1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VGIC MMIO handling functions
4 */
5
6 #include <linux/bitops.h>
7 #include <linux/bsearch.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <kvm/iodev.h>
13 #include <kvm/arm_arch_timer.h>
14 #include <kvm/arm_vgic.h>
15
16 #include "vgic.h"
17 #include "vgic-mmio.h"
18
vgic_mmio_read_raz(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)19 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
20 gpa_t addr, unsigned int len)
21 {
22 return 0;
23 }
24
vgic_mmio_read_rao(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)25 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
26 gpa_t addr, unsigned int len)
27 {
28 return -1UL;
29 }
30
vgic_mmio_write_wi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)31 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
32 unsigned int len, unsigned long val)
33 {
34 /* Ignore */
35 }
36
vgic_mmio_uaccess_write_wi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)37 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38 unsigned int len, unsigned long val)
39 {
40 /* Ignore */
41 return 0;
42 }
43
vgic_mmio_read_group(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)44 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
45 gpa_t addr, unsigned int len)
46 {
47 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
48 u32 value = 0;
49 int i;
50
51 /* Loop over all IRQs affected by this read */
52 for (i = 0; i < len * 8; i++) {
53 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
54
55 if (irq->group)
56 value |= BIT(i);
57
58 vgic_put_irq(vcpu->kvm, irq);
59 }
60
61 return value;
62 }
63
vgic_update_vsgi(struct vgic_irq * irq)64 static void vgic_update_vsgi(struct vgic_irq *irq)
65 {
66 WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
67 }
68
vgic_mmio_write_group(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)69 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
70 unsigned int len, unsigned long val)
71 {
72 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
73 int i;
74 unsigned long flags;
75
76 for (i = 0; i < len * 8; i++) {
77 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
78
79 raw_spin_lock_irqsave(&irq->irq_lock, flags);
80 irq->group = !!(val & BIT(i));
81 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
82 vgic_update_vsgi(irq);
83 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
84 } else {
85 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
86 }
87
88 vgic_put_irq(vcpu->kvm, irq);
89 }
90 }
91
92 /*
93 * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
94 * of the enabled bit, so there is only one function for both here.
95 */
vgic_mmio_read_enable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)96 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
97 gpa_t addr, unsigned int len)
98 {
99 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
100 u32 value = 0;
101 int i;
102
103 /* Loop over all IRQs affected by this read */
104 for (i = 0; i < len * 8; i++) {
105 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
106
107 if (irq->enabled)
108 value |= (1U << i);
109
110 vgic_put_irq(vcpu->kvm, irq);
111 }
112
113 return value;
114 }
115
vgic_mmio_write_senable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)116 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
117 gpa_t addr, unsigned int len,
118 unsigned long val)
119 {
120 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
121 int i;
122 unsigned long flags;
123
124 for_each_set_bit(i, &val, len * 8) {
125 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
126
127 raw_spin_lock_irqsave(&irq->irq_lock, flags);
128 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
129 if (!irq->enabled) {
130 struct irq_data *data;
131
132 irq->enabled = true;
133 data = &irq_to_desc(irq->host_irq)->irq_data;
134 while (irqd_irq_disabled(data))
135 enable_irq(irq->host_irq);
136 }
137
138 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
139 vgic_put_irq(vcpu->kvm, irq);
140
141 continue;
142 } else if (vgic_irq_is_mapped_level(irq)) {
143 bool was_high = irq->line_level;
144
145 /*
146 * We need to update the state of the interrupt because
147 * the guest might have changed the state of the device
148 * while the interrupt was disabled at the VGIC level.
149 */
150 irq->line_level = vgic_get_phys_line_level(irq);
151 /*
152 * Deactivate the physical interrupt so the GIC will let
153 * us know when it is asserted again.
154 */
155 if (!irq->active && was_high && !irq->line_level)
156 vgic_irq_set_phys_active(irq, false);
157 }
158 irq->enabled = true;
159 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
160
161 vgic_put_irq(vcpu->kvm, irq);
162 }
163 }
164
vgic_mmio_write_cenable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)165 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
166 gpa_t addr, unsigned int len,
167 unsigned long val)
168 {
169 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
170 int i;
171 unsigned long flags;
172
173 for_each_set_bit(i, &val, len * 8) {
174 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
175
176 raw_spin_lock_irqsave(&irq->irq_lock, flags);
177 if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
178 disable_irq_nosync(irq->host_irq);
179
180 irq->enabled = false;
181
182 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183 vgic_put_irq(vcpu->kvm, irq);
184 }
185 }
186
vgic_uaccess_write_senable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)187 int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
188 gpa_t addr, unsigned int len,
189 unsigned long val)
190 {
191 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
192 int i;
193 unsigned long flags;
194
195 for_each_set_bit(i, &val, len * 8) {
196 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
197
198 raw_spin_lock_irqsave(&irq->irq_lock, flags);
199 irq->enabled = true;
200 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
201
202 vgic_put_irq(vcpu->kvm, irq);
203 }
204
205 return 0;
206 }
207
vgic_uaccess_write_cenable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)208 int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
209 gpa_t addr, unsigned int len,
210 unsigned long val)
211 {
212 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
213 int i;
214 unsigned long flags;
215
216 for_each_set_bit(i, &val, len * 8) {
217 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
218
219 raw_spin_lock_irqsave(&irq->irq_lock, flags);
220 irq->enabled = false;
221 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
222
223 vgic_put_irq(vcpu->kvm, irq);
224 }
225
226 return 0;
227 }
228
__read_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,bool is_user)229 static unsigned long __read_pending(struct kvm_vcpu *vcpu,
230 gpa_t addr, unsigned int len,
231 bool is_user)
232 {
233 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
234 u32 value = 0;
235 int i;
236
237 /* Loop over all IRQs affected by this read */
238 for (i = 0; i < len * 8; i++) {
239 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
240 unsigned long flags;
241 bool val;
242
243 /*
244 * When used from userspace with a GICv3 model:
245 *
246 * Pending state of interrupt is latched in pending_latch
247 * variable. Userspace will save and restore pending state
248 * and line_level separately.
249 * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
250 * for handling of ISPENDR and ICPENDR.
251 */
252 raw_spin_lock_irqsave(&irq->irq_lock, flags);
253 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
254 int err;
255
256 val = false;
257 err = irq_get_irqchip_state(irq->host_irq,
258 IRQCHIP_STATE_PENDING,
259 &val);
260 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
261 } else if (!is_user && vgic_irq_is_mapped_level(irq)) {
262 val = vgic_get_phys_line_level(irq);
263 } else {
264 switch (vcpu->kvm->arch.vgic.vgic_model) {
265 case KVM_DEV_TYPE_ARM_VGIC_V3:
266 if (is_user) {
267 val = irq->pending_latch;
268 break;
269 }
270 fallthrough;
271 default:
272 val = irq_is_pending(irq);
273 break;
274 }
275 }
276
277 value |= ((u32)val << i);
278 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
279
280 vgic_put_irq(vcpu->kvm, irq);
281 }
282
283 return value;
284 }
285
vgic_mmio_read_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)286 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
287 gpa_t addr, unsigned int len)
288 {
289 return __read_pending(vcpu, addr, len, false);
290 }
291
vgic_uaccess_read_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)292 unsigned long vgic_uaccess_read_pending(struct kvm_vcpu *vcpu,
293 gpa_t addr, unsigned int len)
294 {
295 return __read_pending(vcpu, addr, len, true);
296 }
297
is_vgic_v2_sgi(struct kvm_vcpu * vcpu,struct vgic_irq * irq)298 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
299 {
300 return (vgic_irq_is_sgi(irq->intid) &&
301 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
302 }
303
vgic_mmio_write_spending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)304 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
305 gpa_t addr, unsigned int len,
306 unsigned long val)
307 {
308 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
309 int i;
310 unsigned long flags;
311
312 for_each_set_bit(i, &val, len * 8) {
313 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
314
315 /* GICD_ISPENDR0 SGI bits are WI */
316 if (is_vgic_v2_sgi(vcpu, irq)) {
317 vgic_put_irq(vcpu->kvm, irq);
318 continue;
319 }
320
321 raw_spin_lock_irqsave(&irq->irq_lock, flags);
322
323 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
324 /* HW SGI? Ask the GIC to inject it */
325 int err;
326 err = irq_set_irqchip_state(irq->host_irq,
327 IRQCHIP_STATE_PENDING,
328 true);
329 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
330
331 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
332 vgic_put_irq(vcpu->kvm, irq);
333
334 continue;
335 }
336
337 irq->pending_latch = true;
338 if (irq->hw)
339 vgic_irq_set_phys_active(irq, true);
340
341 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
342 vgic_put_irq(vcpu->kvm, irq);
343 }
344 }
345
vgic_uaccess_write_spending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)346 int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
347 gpa_t addr, unsigned int len,
348 unsigned long val)
349 {
350 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
351 int i;
352 unsigned long flags;
353
354 for_each_set_bit(i, &val, len * 8) {
355 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
356
357 raw_spin_lock_irqsave(&irq->irq_lock, flags);
358 irq->pending_latch = true;
359
360 /*
361 * GICv2 SGIs are terribly broken. We can't restore
362 * the source of the interrupt, so just pick the vcpu
363 * itself as the source...
364 */
365 if (is_vgic_v2_sgi(vcpu, irq))
366 irq->source |= BIT(vcpu->vcpu_id);
367
368 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
369
370 vgic_put_irq(vcpu->kvm, irq);
371 }
372
373 return 0;
374 }
375
376 /* Must be called with irq->irq_lock held */
vgic_hw_irq_cpending(struct kvm_vcpu * vcpu,struct vgic_irq * irq)377 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
378 {
379 irq->pending_latch = false;
380
381 /*
382 * We don't want the guest to effectively mask the physical
383 * interrupt by doing a write to SPENDR followed by a write to
384 * CPENDR for HW interrupts, so we clear the active state on
385 * the physical side if the virtual interrupt is not active.
386 * This may lead to taking an additional interrupt on the
387 * host, but that should not be a problem as the worst that
388 * can happen is an additional vgic injection. We also clear
389 * the pending state to maintain proper semantics for edge HW
390 * interrupts.
391 */
392 vgic_irq_set_phys_pending(irq, false);
393 if (!irq->active)
394 vgic_irq_set_phys_active(irq, false);
395 }
396
vgic_mmio_write_cpending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)397 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
398 gpa_t addr, unsigned int len,
399 unsigned long val)
400 {
401 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
402 int i;
403 unsigned long flags;
404
405 for_each_set_bit(i, &val, len * 8) {
406 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
407
408 /* GICD_ICPENDR0 SGI bits are WI */
409 if (is_vgic_v2_sgi(vcpu, irq)) {
410 vgic_put_irq(vcpu->kvm, irq);
411 continue;
412 }
413
414 raw_spin_lock_irqsave(&irq->irq_lock, flags);
415
416 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
417 /* HW SGI? Ask the GIC to clear its pending bit */
418 int err;
419 err = irq_set_irqchip_state(irq->host_irq,
420 IRQCHIP_STATE_PENDING,
421 false);
422 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
423
424 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
425 vgic_put_irq(vcpu->kvm, irq);
426
427 continue;
428 }
429
430 if (irq->hw)
431 vgic_hw_irq_cpending(vcpu, irq);
432 else
433 irq->pending_latch = false;
434
435 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
436 vgic_put_irq(vcpu->kvm, irq);
437 }
438 }
439
vgic_uaccess_write_cpending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)440 int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
441 gpa_t addr, unsigned int len,
442 unsigned long val)
443 {
444 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
445 int i;
446 unsigned long flags;
447
448 for_each_set_bit(i, &val, len * 8) {
449 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
450
451 raw_spin_lock_irqsave(&irq->irq_lock, flags);
452 /*
453 * More fun with GICv2 SGIs! If we're clearing one of them
454 * from userspace, which source vcpu to clear? Let's not
455 * even think of it, and blow the whole set.
456 */
457 if (is_vgic_v2_sgi(vcpu, irq))
458 irq->source = 0;
459
460 irq->pending_latch = false;
461
462 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
463
464 vgic_put_irq(vcpu->kvm, irq);
465 }
466
467 return 0;
468 }
469
470 /*
471 * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
472 * is not queued on some running VCPU's LRs, because then the change to the
473 * active state can be overwritten when the VCPU's state is synced coming back
474 * from the guest.
475 *
476 * For shared interrupts as well as GICv3 private interrupts, we have to
477 * stop all the VCPUs because interrupts can be migrated while we don't hold
478 * the IRQ locks and we don't want to be chasing moving targets.
479 *
480 * For GICv2 private interrupts we don't have to do anything because
481 * userspace accesses to the VGIC state already require all VCPUs to be
482 * stopped, and only the VCPU itself can modify its private interrupts
483 * active state, which guarantees that the VCPU is not running.
484 */
vgic_access_active_prepare(struct kvm_vcpu * vcpu,u32 intid)485 static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
486 {
487 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
488 intid >= VGIC_NR_PRIVATE_IRQS)
489 kvm_arm_halt_guest(vcpu->kvm);
490 }
491
492 /* See vgic_access_active_prepare */
vgic_access_active_finish(struct kvm_vcpu * vcpu,u32 intid)493 static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
494 {
495 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
496 intid >= VGIC_NR_PRIVATE_IRQS)
497 kvm_arm_resume_guest(vcpu->kvm);
498 }
499
__vgic_mmio_read_active(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)500 static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
501 gpa_t addr, unsigned int len)
502 {
503 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
504 u32 value = 0;
505 int i;
506
507 /* Loop over all IRQs affected by this read */
508 for (i = 0; i < len * 8; i++) {
509 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
510
511 /*
512 * Even for HW interrupts, don't evaluate the HW state as
513 * all the guest is interested in is the virtual state.
514 */
515 if (irq->active)
516 value |= (1U << i);
517
518 vgic_put_irq(vcpu->kvm, irq);
519 }
520
521 return value;
522 }
523
vgic_mmio_read_active(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)524 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
525 gpa_t addr, unsigned int len)
526 {
527 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
528 u32 val;
529
530 mutex_lock(&vcpu->kvm->lock);
531 vgic_access_active_prepare(vcpu, intid);
532
533 val = __vgic_mmio_read_active(vcpu, addr, len);
534
535 vgic_access_active_finish(vcpu, intid);
536 mutex_unlock(&vcpu->kvm->lock);
537
538 return val;
539 }
540
vgic_uaccess_read_active(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)541 unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
542 gpa_t addr, unsigned int len)
543 {
544 return __vgic_mmio_read_active(vcpu, addr, len);
545 }
546
547 /* Must be called with irq->irq_lock held */
vgic_hw_irq_change_active(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool active,bool is_uaccess)548 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
549 bool active, bool is_uaccess)
550 {
551 if (is_uaccess)
552 return;
553
554 irq->active = active;
555 vgic_irq_set_phys_active(irq, active);
556 }
557
vgic_mmio_change_active(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool active)558 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
559 bool active)
560 {
561 unsigned long flags;
562 struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
563
564 raw_spin_lock_irqsave(&irq->irq_lock, flags);
565
566 if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
567 vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
568 } else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
569 /*
570 * GICv4.1 VSGI feature doesn't track an active state,
571 * so let's not kid ourselves, there is nothing we can
572 * do here.
573 */
574 irq->active = false;
575 } else {
576 u32 model = vcpu->kvm->arch.vgic.vgic_model;
577 u8 active_source;
578
579 irq->active = active;
580
581 /*
582 * The GICv2 architecture indicates that the source CPUID for
583 * an SGI should be provided during an EOI which implies that
584 * the active state is stored somewhere, but at the same time
585 * this state is not architecturally exposed anywhere and we
586 * have no way of knowing the right source.
587 *
588 * This may lead to a VCPU not being able to receive
589 * additional instances of a particular SGI after migration
590 * for a GICv2 VM on some GIC implementations. Oh well.
591 */
592 active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
593
594 if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
595 active && vgic_irq_is_sgi(irq->intid))
596 irq->active_source = active_source;
597 }
598
599 if (irq->active)
600 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
601 else
602 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
603 }
604
__vgic_mmio_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)605 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
606 gpa_t addr, unsigned int len,
607 unsigned long val)
608 {
609 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
610 int i;
611
612 for_each_set_bit(i, &val, len * 8) {
613 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
614 vgic_mmio_change_active(vcpu, irq, false);
615 vgic_put_irq(vcpu->kvm, irq);
616 }
617 }
618
vgic_mmio_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)619 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
620 gpa_t addr, unsigned int len,
621 unsigned long val)
622 {
623 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
624
625 mutex_lock(&vcpu->kvm->lock);
626 vgic_access_active_prepare(vcpu, intid);
627
628 __vgic_mmio_write_cactive(vcpu, addr, len, val);
629
630 vgic_access_active_finish(vcpu, intid);
631 mutex_unlock(&vcpu->kvm->lock);
632 }
633
vgic_mmio_uaccess_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)634 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
635 gpa_t addr, unsigned int len,
636 unsigned long val)
637 {
638 __vgic_mmio_write_cactive(vcpu, addr, len, val);
639 return 0;
640 }
641
__vgic_mmio_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)642 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
643 gpa_t addr, unsigned int len,
644 unsigned long val)
645 {
646 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
647 int i;
648
649 for_each_set_bit(i, &val, len * 8) {
650 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
651 vgic_mmio_change_active(vcpu, irq, true);
652 vgic_put_irq(vcpu->kvm, irq);
653 }
654 }
655
vgic_mmio_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)656 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
657 gpa_t addr, unsigned int len,
658 unsigned long val)
659 {
660 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
661
662 mutex_lock(&vcpu->kvm->lock);
663 vgic_access_active_prepare(vcpu, intid);
664
665 __vgic_mmio_write_sactive(vcpu, addr, len, val);
666
667 vgic_access_active_finish(vcpu, intid);
668 mutex_unlock(&vcpu->kvm->lock);
669 }
670
vgic_mmio_uaccess_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)671 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
672 gpa_t addr, unsigned int len,
673 unsigned long val)
674 {
675 __vgic_mmio_write_sactive(vcpu, addr, len, val);
676 return 0;
677 }
678
vgic_mmio_read_priority(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)679 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
680 gpa_t addr, unsigned int len)
681 {
682 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
683 int i;
684 u64 val = 0;
685
686 for (i = 0; i < len; i++) {
687 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
688
689 val |= (u64)irq->priority << (i * 8);
690
691 vgic_put_irq(vcpu->kvm, irq);
692 }
693
694 return val;
695 }
696
697 /*
698 * We currently don't handle changing the priority of an interrupt that
699 * is already pending on a VCPU. If there is a need for this, we would
700 * need to make this VCPU exit and re-evaluate the priorities, potentially
701 * leading to this interrupt getting presented now to the guest (if it has
702 * been masked by the priority mask before).
703 */
vgic_mmio_write_priority(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)704 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
705 gpa_t addr, unsigned int len,
706 unsigned long val)
707 {
708 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
709 int i;
710 unsigned long flags;
711
712 for (i = 0; i < len; i++) {
713 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
714
715 raw_spin_lock_irqsave(&irq->irq_lock, flags);
716 /* Narrow the priority range to what we actually support */
717 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
718 if (irq->hw && vgic_irq_is_sgi(irq->intid))
719 vgic_update_vsgi(irq);
720 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
721
722 vgic_put_irq(vcpu->kvm, irq);
723 }
724 }
725
vgic_mmio_read_config(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)726 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
727 gpa_t addr, unsigned int len)
728 {
729 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
730 u32 value = 0;
731 int i;
732
733 for (i = 0; i < len * 4; i++) {
734 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
735
736 if (irq->config == VGIC_CONFIG_EDGE)
737 value |= (2U << (i * 2));
738
739 vgic_put_irq(vcpu->kvm, irq);
740 }
741
742 return value;
743 }
744
vgic_mmio_write_config(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)745 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
746 gpa_t addr, unsigned int len,
747 unsigned long val)
748 {
749 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
750 int i;
751 unsigned long flags;
752
753 for (i = 0; i < len * 4; i++) {
754 struct vgic_irq *irq;
755
756 /*
757 * The configuration cannot be changed for SGIs in general,
758 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
759 * code relies on PPIs being level triggered, so we also
760 * make them read-only here.
761 */
762 if (intid + i < VGIC_NR_PRIVATE_IRQS)
763 continue;
764
765 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
766 raw_spin_lock_irqsave(&irq->irq_lock, flags);
767
768 if (test_bit(i * 2 + 1, &val))
769 irq->config = VGIC_CONFIG_EDGE;
770 else
771 irq->config = VGIC_CONFIG_LEVEL;
772
773 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
774 vgic_put_irq(vcpu->kvm, irq);
775 }
776 }
777
vgic_read_irq_line_level_info(struct kvm_vcpu * vcpu,u32 intid)778 u32 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
779 {
780 int i;
781 u32 val = 0;
782 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
783
784 for (i = 0; i < 32; i++) {
785 struct vgic_irq *irq;
786
787 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
788 continue;
789
790 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
791 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
792 val |= (1U << i);
793
794 vgic_put_irq(vcpu->kvm, irq);
795 }
796
797 return val;
798 }
799
vgic_write_irq_line_level_info(struct kvm_vcpu * vcpu,u32 intid,const u32 val)800 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
801 const u32 val)
802 {
803 int i;
804 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
805 unsigned long flags;
806
807 for (i = 0; i < 32; i++) {
808 struct vgic_irq *irq;
809 bool new_level;
810
811 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
812 continue;
813
814 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
815
816 /*
817 * Line level is set irrespective of irq type
818 * (level or edge) to avoid dependency that VM should
819 * restore irq config before line level.
820 */
821 new_level = !!(val & (1U << i));
822 raw_spin_lock_irqsave(&irq->irq_lock, flags);
823 irq->line_level = new_level;
824 if (new_level)
825 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
826 else
827 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
828
829 vgic_put_irq(vcpu->kvm, irq);
830 }
831 }
832
match_region(const void * key,const void * elt)833 static int match_region(const void *key, const void *elt)
834 {
835 const unsigned int offset = (unsigned long)key;
836 const struct vgic_register_region *region = elt;
837
838 if (offset < region->reg_offset)
839 return -1;
840
841 if (offset >= region->reg_offset + region->len)
842 return 1;
843
844 return 0;
845 }
846
847 const struct vgic_register_region *
vgic_find_mmio_region(const struct vgic_register_region * regions,int nr_regions,unsigned int offset)848 vgic_find_mmio_region(const struct vgic_register_region *regions,
849 int nr_regions, unsigned int offset)
850 {
851 return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
852 sizeof(regions[0]), match_region);
853 }
854
vgic_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcr)855 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
856 {
857 if (kvm_vgic_global_state.type == VGIC_V2)
858 vgic_v2_set_vmcr(vcpu, vmcr);
859 else
860 vgic_v3_set_vmcr(vcpu, vmcr);
861 }
862
vgic_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcr)863 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
864 {
865 if (kvm_vgic_global_state.type == VGIC_V2)
866 vgic_v2_get_vmcr(vcpu, vmcr);
867 else
868 vgic_v3_get_vmcr(vcpu, vmcr);
869 }
870
871 /*
872 * kvm_mmio_read_buf() returns a value in a format where it can be converted
873 * to a byte array and be directly observed as the guest wanted it to appear
874 * in memory if it had done the store itself, which is LE for the GIC, as the
875 * guest knows the GIC is always LE.
876 *
877 * We convert this value to the CPUs native format to deal with it as a data
878 * value.
879 */
vgic_data_mmio_bus_to_host(const void * val,unsigned int len)880 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
881 {
882 unsigned long data = kvm_mmio_read_buf(val, len);
883
884 switch (len) {
885 case 1:
886 return data;
887 case 2:
888 return le16_to_cpu(data);
889 case 4:
890 return le32_to_cpu(data);
891 default:
892 return le64_to_cpu(data);
893 }
894 }
895
896 /*
897 * kvm_mmio_write_buf() expects a value in a format such that if converted to
898 * a byte array it is observed as the guest would see it if it could perform
899 * the load directly. Since the GIC is LE, and the guest knows this, the
900 * guest expects a value in little endian format.
901 *
902 * We convert the data value from the CPUs native format to LE so that the
903 * value is returned in the proper format.
904 */
vgic_data_host_to_mmio_bus(void * buf,unsigned int len,unsigned long data)905 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
906 unsigned long data)
907 {
908 switch (len) {
909 case 1:
910 break;
911 case 2:
912 data = cpu_to_le16(data);
913 break;
914 case 4:
915 data = cpu_to_le32(data);
916 break;
917 default:
918 data = cpu_to_le64(data);
919 }
920
921 kvm_mmio_write_buf(buf, len, data);
922 }
923
924 static
kvm_to_vgic_iodev(const struct kvm_io_device * dev)925 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
926 {
927 return container_of(dev, struct vgic_io_device, dev);
928 }
929
check_region(const struct kvm * kvm,const struct vgic_register_region * region,gpa_t addr,int len)930 static bool check_region(const struct kvm *kvm,
931 const struct vgic_register_region *region,
932 gpa_t addr, int len)
933 {
934 int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
935
936 switch (len) {
937 case sizeof(u8):
938 flags = VGIC_ACCESS_8bit;
939 break;
940 case sizeof(u32):
941 flags = VGIC_ACCESS_32bit;
942 break;
943 case sizeof(u64):
944 flags = VGIC_ACCESS_64bit;
945 break;
946 default:
947 return false;
948 }
949
950 if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
951 if (!region->bits_per_irq)
952 return true;
953
954 /* Do we access a non-allocated IRQ? */
955 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
956 }
957
958 return false;
959 }
960
961 const struct vgic_register_region *
vgic_get_mmio_region(struct kvm_vcpu * vcpu,struct vgic_io_device * iodev,gpa_t addr,int len)962 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
963 gpa_t addr, int len)
964 {
965 const struct vgic_register_region *region;
966
967 region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
968 addr - iodev->base_addr);
969 if (!region || !check_region(vcpu->kvm, region, addr, len))
970 return NULL;
971
972 return region;
973 }
974
vgic_uaccess_read(struct kvm_vcpu * vcpu,struct vgic_io_device * iodev,gpa_t addr,u32 * val)975 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
976 gpa_t addr, u32 *val)
977 {
978 const struct vgic_register_region *region;
979 struct kvm_vcpu *r_vcpu;
980
981 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
982 if (!region) {
983 *val = 0;
984 return 0;
985 }
986
987 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
988 if (region->uaccess_read)
989 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
990 else
991 *val = region->read(r_vcpu, addr, sizeof(u32));
992
993 return 0;
994 }
995
vgic_uaccess_write(struct kvm_vcpu * vcpu,struct vgic_io_device * iodev,gpa_t addr,const u32 * val)996 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
997 gpa_t addr, const u32 *val)
998 {
999 const struct vgic_register_region *region;
1000 struct kvm_vcpu *r_vcpu;
1001
1002 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
1003 if (!region)
1004 return 0;
1005
1006 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
1007 if (region->uaccess_write)
1008 return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
1009
1010 region->write(r_vcpu, addr, sizeof(u32), *val);
1011 return 0;
1012 }
1013
1014 /*
1015 * Userland access to VGIC registers.
1016 */
vgic_uaccess(struct kvm_vcpu * vcpu,struct vgic_io_device * dev,bool is_write,int offset,u32 * val)1017 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
1018 bool is_write, int offset, u32 *val)
1019 {
1020 if (is_write)
1021 return vgic_uaccess_write(vcpu, dev, offset, val);
1022 else
1023 return vgic_uaccess_read(vcpu, dev, offset, val);
1024 }
1025
dispatch_mmio_read(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,int len,void * val)1026 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1027 gpa_t addr, int len, void *val)
1028 {
1029 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1030 const struct vgic_register_region *region;
1031 unsigned long data = 0;
1032
1033 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1034 if (!region) {
1035 memset(val, 0, len);
1036 return 0;
1037 }
1038
1039 switch (iodev->iodev_type) {
1040 case IODEV_CPUIF:
1041 data = region->read(vcpu, addr, len);
1042 break;
1043 case IODEV_DIST:
1044 data = region->read(vcpu, addr, len);
1045 break;
1046 case IODEV_REDIST:
1047 data = region->read(iodev->redist_vcpu, addr, len);
1048 break;
1049 case IODEV_ITS:
1050 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
1051 break;
1052 }
1053
1054 vgic_data_host_to_mmio_bus(val, len, data);
1055 return 0;
1056 }
1057
dispatch_mmio_write(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,int len,const void * val)1058 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1059 gpa_t addr, int len, const void *val)
1060 {
1061 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1062 const struct vgic_register_region *region;
1063 unsigned long data = vgic_data_mmio_bus_to_host(val, len);
1064
1065 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1066 if (!region)
1067 return 0;
1068
1069 switch (iodev->iodev_type) {
1070 case IODEV_CPUIF:
1071 region->write(vcpu, addr, len, data);
1072 break;
1073 case IODEV_DIST:
1074 region->write(vcpu, addr, len, data);
1075 break;
1076 case IODEV_REDIST:
1077 region->write(iodev->redist_vcpu, addr, len, data);
1078 break;
1079 case IODEV_ITS:
1080 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
1081 break;
1082 }
1083
1084 return 0;
1085 }
1086
1087 const struct kvm_io_device_ops kvm_io_gic_ops = {
1088 .read = dispatch_mmio_read,
1089 .write = dispatch_mmio_write,
1090 };
1091
vgic_register_dist_iodev(struct kvm * kvm,gpa_t dist_base_address,enum vgic_type type)1092 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
1093 enum vgic_type type)
1094 {
1095 struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
1096 int ret = 0;
1097 unsigned int len;
1098
1099 switch (type) {
1100 case VGIC_V2:
1101 len = vgic_v2_init_dist_iodev(io_device);
1102 break;
1103 case VGIC_V3:
1104 len = vgic_v3_init_dist_iodev(io_device);
1105 break;
1106 default:
1107 BUG_ON(1);
1108 }
1109
1110 io_device->base_addr = dist_base_address;
1111 io_device->iodev_type = IODEV_DIST;
1112 io_device->redist_vcpu = NULL;
1113
1114 mutex_lock(&kvm->slots_lock);
1115 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
1116 len, &io_device->dev);
1117 mutex_unlock(&kvm->slots_lock);
1118
1119 return ret;
1120 }
1121