949 }
1950
1951 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1952
dm_queue_destroy_crypto_profile(struct request_queue * q)1953 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1954 {
1955 }
1956 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1957
cleanup_mapped_device(struct mapped_device * md)1958 static void cleanup_mapped_device(struct mapped_device *md)
1959 {
1960 if (md->wq)
1961 destroy_workqueue(md->wq);
1962 dm_free_md_mempools(md->mempools);
1963
1964 if (md->dax_dev) {
1965 dax_remove_host(md->disk);
1966 kill_dax(md->dax_dev);
1967 put_dax(md->dax_dev);
1968 md->dax_dev = NULL;
1969 }
1970
1971 dm_cleanup_zoned_dev(md);
1972 if (md->disk) {
1973 spin_lock(&_minor_lock);
1974 md->disk->private_data = NULL;
1975 spin_unlock(&_minor_lock);
1976 if (dm_get_md_type(md) != DM_TYPE_NONE) {
1977 struct table_device *td;
1978
1979 dm_sysfs_exit(md);
1980 list_for_each_entry(td, &md->table_devices, list) {
1981 bd_unlink_disk_holder(td->dm_dev.bdev,
1982 md->disk);
1983 }
1984
1985 /*
1986 * Hold lock to make sure del_gendisk() won't concurrent
1987 * with open/close_table_device().
1988 */
1989 mutex_lock(&md->table_devices_lock);
1990 del_gendisk(md->disk);
1991 mutex_unlock(&md->table_devices_lock);
1992 }
1993 dm_queue_destroy_crypto_profile(md->queue);
1994 put_disk(md->disk);
1995 }
1996
1997 if (md->pending_io) {
1998 free_percpu(md->pending_io);
1999 md->pending_io = NULL;
2000 }
2001
2002 cleanup_srcu_struct(&md->io_barrier);
2003
2004 mutex_destroy(&md->suspend_lock);
2005 mutex_destroy(&md->type_lock);
2006 mutex_destroy(&md->table_devices_lock);
2007 mutex_destroy(&md->swap_bios_lock);
2008
2009 dm_mq_cleanup_mapped_device(md);
2010 }
2011
2012 /*
2013 * Allocate and initialise a blank device with a given minor.
2014 */
alloc_dev(int minor)2015 static struct mapped_device *alloc_dev(int minor)
2016 {
2017 int r, numa_node_id = dm_get_numa_node();
2018 struct mapped_device *md;
2019 void *old_md;
2020
2021 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2022 if (!md) {
2023 DMERR("unable to allocate device, out of memory.");
2024 return NULL;
2025 }
2026
2027 if (!try_module_get(THIS_MODULE))
2028 goto bad_module_get;
2029
2030 /* get a minor number for the dev */
2031 if (minor == DM_ANY_MINOR)
2032 r = next_free_minor(&minor);
2033 else
2034 r = specific_minor(minor);
2035 if (r < 0)
2036 goto bad_minor;
2037
2038 r = init_srcu_struct(&md->io_barrier);
2039 if (r < 0)
2040 goto bad_io_barrier;
2041
2042 md->numa_node_id = numa_node_id;
2043 md->init_tio_pdu = false;
2044 md->type = DM_TYPE_NONE;
2045 mutex_init(&md->suspend_lock);
2046 mutex_init(&md->type_lock);
2047 mutex_init(&md->table_devices_lock);
2048 spin_lock_init(&md->deferred_lock);
2049 atomic_set(&md->holders, 1);
2050 atomic_set(&md->open_count, 0);
2051 atomic_set(&md->event_nr, 0);
2052 atomic_set(&md->uevent_seq, 0);
2053 INIT_LIST_HEAD(&md->uevent_list);
2054 INIT_LIST_HEAD(&md->table_devices);
2055 spin_lock_init(&md->uevent_lock);
2056
2057 /*
2058 * default to bio-based until DM table is loaded and md->type
2059 * established. If request-based table is loaded: blk-mq will
2060 * override accordingly.
2061 */
2062 md->disk = blk_alloc_disk(md->numa_node_id);
2063 if (!md->disk)
2064 goto bad;
2065 md->queue = md->disk->queue;
2066
2067 init_waitqueue_head(&md->wait);
2068 INIT_WORK(&md->work, dm_wq_work);
2069 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2070 init_waitqueue_head(&md->eventq);
2071 init_completion(&md->kobj_holder.completion);
2072
2073 md->requeue_list = NULL;
2074 md->swap_bios = get_swap_bios();
2075 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2076 mutex_init(&md->swap_bios_lock);
2077
2078 md->disk->major = _major;
2079 md->disk->first_minor = minor;
2080 md->disk->minors = 1;
2081 md->disk->flags |= GENHD_FL_NO_PART;
2082 md->disk->fops = &dm_blk_dops;
2083 md->disk->private_data = md;
2084 sprintf(md->disk->disk_name, "dm-%d", minor);
2085
2086 if (IS_ENABLED(CONFIG_FS_DAX)) {
2087 md->dax_dev = alloc_dax(md, &dm_dax_ops);
2088 if (IS_ERR(md->dax_dev)) {
2089 md->dax_dev = NULL;
2090 goto bad;
2091 }
2092 set_dax_nocache(md->dax_dev);
2093 set_dax_nomc(md->dax_dev);
2094 if (dax_add_host(md->dax_dev, md->disk))
2095 goto bad;
2096 }
2097
2098 format_dev_t(md->name, MKDEV(_major, minor));
2099
2100 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2101 if (!md->wq)
2102 goto bad;
2103
2104 md->pending_io = alloc_percpu(unsigned long);
2105 if (!md->pending_io)
2106 goto bad;
2107
2108 dm_stats_init(&md->stats);
2109
2110 /* Populate the mapping, nobody knows we exist yet */
2111 spin_lock(&_minor_lock);
2112 old_md = idr_replace(&_minor_idr, md, minor);
2113 spin_unlock(&_minor_lock);
2114
2115 BUG_ON(old_md != MINOR_ALLOCED);
2116
2117 return md;
2118
2119 bad:
2120 cleanup_mapped_device(md);
2121 bad_io_barrier:
2122 free_minor(minor);
2123 bad_minor:
2124 module_put(THIS_MODULE);
2125 bad_module_get:
2126 kvfree(md);
2127 return NULL;
2128 }
2129
2130 static void unlock_fs(struct mapped_device *md);
2131
free_dev(struct mapped_device * md)2132 static void free_dev(struct mapped_device *md)
2133 {
2134 int minor = MINOR(disk_devt(md->disk));
2135
2136 unlock_fs(md);
2137
2138 cleanup_mapped_device(md);
2139
2140 free_table_devices(&md->table_devices);
2141 dm_stats_cleanup(&md->stats);
2142 free_minor(minor);
2143
2144 module_put(THIS_MODULE);
2145 kvfree(md);
2146 }
2147
2148 /*
2149 * Bind a table to the device.
2150 */
event_callback(void * context)2151 static void event_callback(void *context)
2152 {
2153 unsigned long flags;
2154 LIST_HEAD(uevents);
2155 struct mapped_device *md = (struct mapped_device *) context;
2156
2157 spin_lock_irqsave(&md->uevent_lock, flags);
2158 list_splice_init(&md->uevent_list, &uevents);
2159 spin_unlock_irqrestore(&md->uevent_lock, flags);
2160
2161 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2162
2163 atomic_inc(&md->event_nr);
2164 wake_up(&md->eventq);
2165 dm_issue_global_event();
2166 }
2167
2168 /*
2169 * Returns old map, which caller must destroy.
2170 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2171 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2172 struct queue_limits *limits)
2173 {
2174 struct dm_table *old_map;
2175 sector_t size;
2176 int ret;
2177
2178 lockdep_assert_held(&md->suspend_lock);
2179
2180 size = dm_table_get_size(t);
2181
2182 /*
2183 * Wipe any geometry if the size of the table changed.
2184 */
2185 if (size != dm_get_size(md))
2186 memset(&md->geometry, 0, sizeof(md->geometry));
2187
2188 if (!get_capacity(md->disk))
2189 set_capacity(md->disk, size);
2190 else
2191 set_capacity_and_notify(md->disk, size);
2192
2193 dm_table_event_callback(t, event_callback, md);
2194
2195 if (dm_table_request_based(t)) {
2196 /*
2197 * Leverage the fact that request-based DM targets are
2198 * immutable singletons - used to optimize dm_mq_queue_rq.
2199 */
2200 md->immutable_target = dm_table_get_immutable_target(t);
2201
2202 /*
2203 * There is no need to reload with request-based dm because the
2204 * size of front_pad doesn't change.
2205 *
2206 * Note for future: If you are to reload bioset, prep-ed
2207 * requests in the queue may refer to bio from the old bioset,
2208 * so you must walk through the queue to unprep.
2209 */
2210 if (!md->mempools) {
2211 md->mempools = t->mempools;
2212 t->mempools = NULL;
2213 }
2214 } else {
2215 /*
2216 * The md may already have mempools that need changing.
2217 * If so, reload bioset because front_pad may have changed
2218 * because a different table was loaded.
2219 */
2220 dm_free_md_mempools(md->mempools);
2221 md->mempools = t->mempools;
2222 t->mempools = NULL;
2223 }
2224
2225 ret = dm_table_set_restrictions(t, md->queue, limits);
2226 if (ret) {
2227 old_map = ERR_PTR(ret);
2228 goto out;
2229 }
2230
2231 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2232 rcu_assign_pointer(md->map, (void *)t);
2233 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2234
2235 if (old_map)
2236 dm_sync_table(md);
2237 out:
2238 return old_map;
2239 }
2240
2241 /*
2242 * Returns unbound table for the caller to free.
2243 */
__unbind(struct mapped_device * md)2244 static struct dm_table *__unbind(struct mapped_device *md)
2245 {
2246 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2247
2248 if (!map)
2249 return NULL;
2250
2251 dm_table_event_callback(map, NULL, NULL);
2252 RCU_INIT_POINTER(md->map, NULL);
2253 dm_sync_table(md);
2254
2255 return map;
2256 }
2257
2258 /*
2259 * Constructor for a new device.
2260 */
dm_create(int minor,struct mapped_device ** result)2261 int dm_create(int minor, struct mapped_device **result)
2262 {
2263 struct mapped_device *md;
2264
2265 md = alloc_dev(minor);
2266 if (!md)
2267 return -ENXIO;
2268
2269 dm_ima_reset_data(md);
2270
2271 *result = md;
2272 return 0;
2273 }
2274
2275 /*
2276 * Functions to manage md->type.
2277 * All are required to hold md->type_lock.
2278 */
dm_lock_md_type(struct mapped_device * md)2279 void dm_lock_md_type(struct mapped_device *md)
2280 {
2281 mutex_lock(&md->type_lock);
2282 }
2283
dm_unlock_md_type(struct mapped_device * md)2284 void dm_unlock_md_type(struct mapped_device *md)
2285 {
2286 mutex_unlock(&md->type_lock);
2287 }
2288
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2289 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2290 {
2291 BUG_ON(!mutex_is_locked(&md->type_lock));
2292 md->type = type;
2293 }
2294
dm_get_md_type(struct mapped_device * md)2295 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2296 {
2297 return md->type;
2298 }
2299
dm_get_immutable_target_type(struct mapped_device * md)2300 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2301 {
2302 return md->immutable_target_type;
2303 }
2304
2305 /*
2306 * The queue_limits are only valid as long as you have a reference
2307 * count on 'md'.
2308 */
dm_get_queue_limits(struct mapped_device * md)2309 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2310 {
2311 BUG_ON(!atomic_read(&md->holders));
2312 return &md->queue->limits;
2313 }
2314 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2315
2316 /*
2317 * Setup the DM device's queue based on md's type
2318 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2319 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2320 {
2321 enum dm_queue_mode type = dm_table_get_type(t);
2322 struct queue_limits limits;
2323 struct table_device *td;
2324 int r;
2325
2326 switch (type) {
2327 case DM_TYPE_REQUEST_BASED:
2328 md->disk->fops = &dm_rq_blk_dops;
2329 r = dm_mq_init_request_queue(md, t);
2330 if (r) {
2331 DMERR("Cannot initialize queue for request-based dm mapped device");
2332 return r;
2333 }
2334 break;
2335 case DM_TYPE_BIO_BASED:
2336 case DM_TYPE_DAX_BIO_BASED:
2337 break;
2338 case DM_TYPE_NONE:
2339 WARN_ON_ONCE(true);
2340 break;
2341 }
2342
2343 r = dm_calculate_queue_limits(t, &limits);
2344 if (r) {
2345 DMERR("Cannot calculate initial queue limits");
2346 return r;
2347 }
2348 r = dm_table_set_restrictions(t, md->queue, &limits);
2349 if (r)
2350 return r;
2351
2352 /*
2353 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2354 * with open_table_device() and close_table_device().
2355 */
2356 mutex_lock(&md->table_devices_lock);
2357 r = add_disk(md->disk);
2358 mutex_unlock(&md->table_devices_lock);
2359 if (r)
2360 return r;
2361
2362 /*
2363 * Register the holder relationship for devices added before the disk
2364 * was live.
2365 */
2366 list_for_each_entry(td, &md->table_devices, list) {
2367 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2368 if (r)
2369 goto out_undo_holders;
2370 }
2371
2372 r = dm_sysfs_init(md);
2373 if (r)
2374 goto out_undo_holders;
2375
2376 md->type = type;
2377 return 0;
2378
2379 out_undo_holders:
2380 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2381 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2382 mutex_lock(&md->table_devices_lock);
2383 del_gendisk(md->disk);
2384 mutex_unlock(&md->table_devices_lock);
2385 return r;
2386 }
2387
dm_get_md(dev_t dev)2388 struct mapped_device *dm_get_md(dev_t dev)
2389 {
2390 struct mapped_device *md;
2391 unsigned minor = MINOR(dev);
2392
2393 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2394 return NULL;
2395
2396 spin_lock(&_minor_lock);
2397
2398 md = idr_find(&_minor_idr, minor);
2399 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2400 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2401 md = NULL;
2402 goto out;
2403 }
2404 dm_get(md);
2405 out:
2406 spin_unlock(&_minor_lock);
2407
2408 return md;
2409 }
2410 EXPORT_SYMBOL_GPL(dm_get_md);
2411
dm_get_mdptr(struct mapped_device * md)2412 void *dm_get_mdptr(struct mapped_device *md)
2413 {
2414 return md->interface_ptr;
2415 }
2416
dm_set_mdptr(struct mapped_device * md,void * ptr)2417 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2418 {
2419 md->interface_ptr = ptr;
2420 }
2421
dm_get(struct mapped_device * md)2422 void dm_get(struct mapped_device *md)
2423 {
2424 atomic_inc(&md->holders);
2425 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2426 }
2427
dm_hold(struct mapped_device * md)2428 int dm_hold(struct mapped_device *md)
2429 {
2430 spin_lock(&_minor_lock);
2431 if (test_bit(DMF_FREEING, &md->flags)) {
2432 spin_unlock(&_minor_lock);
2433 return -EBUSY;
2434 }
2435 dm_get(md);
2436 spin_unlock(&_minor_lock);
2437 return 0;
2438 }
2439 EXPORT_SYMBOL_GPL(dm_hold);
2440
dm_device_name(struct mapped_device * md)2441 const char *dm_device_name(struct mapped_device *md)
2442 {
2443 return md->name;
2444 }
2445 EXPORT_SYMBOL_GPL(dm_device_name);
2446
__dm_destroy(struct mapped_device * md,bool wait)2447 static void __dm_destroy(struct mapped_device *md, bool wait)
2448 {
2449 struct dm_table *map;
2450 int srcu_idx;
2451
2452 might_sleep();
2453
2454 spin_lock(&_minor_lock);
2455 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2456 set_bit(DMF_FREEING, &md->flags);
2457 spin_unlock(&_minor_lock);
2458
2459 blk_mark_disk_dead(md->disk);
2460
2461 /*
2462 * Take suspend_lock so that presuspend and postsuspend methods
2463 * do not race with internal suspend.
2464 */
2465 mutex_lock(&md->suspend_lock);
2466 map = dm_get_live_table(md, &srcu_idx);
2467 if (!dm_suspended_md(md)) {
2468 dm_table_presuspend_targets(map);
2469 set_bit(DMF_SUSPENDED, &md->flags);
2470 set_bit(DMF_POST_SUSPENDING, &md->flags);
2471 dm_table_postsuspend_targets(map);
2472 }
2473 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2474 dm_put_live_table(md, srcu_idx);
2475 mutex_unlock(&md->suspend_lock);
2476
2477 /*
2478 * Rare, but there may be I/O requests still going to complete,
2479 * for example. Wait for all references to disappear.
2480 * No one should increment the reference count of the mapped_device,
2481 * after the mapped_device state becomes DMF_FREEING.
2482 */
2483 if (wait)
2484 while (atomic_read(&md->holders))
2485 msleep(1);
2486 else if (atomic_read(&md->holders))
2487 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2488 dm_device_name(md), atomic_read(&md->holders));
2489
2490 dm_table_destroy(__unbind(md));
2491 free_dev(md);
2492 }
2493
dm_destroy(struct mapped_device * md)2494 void dm_destroy(struct mapped_device *md)
2495 {
2496 __dm_destroy(md, true);
2497 }
2498
dm_destroy_immediate(struct mapped_device * md)2499 void dm_destroy_immediate(struct mapped_device *md)
2500 {
2501 __dm_destroy(md, false);
2502 }
2503
dm_put(struct mapped_device * md)2504 void dm_put(struct mapped_device *md)
2505 {
2506 atomic_dec(&md->holders);
2507 }
2508 EXPORT_SYMBOL_GPL(dm_put);
2509
dm_in_flight_bios(struct mapped_device * md)2510 static bool dm_in_flight_bios(struct mapped_device *md)
2511 {
2512 int cpu;
2513 unsigned long sum = 0;
2514
2515 for_each_possible_cpu(cpu)
2516 sum += *per_cpu_ptr(md->pending_io, cpu);
2517
2518 return sum != 0;
2519 }
2520
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2521 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2522 {
2523 int r = 0;
2524 DEFINE_WAIT(wait);
2525
2526 while (true) {
2527 prepare_to_wait(&md->wait, &wait, task_state);
2528
2529 if (!dm_in_flight_bios(md))
2530 break;
2531
2532 if (signal_pending_state(task_state, current)) {
2533 r = -EINTR;
2534 break;
2535 }
2536
2537 io_schedule();
2538 }
2539 finish_wait(&md->wait, &wait);
2540
2541 smp_rmb();
2542
2543 return r;
2544 }
2545
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2546 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2547 {
2548 int r = 0;
2549
2550 if (!queue_is_mq(md->queue))
2551 return dm_wait_for_bios_completion(md, task_state);
2552
2553 while (true) {
2554 if (!blk_mq_queue_inflight(md->queue))
2555 break;
2556
2557 if (signal_pending_state(task_state, current)) {
2558 r = -EINTR;
2559 break;
2560 }
2561
2562 msleep(5);
2563 }
2564
2565 return r;
2566 }
2567
2568 /*
2569 * Process the deferred bios
2570 */
dm_wq_work(struct work_struct * work)2571 static void dm_wq_work(struct work_struct *work)
2572 {
2573 struct mapped_device *md = container_of(work, struct mapped_device, work);
2574 struct bio *bio;
2575
2576 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2577 spin_lock_irq(&md->deferred_lock);
2578 bio = bio_list_pop(&md->deferred);
2579 spin_unlock_irq(&md->deferred_lock);
2580
2581 if (!bio)
2582 break;
2583
2584 submit_bio_noacct(bio);
2585 }
2586 }
2587
dm_queue_flush(struct mapped_device * md)2588 static void dm_queue_flush(struct mapped_device *md)
2589 {
2590 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2591 smp_mb__after_atomic();
2592 queue_work(md->wq, &md->work);
2593 }
2594
2595 /*
2596 * Swap in a new table, returning the old one for the caller to destroy.
2597 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2598 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2599 {
2600 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2601 struct queue_limits limits;
2602 int r;
2603
2604 mutex_lock(&md->suspend_lock);
2605
2606 /* device must be suspended */
2607 if (!dm_suspended_md(md))
2608 goto out;
2609
2610 /*
2611 * If the new table has no data devices, retain the existing limits.
2612 * This helps multipath with queue_if_no_path if all paths disappear,
2613 * then new I/O is queued based on these limits, and then some paths
2614 * reappear.
2615 */
2616 if (dm_table_has_no_data_devices(table)) {
2617 live_map = dm_get_live_table_fast(md);
2618 if (live_map)
2619 limits = md->queue->limits;
2620 dm_put_live_table_fast(md);
2621 }
2622
2623 if (!live_map) {
2624 r = dm_calculate_queue_limits(table, &limits);
2625 if (r) {
2626 map = ERR_PTR(r);
2627 goto out;
2628 }
2629 }
2630
2631 map = __bind(md, table, &limits);
2632 dm_issue_global_event();
2633
2634 out:
2635 mutex_unlock(&md->suspend_lock);
2636 return map;
2637 }
2638
2639 /*
2640 * Functions to lock and unlock any filesystem running on the
2641 * device.
2642 */
lock_fs(struct mapped_device * md)2643 static int lock_fs(struct mapped_device *md)
2644 {
2645 int r;
2646
2647 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2648
2649 r = freeze_bdev(md->disk->part0);
2650 if (!r)
2651 set_bit(DMF_FROZEN, &md->flags);
2652 return r;
2653 }
2654
unlock_fs(struct mapped_device * md)2655 static void unlock_fs(struct mapped_device *md)
2656 {
2657 if (!test_bit(DMF_FROZEN, &md->flags))
2658 return;
2659 thaw_bdev(md->disk->part0);
2660 clear_bit(DMF_FROZEN, &md->flags);
2661 }
2662
2663 /*
2664 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2665 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2666 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2667 *
2668 * If __dm_suspend returns 0, the device is completely quiescent
2669 * now. There is no request-processing activity. All new requests
2670 * are being added to md->deferred list.
2671 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,unsigned int task_state,int dmf_suspended_flag)2672 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2673 unsigned suspend_flags, unsigned int task_state,
2674 int dmf_suspended_flag)
2675 {
2676 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2677 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2678 int r;
2679
2680 lockdep_assert_held(&md->suspend_lock);
2681
2682 /*
2683 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2684 * This flag is cleared before dm_suspend returns.
2685 */
2686 if (noflush)
2687 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2688 else
2689 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2690
2691 /*
2692 * This gets reverted if there's an error later and the targets
2693 * provide the .presuspend_undo hook.
2694 */
2695 dm_table_presuspend_targets(map);
2696
2697 /*
2698 * Flush I/O to the device.
2699 * Any I/O submitted after lock_fs() may not be flushed.
2700 * noflush takes precedence over do_lockfs.
2701 * (lock_fs() flushes I/Os and waits for them to complete.)
2702 */
2703 if (!noflush && do_lockfs) {
2704 r = lock_fs(md);
2705 if (r) {
2706 dm_table_presuspend_undo_targets(map);
2707 return r;
2708 }
2709 }
2710
2711 /*
2712 * Here we must make sure that no processes are submitting requests
2713 * to target drivers i.e. no one may be executing
2714 * dm_split_and_process_bio from dm_submit_bio.
2715 *
2716 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2717 * we take the write lock. To prevent any process from reentering
2718 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2719 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2720 * flush_workqueue(md->wq).
2721 */
2722 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2723 if (map)
2724 synchronize_srcu(&md->io_barrier);
2725
2726 /*
2727 * Stop md->queue before flushing md->wq in case request-based
2728 * dm defers requests to md->wq from md->queue.
2729 */
2730 if (dm_request_based(md))
2731 dm_stop_queue(md->queue);
2732
2733 flush_workqueue(md->wq);
2734
2735 /*
2736 * At this point no more requests are entering target request routines.
2737 * We call dm_wait_for_completion to wait for all existing requests
2738 * to finish.
2739 */
2740 r = dm_wait_for_completion(md, task_state);
2741 if (!r)
2742 set_bit(dmf_suspended_flag, &md->flags);
2743
2744 if (noflush)
2745 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2746 if (map)
2747 synchronize_srcu(&md->io_barrier);
2748
2749 /* were we interrupted ? */
2750 if (r < 0) {
2751 dm_queue_flush(md);
2752
2753 if (dm_request_based(md))
2754 dm_start_queue(md->queue);
2755
2756 unlock_fs(md);
2757 dm_table_presuspend_undo_targets(map);
2758 /* pushback list is already flushed, so skip flush */
2759 }
2760
2761 return r;
2762 }
2763
2764 /*
2765 * We need to be able to change a mapping table under a mounted
2766 * filesystem. For example we might want to move some data in
2767 * the background. Before the table can be swapped with
2768 * dm_bind_table, dm_suspend must be called to flush any in
2769 * flight bios and ensure that any further io gets deferred.
2770 */
2771 /*
2772 * Suspend mechanism in request-based dm.
2773 *
2774 * 1. Flush all I/Os by lock_fs() if needed.
2775 * 2. Stop dispatching any I/O by stopping the request_queue.
2776 * 3. Wait for all in-flight I/Os to be completed or requeued.
2777 *
2778 * To abort suspend, start the request_queue.
2779 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2780 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2781 {
2782 struct dm_table *map = NULL;
2783 int r = 0;
2784
2785 retry:
2786 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2787
2788 if (dm_suspended_md(md)) {
2789 r = -EINVAL;
2790 goto out_unlock;
2791 }
2792
2793 if (dm_suspended_internally_md(md)) {
2794 /* already internally suspended, wait for internal resume */
2795 mutex_unlock(&md->suspend_lock);
2796 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2797 if (r)
2798 return r;
2799 goto retry;
2800 }
2801
2802 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2803
2804 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2805 if (r)
2806 goto out_unlock;
2807
2808 set_bit(DMF_POST_SUSPENDING, &md->flags);
2809 dm_table_postsuspend_targets(map);
2810 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2811
2812 out_unlock:
2813 mutex_unlock(&md->suspend_lock);
2814 return r;
2815 }
2816
__dm_resume(struct mapped_device * md,struct dm_table * map)2817 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2818 {
2819 if (map) {
2820 int r = dm_table_resume_targets(map);
2821 if (r)
2822 return r;
2823 }
2824
2825 dm_queue_flush(md);
2826
2827 /*
2828 * Flushing deferred I/Os must be done after targets are resumed
2829 * so that mapping of targets can work correctly.
2830 * Request-based dm is queueing the deferred I/Os in its request_queue.
2831 */
2832 if (dm_request_based(md))
2833 dm_start_queue(md->queue);
2834
2835 unlock_fs(md);
2836
2837 return 0;
2838 }
2839
dm_resume(struct mapped_device * md)2840 int dm_resume(struct mapped_device *md)
2841 {
2842 int r;
2843 struct dm_table *map = NULL;
2844
2845 retry:
2846 r = -EINVAL;
2847 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2848
2849 if (!dm_suspended_md(md))
2850 goto out;
2851
2852 if (dm_suspended_internally_md(md)) {
2853 /* already internally suspended, wait for internal resume */
2854 mutex_unlock(&md->suspend_lock);
2855 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2856 if (r)
2857 return r;
2858 goto retry;
2859 }
2860
2861 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2862 if (!map || !dm_table_get_size(map))
2863 goto out;
2864
2865 r = __dm_resume(md, map);
2866 if (r)
2867 goto out;
2868
2869 clear_bit(DMF_SUSPENDED, &md->flags);
2870 out:
2871 mutex_unlock(&md->suspend_lock);
2872
2873 return r;
2874 }
2875
2876 /*
2877 * Internal suspend/resume works like userspace-driven suspend. It waits
2878 * until all bios finish and prevents issuing new bios to the target drivers.
2879 * It may be used only from the kernel.
2880 */
2881
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2882 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2883 {
2884 struct dm_table *map = NULL;
2885
2886 lockdep_assert_held(&md->suspend_lock);
2887
2888 if (md->internal_suspend_count++)
2889 return; /* nested internal suspend */
2890
2891 if (dm_suspended_md(md)) {
2892 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2893 return; /* nest suspend */
2894 }
2895
2896 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2897
2898 /*
2899 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2900 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2901 * would require changing .presuspend to return an error -- avoid this
2902 * until there is a need for more elaborate variants of internal suspend.
2903 */
2904 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2905 DMF_SUSPENDED_INTERNALLY);
2906
2907 set_bit(DMF_POST_SUSPENDING, &md->flags);
2908 dm_table_postsuspend_targets(map);
2909 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2910 }
2911
__dm_internal_resume(struct mapped_device * md)2912 static void __dm_internal_resume(struct mapped_device *md)
2913 {
2914 BUG_ON(!md->internal_suspend_count);
2915
2916 if (--md->internal_suspend_count)
2917 return; /* resume from nested internal suspend */
2918
2919 if (dm_suspended_md(md))
2920 goto done; /* resume from nested suspend */
2921
2922 /*
2923 * NOTE: existing callers don't need to call dm_table_resume_targets
2924 * (which may fail -- so best to avoid it for now by passing NULL map)
2925 */
2926 (void) __dm_resume(md, NULL);
2927
2928 done:
2929 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2930 smp_mb__after_atomic();
2931 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2932 }
2933
dm_internal_suspend_noflush(struct mapped_device * md)2934 void dm_internal_suspend_noflush(struct mapped_device *md)
2935 {
2936 mutex_lock(&md->suspend_lock);
2937 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2938 mutex_unlock(&md->suspend_lock);
2939 }
2940 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2941
dm_internal_resume(struct mapped_device * md)2942 void dm_internal_resume(struct mapped_device *md)
2943 {
2944 mutex_lock(&md->suspend_lock);
2945 __dm_internal_resume(md);
2946 mutex_unlock(&md->suspend_lock);
2947 }
2948 EXPORT_SYMBOL_GPL(dm_internal_resume);
2949
2950 /*
2951 * Fast variants of internal suspend/resume hold md->suspend_lock,
2952 * which prevents interaction with userspace-driven suspend.
2953 */
2954
dm_internal_suspend_fast(struct mapped_device * md)2955 void dm_internal_suspend_fast(struct mapped_device *md)
2956 {
2957 mutex_lock(&md->suspend_lock);
2958 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2959 return;
2960
2961 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2962 synchronize_srcu(&md->io_barrier);
2963 flush_workqueue(md->wq);
2964 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2965 }
2966 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2967
dm_internal_resume_fast(struct mapped_device * md)2968 void dm_internal_resume_fast(struct mapped_device *md)
2969 {
2970 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2971 goto done;
2972
2973 dm_queue_flush(md);
2974
2975 done:
2976 mutex_unlock(&md->suspend_lock);
2977 }
2978 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2979
2980 /*-----------------------------------------------------------------
2981 * Event notification.
2982 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2983 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2984 unsigned cookie)
2985 {
2986 int r;
2987 unsigned noio_flag;
2988 char udev_cookie[DM_COOKIE_LENGTH];
2989 char *envp[] = { udev_cookie, NULL };
2990
2991 noio_flag = memalloc_noio_save();
2992
2993 if (!cookie)
2994 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2995 else {
2996 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2997 DM_COOKIE_ENV_VAR_NAME, cookie);
2998 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2999 action, envp);
3000 }
3001
3002 memalloc_noio_restore(noio_flag);
3003
3004 return r;
3005 }
3006
dm_next_uevent_seq(struct mapped_device * md)3007 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3008 {
3009 return atomic_add_return(1, &md->uevent_seq);
3010 }
3011
dm_get_event_nr(struct mapped_device * md)3012 uint32_t dm_get_event_nr(struct mapped_device *md)
3013 {
3014 return atomic_read(&md->event_nr);
3015 }
3016
dm_wait_event(struct mapped_device * md,int event_nr)3017 int dm_wait_event(struct mapped_device *md, int event_nr)
3018 {
3019 return wait_event_interruptible(md->eventq,
3020 (event_nr != atomic_read(&md->event_nr)));
3021 }
3022
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3023 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3024 {
3025 unsigned long flags;
3026
3027 spin_lock_irqsave(&md->uevent_lock, flags);
3028 list_add(elist, &md->uevent_list);
3029 spin_unlock_irqrestore(&md->uevent_lock, flags);
3030 }
3031
3032 /*
3033 * The gendisk is only valid as long as you have a reference
3034 * count on 'md'.
3035 */
dm_disk(struct mapped_device * md)3036 struct gendisk *dm_disk(struct mapped_device *md)
3037 {
3038 return md->disk;
3039 }
3040 EXPORT_SYMBOL_GPL(dm_disk);
3041
dm_kobject(struct mapped_device * md)3042 struct kobject *dm_kobject(struct mapped_device *md)
3043 {
3044 return &md->kobj_holder.kobj;
3045 }
3046
dm_get_from_kobject(struct kobject * kobj)3047 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3048 {
3049 struct mapped_device *md;
3050
3051 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3052
3053 spin_lock(&_minor_lock);
3054 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3055 md = NULL;
3056 goto out;
3057 }
3058 dm_get(md);
3059 out:
3060 spin_unlock(&_minor_lock);
3061
3062 return md;
3063 }
3064
dm_suspended_md(struct mapped_device * md)3065 int dm_suspended_md(struct mapped_device *md)
3066 {
3067 return test_bit(DMF_SUSPENDED, &md->flags);
3068 }
3069
dm_post_suspending_md(struct mapped_device * md)3070 static int dm_post_suspending_md(struct mapped_device *md)
3071 {
3072 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3073 }
3074
dm_suspended_internally_md(struct mapped_device * md)3075 int dm_suspended_internally_md(struct mapped_device *md)
3076 {
3077 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3078 }
3079
dm_test_deferred_remove_flag(struct mapped_device * md)3080 int dm_test_deferred_remove_flag(struct mapped_device *md)
3081 {
3082 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3083 }
3084
dm_suspended(struct dm_target * ti)3085 int dm_suspended(struct dm_target *ti)
3086 {
3087 return dm_suspended_md(ti->table->md);
3088 }
3089 EXPORT_SYMBOL_GPL(dm_suspended);
3090
dm_post_suspending(struct dm_target * ti)3091 int dm_post_suspending(struct dm_target *ti)
3092 {
3093 return dm_post_suspending_md(ti->table->md);
3094 }
3095 EXPORT_SYMBOL_GPL(dm_post_suspending);
3096
dm_noflush_suspending(struct dm_target * ti)3097 int dm_noflush_suspending(struct dm_target *ti)
3098 {
3099 return __noflush_suspending(ti->table->md);
3100 }
3101 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3102
dm_free_md_mempools(struct dm_md_mempools * pools)3103 void dm_free_md_mempools(struct dm_md_mempools *pools)
3104 {
3105 if (!pools)
3106 return;
3107
3108 bioset_exit(&pools->bs);
3109 bioset_exit(&pools->io_bs);
3110
3111 kfree(pools);
3112 }
3113
3114 struct dm_pr {
3115 u64 old_key;
3116 u64 new_key;
3117 u32 flags;
3118 bool abort;
3119 bool fail_early;
3120 int ret;
3121 enum pr_type type;
3122 };
3123
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,struct dm_pr * pr)3124 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3125 struct dm_pr *pr)
3126 {
3127 struct mapped_device *md = bdev->bd_disk->private_data;
3128 struct dm_table *table;
3129 struct dm_target *ti;
3130 int ret = -ENOTTY, srcu_idx;
3131
3132 table = dm_get_live_table(md, &srcu_idx);
3133 if (!table || !dm_table_get_size(table))
3134 goto out;
3135
3136 /* We only support devices that have a single target */
3137 if (table->num_targets != 1)
3138 goto out;
3139 ti = dm_table_get_target(table, 0);
3140
3141 if (dm_suspended_md(md)) {
3142 ret = -EAGAIN;
3143 goto out;
3144 }
3145
3146 ret = -EINVAL;
3147 if (!ti->type->iterate_devices)
3148 goto out;
3149
3150 ti->type->iterate_devices(ti, fn, pr);
3151 ret = 0;
3152 out:
3153 dm_put_live_table(md, srcu_idx);
3154 return ret;
3155 }
3156
3157 /*
3158 * For register / unregister we need to manually call out to every path.
3159 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3160 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3161 sector_t start, sector_t len, void *data)
3162 {
3163 struct dm_pr *pr = data;
3164 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3165 int ret;
3166
3167 if (!ops || !ops->pr_register) {
3168 pr->ret = -EOPNOTSUPP;
3169 return -1;
3170 }
3171
3172 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3173 if (!ret)
3174 return 0;
3175
3176 if (!pr->ret)
3177 pr->ret = ret;
3178
3179 if (pr->fail_early)
3180 return -1;
3181
3182 return 0;
3183 }
3184
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3185 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3186 u32 flags)
3187 {
3188 struct dm_pr pr = {
3189 .old_key = old_key,
3190 .new_key = new_key,
3191 .flags = flags,
3192 .fail_early = true,
3193 .ret = 0,
3194 };
3195 int ret;
3196
3197 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3198 if (ret) {
3199 /* Didn't even get to register a path */
3200 return ret;
3201 }
3202
3203 if (!pr.ret)
3204 return 0;
3205 ret = pr.ret;
3206
3207 if (!new_key)
3208 return ret;
3209
3210 /* unregister all paths if we failed to register any path */
3211 pr.old_key = new_key;
3212 pr.new_key = 0;
3213 pr.flags = 0;
3214 pr.fail_early = false;
3215 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3216 return ret;
3217 }
3218
3219
__dm_pr_reserve(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3220 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3221 sector_t start, sector_t len, void *data)
3222 {
3223 struct dm_pr *pr = data;
3224 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3225
3226 if (!ops || !ops->pr_reserve) {
3227 pr->ret = -EOPNOTSUPP;
3228 return -1;
3229 }
3230
3231 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3232 if (!pr->ret)
3233 return -1;
3234
3235 return 0;
3236 }
3237
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3238 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3239 u32 flags)
3240 {
3241 struct dm_pr pr = {
3242 .old_key = key,
3243 .flags = flags,
3244 .type = type,
3245 .fail_early = false,
3246 .ret = 0,
3247 };
3248 int ret;
3249
3250 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3251 if (ret)
3252 return ret;
3253
3254 return pr.ret;
3255 }
3256
3257 /*
3258 * If there is a non-All Registrants type of reservation, the release must be
3259 * sent down the holding path. For the cases where there is no reservation or
3260 * the path is not the holder the device will also return success, so we must
3261 * try each path to make sure we got the correct path.
3262 */
__dm_pr_release(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3263 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3264 sector_t start, sector_t len, void *data)
3265 {
3266 struct dm_pr *pr = data;
3267 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3268
3269 if (!ops || !ops->pr_release) {
3270 pr->ret = -EOPNOTSUPP;
3271 return -1;
3272 }
3273
3274 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3275 if (pr->ret)
3276 return -1;
3277
3278 return 0;
3279 }
3280
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3281 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3282 {
3283 struct dm_pr pr = {
3284 .old_key = key,
3285 .type = type,
3286 .fail_early = false,
3287 };
3288 int ret;
3289
3290 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3291 if (ret)
3292 return ret;
3293
3294 return pr.ret;
3295 }
3296
__dm_pr_preempt(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3297 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3298 sector_t start, sector_t len, void *data)
3299 {
3300 struct dm_pr *pr = data;
3301 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3302
3303 if (!ops || !ops->pr_preempt) {
3304 pr->ret = -EOPNOTSUPP;
3305 return -1;
3306 }
3307
3308 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3309 pr->abort);
3310 if (!pr->ret)
3311 return -1;
3312
3313 return 0;
3314 }
3315
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3316 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3317 enum pr_type type, bool abort)
3318 {
3319 struct dm_pr pr = {
3320 .new_key = new_key,
3321 .old_key = old_key,
3322 .type = type,
3323 .fail_early = false,
3324 };
3325 int ret;
3326
3327 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3328 if (ret)
3329 return ret;
3330
3331 return pr.ret;
3332 }
3333
dm_pr_clear(struct block_device * bdev,u64 key)3334 static int dm_pr_clear(struct block_device *bdev, u64 key)
3335 {
3336 struct mapped_device *md = bdev->bd_disk->private_data;
3337 const struct pr_ops *ops;
3338 int r, srcu_idx;
3339
3340 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3341 if (r < 0)
3342 goto out;
3343
3344 ops = bdev->bd_disk->fops->pr_ops;
3345 if (ops && ops->pr_clear)
3346 r = ops->pr_clear(bdev, key);
3347 else
3348 r = -EOPNOTSUPP;
3349 out:
3350 dm_unprepare_ioctl(md, srcu_idx);
3351 return r;
3352 }
3353
3354 static const struct pr_ops dm_pr_ops = {
3355 .pr_register = dm_pr_register,
3356 .pr_reserve = dm_pr_reserve,
3357 .pr_release = dm_pr_release,
3358 .pr_preempt = dm_pr_preempt,
3359 .pr_clear = dm_pr_clear,
3360 };
3361
3362 static const struct block_device_operations dm_blk_dops = {
3363 .submit_bio = dm_submit_bio,
3364 .poll_bio = dm_poll_bio,
3365 .open = dm_blk_open,
3366 .release = dm_blk_close,
3367 .ioctl = dm_blk_ioctl,
3368 .getgeo = dm_blk_getgeo,
3369 .report_zones = dm_blk_report_zones,
3370 .pr_ops = &dm_pr_ops,
3371 .owner = THIS_MODULE
3372 };
3373
3374 static const struct block_device_operations dm_rq_blk_dops = {
3375 .open = dm_blk_open,
3376 .release = dm_blk_close,
3377 .ioctl = dm_blk_ioctl,
3378 .getgeo = dm_blk_getgeo,
3379 .pr_ops = &dm_pr_ops,
3380 .owner = THIS_MODULE
3381 };
3382
3383 static const struct dax_operations dm_dax_ops = {
3384 .direct_access = dm_dax_direct_access,
3385 .zero_page_range = dm_dax_zero_page_range,
3386 .recovery_write = dm_dax_recovery_write,
3387 };
3388
3389 /*
3390 * module hooks
3391 */
3392 module_init(dm_init);
3393 module_exit(dm_exit);
3394
3395 module_param(major, uint, 0);
3396 MODULE_PARM_DESC(major, "The major number of the device mapper");
3397
3398 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3399 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3400
3401 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3402 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3403
3404 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3405 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3406
3407 MODULE_DESCRIPTION(DM_NAME " driver");
3408 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3409 MODULE_LICENSE("GPL");
3410