1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41 
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49 
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53 
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
hugetlb_cma_page(struct page * page,unsigned int order)57 static bool hugetlb_cma_page(struct page *page, unsigned int order)
58 {
59 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60 				1 << order);
61 }
62 #else
hugetlb_cma_page(struct page * page,unsigned int order)63 static bool hugetlb_cma_page(struct page *page, unsigned int order)
64 {
65 	return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69 
70 __initdata LIST_HEAD(huge_boot_pages);
71 
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78 
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84 
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91 
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 		unsigned long start, unsigned long end);
99 
subpool_is_free(struct hugepage_subpool * spool)100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102 	if (spool->count)
103 		return false;
104 	if (spool->max_hpages != -1)
105 		return spool->used_hpages == 0;
106 	if (spool->min_hpages != -1)
107 		return spool->rsv_hpages == spool->min_hpages;
108 
109 	return true;
110 }
111 
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 						unsigned long irq_flags)
114 {
115 	spin_unlock_irqrestore(&spool->lock, irq_flags);
116 
117 	/* If no pages are used, and no other handles to the subpool
118 	 * remain, give up any reservations based on minimum size and
119 	 * free the subpool */
120 	if (subpool_is_free(spool)) {
121 		if (spool->min_hpages != -1)
122 			hugetlb_acct_memory(spool->hstate,
123 						-spool->min_hpages);
124 		kfree(spool);
125 	}
126 }
127 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 						long min_hpages)
130 {
131 	struct hugepage_subpool *spool;
132 
133 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134 	if (!spool)
135 		return NULL;
136 
137 	spin_lock_init(&spool->lock);
138 	spool->count = 1;
139 	spool->max_hpages = max_hpages;
140 	spool->hstate = h;
141 	spool->min_hpages = min_hpages;
142 
143 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 		kfree(spool);
145 		return NULL;
146 	}
147 	spool->rsv_hpages = min_hpages;
148 
149 	return spool;
150 }
151 
hugepage_put_subpool(struct hugepage_subpool * spool)152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154 	unsigned long flags;
155 
156 	spin_lock_irqsave(&spool->lock, flags);
157 	BUG_ON(!spool->count);
158 	spool->count--;
159 	unlock_or_release_subpool(spool, flags);
160 }
161 
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171 				      long delta)
172 {
173 	long ret = delta;
174 
175 	if (!spool)
176 		return ret;
177 
178 	spin_lock_irq(&spool->lock);
179 
180 	if (spool->max_hpages != -1) {		/* maximum size accounting */
181 		if ((spool->used_hpages + delta) <= spool->max_hpages)
182 			spool->used_hpages += delta;
183 		else {
184 			ret = -ENOMEM;
185 			goto unlock_ret;
186 		}
187 	}
188 
189 	/* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 		if (delta > spool->rsv_hpages) {
192 			/*
193 			 * Asking for more reserves than those already taken on
194 			 * behalf of subpool.  Return difference.
195 			 */
196 			ret = delta - spool->rsv_hpages;
197 			spool->rsv_hpages = 0;
198 		} else {
199 			ret = 0;	/* reserves already accounted for */
200 			spool->rsv_hpages -= delta;
201 		}
202 	}
203 
204 unlock_ret:
205 	spin_unlock_irq(&spool->lock);
206 	return ret;
207 }
208 
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216 				       long delta)
217 {
218 	long ret = delta;
219 	unsigned long flags;
220 
221 	if (!spool)
222 		return delta;
223 
224 	spin_lock_irqsave(&spool->lock, flags);
225 
226 	if (spool->max_hpages != -1)		/* maximum size accounting */
227 		spool->used_hpages -= delta;
228 
229 	 /* minimum size accounting */
230 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 		if (spool->rsv_hpages + delta <= spool->min_hpages)
232 			ret = 0;
233 		else
234 			ret = spool->rsv_hpages + delta - spool->min_hpages;
235 
236 		spool->rsv_hpages += delta;
237 		if (spool->rsv_hpages > spool->min_hpages)
238 			spool->rsv_hpages = spool->min_hpages;
239 	}
240 
241 	/*
242 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 	 * quota reference, free it now.
244 	 */
245 	unlock_or_release_subpool(spool, flags);
246 
247 	return ret;
248 }
249 
subpool_inode(struct inode * inode)250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252 	return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254 
subpool_vma(struct vm_area_struct * vma)255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257 	return subpool_inode(file_inode(vma->vm_file));
258 }
259 
260 /*
261  * hugetlb vma_lock helper routines
262  */
__vma_shareable_lock(struct vm_area_struct * vma)263 static bool __vma_shareable_lock(struct vm_area_struct *vma)
264 {
265 	return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
266 		vma->vm_private_data;
267 }
268 
hugetlb_vma_lock_read(struct vm_area_struct * vma)269 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
270 {
271 	if (__vma_shareable_lock(vma)) {
272 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
273 
274 		down_read(&vma_lock->rw_sema);
275 	}
276 }
277 
hugetlb_vma_unlock_read(struct vm_area_struct * vma)278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280 	if (__vma_shareable_lock(vma)) {
281 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282 
283 		up_read(&vma_lock->rw_sema);
284 	}
285 }
286 
hugetlb_vma_lock_write(struct vm_area_struct * vma)287 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
288 {
289 	if (__vma_shareable_lock(vma)) {
290 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
291 
292 		down_write(&vma_lock->rw_sema);
293 	}
294 }
295 
hugetlb_vma_unlock_write(struct vm_area_struct * vma)296 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
297 {
298 	if (__vma_shareable_lock(vma)) {
299 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
300 
301 		up_write(&vma_lock->rw_sema);
302 	}
303 }
304 
hugetlb_vma_trylock_write(struct vm_area_struct * vma)305 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
306 {
307 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308 
309 	if (!__vma_shareable_lock(vma))
310 		return 1;
311 
312 	return down_write_trylock(&vma_lock->rw_sema);
313 }
314 
hugetlb_vma_assert_locked(struct vm_area_struct * vma)315 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
316 {
317 	if (__vma_shareable_lock(vma)) {
318 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
319 
320 		lockdep_assert_held(&vma_lock->rw_sema);
321 	}
322 }
323 
hugetlb_vma_lock_release(struct kref * kref)324 void hugetlb_vma_lock_release(struct kref *kref)
325 {
326 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
327 			struct hugetlb_vma_lock, refs);
328 
329 	kfree(vma_lock);
330 }
331 
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)332 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
333 {
334 	struct vm_area_struct *vma = vma_lock->vma;
335 
336 	/*
337 	 * vma_lock structure may or not be released as a result of put,
338 	 * it certainly will no longer be attached to vma so clear pointer.
339 	 * Semaphore synchronizes access to vma_lock->vma field.
340 	 */
341 	vma_lock->vma = NULL;
342 	vma->vm_private_data = NULL;
343 	up_write(&vma_lock->rw_sema);
344 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
345 }
346 
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)347 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
348 {
349 	if (__vma_shareable_lock(vma)) {
350 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
351 
352 		__hugetlb_vma_unlock_write_put(vma_lock);
353 	}
354 }
355 
hugetlb_vma_lock_free(struct vm_area_struct * vma)356 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
357 {
358 	/*
359 	 * Only present in sharable vmas.
360 	 */
361 	if (!vma || !__vma_shareable_lock(vma))
362 		return;
363 
364 	if (vma->vm_private_data) {
365 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
366 
367 		down_write(&vma_lock->rw_sema);
368 		__hugetlb_vma_unlock_write_put(vma_lock);
369 	}
370 }
371 
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)372 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
373 {
374 	struct hugetlb_vma_lock *vma_lock;
375 
376 	/* Only establish in (flags) sharable vmas */
377 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
378 		return;
379 
380 	/* Should never get here with non-NULL vm_private_data */
381 	if (vma->vm_private_data)
382 		return;
383 
384 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
385 	if (!vma_lock) {
386 		/*
387 		 * If we can not allocate structure, then vma can not
388 		 * participate in pmd sharing.  This is only a possible
389 		 * performance enhancement and memory saving issue.
390 		 * However, the lock is also used to synchronize page
391 		 * faults with truncation.  If the lock is not present,
392 		 * unlikely races could leave pages in a file past i_size
393 		 * until the file is removed.  Warn in the unlikely case of
394 		 * allocation failure.
395 		 */
396 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
397 		return;
398 	}
399 
400 	kref_init(&vma_lock->refs);
401 	init_rwsem(&vma_lock->rw_sema);
402 	vma_lock->vma = vma;
403 	vma->vm_private_data = vma_lock;
404 }
405 
406 /* Helper that removes a struct file_region from the resv_map cache and returns
407  * it for use.
408  */
409 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)410 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
411 {
412 	struct file_region *nrg;
413 
414 	VM_BUG_ON(resv->region_cache_count <= 0);
415 
416 	resv->region_cache_count--;
417 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
418 	list_del(&nrg->link);
419 
420 	nrg->from = from;
421 	nrg->to = to;
422 
423 	return nrg;
424 }
425 
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)426 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
427 					      struct file_region *rg)
428 {
429 #ifdef CONFIG_CGROUP_HUGETLB
430 	nrg->reservation_counter = rg->reservation_counter;
431 	nrg->css = rg->css;
432 	if (rg->css)
433 		css_get(rg->css);
434 #endif
435 }
436 
437 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)438 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
439 						struct hstate *h,
440 						struct resv_map *resv,
441 						struct file_region *nrg)
442 {
443 #ifdef CONFIG_CGROUP_HUGETLB
444 	if (h_cg) {
445 		nrg->reservation_counter =
446 			&h_cg->rsvd_hugepage[hstate_index(h)];
447 		nrg->css = &h_cg->css;
448 		/*
449 		 * The caller will hold exactly one h_cg->css reference for the
450 		 * whole contiguous reservation region. But this area might be
451 		 * scattered when there are already some file_regions reside in
452 		 * it. As a result, many file_regions may share only one css
453 		 * reference. In order to ensure that one file_region must hold
454 		 * exactly one h_cg->css reference, we should do css_get for
455 		 * each file_region and leave the reference held by caller
456 		 * untouched.
457 		 */
458 		css_get(&h_cg->css);
459 		if (!resv->pages_per_hpage)
460 			resv->pages_per_hpage = pages_per_huge_page(h);
461 		/* pages_per_hpage should be the same for all entries in
462 		 * a resv_map.
463 		 */
464 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
465 	} else {
466 		nrg->reservation_counter = NULL;
467 		nrg->css = NULL;
468 	}
469 #endif
470 }
471 
put_uncharge_info(struct file_region * rg)472 static void put_uncharge_info(struct file_region *rg)
473 {
474 #ifdef CONFIG_CGROUP_HUGETLB
475 	if (rg->css)
476 		css_put(rg->css);
477 #endif
478 }
479 
has_same_uncharge_info(struct file_region * rg,struct file_region * org)480 static bool has_same_uncharge_info(struct file_region *rg,
481 				   struct file_region *org)
482 {
483 #ifdef CONFIG_CGROUP_HUGETLB
484 	return rg->reservation_counter == org->reservation_counter &&
485 	       rg->css == org->css;
486 
487 #else
488 	return true;
489 #endif
490 }
491 
coalesce_file_region(struct resv_map * resv,struct file_region * rg)492 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
493 {
494 	struct file_region *nrg, *prg;
495 
496 	prg = list_prev_entry(rg, link);
497 	if (&prg->link != &resv->regions && prg->to == rg->from &&
498 	    has_same_uncharge_info(prg, rg)) {
499 		prg->to = rg->to;
500 
501 		list_del(&rg->link);
502 		put_uncharge_info(rg);
503 		kfree(rg);
504 
505 		rg = prg;
506 	}
507 
508 	nrg = list_next_entry(rg, link);
509 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
510 	    has_same_uncharge_info(nrg, rg)) {
511 		nrg->from = rg->from;
512 
513 		list_del(&rg->link);
514 		put_uncharge_info(rg);
515 		kfree(rg);
516 	}
517 }
518 
519 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)520 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
521 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
522 		     long *regions_needed)
523 {
524 	struct file_region *nrg;
525 
526 	if (!regions_needed) {
527 		nrg = get_file_region_entry_from_cache(map, from, to);
528 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
529 		list_add(&nrg->link, rg);
530 		coalesce_file_region(map, nrg);
531 	} else
532 		*regions_needed += 1;
533 
534 	return to - from;
535 }
536 
537 /*
538  * Must be called with resv->lock held.
539  *
540  * Calling this with regions_needed != NULL will count the number of pages
541  * to be added but will not modify the linked list. And regions_needed will
542  * indicate the number of file_regions needed in the cache to carry out to add
543  * the regions for this range.
544  */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)545 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
546 				     struct hugetlb_cgroup *h_cg,
547 				     struct hstate *h, long *regions_needed)
548 {
549 	long add = 0;
550 	struct list_head *head = &resv->regions;
551 	long last_accounted_offset = f;
552 	struct file_region *iter, *trg = NULL;
553 	struct list_head *rg = NULL;
554 
555 	if (regions_needed)
556 		*regions_needed = 0;
557 
558 	/* In this loop, we essentially handle an entry for the range
559 	 * [last_accounted_offset, iter->from), at every iteration, with some
560 	 * bounds checking.
561 	 */
562 	list_for_each_entry_safe(iter, trg, head, link) {
563 		/* Skip irrelevant regions that start before our range. */
564 		if (iter->from < f) {
565 			/* If this region ends after the last accounted offset,
566 			 * then we need to update last_accounted_offset.
567 			 */
568 			if (iter->to > last_accounted_offset)
569 				last_accounted_offset = iter->to;
570 			continue;
571 		}
572 
573 		/* When we find a region that starts beyond our range, we've
574 		 * finished.
575 		 */
576 		if (iter->from >= t) {
577 			rg = iter->link.prev;
578 			break;
579 		}
580 
581 		/* Add an entry for last_accounted_offset -> iter->from, and
582 		 * update last_accounted_offset.
583 		 */
584 		if (iter->from > last_accounted_offset)
585 			add += hugetlb_resv_map_add(resv, iter->link.prev,
586 						    last_accounted_offset,
587 						    iter->from, h, h_cg,
588 						    regions_needed);
589 
590 		last_accounted_offset = iter->to;
591 	}
592 
593 	/* Handle the case where our range extends beyond
594 	 * last_accounted_offset.
595 	 */
596 	if (!rg)
597 		rg = head->prev;
598 	if (last_accounted_offset < t)
599 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
600 					    t, h, h_cg, regions_needed);
601 
602 	return add;
603 }
604 
605 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
606  */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)607 static int allocate_file_region_entries(struct resv_map *resv,
608 					int regions_needed)
609 	__must_hold(&resv->lock)
610 {
611 	LIST_HEAD(allocated_regions);
612 	int to_allocate = 0, i = 0;
613 	struct file_region *trg = NULL, *rg = NULL;
614 
615 	VM_BUG_ON(regions_needed < 0);
616 
617 	/*
618 	 * Check for sufficient descriptors in the cache to accommodate
619 	 * the number of in progress add operations plus regions_needed.
620 	 *
621 	 * This is a while loop because when we drop the lock, some other call
622 	 * to region_add or region_del may have consumed some region_entries,
623 	 * so we keep looping here until we finally have enough entries for
624 	 * (adds_in_progress + regions_needed).
625 	 */
626 	while (resv->region_cache_count <
627 	       (resv->adds_in_progress + regions_needed)) {
628 		to_allocate = resv->adds_in_progress + regions_needed -
629 			      resv->region_cache_count;
630 
631 		/* At this point, we should have enough entries in the cache
632 		 * for all the existing adds_in_progress. We should only be
633 		 * needing to allocate for regions_needed.
634 		 */
635 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
636 
637 		spin_unlock(&resv->lock);
638 		for (i = 0; i < to_allocate; i++) {
639 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
640 			if (!trg)
641 				goto out_of_memory;
642 			list_add(&trg->link, &allocated_regions);
643 		}
644 
645 		spin_lock(&resv->lock);
646 
647 		list_splice(&allocated_regions, &resv->region_cache);
648 		resv->region_cache_count += to_allocate;
649 	}
650 
651 	return 0;
652 
653 out_of_memory:
654 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
655 		list_del(&rg->link);
656 		kfree(rg);
657 	}
658 	return -ENOMEM;
659 }
660 
661 /*
662  * Add the huge page range represented by [f, t) to the reserve
663  * map.  Regions will be taken from the cache to fill in this range.
664  * Sufficient regions should exist in the cache due to the previous
665  * call to region_chg with the same range, but in some cases the cache will not
666  * have sufficient entries due to races with other code doing region_add or
667  * region_del.  The extra needed entries will be allocated.
668  *
669  * regions_needed is the out value provided by a previous call to region_chg.
670  *
671  * Return the number of new huge pages added to the map.  This number is greater
672  * than or equal to zero.  If file_region entries needed to be allocated for
673  * this operation and we were not able to allocate, it returns -ENOMEM.
674  * region_add of regions of length 1 never allocate file_regions and cannot
675  * fail; region_chg will always allocate at least 1 entry and a region_add for
676  * 1 page will only require at most 1 entry.
677  */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)678 static long region_add(struct resv_map *resv, long f, long t,
679 		       long in_regions_needed, struct hstate *h,
680 		       struct hugetlb_cgroup *h_cg)
681 {
682 	long add = 0, actual_regions_needed = 0;
683 
684 	spin_lock(&resv->lock);
685 retry:
686 
687 	/* Count how many regions are actually needed to execute this add. */
688 	add_reservation_in_range(resv, f, t, NULL, NULL,
689 				 &actual_regions_needed);
690 
691 	/*
692 	 * Check for sufficient descriptors in the cache to accommodate
693 	 * this add operation. Note that actual_regions_needed may be greater
694 	 * than in_regions_needed, as the resv_map may have been modified since
695 	 * the region_chg call. In this case, we need to make sure that we
696 	 * allocate extra entries, such that we have enough for all the
697 	 * existing adds_in_progress, plus the excess needed for this
698 	 * operation.
699 	 */
700 	if (actual_regions_needed > in_regions_needed &&
701 	    resv->region_cache_count <
702 		    resv->adds_in_progress +
703 			    (actual_regions_needed - in_regions_needed)) {
704 		/* region_add operation of range 1 should never need to
705 		 * allocate file_region entries.
706 		 */
707 		VM_BUG_ON(t - f <= 1);
708 
709 		if (allocate_file_region_entries(
710 			    resv, actual_regions_needed - in_regions_needed)) {
711 			return -ENOMEM;
712 		}
713 
714 		goto retry;
715 	}
716 
717 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
718 
719 	resv->adds_in_progress -= in_regions_needed;
720 
721 	spin_unlock(&resv->lock);
722 	return add;
723 }
724 
725 /*
726  * Examine the existing reserve map and determine how many
727  * huge pages in the specified range [f, t) are NOT currently
728  * represented.  This routine is called before a subsequent
729  * call to region_add that will actually modify the reserve
730  * map to add the specified range [f, t).  region_chg does
731  * not change the number of huge pages represented by the
732  * map.  A number of new file_region structures is added to the cache as a
733  * placeholder, for the subsequent region_add call to use. At least 1
734  * file_region structure is added.
735  *
736  * out_regions_needed is the number of regions added to the
737  * resv->adds_in_progress.  This value needs to be provided to a follow up call
738  * to region_add or region_abort for proper accounting.
739  *
740  * Returns the number of huge pages that need to be added to the existing
741  * reservation map for the range [f, t).  This number is greater or equal to
742  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
743  * is needed and can not be allocated.
744  */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)745 static long region_chg(struct resv_map *resv, long f, long t,
746 		       long *out_regions_needed)
747 {
748 	long chg = 0;
749 
750 	spin_lock(&resv->lock);
751 
752 	/* Count how many hugepages in this range are NOT represented. */
753 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
754 				       out_regions_needed);
755 
756 	if (*out_regions_needed == 0)
757 		*out_regions_needed = 1;
758 
759 	if (allocate_file_region_entries(resv, *out_regions_needed))
760 		return -ENOMEM;
761 
762 	resv->adds_in_progress += *out_regions_needed;
763 
764 	spin_unlock(&resv->lock);
765 	return chg;
766 }
767 
768 /*
769  * Abort the in progress add operation.  The adds_in_progress field
770  * of the resv_map keeps track of the operations in progress between
771  * calls to region_chg and region_add.  Operations are sometimes
772  * aborted after the call to region_chg.  In such cases, region_abort
773  * is called to decrement the adds_in_progress counter. regions_needed
774  * is the value returned by the region_chg call, it is used to decrement
775  * the adds_in_progress counter.
776  *
777  * NOTE: The range arguments [f, t) are not needed or used in this
778  * routine.  They are kept to make reading the calling code easier as
779  * arguments will match the associated region_chg call.
780  */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)781 static void region_abort(struct resv_map *resv, long f, long t,
782 			 long regions_needed)
783 {
784 	spin_lock(&resv->lock);
785 	VM_BUG_ON(!resv->region_cache_count);
786 	resv->adds_in_progress -= regions_needed;
787 	spin_unlock(&resv->lock);
788 }
789 
790 /*
791  * Delete the specified range [f, t) from the reserve map.  If the
792  * t parameter is LONG_MAX, this indicates that ALL regions after f
793  * should be deleted.  Locate the regions which intersect [f, t)
794  * and either trim, delete or split the existing regions.
795  *
796  * Returns the number of huge pages deleted from the reserve map.
797  * In the normal case, the return value is zero or more.  In the
798  * case where a region must be split, a new region descriptor must
799  * be allocated.  If the allocation fails, -ENOMEM will be returned.
800  * NOTE: If the parameter t == LONG_MAX, then we will never split
801  * a region and possibly return -ENOMEM.  Callers specifying
802  * t == LONG_MAX do not need to check for -ENOMEM error.
803  */
region_del(struct resv_map * resv,long f,long t)804 static long region_del(struct resv_map *resv, long f, long t)
805 {
806 	struct list_head *head = &resv->regions;
807 	struct file_region *rg, *trg;
808 	struct file_region *nrg = NULL;
809 	long del = 0;
810 
811 retry:
812 	spin_lock(&resv->lock);
813 	list_for_each_entry_safe(rg, trg, head, link) {
814 		/*
815 		 * Skip regions before the range to be deleted.  file_region
816 		 * ranges are normally of the form [from, to).  However, there
817 		 * may be a "placeholder" entry in the map which is of the form
818 		 * (from, to) with from == to.  Check for placeholder entries
819 		 * at the beginning of the range to be deleted.
820 		 */
821 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
822 			continue;
823 
824 		if (rg->from >= t)
825 			break;
826 
827 		if (f > rg->from && t < rg->to) { /* Must split region */
828 			/*
829 			 * Check for an entry in the cache before dropping
830 			 * lock and attempting allocation.
831 			 */
832 			if (!nrg &&
833 			    resv->region_cache_count > resv->adds_in_progress) {
834 				nrg = list_first_entry(&resv->region_cache,
835 							struct file_region,
836 							link);
837 				list_del(&nrg->link);
838 				resv->region_cache_count--;
839 			}
840 
841 			if (!nrg) {
842 				spin_unlock(&resv->lock);
843 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
844 				if (!nrg)
845 					return -ENOMEM;
846 				goto retry;
847 			}
848 
849 			del += t - f;
850 			hugetlb_cgroup_uncharge_file_region(
851 				resv, rg, t - f, false);
852 
853 			/* New entry for end of split region */
854 			nrg->from = t;
855 			nrg->to = rg->to;
856 
857 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
858 
859 			INIT_LIST_HEAD(&nrg->link);
860 
861 			/* Original entry is trimmed */
862 			rg->to = f;
863 
864 			list_add(&nrg->link, &rg->link);
865 			nrg = NULL;
866 			break;
867 		}
868 
869 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
870 			del += rg->to - rg->from;
871 			hugetlb_cgroup_uncharge_file_region(resv, rg,
872 							    rg->to - rg->from, true);
873 			list_del(&rg->link);
874 			kfree(rg);
875 			continue;
876 		}
877 
878 		if (f <= rg->from) {	/* Trim beginning of region */
879 			hugetlb_cgroup_uncharge_file_region(resv, rg,
880 							    t - rg->from, false);
881 
882 			del += t - rg->from;
883 			rg->from = t;
884 		} else {		/* Trim end of region */
885 			hugetlb_cgroup_uncharge_file_region(resv, rg,
886 							    rg->to - f, false);
887 
888 			del += rg->to - f;
889 			rg->to = f;
890 		}
891 	}
892 
893 	spin_unlock(&resv->lock);
894 	kfree(nrg);
895 	return del;
896 }
897 
898 /*
899  * A rare out of memory error was encountered which prevented removal of
900  * the reserve map region for a page.  The huge page itself was free'ed
901  * and removed from the page cache.  This routine will adjust the subpool
902  * usage count, and the global reserve count if needed.  By incrementing
903  * these counts, the reserve map entry which could not be deleted will
904  * appear as a "reserved" entry instead of simply dangling with incorrect
905  * counts.
906  */
hugetlb_fix_reserve_counts(struct inode * inode)907 void hugetlb_fix_reserve_counts(struct inode *inode)
908 {
909 	struct hugepage_subpool *spool = subpool_inode(inode);
910 	long rsv_adjust;
911 	bool reserved = false;
912 
913 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
914 	if (rsv_adjust > 0) {
915 		struct hstate *h = hstate_inode(inode);
916 
917 		if (!hugetlb_acct_memory(h, 1))
918 			reserved = true;
919 	} else if (!rsv_adjust) {
920 		reserved = true;
921 	}
922 
923 	if (!reserved)
924 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
925 }
926 
927 /*
928  * Count and return the number of huge pages in the reserve map
929  * that intersect with the range [f, t).
930  */
region_count(struct resv_map * resv,long f,long t)931 static long region_count(struct resv_map *resv, long f, long t)
932 {
933 	struct list_head *head = &resv->regions;
934 	struct file_region *rg;
935 	long chg = 0;
936 
937 	spin_lock(&resv->lock);
938 	/* Locate each segment we overlap with, and count that overlap. */
939 	list_for_each_entry(rg, head, link) {
940 		long seg_from;
941 		long seg_to;
942 
943 		if (rg->to <= f)
944 			continue;
945 		if (rg->from >= t)
946 			break;
947 
948 		seg_from = max(rg->from, f);
949 		seg_to = min(rg->to, t);
950 
951 		chg += seg_to - seg_from;
952 	}
953 	spin_unlock(&resv->lock);
954 
955 	return chg;
956 }
957 
958 /*
959  * Convert the address within this vma to the page offset within
960  * the mapping, in pagecache page units; huge pages here.
961  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)962 static pgoff_t vma_hugecache_offset(struct hstate *h,
963 			struct vm_area_struct *vma, unsigned long address)
964 {
965 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
966 			(vma->vm_pgoff >> huge_page_order(h));
967 }
968 
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)969 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
970 				     unsigned long address)
971 {
972 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
973 }
974 EXPORT_SYMBOL_GPL(linear_hugepage_index);
975 
976 /*
977  * Return the size of the pages allocated when backing a VMA. In the majority
978  * cases this will be same size as used by the page table entries.
979  */
vma_kernel_pagesize(struct vm_area_struct * vma)980 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
981 {
982 	if (vma->vm_ops && vma->vm_ops->pagesize)
983 		return vma->vm_ops->pagesize(vma);
984 	return PAGE_SIZE;
985 }
986 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
987 
988 /*
989  * Return the page size being used by the MMU to back a VMA. In the majority
990  * of cases, the page size used by the kernel matches the MMU size. On
991  * architectures where it differs, an architecture-specific 'strong'
992  * version of this symbol is required.
993  */
vma_mmu_pagesize(struct vm_area_struct * vma)994 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
995 {
996 	return vma_kernel_pagesize(vma);
997 }
998 
999 /*
1000  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1001  * bits of the reservation map pointer, which are always clear due to
1002  * alignment.
1003  */
1004 #define HPAGE_RESV_OWNER    (1UL << 0)
1005 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1006 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1007 
1008 /*
1009  * These helpers are used to track how many pages are reserved for
1010  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1011  * is guaranteed to have their future faults succeed.
1012  *
1013  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1014  * the reserve counters are updated with the hugetlb_lock held. It is safe
1015  * to reset the VMA at fork() time as it is not in use yet and there is no
1016  * chance of the global counters getting corrupted as a result of the values.
1017  *
1018  * The private mapping reservation is represented in a subtly different
1019  * manner to a shared mapping.  A shared mapping has a region map associated
1020  * with the underlying file, this region map represents the backing file
1021  * pages which have ever had a reservation assigned which this persists even
1022  * after the page is instantiated.  A private mapping has a region map
1023  * associated with the original mmap which is attached to all VMAs which
1024  * reference it, this region map represents those offsets which have consumed
1025  * reservation ie. where pages have been instantiated.
1026  */
get_vma_private_data(struct vm_area_struct * vma)1027 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1028 {
1029 	return (unsigned long)vma->vm_private_data;
1030 }
1031 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1032 static void set_vma_private_data(struct vm_area_struct *vma,
1033 							unsigned long value)
1034 {
1035 	vma->vm_private_data = (void *)value;
1036 }
1037 
1038 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1039 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1040 					  struct hugetlb_cgroup *h_cg,
1041 					  struct hstate *h)
1042 {
1043 #ifdef CONFIG_CGROUP_HUGETLB
1044 	if (!h_cg || !h) {
1045 		resv_map->reservation_counter = NULL;
1046 		resv_map->pages_per_hpage = 0;
1047 		resv_map->css = NULL;
1048 	} else {
1049 		resv_map->reservation_counter =
1050 			&h_cg->rsvd_hugepage[hstate_index(h)];
1051 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1052 		resv_map->css = &h_cg->css;
1053 	}
1054 #endif
1055 }
1056 
resv_map_alloc(void)1057 struct resv_map *resv_map_alloc(void)
1058 {
1059 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1060 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1061 
1062 	if (!resv_map || !rg) {
1063 		kfree(resv_map);
1064 		kfree(rg);
1065 		return NULL;
1066 	}
1067 
1068 	kref_init(&resv_map->refs);
1069 	spin_lock_init(&resv_map->lock);
1070 	INIT_LIST_HEAD(&resv_map->regions);
1071 
1072 	resv_map->adds_in_progress = 0;
1073 	/*
1074 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1075 	 * fields don't do cgroup accounting. On private mappings, these will be
1076 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1077 	 * reservations are to be un-charged from here.
1078 	 */
1079 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1080 
1081 	INIT_LIST_HEAD(&resv_map->region_cache);
1082 	list_add(&rg->link, &resv_map->region_cache);
1083 	resv_map->region_cache_count = 1;
1084 
1085 	return resv_map;
1086 }
1087 
resv_map_release(struct kref * ref)1088 void resv_map_release(struct kref *ref)
1089 {
1090 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1091 	struct list_head *head = &resv_map->region_cache;
1092 	struct file_region *rg, *trg;
1093 
1094 	/* Clear out any active regions before we release the map. */
1095 	region_del(resv_map, 0, LONG_MAX);
1096 
1097 	/* ... and any entries left in the cache */
1098 	list_for_each_entry_safe(rg, trg, head, link) {
1099 		list_del(&rg->link);
1100 		kfree(rg);
1101 	}
1102 
1103 	VM_BUG_ON(resv_map->adds_in_progress);
1104 
1105 	kfree(resv_map);
1106 }
1107 
inode_resv_map(struct inode * inode)1108 static inline struct resv_map *inode_resv_map(struct inode *inode)
1109 {
1110 	/*
1111 	 * At inode evict time, i_mapping may not point to the original
1112 	 * address space within the inode.  This original address space
1113 	 * contains the pointer to the resv_map.  So, always use the
1114 	 * address space embedded within the inode.
1115 	 * The VERY common case is inode->mapping == &inode->i_data but,
1116 	 * this may not be true for device special inodes.
1117 	 */
1118 	return (struct resv_map *)(&inode->i_data)->private_data;
1119 }
1120 
vma_resv_map(struct vm_area_struct * vma)1121 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1122 {
1123 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1124 	if (vma->vm_flags & VM_MAYSHARE) {
1125 		struct address_space *mapping = vma->vm_file->f_mapping;
1126 		struct inode *inode = mapping->host;
1127 
1128 		return inode_resv_map(inode);
1129 
1130 	} else {
1131 		return (struct resv_map *)(get_vma_private_data(vma) &
1132 							~HPAGE_RESV_MASK);
1133 	}
1134 }
1135 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1136 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1137 {
1138 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1139 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1140 
1141 	set_vma_private_data(vma, (get_vma_private_data(vma) &
1142 				HPAGE_RESV_MASK) | (unsigned long)map);
1143 }
1144 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1145 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1146 {
1147 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1148 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1149 
1150 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1151 }
1152 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1153 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1154 {
1155 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1156 
1157 	return (get_vma_private_data(vma) & flag) != 0;
1158 }
1159 
hugetlb_dup_vma_private(struct vm_area_struct * vma)1160 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1161 {
1162 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1163 	/*
1164 	 * Clear vm_private_data
1165 	 * - For shared mappings this is a per-vma semaphore that may be
1166 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1167 	 *   Before clearing, make sure pointer is not associated with vma
1168 	 *   as this will leak the structure.  This is the case when called
1169 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1170 	 *   been called to allocate a new structure.
1171 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1172 	 *   not apply to children.  Faults generated by the children are
1173 	 *   not guaranteed to succeed, even if read-only.
1174 	 */
1175 	if (vma->vm_flags & VM_MAYSHARE) {
1176 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1177 
1178 		if (vma_lock && vma_lock->vma != vma)
1179 			vma->vm_private_data = NULL;
1180 	} else
1181 		vma->vm_private_data = NULL;
1182 }
1183 
1184 /*
1185  * Reset and decrement one ref on hugepage private reservation.
1186  * Called with mm->mmap_sem writer semaphore held.
1187  * This function should be only used by move_vma() and operate on
1188  * same sized vma. It should never come here with last ref on the
1189  * reservation.
1190  */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1191 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1192 {
1193 	/*
1194 	 * Clear the old hugetlb private page reservation.
1195 	 * It has already been transferred to new_vma.
1196 	 *
1197 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1198 	 * which copies vma into new_vma and unmaps vma. After the copy
1199 	 * operation both new_vma and vma share a reference to the resv_map
1200 	 * struct, and at that point vma is about to be unmapped. We don't
1201 	 * want to return the reservation to the pool at unmap of vma because
1202 	 * the reservation still lives on in new_vma, so simply decrement the
1203 	 * ref here and remove the resv_map reference from this vma.
1204 	 */
1205 	struct resv_map *reservations = vma_resv_map(vma);
1206 
1207 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1208 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1209 		kref_put(&reservations->refs, resv_map_release);
1210 	}
1211 
1212 	hugetlb_dup_vma_private(vma);
1213 }
1214 
1215 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1216 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1217 {
1218 	if (vma->vm_flags & VM_NORESERVE) {
1219 		/*
1220 		 * This address is already reserved by other process(chg == 0),
1221 		 * so, we should decrement reserved count. Without decrementing,
1222 		 * reserve count remains after releasing inode, because this
1223 		 * allocated page will go into page cache and is regarded as
1224 		 * coming from reserved pool in releasing step.  Currently, we
1225 		 * don't have any other solution to deal with this situation
1226 		 * properly, so add work-around here.
1227 		 */
1228 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1229 			return true;
1230 		else
1231 			return false;
1232 	}
1233 
1234 	/* Shared mappings always use reserves */
1235 	if (vma->vm_flags & VM_MAYSHARE) {
1236 		/*
1237 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1238 		 * be a region map for all pages.  The only situation where
1239 		 * there is no region map is if a hole was punched via
1240 		 * fallocate.  In this case, there really are no reserves to
1241 		 * use.  This situation is indicated if chg != 0.
1242 		 */
1243 		if (chg)
1244 			return false;
1245 		else
1246 			return true;
1247 	}
1248 
1249 	/*
1250 	 * Only the process that called mmap() has reserves for
1251 	 * private mappings.
1252 	 */
1253 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1254 		/*
1255 		 * Like the shared case above, a hole punch or truncate
1256 		 * could have been performed on the private mapping.
1257 		 * Examine the value of chg to determine if reserves
1258 		 * actually exist or were previously consumed.
1259 		 * Very Subtle - The value of chg comes from a previous
1260 		 * call to vma_needs_reserves().  The reserve map for
1261 		 * private mappings has different (opposite) semantics
1262 		 * than that of shared mappings.  vma_needs_reserves()
1263 		 * has already taken this difference in semantics into
1264 		 * account.  Therefore, the meaning of chg is the same
1265 		 * as in the shared case above.  Code could easily be
1266 		 * combined, but keeping it separate draws attention to
1267 		 * subtle differences.
1268 		 */
1269 		if (chg)
1270 			return false;
1271 		else
1272 			return true;
1273 	}
1274 
1275 	return false;
1276 }
1277 
enqueue_huge_page(struct hstate * h,struct page * page)1278 static void enqueue_huge_page(struct hstate *h, struct page *page)
1279 {
1280 	int nid = page_to_nid(page);
1281 
1282 	lockdep_assert_held(&hugetlb_lock);
1283 	VM_BUG_ON_PAGE(page_count(page), page);
1284 
1285 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1286 	h->free_huge_pages++;
1287 	h->free_huge_pages_node[nid]++;
1288 	SetHPageFreed(page);
1289 }
1290 
dequeue_huge_page_node_exact(struct hstate * h,int nid)1291 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1292 {
1293 	struct page *page;
1294 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1295 
1296 	lockdep_assert_held(&hugetlb_lock);
1297 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1298 		if (pin && !is_longterm_pinnable_page(page))
1299 			continue;
1300 
1301 		if (PageHWPoison(page))
1302 			continue;
1303 
1304 		list_move(&page->lru, &h->hugepage_activelist);
1305 		set_page_refcounted(page);
1306 		ClearHPageFreed(page);
1307 		h->free_huge_pages--;
1308 		h->free_huge_pages_node[nid]--;
1309 		return page;
1310 	}
1311 
1312 	return NULL;
1313 }
1314 
dequeue_huge_page_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1315 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1316 		nodemask_t *nmask)
1317 {
1318 	unsigned int cpuset_mems_cookie;
1319 	struct zonelist *zonelist;
1320 	struct zone *zone;
1321 	struct zoneref *z;
1322 	int node = NUMA_NO_NODE;
1323 
1324 	zonelist = node_zonelist(nid, gfp_mask);
1325 
1326 retry_cpuset:
1327 	cpuset_mems_cookie = read_mems_allowed_begin();
1328 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1329 		struct page *page;
1330 
1331 		if (!cpuset_zone_allowed(zone, gfp_mask))
1332 			continue;
1333 		/*
1334 		 * no need to ask again on the same node. Pool is node rather than
1335 		 * zone aware
1336 		 */
1337 		if (zone_to_nid(zone) == node)
1338 			continue;
1339 		node = zone_to_nid(zone);
1340 
1341 		page = dequeue_huge_page_node_exact(h, node);
1342 		if (page)
1343 			return page;
1344 	}
1345 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1346 		goto retry_cpuset;
1347 
1348 	return NULL;
1349 }
1350 
available_huge_pages(struct hstate * h)1351 static unsigned long available_huge_pages(struct hstate *h)
1352 {
1353 	return h->free_huge_pages - h->resv_huge_pages;
1354 }
1355 
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1356 static struct page *dequeue_huge_page_vma(struct hstate *h,
1357 				struct vm_area_struct *vma,
1358 				unsigned long address, int avoid_reserve,
1359 				long chg)
1360 {
1361 	struct page *page = NULL;
1362 	struct mempolicy *mpol;
1363 	gfp_t gfp_mask;
1364 	nodemask_t *nodemask;
1365 	int nid;
1366 
1367 	/*
1368 	 * A child process with MAP_PRIVATE mappings created by their parent
1369 	 * have no page reserves. This check ensures that reservations are
1370 	 * not "stolen". The child may still get SIGKILLed
1371 	 */
1372 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1373 		goto err;
1374 
1375 	/* If reserves cannot be used, ensure enough pages are in the pool */
1376 	if (avoid_reserve && !available_huge_pages(h))
1377 		goto err;
1378 
1379 	gfp_mask = htlb_alloc_mask(h);
1380 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1381 
1382 	if (mpol_is_preferred_many(mpol)) {
1383 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1384 
1385 		/* Fallback to all nodes if page==NULL */
1386 		nodemask = NULL;
1387 	}
1388 
1389 	if (!page)
1390 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1391 
1392 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1393 		SetHPageRestoreReserve(page);
1394 		h->resv_huge_pages--;
1395 	}
1396 
1397 	mpol_cond_put(mpol);
1398 	return page;
1399 
1400 err:
1401 	return NULL;
1402 }
1403 
1404 /*
1405  * common helper functions for hstate_next_node_to_{alloc|free}.
1406  * We may have allocated or freed a huge page based on a different
1407  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1408  * be outside of *nodes_allowed.  Ensure that we use an allowed
1409  * node for alloc or free.
1410  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1411 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1412 {
1413 	nid = next_node_in(nid, *nodes_allowed);
1414 	VM_BUG_ON(nid >= MAX_NUMNODES);
1415 
1416 	return nid;
1417 }
1418 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1419 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1420 {
1421 	if (!node_isset(nid, *nodes_allowed))
1422 		nid = next_node_allowed(nid, nodes_allowed);
1423 	return nid;
1424 }
1425 
1426 /*
1427  * returns the previously saved node ["this node"] from which to
1428  * allocate a persistent huge page for the pool and advance the
1429  * next node from which to allocate, handling wrap at end of node
1430  * mask.
1431  */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1432 static int hstate_next_node_to_alloc(struct hstate *h,
1433 					nodemask_t *nodes_allowed)
1434 {
1435 	int nid;
1436 
1437 	VM_BUG_ON(!nodes_allowed);
1438 
1439 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1440 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1441 
1442 	return nid;
1443 }
1444 
1445 /*
1446  * helper for remove_pool_huge_page() - return the previously saved
1447  * node ["this node"] from which to free a huge page.  Advance the
1448  * next node id whether or not we find a free huge page to free so
1449  * that the next attempt to free addresses the next node.
1450  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1451 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1452 {
1453 	int nid;
1454 
1455 	VM_BUG_ON(!nodes_allowed);
1456 
1457 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1458 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1459 
1460 	return nid;
1461 }
1462 
1463 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1464 	for (nr_nodes = nodes_weight(*mask);				\
1465 		nr_nodes > 0 &&						\
1466 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1467 		nr_nodes--)
1468 
1469 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1470 	for (nr_nodes = nodes_weight(*mask);				\
1471 		nr_nodes > 0 &&						\
1472 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1473 		nr_nodes--)
1474 
1475 /* used to demote non-gigantic_huge pages as well */
__destroy_compound_gigantic_page(struct page * page,unsigned int order,bool demote)1476 static void __destroy_compound_gigantic_page(struct page *page,
1477 					unsigned int order, bool demote)
1478 {
1479 	int i;
1480 	int nr_pages = 1 << order;
1481 	struct page *p;
1482 
1483 	atomic_set(compound_mapcount_ptr(page), 0);
1484 	atomic_set(compound_pincount_ptr(page), 0);
1485 
1486 	for (i = 1; i < nr_pages; i++) {
1487 		p = nth_page(page, i);
1488 		p->mapping = NULL;
1489 		clear_compound_head(p);
1490 		if (!demote)
1491 			set_page_refcounted(p);
1492 	}
1493 
1494 	set_compound_order(page, 0);
1495 #ifdef CONFIG_64BIT
1496 	page[1].compound_nr = 0;
1497 #endif
1498 	__ClearPageHead(page);
1499 }
1500 
destroy_compound_hugetlb_page_for_demote(struct page * page,unsigned int order)1501 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1502 					unsigned int order)
1503 {
1504 	__destroy_compound_gigantic_page(page, order, true);
1505 }
1506 
1507 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_page(struct page * page,unsigned int order)1508 static void destroy_compound_gigantic_page(struct page *page,
1509 					unsigned int order)
1510 {
1511 	__destroy_compound_gigantic_page(page, order, false);
1512 }
1513 
free_gigantic_page(struct page * page,unsigned int order)1514 static void free_gigantic_page(struct page *page, unsigned int order)
1515 {
1516 	/*
1517 	 * If the page isn't allocated using the cma allocator,
1518 	 * cma_release() returns false.
1519 	 */
1520 #ifdef CONFIG_CMA
1521 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1522 		return;
1523 #endif
1524 
1525 	free_contig_range(page_to_pfn(page), 1 << order);
1526 }
1527 
1528 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1529 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1530 		int nid, nodemask_t *nodemask)
1531 {
1532 	unsigned long nr_pages = pages_per_huge_page(h);
1533 	if (nid == NUMA_NO_NODE)
1534 		nid = numa_mem_id();
1535 
1536 #ifdef CONFIG_CMA
1537 	{
1538 		struct page *page;
1539 		int node;
1540 
1541 		if (hugetlb_cma[nid]) {
1542 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1543 					huge_page_order(h), true);
1544 			if (page)
1545 				return page;
1546 		}
1547 
1548 		if (!(gfp_mask & __GFP_THISNODE)) {
1549 			for_each_node_mask(node, *nodemask) {
1550 				if (node == nid || !hugetlb_cma[node])
1551 					continue;
1552 
1553 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1554 						huge_page_order(h), true);
1555 				if (page)
1556 					return page;
1557 			}
1558 		}
1559 	}
1560 #endif
1561 
1562 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1563 }
1564 
1565 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1566 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1567 					int nid, nodemask_t *nodemask)
1568 {
1569 	return NULL;
1570 }
1571 #endif /* CONFIG_CONTIG_ALLOC */
1572 
1573 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1574 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1575 					int nid, nodemask_t *nodemask)
1576 {
1577 	return NULL;
1578 }
free_gigantic_page(struct page * page,unsigned int order)1579 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)1580 static inline void destroy_compound_gigantic_page(struct page *page,
1581 						unsigned int order) { }
1582 #endif
1583 
1584 /*
1585  * Remove hugetlb page from lists, and update dtor so that page appears
1586  * as just a compound page.
1587  *
1588  * A reference is held on the page, except in the case of demote.
1589  *
1590  * Must be called with hugetlb lock held.
1591  */
__remove_hugetlb_page(struct hstate * h,struct page * page,bool adjust_surplus,bool demote)1592 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1593 							bool adjust_surplus,
1594 							bool demote)
1595 {
1596 	int nid = page_to_nid(page);
1597 
1598 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1599 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1600 
1601 	lockdep_assert_held(&hugetlb_lock);
1602 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1603 		return;
1604 
1605 	list_del(&page->lru);
1606 
1607 	if (HPageFreed(page)) {
1608 		h->free_huge_pages--;
1609 		h->free_huge_pages_node[nid]--;
1610 	}
1611 	if (adjust_surplus) {
1612 		h->surplus_huge_pages--;
1613 		h->surplus_huge_pages_node[nid]--;
1614 	}
1615 
1616 	/*
1617 	 * Very subtle
1618 	 *
1619 	 * For non-gigantic pages set the destructor to the normal compound
1620 	 * page dtor.  This is needed in case someone takes an additional
1621 	 * temporary ref to the page, and freeing is delayed until they drop
1622 	 * their reference.
1623 	 *
1624 	 * For gigantic pages set the destructor to the null dtor.  This
1625 	 * destructor will never be called.  Before freeing the gigantic
1626 	 * page destroy_compound_gigantic_page will turn the compound page
1627 	 * into a simple group of pages.  After this the destructor does not
1628 	 * apply.
1629 	 *
1630 	 * This handles the case where more than one ref is held when and
1631 	 * after update_and_free_page is called.
1632 	 *
1633 	 * In the case of demote we do not ref count the page as it will soon
1634 	 * be turned into a page of smaller size.
1635 	 */
1636 	if (!demote)
1637 		set_page_refcounted(page);
1638 	if (hstate_is_gigantic(h))
1639 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1640 	else
1641 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1642 
1643 	h->nr_huge_pages--;
1644 	h->nr_huge_pages_node[nid]--;
1645 }
1646 
remove_hugetlb_page(struct hstate * h,struct page * page,bool adjust_surplus)1647 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1648 							bool adjust_surplus)
1649 {
1650 	__remove_hugetlb_page(h, page, adjust_surplus, false);
1651 }
1652 
remove_hugetlb_page_for_demote(struct hstate * h,struct page * page,bool adjust_surplus)1653 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1654 							bool adjust_surplus)
1655 {
1656 	__remove_hugetlb_page(h, page, adjust_surplus, true);
1657 }
1658 
add_hugetlb_page(struct hstate * h,struct page * page,bool adjust_surplus)1659 static void add_hugetlb_page(struct hstate *h, struct page *page,
1660 			     bool adjust_surplus)
1661 {
1662 	int zeroed;
1663 	int nid = page_to_nid(page);
1664 
1665 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1666 
1667 	lockdep_assert_held(&hugetlb_lock);
1668 
1669 	INIT_LIST_HEAD(&page->lru);
1670 	h->nr_huge_pages++;
1671 	h->nr_huge_pages_node[nid]++;
1672 
1673 	if (adjust_surplus) {
1674 		h->surplus_huge_pages++;
1675 		h->surplus_huge_pages_node[nid]++;
1676 	}
1677 
1678 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1679 	set_page_private(page, 0);
1680 	/*
1681 	 * We have to set HPageVmemmapOptimized again as above
1682 	 * set_page_private(page, 0) cleared it.
1683 	 */
1684 	SetHPageVmemmapOptimized(page);
1685 
1686 	/*
1687 	 * This page is about to be managed by the hugetlb allocator and
1688 	 * should have no users.  Drop our reference, and check for others
1689 	 * just in case.
1690 	 */
1691 	zeroed = put_page_testzero(page);
1692 	if (!zeroed)
1693 		/*
1694 		 * It is VERY unlikely soneone else has taken a ref on
1695 		 * the page.  In this case, we simply return as the
1696 		 * hugetlb destructor (free_huge_page) will be called
1697 		 * when this other ref is dropped.
1698 		 */
1699 		return;
1700 
1701 	arch_clear_hugepage_flags(page);
1702 	enqueue_huge_page(h, page);
1703 }
1704 
__update_and_free_page(struct hstate * h,struct page * page)1705 static void __update_and_free_page(struct hstate *h, struct page *page)
1706 {
1707 	int i;
1708 	struct page *subpage;
1709 
1710 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1711 		return;
1712 
1713 	/*
1714 	 * If we don't know which subpages are hwpoisoned, we can't free
1715 	 * the hugepage, so it's leaked intentionally.
1716 	 */
1717 	if (HPageRawHwpUnreliable(page))
1718 		return;
1719 
1720 	if (hugetlb_vmemmap_restore(h, page)) {
1721 		spin_lock_irq(&hugetlb_lock);
1722 		/*
1723 		 * If we cannot allocate vmemmap pages, just refuse to free the
1724 		 * page and put the page back on the hugetlb free list and treat
1725 		 * as a surplus page.
1726 		 */
1727 		add_hugetlb_page(h, page, true);
1728 		spin_unlock_irq(&hugetlb_lock);
1729 		return;
1730 	}
1731 
1732 	/*
1733 	 * Move PageHWPoison flag from head page to the raw error pages,
1734 	 * which makes any healthy subpages reusable.
1735 	 */
1736 	if (unlikely(PageHWPoison(page)))
1737 		hugetlb_clear_page_hwpoison(page);
1738 
1739 	for (i = 0; i < pages_per_huge_page(h); i++) {
1740 		subpage = nth_page(page, i);
1741 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1742 				1 << PG_referenced | 1 << PG_dirty |
1743 				1 << PG_active | 1 << PG_private |
1744 				1 << PG_writeback);
1745 	}
1746 
1747 	/*
1748 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1749 	 * need to be given back to CMA in free_gigantic_page.
1750 	 */
1751 	if (hstate_is_gigantic(h) ||
1752 	    hugetlb_cma_page(page, huge_page_order(h))) {
1753 		destroy_compound_gigantic_page(page, huge_page_order(h));
1754 		free_gigantic_page(page, huge_page_order(h));
1755 	} else {
1756 		__free_pages(page, huge_page_order(h));
1757 	}
1758 }
1759 
1760 /*
1761  * As update_and_free_page() can be called under any context, so we cannot
1762  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764  * the vmemmap pages.
1765  *
1766  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767  * freed and frees them one-by-one. As the page->mapping pointer is going
1768  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769  * structure of a lockless linked list of huge pages to be freed.
1770  */
1771 static LLIST_HEAD(hpage_freelist);
1772 
free_hpage_workfn(struct work_struct * work)1773 static void free_hpage_workfn(struct work_struct *work)
1774 {
1775 	struct llist_node *node;
1776 
1777 	node = llist_del_all(&hpage_freelist);
1778 
1779 	while (node) {
1780 		struct page *page;
1781 		struct hstate *h;
1782 
1783 		page = container_of((struct address_space **)node,
1784 				     struct page, mapping);
1785 		node = node->next;
1786 		page->mapping = NULL;
1787 		/*
1788 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1789 		 * is going to trigger because a previous call to
1790 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1791 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1792 		 */
1793 		h = size_to_hstate(page_size(page));
1794 
1795 		__update_and_free_page(h, page);
1796 
1797 		cond_resched();
1798 	}
1799 }
1800 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1801 
flush_free_hpage_work(struct hstate * h)1802 static inline void flush_free_hpage_work(struct hstate *h)
1803 {
1804 	if (hugetlb_vmemmap_optimizable(h))
1805 		flush_work(&free_hpage_work);
1806 }
1807 
update_and_free_page(struct hstate * h,struct page * page,bool atomic)1808 static void update_and_free_page(struct hstate *h, struct page *page,
1809 				 bool atomic)
1810 {
1811 	if (!HPageVmemmapOptimized(page) || !atomic) {
1812 		__update_and_free_page(h, page);
1813 		return;
1814 	}
1815 
1816 	/*
1817 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1818 	 *
1819 	 * Only call schedule_work() if hpage_freelist is previously
1820 	 * empty. Otherwise, schedule_work() had been called but the workfn
1821 	 * hasn't retrieved the list yet.
1822 	 */
1823 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1824 		schedule_work(&free_hpage_work);
1825 }
1826 
update_and_free_pages_bulk(struct hstate * h,struct list_head * list)1827 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1828 {
1829 	struct page *page, *t_page;
1830 
1831 	list_for_each_entry_safe(page, t_page, list, lru) {
1832 		update_and_free_page(h, page, false);
1833 		cond_resched();
1834 	}
1835 }
1836 
size_to_hstate(unsigned long size)1837 struct hstate *size_to_hstate(unsigned long size)
1838 {
1839 	struct hstate *h;
1840 
1841 	for_each_hstate(h) {
1842 		if (huge_page_size(h) == size)
1843 			return h;
1844 	}
1845 	return NULL;
1846 }
1847 
free_huge_page(struct page * page)1848 void free_huge_page(struct page *page)
1849 {
1850 	/*
1851 	 * Can't pass hstate in here because it is called from the
1852 	 * compound page destructor.
1853 	 */
1854 	struct hstate *h = page_hstate(page);
1855 	int nid = page_to_nid(page);
1856 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1857 	bool restore_reserve;
1858 	unsigned long flags;
1859 
1860 	VM_BUG_ON_PAGE(page_count(page), page);
1861 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1862 
1863 	hugetlb_set_page_subpool(page, NULL);
1864 	if (PageAnon(page))
1865 		__ClearPageAnonExclusive(page);
1866 	page->mapping = NULL;
1867 	restore_reserve = HPageRestoreReserve(page);
1868 	ClearHPageRestoreReserve(page);
1869 
1870 	/*
1871 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1872 	 * reservation.  If the page was associated with a subpool, there
1873 	 * would have been a page reserved in the subpool before allocation
1874 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1875 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1876 	 * remove the reserved page from the subpool.
1877 	 */
1878 	if (!restore_reserve) {
1879 		/*
1880 		 * A return code of zero implies that the subpool will be
1881 		 * under its minimum size if the reservation is not restored
1882 		 * after page is free.  Therefore, force restore_reserve
1883 		 * operation.
1884 		 */
1885 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1886 			restore_reserve = true;
1887 	}
1888 
1889 	spin_lock_irqsave(&hugetlb_lock, flags);
1890 	ClearHPageMigratable(page);
1891 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1892 				     pages_per_huge_page(h), page);
1893 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1894 					  pages_per_huge_page(h), page);
1895 	if (restore_reserve)
1896 		h->resv_huge_pages++;
1897 
1898 	if (HPageTemporary(page)) {
1899 		remove_hugetlb_page(h, page, false);
1900 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1901 		update_and_free_page(h, page, true);
1902 	} else if (h->surplus_huge_pages_node[nid]) {
1903 		/* remove the page from active list */
1904 		remove_hugetlb_page(h, page, true);
1905 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1906 		update_and_free_page(h, page, true);
1907 	} else {
1908 		arch_clear_hugepage_flags(page);
1909 		enqueue_huge_page(h, page);
1910 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1911 	}
1912 }
1913 
1914 /*
1915  * Must be called with the hugetlb lock held
1916  */
__prep_account_new_huge_page(struct hstate * h,int nid)1917 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1918 {
1919 	lockdep_assert_held(&hugetlb_lock);
1920 	h->nr_huge_pages++;
1921 	h->nr_huge_pages_node[nid]++;
1922 }
1923 
__prep_new_huge_page(struct hstate * h,struct page * page)1924 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1925 {
1926 	hugetlb_vmemmap_optimize(h, page);
1927 	INIT_LIST_HEAD(&page->lru);
1928 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1929 	hugetlb_set_page_subpool(page, NULL);
1930 	set_hugetlb_cgroup(page, NULL);
1931 	set_hugetlb_cgroup_rsvd(page, NULL);
1932 }
1933 
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1934 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1935 {
1936 	__prep_new_huge_page(h, page);
1937 	spin_lock_irq(&hugetlb_lock);
1938 	__prep_account_new_huge_page(h, nid);
1939 	spin_unlock_irq(&hugetlb_lock);
1940 }
1941 
__prep_compound_gigantic_page(struct page * page,unsigned int order,bool demote)1942 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1943 								bool demote)
1944 {
1945 	int i, j;
1946 	int nr_pages = 1 << order;
1947 	struct page *p;
1948 
1949 	/* we rely on prep_new_huge_page to set the destructor */
1950 	set_compound_order(page, order);
1951 	__ClearPageReserved(page);
1952 	__SetPageHead(page);
1953 	for (i = 0; i < nr_pages; i++) {
1954 		p = nth_page(page, i);
1955 
1956 		/*
1957 		 * For gigantic hugepages allocated through bootmem at
1958 		 * boot, it's safer to be consistent with the not-gigantic
1959 		 * hugepages and clear the PG_reserved bit from all tail pages
1960 		 * too.  Otherwise drivers using get_user_pages() to access tail
1961 		 * pages may get the reference counting wrong if they see
1962 		 * PG_reserved set on a tail page (despite the head page not
1963 		 * having PG_reserved set).  Enforcing this consistency between
1964 		 * head and tail pages allows drivers to optimize away a check
1965 		 * on the head page when they need know if put_page() is needed
1966 		 * after get_user_pages().
1967 		 */
1968 		if (i != 0)	/* head page cleared above */
1969 			__ClearPageReserved(p);
1970 		/*
1971 		 * Subtle and very unlikely
1972 		 *
1973 		 * Gigantic 'page allocators' such as memblock or cma will
1974 		 * return a set of pages with each page ref counted.  We need
1975 		 * to turn this set of pages into a compound page with tail
1976 		 * page ref counts set to zero.  Code such as speculative page
1977 		 * cache adding could take a ref on a 'to be' tail page.
1978 		 * We need to respect any increased ref count, and only set
1979 		 * the ref count to zero if count is currently 1.  If count
1980 		 * is not 1, we return an error.  An error return indicates
1981 		 * the set of pages can not be converted to a gigantic page.
1982 		 * The caller who allocated the pages should then discard the
1983 		 * pages using the appropriate free interface.
1984 		 *
1985 		 * In the case of demote, the ref count will be zero.
1986 		 */
1987 		if (!demote) {
1988 			if (!page_ref_freeze(p, 1)) {
1989 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1990 				goto out_error;
1991 			}
1992 		} else {
1993 			VM_BUG_ON_PAGE(page_count(p), p);
1994 		}
1995 		if (i != 0)
1996 			set_compound_head(p, page);
1997 	}
1998 	atomic_set(compound_mapcount_ptr(page), -1);
1999 	atomic_set(compound_pincount_ptr(page), 0);
2000 	return true;
2001 
2002 out_error:
2003 	/* undo page modifications made above */
2004 	for (j = 0; j < i; j++) {
2005 		p = nth_page(page, j);
2006 		if (j != 0)
2007 			clear_compound_head(p);
2008 		set_page_refcounted(p);
2009 	}
2010 	/* need to clear PG_reserved on remaining tail pages  */
2011 	for (; j < nr_pages; j++) {
2012 		p = nth_page(page, j);
2013 		__ClearPageReserved(p);
2014 	}
2015 	set_compound_order(page, 0);
2016 #ifdef CONFIG_64BIT
2017 	page[1].compound_nr = 0;
2018 #endif
2019 	__ClearPageHead(page);
2020 	return false;
2021 }
2022 
prep_compound_gigantic_page(struct page * page,unsigned int order)2023 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
2024 {
2025 	return __prep_compound_gigantic_page(page, order, false);
2026 }
2027 
prep_compound_gigantic_page_for_demote(struct page * page,unsigned int order)2028 static bool prep_compound_gigantic_page_for_demote(struct page *page,
2029 							unsigned int order)
2030 {
2031 	return __prep_compound_gigantic_page(page, order, true);
2032 }
2033 
2034 /*
2035  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2036  * transparent huge pages.  See the PageTransHuge() documentation for more
2037  * details.
2038  */
PageHuge(struct page * page)2039 int PageHuge(struct page *page)
2040 {
2041 	if (!PageCompound(page))
2042 		return 0;
2043 
2044 	page = compound_head(page);
2045 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2046 }
2047 EXPORT_SYMBOL_GPL(PageHuge);
2048 
2049 /*
2050  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2051  * normal or transparent huge pages.
2052  */
PageHeadHuge(struct page * page_head)2053 int PageHeadHuge(struct page *page_head)
2054 {
2055 	if (!PageHead(page_head))
2056 		return 0;
2057 
2058 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2059 }
2060 EXPORT_SYMBOL_GPL(PageHeadHuge);
2061 
2062 /*
2063  * Find and lock address space (mapping) in write mode.
2064  *
2065  * Upon entry, the page is locked which means that page_mapping() is
2066  * stable.  Due to locking order, we can only trylock_write.  If we can
2067  * not get the lock, simply return NULL to caller.
2068  */
hugetlb_page_mapping_lock_write(struct page * hpage)2069 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2070 {
2071 	struct address_space *mapping = page_mapping(hpage);
2072 
2073 	if (!mapping)
2074 		return mapping;
2075 
2076 	if (i_mmap_trylock_write(mapping))
2077 		return mapping;
2078 
2079 	return NULL;
2080 }
2081 
hugetlb_basepage_index(struct page * page)2082 pgoff_t hugetlb_basepage_index(struct page *page)
2083 {
2084 	struct page *page_head = compound_head(page);
2085 	pgoff_t index = page_index(page_head);
2086 	unsigned long compound_idx;
2087 
2088 	if (compound_order(page_head) >= MAX_ORDER)
2089 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2090 	else
2091 		compound_idx = page - page_head;
2092 
2093 	return (index << compound_order(page_head)) + compound_idx;
2094 }
2095 
alloc_buddy_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2096 static struct page *alloc_buddy_huge_page(struct hstate *h,
2097 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2098 		nodemask_t *node_alloc_noretry)
2099 {
2100 	int order = huge_page_order(h);
2101 	struct page *page;
2102 	bool alloc_try_hard = true;
2103 	bool retry = true;
2104 
2105 	/*
2106 	 * By default we always try hard to allocate the page with
2107 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2108 	 * a loop (to adjust global huge page counts) and previous allocation
2109 	 * failed, do not continue to try hard on the same node.  Use the
2110 	 * node_alloc_noretry bitmap to manage this state information.
2111 	 */
2112 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2113 		alloc_try_hard = false;
2114 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2115 	if (alloc_try_hard)
2116 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2117 	if (nid == NUMA_NO_NODE)
2118 		nid = numa_mem_id();
2119 retry:
2120 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2121 
2122 	/* Freeze head page */
2123 	if (page && !page_ref_freeze(page, 1)) {
2124 		__free_pages(page, order);
2125 		if (retry) {	/* retry once */
2126 			retry = false;
2127 			goto retry;
2128 		}
2129 		/* WOW!  twice in a row. */
2130 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2131 		page = NULL;
2132 	}
2133 
2134 	if (page)
2135 		__count_vm_event(HTLB_BUDDY_PGALLOC);
2136 	else
2137 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2138 
2139 	/*
2140 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2141 	 * indicates an overall state change.  Clear bit so that we resume
2142 	 * normal 'try hard' allocations.
2143 	 */
2144 	if (node_alloc_noretry && page && !alloc_try_hard)
2145 		node_clear(nid, *node_alloc_noretry);
2146 
2147 	/*
2148 	 * If we tried hard to get a page but failed, set bit so that
2149 	 * subsequent attempts will not try as hard until there is an
2150 	 * overall state change.
2151 	 */
2152 	if (node_alloc_noretry && !page && alloc_try_hard)
2153 		node_set(nid, *node_alloc_noretry);
2154 
2155 	return page;
2156 }
2157 
2158 /*
2159  * Common helper to allocate a fresh hugetlb page. All specific allocators
2160  * should use this function to get new hugetlb pages
2161  *
2162  * Note that returned page is 'frozen':  ref count of head page and all tail
2163  * pages is zero.
2164  */
alloc_fresh_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2165 static struct page *alloc_fresh_huge_page(struct hstate *h,
2166 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2167 		nodemask_t *node_alloc_noretry)
2168 {
2169 	struct page *page;
2170 	bool retry = false;
2171 
2172 retry:
2173 	if (hstate_is_gigantic(h))
2174 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2175 	else
2176 		page = alloc_buddy_huge_page(h, gfp_mask,
2177 				nid, nmask, node_alloc_noretry);
2178 	if (!page)
2179 		return NULL;
2180 
2181 	if (hstate_is_gigantic(h)) {
2182 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2183 			/*
2184 			 * Rare failure to convert pages to compound page.
2185 			 * Free pages and try again - ONCE!
2186 			 */
2187 			free_gigantic_page(page, huge_page_order(h));
2188 			if (!retry) {
2189 				retry = true;
2190 				goto retry;
2191 			}
2192 			return NULL;
2193 		}
2194 	}
2195 	prep_new_huge_page(h, page, page_to_nid(page));
2196 
2197 	return page;
2198 }
2199 
2200 /*
2201  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2202  * manner.
2203  */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)2204 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2205 				nodemask_t *node_alloc_noretry)
2206 {
2207 	struct page *page;
2208 	int nr_nodes, node;
2209 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2210 
2211 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2212 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2213 						node_alloc_noretry);
2214 		if (page)
2215 			break;
2216 	}
2217 
2218 	if (!page)
2219 		return 0;
2220 
2221 	free_huge_page(page); /* free it into the hugepage allocator */
2222 
2223 	return 1;
2224 }
2225 
2226 /*
2227  * Remove huge page from pool from next node to free.  Attempt to keep
2228  * persistent huge pages more or less balanced over allowed nodes.
2229  * This routine only 'removes' the hugetlb page.  The caller must make
2230  * an additional call to free the page to low level allocators.
2231  * Called with hugetlb_lock locked.
2232  */
remove_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2233 static struct page *remove_pool_huge_page(struct hstate *h,
2234 						nodemask_t *nodes_allowed,
2235 						 bool acct_surplus)
2236 {
2237 	int nr_nodes, node;
2238 	struct page *page = NULL;
2239 
2240 	lockdep_assert_held(&hugetlb_lock);
2241 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2242 		/*
2243 		 * If we're returning unused surplus pages, only examine
2244 		 * nodes with surplus pages.
2245 		 */
2246 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2247 		    !list_empty(&h->hugepage_freelists[node])) {
2248 			page = list_entry(h->hugepage_freelists[node].next,
2249 					  struct page, lru);
2250 			remove_hugetlb_page(h, page, acct_surplus);
2251 			break;
2252 		}
2253 	}
2254 
2255 	return page;
2256 }
2257 
2258 /*
2259  * Dissolve a given free hugepage into free buddy pages. This function does
2260  * nothing for in-use hugepages and non-hugepages.
2261  * This function returns values like below:
2262  *
2263  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2264  *           when the system is under memory pressure and the feature of
2265  *           freeing unused vmemmap pages associated with each hugetlb page
2266  *           is enabled.
2267  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2268  *           (allocated or reserved.)
2269  *       0:  successfully dissolved free hugepages or the page is not a
2270  *           hugepage (considered as already dissolved)
2271  */
dissolve_free_huge_page(struct page * page)2272 int dissolve_free_huge_page(struct page *page)
2273 {
2274 	int rc = -EBUSY;
2275 
2276 retry:
2277 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2278 	if (!PageHuge(page))
2279 		return 0;
2280 
2281 	spin_lock_irq(&hugetlb_lock);
2282 	if (!PageHuge(page)) {
2283 		rc = 0;
2284 		goto out;
2285 	}
2286 
2287 	if (!page_count(page)) {
2288 		struct page *head = compound_head(page);
2289 		struct hstate *h = page_hstate(head);
2290 		if (!available_huge_pages(h))
2291 			goto out;
2292 
2293 		/*
2294 		 * We should make sure that the page is already on the free list
2295 		 * when it is dissolved.
2296 		 */
2297 		if (unlikely(!HPageFreed(head))) {
2298 			spin_unlock_irq(&hugetlb_lock);
2299 			cond_resched();
2300 
2301 			/*
2302 			 * Theoretically, we should return -EBUSY when we
2303 			 * encounter this race. In fact, we have a chance
2304 			 * to successfully dissolve the page if we do a
2305 			 * retry. Because the race window is quite small.
2306 			 * If we seize this opportunity, it is an optimization
2307 			 * for increasing the success rate of dissolving page.
2308 			 */
2309 			goto retry;
2310 		}
2311 
2312 		remove_hugetlb_page(h, head, false);
2313 		h->max_huge_pages--;
2314 		spin_unlock_irq(&hugetlb_lock);
2315 
2316 		/*
2317 		 * Normally update_and_free_page will allocate required vmemmmap
2318 		 * before freeing the page.  update_and_free_page will fail to
2319 		 * free the page if it can not allocate required vmemmap.  We
2320 		 * need to adjust max_huge_pages if the page is not freed.
2321 		 * Attempt to allocate vmemmmap here so that we can take
2322 		 * appropriate action on failure.
2323 		 */
2324 		rc = hugetlb_vmemmap_restore(h, head);
2325 		if (!rc) {
2326 			update_and_free_page(h, head, false);
2327 		} else {
2328 			spin_lock_irq(&hugetlb_lock);
2329 			add_hugetlb_page(h, head, false);
2330 			h->max_huge_pages++;
2331 			spin_unlock_irq(&hugetlb_lock);
2332 		}
2333 
2334 		return rc;
2335 	}
2336 out:
2337 	spin_unlock_irq(&hugetlb_lock);
2338 	return rc;
2339 }
2340 
2341 /*
2342  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2343  * make specified memory blocks removable from the system.
2344  * Note that this will dissolve a free gigantic hugepage completely, if any
2345  * part of it lies within the given range.
2346  * Also note that if dissolve_free_huge_page() returns with an error, all
2347  * free hugepages that were dissolved before that error are lost.
2348  */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)2349 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2350 {
2351 	unsigned long pfn;
2352 	struct page *page;
2353 	int rc = 0;
2354 	unsigned int order;
2355 	struct hstate *h;
2356 
2357 	if (!hugepages_supported())
2358 		return rc;
2359 
2360 	order = huge_page_order(&default_hstate);
2361 	for_each_hstate(h)
2362 		order = min(order, huge_page_order(h));
2363 
2364 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2365 		page = pfn_to_page(pfn);
2366 		rc = dissolve_free_huge_page(page);
2367 		if (rc)
2368 			break;
2369 	}
2370 
2371 	return rc;
2372 }
2373 
2374 /*
2375  * Allocates a fresh surplus page from the page allocator.
2376  */
alloc_surplus_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2377 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2378 						int nid, nodemask_t *nmask)
2379 {
2380 	struct page *page = NULL;
2381 
2382 	if (hstate_is_gigantic(h))
2383 		return NULL;
2384 
2385 	spin_lock_irq(&hugetlb_lock);
2386 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2387 		goto out_unlock;
2388 	spin_unlock_irq(&hugetlb_lock);
2389 
2390 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2391 	if (!page)
2392 		return NULL;
2393 
2394 	spin_lock_irq(&hugetlb_lock);
2395 	/*
2396 	 * We could have raced with the pool size change.
2397 	 * Double check that and simply deallocate the new page
2398 	 * if we would end up overcommiting the surpluses. Abuse
2399 	 * temporary page to workaround the nasty free_huge_page
2400 	 * codeflow
2401 	 */
2402 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2403 		SetHPageTemporary(page);
2404 		spin_unlock_irq(&hugetlb_lock);
2405 		free_huge_page(page);
2406 		return NULL;
2407 	}
2408 
2409 	h->surplus_huge_pages++;
2410 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2411 
2412 out_unlock:
2413 	spin_unlock_irq(&hugetlb_lock);
2414 
2415 	return page;
2416 }
2417 
alloc_migrate_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2418 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2419 				     int nid, nodemask_t *nmask)
2420 {
2421 	struct page *page;
2422 
2423 	if (hstate_is_gigantic(h))
2424 		return NULL;
2425 
2426 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2427 	if (!page)
2428 		return NULL;
2429 
2430 	/* fresh huge pages are frozen */
2431 	set_page_refcounted(page);
2432 
2433 	/*
2434 	 * We do not account these pages as surplus because they are only
2435 	 * temporary and will be released properly on the last reference
2436 	 */
2437 	SetHPageTemporary(page);
2438 
2439 	return page;
2440 }
2441 
2442 /*
2443  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2444  */
2445 static
alloc_buddy_huge_page_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2446 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2447 		struct vm_area_struct *vma, unsigned long addr)
2448 {
2449 	struct page *page = NULL;
2450 	struct mempolicy *mpol;
2451 	gfp_t gfp_mask = htlb_alloc_mask(h);
2452 	int nid;
2453 	nodemask_t *nodemask;
2454 
2455 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2456 	if (mpol_is_preferred_many(mpol)) {
2457 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2458 
2459 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2460 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2461 
2462 		/* Fallback to all nodes if page==NULL */
2463 		nodemask = NULL;
2464 	}
2465 
2466 	if (!page)
2467 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2468 	mpol_cond_put(mpol);
2469 	return page;
2470 }
2471 
2472 /* page migration callback function */
alloc_huge_page_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2473 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2474 		nodemask_t *nmask, gfp_t gfp_mask)
2475 {
2476 	spin_lock_irq(&hugetlb_lock);
2477 	if (available_huge_pages(h)) {
2478 		struct page *page;
2479 
2480 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2481 		if (page) {
2482 			spin_unlock_irq(&hugetlb_lock);
2483 			return page;
2484 		}
2485 	}
2486 	spin_unlock_irq(&hugetlb_lock);
2487 
2488 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2489 }
2490 
2491 /* mempolicy aware migration callback */
alloc_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2492 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2493 		unsigned long address)
2494 {
2495 	struct mempolicy *mpol;
2496 	nodemask_t *nodemask;
2497 	struct page *page;
2498 	gfp_t gfp_mask;
2499 	int node;
2500 
2501 	gfp_mask = htlb_alloc_mask(h);
2502 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2503 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2504 	mpol_cond_put(mpol);
2505 
2506 	return page;
2507 }
2508 
2509 /*
2510  * Increase the hugetlb pool such that it can accommodate a reservation
2511  * of size 'delta'.
2512  */
gather_surplus_pages(struct hstate * h,long delta)2513 static int gather_surplus_pages(struct hstate *h, long delta)
2514 	__must_hold(&hugetlb_lock)
2515 {
2516 	LIST_HEAD(surplus_list);
2517 	struct page *page, *tmp;
2518 	int ret;
2519 	long i;
2520 	long needed, allocated;
2521 	bool alloc_ok = true;
2522 
2523 	lockdep_assert_held(&hugetlb_lock);
2524 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2525 	if (needed <= 0) {
2526 		h->resv_huge_pages += delta;
2527 		return 0;
2528 	}
2529 
2530 	allocated = 0;
2531 
2532 	ret = -ENOMEM;
2533 retry:
2534 	spin_unlock_irq(&hugetlb_lock);
2535 	for (i = 0; i < needed; i++) {
2536 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2537 				NUMA_NO_NODE, NULL);
2538 		if (!page) {
2539 			alloc_ok = false;
2540 			break;
2541 		}
2542 		list_add(&page->lru, &surplus_list);
2543 		cond_resched();
2544 	}
2545 	allocated += i;
2546 
2547 	/*
2548 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2549 	 * because either resv_huge_pages or free_huge_pages may have changed.
2550 	 */
2551 	spin_lock_irq(&hugetlb_lock);
2552 	needed = (h->resv_huge_pages + delta) -
2553 			(h->free_huge_pages + allocated);
2554 	if (needed > 0) {
2555 		if (alloc_ok)
2556 			goto retry;
2557 		/*
2558 		 * We were not able to allocate enough pages to
2559 		 * satisfy the entire reservation so we free what
2560 		 * we've allocated so far.
2561 		 */
2562 		goto free;
2563 	}
2564 	/*
2565 	 * The surplus_list now contains _at_least_ the number of extra pages
2566 	 * needed to accommodate the reservation.  Add the appropriate number
2567 	 * of pages to the hugetlb pool and free the extras back to the buddy
2568 	 * allocator.  Commit the entire reservation here to prevent another
2569 	 * process from stealing the pages as they are added to the pool but
2570 	 * before they are reserved.
2571 	 */
2572 	needed += allocated;
2573 	h->resv_huge_pages += delta;
2574 	ret = 0;
2575 
2576 	/* Free the needed pages to the hugetlb pool */
2577 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2578 		if ((--needed) < 0)
2579 			break;
2580 		/* Add the page to the hugetlb allocator */
2581 		enqueue_huge_page(h, page);
2582 	}
2583 free:
2584 	spin_unlock_irq(&hugetlb_lock);
2585 
2586 	/*
2587 	 * Free unnecessary surplus pages to the buddy allocator.
2588 	 * Pages have no ref count, call free_huge_page directly.
2589 	 */
2590 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2591 		free_huge_page(page);
2592 	spin_lock_irq(&hugetlb_lock);
2593 
2594 	return ret;
2595 }
2596 
2597 /*
2598  * This routine has two main purposes:
2599  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2600  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2601  *    to the associated reservation map.
2602  * 2) Free any unused surplus pages that may have been allocated to satisfy
2603  *    the reservation.  As many as unused_resv_pages may be freed.
2604  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2605 static void return_unused_surplus_pages(struct hstate *h,
2606 					unsigned long unused_resv_pages)
2607 {
2608 	unsigned long nr_pages;
2609 	struct page *page;
2610 	LIST_HEAD(page_list);
2611 
2612 	lockdep_assert_held(&hugetlb_lock);
2613 	/* Uncommit the reservation */
2614 	h->resv_huge_pages -= unused_resv_pages;
2615 
2616 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2617 		goto out;
2618 
2619 	/*
2620 	 * Part (or even all) of the reservation could have been backed
2621 	 * by pre-allocated pages. Only free surplus pages.
2622 	 */
2623 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2624 
2625 	/*
2626 	 * We want to release as many surplus pages as possible, spread
2627 	 * evenly across all nodes with memory. Iterate across these nodes
2628 	 * until we can no longer free unreserved surplus pages. This occurs
2629 	 * when the nodes with surplus pages have no free pages.
2630 	 * remove_pool_huge_page() will balance the freed pages across the
2631 	 * on-line nodes with memory and will handle the hstate accounting.
2632 	 */
2633 	while (nr_pages--) {
2634 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2635 		if (!page)
2636 			goto out;
2637 
2638 		list_add(&page->lru, &page_list);
2639 	}
2640 
2641 out:
2642 	spin_unlock_irq(&hugetlb_lock);
2643 	update_and_free_pages_bulk(h, &page_list);
2644 	spin_lock_irq(&hugetlb_lock);
2645 }
2646 
2647 
2648 /*
2649  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2650  * are used by the huge page allocation routines to manage reservations.
2651  *
2652  * vma_needs_reservation is called to determine if the huge page at addr
2653  * within the vma has an associated reservation.  If a reservation is
2654  * needed, the value 1 is returned.  The caller is then responsible for
2655  * managing the global reservation and subpool usage counts.  After
2656  * the huge page has been allocated, vma_commit_reservation is called
2657  * to add the page to the reservation map.  If the page allocation fails,
2658  * the reservation must be ended instead of committed.  vma_end_reservation
2659  * is called in such cases.
2660  *
2661  * In the normal case, vma_commit_reservation returns the same value
2662  * as the preceding vma_needs_reservation call.  The only time this
2663  * is not the case is if a reserve map was changed between calls.  It
2664  * is the responsibility of the caller to notice the difference and
2665  * take appropriate action.
2666  *
2667  * vma_add_reservation is used in error paths where a reservation must
2668  * be restored when a newly allocated huge page must be freed.  It is
2669  * to be called after calling vma_needs_reservation to determine if a
2670  * reservation exists.
2671  *
2672  * vma_del_reservation is used in error paths where an entry in the reserve
2673  * map was created during huge page allocation and must be removed.  It is to
2674  * be called after calling vma_needs_reservation to determine if a reservation
2675  * exists.
2676  */
2677 enum vma_resv_mode {
2678 	VMA_NEEDS_RESV,
2679 	VMA_COMMIT_RESV,
2680 	VMA_END_RESV,
2681 	VMA_ADD_RESV,
2682 	VMA_DEL_RESV,
2683 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2684 static long __vma_reservation_common(struct hstate *h,
2685 				struct vm_area_struct *vma, unsigned long addr,
2686 				enum vma_resv_mode mode)
2687 {
2688 	struct resv_map *resv;
2689 	pgoff_t idx;
2690 	long ret;
2691 	long dummy_out_regions_needed;
2692 
2693 	resv = vma_resv_map(vma);
2694 	if (!resv)
2695 		return 1;
2696 
2697 	idx = vma_hugecache_offset(h, vma, addr);
2698 	switch (mode) {
2699 	case VMA_NEEDS_RESV:
2700 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2701 		/* We assume that vma_reservation_* routines always operate on
2702 		 * 1 page, and that adding to resv map a 1 page entry can only
2703 		 * ever require 1 region.
2704 		 */
2705 		VM_BUG_ON(dummy_out_regions_needed != 1);
2706 		break;
2707 	case VMA_COMMIT_RESV:
2708 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2709 		/* region_add calls of range 1 should never fail. */
2710 		VM_BUG_ON(ret < 0);
2711 		break;
2712 	case VMA_END_RESV:
2713 		region_abort(resv, idx, idx + 1, 1);
2714 		ret = 0;
2715 		break;
2716 	case VMA_ADD_RESV:
2717 		if (vma->vm_flags & VM_MAYSHARE) {
2718 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2719 			/* region_add calls of range 1 should never fail. */
2720 			VM_BUG_ON(ret < 0);
2721 		} else {
2722 			region_abort(resv, idx, idx + 1, 1);
2723 			ret = region_del(resv, idx, idx + 1);
2724 		}
2725 		break;
2726 	case VMA_DEL_RESV:
2727 		if (vma->vm_flags & VM_MAYSHARE) {
2728 			region_abort(resv, idx, idx + 1, 1);
2729 			ret = region_del(resv, idx, idx + 1);
2730 		} else {
2731 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2732 			/* region_add calls of range 1 should never fail. */
2733 			VM_BUG_ON(ret < 0);
2734 		}
2735 		break;
2736 	default:
2737 		BUG();
2738 	}
2739 
2740 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2741 		return ret;
2742 	/*
2743 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2744 	 *
2745 	 * In most cases, reserves always exist for private mappings.
2746 	 * However, a file associated with mapping could have been
2747 	 * hole punched or truncated after reserves were consumed.
2748 	 * As subsequent fault on such a range will not use reserves.
2749 	 * Subtle - The reserve map for private mappings has the
2750 	 * opposite meaning than that of shared mappings.  If NO
2751 	 * entry is in the reserve map, it means a reservation exists.
2752 	 * If an entry exists in the reserve map, it means the
2753 	 * reservation has already been consumed.  As a result, the
2754 	 * return value of this routine is the opposite of the
2755 	 * value returned from reserve map manipulation routines above.
2756 	 */
2757 	if (ret > 0)
2758 		return 0;
2759 	if (ret == 0)
2760 		return 1;
2761 	return ret;
2762 }
2763 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2764 static long vma_needs_reservation(struct hstate *h,
2765 			struct vm_area_struct *vma, unsigned long addr)
2766 {
2767 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2768 }
2769 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2770 static long vma_commit_reservation(struct hstate *h,
2771 			struct vm_area_struct *vma, unsigned long addr)
2772 {
2773 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2774 }
2775 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2776 static void vma_end_reservation(struct hstate *h,
2777 			struct vm_area_struct *vma, unsigned long addr)
2778 {
2779 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2780 }
2781 
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2782 static long vma_add_reservation(struct hstate *h,
2783 			struct vm_area_struct *vma, unsigned long addr)
2784 {
2785 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2786 }
2787 
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2788 static long vma_del_reservation(struct hstate *h,
2789 			struct vm_area_struct *vma, unsigned long addr)
2790 {
2791 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2792 }
2793 
2794 /*
2795  * This routine is called to restore reservation information on error paths.
2796  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2797  * the hugetlb mutex should remain held when calling this routine.
2798  *
2799  * It handles two specific cases:
2800  * 1) A reservation was in place and the page consumed the reservation.
2801  *    HPageRestoreReserve is set in the page.
2802  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2803  *    not set.  However, alloc_huge_page always updates the reserve map.
2804  *
2805  * In case 1, free_huge_page later in the error path will increment the
2806  * global reserve count.  But, free_huge_page does not have enough context
2807  * to adjust the reservation map.  This case deals primarily with private
2808  * mappings.  Adjust the reserve map here to be consistent with global
2809  * reserve count adjustments to be made by free_huge_page.  Make sure the
2810  * reserve map indicates there is a reservation present.
2811  *
2812  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2813  */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct page * page)2814 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2815 			unsigned long address, struct page *page)
2816 {
2817 	long rc = vma_needs_reservation(h, vma, address);
2818 
2819 	if (HPageRestoreReserve(page)) {
2820 		if (unlikely(rc < 0))
2821 			/*
2822 			 * Rare out of memory condition in reserve map
2823 			 * manipulation.  Clear HPageRestoreReserve so that
2824 			 * global reserve count will not be incremented
2825 			 * by free_huge_page.  This will make it appear
2826 			 * as though the reservation for this page was
2827 			 * consumed.  This may prevent the task from
2828 			 * faulting in the page at a later time.  This
2829 			 * is better than inconsistent global huge page
2830 			 * accounting of reserve counts.
2831 			 */
2832 			ClearHPageRestoreReserve(page);
2833 		else if (rc)
2834 			(void)vma_add_reservation(h, vma, address);
2835 		else
2836 			vma_end_reservation(h, vma, address);
2837 	} else {
2838 		if (!rc) {
2839 			/*
2840 			 * This indicates there is an entry in the reserve map
2841 			 * not added by alloc_huge_page.  We know it was added
2842 			 * before the alloc_huge_page call, otherwise
2843 			 * HPageRestoreReserve would be set on the page.
2844 			 * Remove the entry so that a subsequent allocation
2845 			 * does not consume a reservation.
2846 			 */
2847 			rc = vma_del_reservation(h, vma, address);
2848 			if (rc < 0)
2849 				/*
2850 				 * VERY rare out of memory condition.  Since
2851 				 * we can not delete the entry, set
2852 				 * HPageRestoreReserve so that the reserve
2853 				 * count will be incremented when the page
2854 				 * is freed.  This reserve will be consumed
2855 				 * on a subsequent allocation.
2856 				 */
2857 				SetHPageRestoreReserve(page);
2858 		} else if (rc < 0) {
2859 			/*
2860 			 * Rare out of memory condition from
2861 			 * vma_needs_reservation call.  Memory allocation is
2862 			 * only attempted if a new entry is needed.  Therefore,
2863 			 * this implies there is not an entry in the
2864 			 * reserve map.
2865 			 *
2866 			 * For shared mappings, no entry in the map indicates
2867 			 * no reservation.  We are done.
2868 			 */
2869 			if (!(vma->vm_flags & VM_MAYSHARE))
2870 				/*
2871 				 * For private mappings, no entry indicates
2872 				 * a reservation is present.  Since we can
2873 				 * not add an entry, set SetHPageRestoreReserve
2874 				 * on the page so reserve count will be
2875 				 * incremented when freed.  This reserve will
2876 				 * be consumed on a subsequent allocation.
2877 				 */
2878 				SetHPageRestoreReserve(page);
2879 		} else
2880 			/*
2881 			 * No reservation present, do nothing
2882 			 */
2883 			 vma_end_reservation(h, vma, address);
2884 	}
2885 }
2886 
2887 /*
2888  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2889  * @h: struct hstate old page belongs to
2890  * @old_page: Old page to dissolve
2891  * @list: List to isolate the page in case we need to
2892  * Returns 0 on success, otherwise negated error.
2893  */
alloc_and_dissolve_huge_page(struct hstate * h,struct page * old_page,struct list_head * list)2894 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2895 					struct list_head *list)
2896 {
2897 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2898 	int nid = page_to_nid(old_page);
2899 	struct page *new_page;
2900 	int ret = 0;
2901 
2902 	/*
2903 	 * Before dissolving the page, we need to allocate a new one for the
2904 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2905 	 * by doing everything but actually updating counters and adding to
2906 	 * the pool.  This simplifies and let us do most of the processing
2907 	 * under the lock.
2908 	 */
2909 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2910 	if (!new_page)
2911 		return -ENOMEM;
2912 	__prep_new_huge_page(h, new_page);
2913 
2914 retry:
2915 	spin_lock_irq(&hugetlb_lock);
2916 	if (!PageHuge(old_page)) {
2917 		/*
2918 		 * Freed from under us. Drop new_page too.
2919 		 */
2920 		goto free_new;
2921 	} else if (page_count(old_page)) {
2922 		/*
2923 		 * Someone has grabbed the page, try to isolate it here.
2924 		 * Fail with -EBUSY if not possible.
2925 		 */
2926 		spin_unlock_irq(&hugetlb_lock);
2927 		ret = isolate_hugetlb(old_page, list);
2928 		spin_lock_irq(&hugetlb_lock);
2929 		goto free_new;
2930 	} else if (!HPageFreed(old_page)) {
2931 		/*
2932 		 * Page's refcount is 0 but it has not been enqueued in the
2933 		 * freelist yet. Race window is small, so we can succeed here if
2934 		 * we retry.
2935 		 */
2936 		spin_unlock_irq(&hugetlb_lock);
2937 		cond_resched();
2938 		goto retry;
2939 	} else {
2940 		/*
2941 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2942 		 * the freelist and decrease the counters. These will be
2943 		 * incremented again when calling __prep_account_new_huge_page()
2944 		 * and enqueue_huge_page() for new_page. The counters will remain
2945 		 * stable since this happens under the lock.
2946 		 */
2947 		remove_hugetlb_page(h, old_page, false);
2948 
2949 		/*
2950 		 * Ref count on new page is already zero as it was dropped
2951 		 * earlier.  It can be directly added to the pool free list.
2952 		 */
2953 		__prep_account_new_huge_page(h, nid);
2954 		enqueue_huge_page(h, new_page);
2955 
2956 		/*
2957 		 * Pages have been replaced, we can safely free the old one.
2958 		 */
2959 		spin_unlock_irq(&hugetlb_lock);
2960 		update_and_free_page(h, old_page, false);
2961 	}
2962 
2963 	return ret;
2964 
2965 free_new:
2966 	spin_unlock_irq(&hugetlb_lock);
2967 	/* Page has a zero ref count, but needs a ref to be freed */
2968 	set_page_refcounted(new_page);
2969 	update_and_free_page(h, new_page, false);
2970 
2971 	return ret;
2972 }
2973 
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)2974 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2975 {
2976 	struct hstate *h;
2977 	struct page *head;
2978 	int ret = -EBUSY;
2979 
2980 	/*
2981 	 * The page might have been dissolved from under our feet, so make sure
2982 	 * to carefully check the state under the lock.
2983 	 * Return success when racing as if we dissolved the page ourselves.
2984 	 */
2985 	spin_lock_irq(&hugetlb_lock);
2986 	if (PageHuge(page)) {
2987 		head = compound_head(page);
2988 		h = page_hstate(head);
2989 	} else {
2990 		spin_unlock_irq(&hugetlb_lock);
2991 		return 0;
2992 	}
2993 	spin_unlock_irq(&hugetlb_lock);
2994 
2995 	/*
2996 	 * Fence off gigantic pages as there is a cyclic dependency between
2997 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2998 	 * of bailing out right away without further retrying.
2999 	 */
3000 	if (hstate_is_gigantic(h))
3001 		return -ENOMEM;
3002 
3003 	if (page_count(head) && !isolate_hugetlb(head, list))
3004 		ret = 0;
3005 	else if (!page_count(head))
3006 		ret = alloc_and_dissolve_huge_page(h, head, list);
3007 
3008 	return ret;
3009 }
3010 
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)3011 struct page *alloc_huge_page(struct vm_area_struct *vma,
3012 				    unsigned long addr, int avoid_reserve)
3013 {
3014 	struct hugepage_subpool *spool = subpool_vma(vma);
3015 	struct hstate *h = hstate_vma(vma);
3016 	struct page *page;
3017 	long map_chg, map_commit;
3018 	long gbl_chg;
3019 	int ret, idx;
3020 	struct hugetlb_cgroup *h_cg;
3021 	bool deferred_reserve;
3022 
3023 	idx = hstate_index(h);
3024 	/*
3025 	 * Examine the region/reserve map to determine if the process
3026 	 * has a reservation for the page to be allocated.  A return
3027 	 * code of zero indicates a reservation exists (no change).
3028 	 */
3029 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3030 	if (map_chg < 0)
3031 		return ERR_PTR(-ENOMEM);
3032 
3033 	/*
3034 	 * Processes that did not create the mapping will have no
3035 	 * reserves as indicated by the region/reserve map. Check
3036 	 * that the allocation will not exceed the subpool limit.
3037 	 * Allocations for MAP_NORESERVE mappings also need to be
3038 	 * checked against any subpool limit.
3039 	 */
3040 	if (map_chg || avoid_reserve) {
3041 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3042 		if (gbl_chg < 0) {
3043 			vma_end_reservation(h, vma, addr);
3044 			return ERR_PTR(-ENOSPC);
3045 		}
3046 
3047 		/*
3048 		 * Even though there was no reservation in the region/reserve
3049 		 * map, there could be reservations associated with the
3050 		 * subpool that can be used.  This would be indicated if the
3051 		 * return value of hugepage_subpool_get_pages() is zero.
3052 		 * However, if avoid_reserve is specified we still avoid even
3053 		 * the subpool reservations.
3054 		 */
3055 		if (avoid_reserve)
3056 			gbl_chg = 1;
3057 	}
3058 
3059 	/* If this allocation is not consuming a reservation, charge it now.
3060 	 */
3061 	deferred_reserve = map_chg || avoid_reserve;
3062 	if (deferred_reserve) {
3063 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3064 			idx, pages_per_huge_page(h), &h_cg);
3065 		if (ret)
3066 			goto out_subpool_put;
3067 	}
3068 
3069 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3070 	if (ret)
3071 		goto out_uncharge_cgroup_reservation;
3072 
3073 	spin_lock_irq(&hugetlb_lock);
3074 	/*
3075 	 * glb_chg is passed to indicate whether or not a page must be taken
3076 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3077 	 * a reservation exists for the allocation.
3078 	 */
3079 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3080 	if (!page) {
3081 		spin_unlock_irq(&hugetlb_lock);
3082 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3083 		if (!page)
3084 			goto out_uncharge_cgroup;
3085 		spin_lock_irq(&hugetlb_lock);
3086 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3087 			SetHPageRestoreReserve(page);
3088 			h->resv_huge_pages--;
3089 		}
3090 		list_add(&page->lru, &h->hugepage_activelist);
3091 		set_page_refcounted(page);
3092 		/* Fall through */
3093 	}
3094 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3095 	/* If allocation is not consuming a reservation, also store the
3096 	 * hugetlb_cgroup pointer on the page.
3097 	 */
3098 	if (deferred_reserve) {
3099 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3100 						  h_cg, page);
3101 	}
3102 
3103 	spin_unlock_irq(&hugetlb_lock);
3104 
3105 	hugetlb_set_page_subpool(page, spool);
3106 
3107 	map_commit = vma_commit_reservation(h, vma, addr);
3108 	if (unlikely(map_chg > map_commit)) {
3109 		/*
3110 		 * The page was added to the reservation map between
3111 		 * vma_needs_reservation and vma_commit_reservation.
3112 		 * This indicates a race with hugetlb_reserve_pages.
3113 		 * Adjust for the subpool count incremented above AND
3114 		 * in hugetlb_reserve_pages for the same page.  Also,
3115 		 * the reservation count added in hugetlb_reserve_pages
3116 		 * no longer applies.
3117 		 */
3118 		long rsv_adjust;
3119 
3120 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3121 		hugetlb_acct_memory(h, -rsv_adjust);
3122 		if (deferred_reserve)
3123 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
3124 					pages_per_huge_page(h), page);
3125 	}
3126 	return page;
3127 
3128 out_uncharge_cgroup:
3129 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3130 out_uncharge_cgroup_reservation:
3131 	if (deferred_reserve)
3132 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3133 						    h_cg);
3134 out_subpool_put:
3135 	if (map_chg || avoid_reserve)
3136 		hugepage_subpool_put_pages(spool, 1);
3137 	vma_end_reservation(h, vma, addr);
3138 	return ERR_PTR(-ENOSPC);
3139 }
3140 
3141 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3142 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3143 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3144 {
3145 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3146 	int nr_nodes, node;
3147 
3148 	/* do node specific alloc */
3149 	if (nid != NUMA_NO_NODE) {
3150 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3151 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3152 		if (!m)
3153 			return 0;
3154 		goto found;
3155 	}
3156 	/* allocate from next node when distributing huge pages */
3157 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3158 		m = memblock_alloc_try_nid_raw(
3159 				huge_page_size(h), huge_page_size(h),
3160 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3161 		/*
3162 		 * Use the beginning of the huge page to store the
3163 		 * huge_bootmem_page struct (until gather_bootmem
3164 		 * puts them into the mem_map).
3165 		 */
3166 		if (!m)
3167 			return 0;
3168 		goto found;
3169 	}
3170 
3171 found:
3172 	/* Put them into a private list first because mem_map is not up yet */
3173 	INIT_LIST_HEAD(&m->list);
3174 	list_add(&m->list, &huge_boot_pages);
3175 	m->hstate = h;
3176 	return 1;
3177 }
3178 
3179 /*
3180  * Put bootmem huge pages into the standard lists after mem_map is up.
3181  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3182  */
gather_bootmem_prealloc(void)3183 static void __init gather_bootmem_prealloc(void)
3184 {
3185 	struct huge_bootmem_page *m;
3186 
3187 	list_for_each_entry(m, &huge_boot_pages, list) {
3188 		struct page *page = virt_to_page(m);
3189 		struct hstate *h = m->hstate;
3190 
3191 		VM_BUG_ON(!hstate_is_gigantic(h));
3192 		WARN_ON(page_count(page) != 1);
3193 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3194 			WARN_ON(PageReserved(page));
3195 			prep_new_huge_page(h, page, page_to_nid(page));
3196 			free_huge_page(page); /* add to the hugepage allocator */
3197 		} else {
3198 			/* VERY unlikely inflated ref count on a tail page */
3199 			free_gigantic_page(page, huge_page_order(h));
3200 		}
3201 
3202 		/*
3203 		 * We need to restore the 'stolen' pages to totalram_pages
3204 		 * in order to fix confusing memory reports from free(1) and
3205 		 * other side-effects, like CommitLimit going negative.
3206 		 */
3207 		adjust_managed_page_count(page, pages_per_huge_page(h));
3208 		cond_resched();
3209 	}
3210 }
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3211 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3212 {
3213 	unsigned long i;
3214 	char buf[32];
3215 
3216 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3217 		if (hstate_is_gigantic(h)) {
3218 			if (!alloc_bootmem_huge_page(h, nid))
3219 				break;
3220 		} else {
3221 			struct page *page;
3222 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3223 
3224 			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3225 					&node_states[N_MEMORY], NULL);
3226 			if (!page)
3227 				break;
3228 			free_huge_page(page); /* free it into the hugepage allocator */
3229 		}
3230 		cond_resched();
3231 	}
3232 	if (i == h->max_huge_pages_node[nid])
3233 		return;
3234 
3235 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3236 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3237 		h->max_huge_pages_node[nid], buf, nid, i);
3238 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3239 	h->max_huge_pages_node[nid] = i;
3240 }
3241 
hugetlb_hstate_alloc_pages(struct hstate * h)3242 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3243 {
3244 	unsigned long i;
3245 	nodemask_t *node_alloc_noretry;
3246 	bool node_specific_alloc = false;
3247 
3248 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3249 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3250 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3251 		return;
3252 	}
3253 
3254 	/* do node specific alloc */
3255 	for_each_online_node(i) {
3256 		if (h->max_huge_pages_node[i] > 0) {
3257 			hugetlb_hstate_alloc_pages_onenode(h, i);
3258 			node_specific_alloc = true;
3259 		}
3260 	}
3261 
3262 	if (node_specific_alloc)
3263 		return;
3264 
3265 	/* below will do all node balanced alloc */
3266 	if (!hstate_is_gigantic(h)) {
3267 		/*
3268 		 * Bit mask controlling how hard we retry per-node allocations.
3269 		 * Ignore errors as lower level routines can deal with
3270 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3271 		 * time, we are likely in bigger trouble.
3272 		 */
3273 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3274 						GFP_KERNEL);
3275 	} else {
3276 		/* allocations done at boot time */
3277 		node_alloc_noretry = NULL;
3278 	}
3279 
3280 	/* bit mask controlling how hard we retry per-node allocations */
3281 	if (node_alloc_noretry)
3282 		nodes_clear(*node_alloc_noretry);
3283 
3284 	for (i = 0; i < h->max_huge_pages; ++i) {
3285 		if (hstate_is_gigantic(h)) {
3286 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3287 				break;
3288 		} else if (!alloc_pool_huge_page(h,
3289 					 &node_states[N_MEMORY],
3290 					 node_alloc_noretry))
3291 			break;
3292 		cond_resched();
3293 	}
3294 	if (i < h->max_huge_pages) {
3295 		char buf[32];
3296 
3297 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3298 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3299 			h->max_huge_pages, buf, i);
3300 		h->max_huge_pages = i;
3301 	}
3302 	kfree(node_alloc_noretry);
3303 }
3304 
hugetlb_init_hstates(void)3305 static void __init hugetlb_init_hstates(void)
3306 {
3307 	struct hstate *h, *h2;
3308 
3309 	for_each_hstate(h) {
3310 		/* oversize hugepages were init'ed in early boot */
3311 		if (!hstate_is_gigantic(h))
3312 			hugetlb_hstate_alloc_pages(h);
3313 
3314 		/*
3315 		 * Set demote order for each hstate.  Note that
3316 		 * h->demote_order is initially 0.
3317 		 * - We can not demote gigantic pages if runtime freeing
3318 		 *   is not supported, so skip this.
3319 		 * - If CMA allocation is possible, we can not demote
3320 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3321 		 */
3322 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3323 			continue;
3324 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3325 			continue;
3326 		for_each_hstate(h2) {
3327 			if (h2 == h)
3328 				continue;
3329 			if (h2->order < h->order &&
3330 			    h2->order > h->demote_order)
3331 				h->demote_order = h2->order;
3332 		}
3333 	}
3334 }
3335 
report_hugepages(void)3336 static void __init report_hugepages(void)
3337 {
3338 	struct hstate *h;
3339 
3340 	for_each_hstate(h) {
3341 		char buf[32];
3342 
3343 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3344 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3345 			buf, h->free_huge_pages);
3346 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3347 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3348 	}
3349 }
3350 
3351 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3352 static void try_to_free_low(struct hstate *h, unsigned long count,
3353 						nodemask_t *nodes_allowed)
3354 {
3355 	int i;
3356 	LIST_HEAD(page_list);
3357 
3358 	lockdep_assert_held(&hugetlb_lock);
3359 	if (hstate_is_gigantic(h))
3360 		return;
3361 
3362 	/*
3363 	 * Collect pages to be freed on a list, and free after dropping lock
3364 	 */
3365 	for_each_node_mask(i, *nodes_allowed) {
3366 		struct page *page, *next;
3367 		struct list_head *freel = &h->hugepage_freelists[i];
3368 		list_for_each_entry_safe(page, next, freel, lru) {
3369 			if (count >= h->nr_huge_pages)
3370 				goto out;
3371 			if (PageHighMem(page))
3372 				continue;
3373 			remove_hugetlb_page(h, page, false);
3374 			list_add(&page->lru, &page_list);
3375 		}
3376 	}
3377 
3378 out:
3379 	spin_unlock_irq(&hugetlb_lock);
3380 	update_and_free_pages_bulk(h, &page_list);
3381 	spin_lock_irq(&hugetlb_lock);
3382 }
3383 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3384 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3385 						nodemask_t *nodes_allowed)
3386 {
3387 }
3388 #endif
3389 
3390 /*
3391  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3392  * balanced by operating on them in a round-robin fashion.
3393  * Returns 1 if an adjustment was made.
3394  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3395 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3396 				int delta)
3397 {
3398 	int nr_nodes, node;
3399 
3400 	lockdep_assert_held(&hugetlb_lock);
3401 	VM_BUG_ON(delta != -1 && delta != 1);
3402 
3403 	if (delta < 0) {
3404 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3405 			if (h->surplus_huge_pages_node[node])
3406 				goto found;
3407 		}
3408 	} else {
3409 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3410 			if (h->surplus_huge_pages_node[node] <
3411 					h->nr_huge_pages_node[node])
3412 				goto found;
3413 		}
3414 	}
3415 	return 0;
3416 
3417 found:
3418 	h->surplus_huge_pages += delta;
3419 	h->surplus_huge_pages_node[node] += delta;
3420 	return 1;
3421 }
3422 
3423 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3424 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3425 			      nodemask_t *nodes_allowed)
3426 {
3427 	unsigned long min_count, ret;
3428 	struct page *page;
3429 	LIST_HEAD(page_list);
3430 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3431 
3432 	/*
3433 	 * Bit mask controlling how hard we retry per-node allocations.
3434 	 * If we can not allocate the bit mask, do not attempt to allocate
3435 	 * the requested huge pages.
3436 	 */
3437 	if (node_alloc_noretry)
3438 		nodes_clear(*node_alloc_noretry);
3439 	else
3440 		return -ENOMEM;
3441 
3442 	/*
3443 	 * resize_lock mutex prevents concurrent adjustments to number of
3444 	 * pages in hstate via the proc/sysfs interfaces.
3445 	 */
3446 	mutex_lock(&h->resize_lock);
3447 	flush_free_hpage_work(h);
3448 	spin_lock_irq(&hugetlb_lock);
3449 
3450 	/*
3451 	 * Check for a node specific request.
3452 	 * Changing node specific huge page count may require a corresponding
3453 	 * change to the global count.  In any case, the passed node mask
3454 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3455 	 */
3456 	if (nid != NUMA_NO_NODE) {
3457 		unsigned long old_count = count;
3458 
3459 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3460 		/*
3461 		 * User may have specified a large count value which caused the
3462 		 * above calculation to overflow.  In this case, they wanted
3463 		 * to allocate as many huge pages as possible.  Set count to
3464 		 * largest possible value to align with their intention.
3465 		 */
3466 		if (count < old_count)
3467 			count = ULONG_MAX;
3468 	}
3469 
3470 	/*
3471 	 * Gigantic pages runtime allocation depend on the capability for large
3472 	 * page range allocation.
3473 	 * If the system does not provide this feature, return an error when
3474 	 * the user tries to allocate gigantic pages but let the user free the
3475 	 * boottime allocated gigantic pages.
3476 	 */
3477 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3478 		if (count > persistent_huge_pages(h)) {
3479 			spin_unlock_irq(&hugetlb_lock);
3480 			mutex_unlock(&h->resize_lock);
3481 			NODEMASK_FREE(node_alloc_noretry);
3482 			return -EINVAL;
3483 		}
3484 		/* Fall through to decrease pool */
3485 	}
3486 
3487 	/*
3488 	 * Increase the pool size
3489 	 * First take pages out of surplus state.  Then make up the
3490 	 * remaining difference by allocating fresh huge pages.
3491 	 *
3492 	 * We might race with alloc_surplus_huge_page() here and be unable
3493 	 * to convert a surplus huge page to a normal huge page. That is
3494 	 * not critical, though, it just means the overall size of the
3495 	 * pool might be one hugepage larger than it needs to be, but
3496 	 * within all the constraints specified by the sysctls.
3497 	 */
3498 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3499 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3500 			break;
3501 	}
3502 
3503 	while (count > persistent_huge_pages(h)) {
3504 		/*
3505 		 * If this allocation races such that we no longer need the
3506 		 * page, free_huge_page will handle it by freeing the page
3507 		 * and reducing the surplus.
3508 		 */
3509 		spin_unlock_irq(&hugetlb_lock);
3510 
3511 		/* yield cpu to avoid soft lockup */
3512 		cond_resched();
3513 
3514 		ret = alloc_pool_huge_page(h, nodes_allowed,
3515 						node_alloc_noretry);
3516 		spin_lock_irq(&hugetlb_lock);
3517 		if (!ret)
3518 			goto out;
3519 
3520 		/* Bail for signals. Probably ctrl-c from user */
3521 		if (signal_pending(current))
3522 			goto out;
3523 	}
3524 
3525 	/*
3526 	 * Decrease the pool size
3527 	 * First return free pages to the buddy allocator (being careful
3528 	 * to keep enough around to satisfy reservations).  Then place
3529 	 * pages into surplus state as needed so the pool will shrink
3530 	 * to the desired size as pages become free.
3531 	 *
3532 	 * By placing pages into the surplus state independent of the
3533 	 * overcommit value, we are allowing the surplus pool size to
3534 	 * exceed overcommit. There are few sane options here. Since
3535 	 * alloc_surplus_huge_page() is checking the global counter,
3536 	 * though, we'll note that we're not allowed to exceed surplus
3537 	 * and won't grow the pool anywhere else. Not until one of the
3538 	 * sysctls are changed, or the surplus pages go out of use.
3539 	 */
3540 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3541 	min_count = max(count, min_count);
3542 	try_to_free_low(h, min_count, nodes_allowed);
3543 
3544 	/*
3545 	 * Collect pages to be removed on list without dropping lock
3546 	 */
3547 	while (min_count < persistent_huge_pages(h)) {
3548 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3549 		if (!page)
3550 			break;
3551 
3552 		list_add(&page->lru, &page_list);
3553 	}
3554 	/* free the pages after dropping lock */
3555 	spin_unlock_irq(&hugetlb_lock);
3556 	update_and_free_pages_bulk(h, &page_list);
3557 	flush_free_hpage_work(h);
3558 	spin_lock_irq(&hugetlb_lock);
3559 
3560 	while (count < persistent_huge_pages(h)) {
3561 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3562 			break;
3563 	}
3564 out:
3565 	h->max_huge_pages = persistent_huge_pages(h);
3566 	spin_unlock_irq(&hugetlb_lock);
3567 	mutex_unlock(&h->resize_lock);
3568 
3569 	NODEMASK_FREE(node_alloc_noretry);
3570 
3571 	return 0;
3572 }
3573 
demote_free_huge_page(struct hstate * h,struct page * page)3574 static int demote_free_huge_page(struct hstate *h, struct page *page)
3575 {
3576 	int i, nid = page_to_nid(page);
3577 	struct hstate *target_hstate;
3578 	struct page *subpage;
3579 	int rc = 0;
3580 
3581 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3582 
3583 	remove_hugetlb_page_for_demote(h, page, false);
3584 	spin_unlock_irq(&hugetlb_lock);
3585 
3586 	rc = hugetlb_vmemmap_restore(h, page);
3587 	if (rc) {
3588 		/* Allocation of vmemmmap failed, we can not demote page */
3589 		spin_lock_irq(&hugetlb_lock);
3590 		set_page_refcounted(page);
3591 		add_hugetlb_page(h, page, false);
3592 		return rc;
3593 	}
3594 
3595 	/*
3596 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3597 	 * sizes as it will not ref count pages.
3598 	 */
3599 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3600 
3601 	/*
3602 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3603 	 * Without the mutex, pages added to target hstate could be marked
3604 	 * as surplus.
3605 	 *
3606 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3607 	 * use the convention of always taking larger size hstate mutex first.
3608 	 */
3609 	mutex_lock(&target_hstate->resize_lock);
3610 	for (i = 0; i < pages_per_huge_page(h);
3611 				i += pages_per_huge_page(target_hstate)) {
3612 		subpage = nth_page(page, i);
3613 		if (hstate_is_gigantic(target_hstate))
3614 			prep_compound_gigantic_page_for_demote(subpage,
3615 							target_hstate->order);
3616 		else
3617 			prep_compound_page(subpage, target_hstate->order);
3618 		set_page_private(subpage, 0);
3619 		prep_new_huge_page(target_hstate, subpage, nid);
3620 		free_huge_page(subpage);
3621 	}
3622 	mutex_unlock(&target_hstate->resize_lock);
3623 
3624 	spin_lock_irq(&hugetlb_lock);
3625 
3626 	/*
3627 	 * Not absolutely necessary, but for consistency update max_huge_pages
3628 	 * based on pool changes for the demoted page.
3629 	 */
3630 	h->max_huge_pages--;
3631 	target_hstate->max_huge_pages +=
3632 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3633 
3634 	return rc;
3635 }
3636 
demote_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed)3637 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3638 	__must_hold(&hugetlb_lock)
3639 {
3640 	int nr_nodes, node;
3641 	struct page *page;
3642 
3643 	lockdep_assert_held(&hugetlb_lock);
3644 
3645 	/* We should never get here if no demote order */
3646 	if (!h->demote_order) {
3647 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3648 		return -EINVAL;		/* internal error */
3649 	}
3650 
3651 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3652 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3653 			if (PageHWPoison(page))
3654 				continue;
3655 
3656 			return demote_free_huge_page(h, page);
3657 		}
3658 	}
3659 
3660 	/*
3661 	 * Only way to get here is if all pages on free lists are poisoned.
3662 	 * Return -EBUSY so that caller will not retry.
3663 	 */
3664 	return -EBUSY;
3665 }
3666 
3667 #define HSTATE_ATTR_RO(_name) \
3668 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3669 
3670 #define HSTATE_ATTR_WO(_name) \
3671 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3672 
3673 #define HSTATE_ATTR(_name) \
3674 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3675 
3676 static struct kobject *hugepages_kobj;
3677 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3678 
3679 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3680 
kobj_to_hstate(struct kobject * kobj,int * nidp)3681 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3682 {
3683 	int i;
3684 
3685 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3686 		if (hstate_kobjs[i] == kobj) {
3687 			if (nidp)
3688 				*nidp = NUMA_NO_NODE;
3689 			return &hstates[i];
3690 		}
3691 
3692 	return kobj_to_node_hstate(kobj, nidp);
3693 }
3694 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3695 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3696 					struct kobj_attribute *attr, char *buf)
3697 {
3698 	struct hstate *h;
3699 	unsigned long nr_huge_pages;
3700 	int nid;
3701 
3702 	h = kobj_to_hstate(kobj, &nid);
3703 	if (nid == NUMA_NO_NODE)
3704 		nr_huge_pages = h->nr_huge_pages;
3705 	else
3706 		nr_huge_pages = h->nr_huge_pages_node[nid];
3707 
3708 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3709 }
3710 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)3711 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3712 					   struct hstate *h, int nid,
3713 					   unsigned long count, size_t len)
3714 {
3715 	int err;
3716 	nodemask_t nodes_allowed, *n_mask;
3717 
3718 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3719 		return -EINVAL;
3720 
3721 	if (nid == NUMA_NO_NODE) {
3722 		/*
3723 		 * global hstate attribute
3724 		 */
3725 		if (!(obey_mempolicy &&
3726 				init_nodemask_of_mempolicy(&nodes_allowed)))
3727 			n_mask = &node_states[N_MEMORY];
3728 		else
3729 			n_mask = &nodes_allowed;
3730 	} else {
3731 		/*
3732 		 * Node specific request.  count adjustment happens in
3733 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3734 		 */
3735 		init_nodemask_of_node(&nodes_allowed, nid);
3736 		n_mask = &nodes_allowed;
3737 	}
3738 
3739 	err = set_max_huge_pages(h, count, nid, n_mask);
3740 
3741 	return err ? err : len;
3742 }
3743 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)3744 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3745 					 struct kobject *kobj, const char *buf,
3746 					 size_t len)
3747 {
3748 	struct hstate *h;
3749 	unsigned long count;
3750 	int nid;
3751 	int err;
3752 
3753 	err = kstrtoul(buf, 10, &count);
3754 	if (err)
3755 		return err;
3756 
3757 	h = kobj_to_hstate(kobj, &nid);
3758 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3759 }
3760 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3761 static ssize_t nr_hugepages_show(struct kobject *kobj,
3762 				       struct kobj_attribute *attr, char *buf)
3763 {
3764 	return nr_hugepages_show_common(kobj, attr, buf);
3765 }
3766 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3767 static ssize_t nr_hugepages_store(struct kobject *kobj,
3768 	       struct kobj_attribute *attr, const char *buf, size_t len)
3769 {
3770 	return nr_hugepages_store_common(false, kobj, buf, len);
3771 }
3772 HSTATE_ATTR(nr_hugepages);
3773 
3774 #ifdef CONFIG_NUMA
3775 
3776 /*
3777  * hstate attribute for optionally mempolicy-based constraint on persistent
3778  * huge page alloc/free.
3779  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3780 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3781 					   struct kobj_attribute *attr,
3782 					   char *buf)
3783 {
3784 	return nr_hugepages_show_common(kobj, attr, buf);
3785 }
3786 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3787 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3788 	       struct kobj_attribute *attr, const char *buf, size_t len)
3789 {
3790 	return nr_hugepages_store_common(true, kobj, buf, len);
3791 }
3792 HSTATE_ATTR(nr_hugepages_mempolicy);
3793 #endif
3794 
3795 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3796 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3797 					struct kobj_attribute *attr, char *buf)
3798 {
3799 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3800 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3801 }
3802 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3803 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3804 		struct kobj_attribute *attr, const char *buf, size_t count)
3805 {
3806 	int err;
3807 	unsigned long input;
3808 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3809 
3810 	if (hstate_is_gigantic(h))
3811 		return -EINVAL;
3812 
3813 	err = kstrtoul(buf, 10, &input);
3814 	if (err)
3815 		return err;
3816 
3817 	spin_lock_irq(&hugetlb_lock);
3818 	h->nr_overcommit_huge_pages = input;
3819 	spin_unlock_irq(&hugetlb_lock);
3820 
3821 	return count;
3822 }
3823 HSTATE_ATTR(nr_overcommit_hugepages);
3824 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3825 static ssize_t free_hugepages_show(struct kobject *kobj,
3826 					struct kobj_attribute *attr, char *buf)
3827 {
3828 	struct hstate *h;
3829 	unsigned long free_huge_pages;
3830 	int nid;
3831 
3832 	h = kobj_to_hstate(kobj, &nid);
3833 	if (nid == NUMA_NO_NODE)
3834 		free_huge_pages = h->free_huge_pages;
3835 	else
3836 		free_huge_pages = h->free_huge_pages_node[nid];
3837 
3838 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3839 }
3840 HSTATE_ATTR_RO(free_hugepages);
3841 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3842 static ssize_t resv_hugepages_show(struct kobject *kobj,
3843 					struct kobj_attribute *attr, char *buf)
3844 {
3845 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3846 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3847 }
3848 HSTATE_ATTR_RO(resv_hugepages);
3849 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3850 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3851 					struct kobj_attribute *attr, char *buf)
3852 {
3853 	struct hstate *h;
3854 	unsigned long surplus_huge_pages;
3855 	int nid;
3856 
3857 	h = kobj_to_hstate(kobj, &nid);
3858 	if (nid == NUMA_NO_NODE)
3859 		surplus_huge_pages = h->surplus_huge_pages;
3860 	else
3861 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3862 
3863 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3864 }
3865 HSTATE_ATTR_RO(surplus_hugepages);
3866 
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3867 static ssize_t demote_store(struct kobject *kobj,
3868 	       struct kobj_attribute *attr, const char *buf, size_t len)
3869 {
3870 	unsigned long nr_demote;
3871 	unsigned long nr_available;
3872 	nodemask_t nodes_allowed, *n_mask;
3873 	struct hstate *h;
3874 	int err;
3875 	int nid;
3876 
3877 	err = kstrtoul(buf, 10, &nr_demote);
3878 	if (err)
3879 		return err;
3880 	h = kobj_to_hstate(kobj, &nid);
3881 
3882 	if (nid != NUMA_NO_NODE) {
3883 		init_nodemask_of_node(&nodes_allowed, nid);
3884 		n_mask = &nodes_allowed;
3885 	} else {
3886 		n_mask = &node_states[N_MEMORY];
3887 	}
3888 
3889 	/* Synchronize with other sysfs operations modifying huge pages */
3890 	mutex_lock(&h->resize_lock);
3891 	spin_lock_irq(&hugetlb_lock);
3892 
3893 	while (nr_demote) {
3894 		/*
3895 		 * Check for available pages to demote each time thorough the
3896 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3897 		 */
3898 		if (nid != NUMA_NO_NODE)
3899 			nr_available = h->free_huge_pages_node[nid];
3900 		else
3901 			nr_available = h->free_huge_pages;
3902 		nr_available -= h->resv_huge_pages;
3903 		if (!nr_available)
3904 			break;
3905 
3906 		err = demote_pool_huge_page(h, n_mask);
3907 		if (err)
3908 			break;
3909 
3910 		nr_demote--;
3911 	}
3912 
3913 	spin_unlock_irq(&hugetlb_lock);
3914 	mutex_unlock(&h->resize_lock);
3915 
3916 	if (err)
3917 		return err;
3918 	return len;
3919 }
3920 HSTATE_ATTR_WO(demote);
3921 
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3922 static ssize_t demote_size_show(struct kobject *kobj,
3923 					struct kobj_attribute *attr, char *buf)
3924 {
3925 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3926 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3927 
3928 	return sysfs_emit(buf, "%lukB\n", demote_size);
3929 }
3930 
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3931 static ssize_t demote_size_store(struct kobject *kobj,
3932 					struct kobj_attribute *attr,
3933 					const char *buf, size_t count)
3934 {
3935 	struct hstate *h, *demote_hstate;
3936 	unsigned long demote_size;
3937 	unsigned int demote_order;
3938 
3939 	demote_size = (unsigned long)memparse(buf, NULL);
3940 
3941 	demote_hstate = size_to_hstate(demote_size);
3942 	if (!demote_hstate)
3943 		return -EINVAL;
3944 	demote_order = demote_hstate->order;
3945 	if (demote_order < HUGETLB_PAGE_ORDER)
3946 		return -EINVAL;
3947 
3948 	/* demote order must be smaller than hstate order */
3949 	h = kobj_to_hstate(kobj, NULL);
3950 	if (demote_order >= h->order)
3951 		return -EINVAL;
3952 
3953 	/* resize_lock synchronizes access to demote size and writes */
3954 	mutex_lock(&h->resize_lock);
3955 	h->demote_order = demote_order;
3956 	mutex_unlock(&h->resize_lock);
3957 
3958 	return count;
3959 }
3960 HSTATE_ATTR(demote_size);
3961 
3962 static struct attribute *hstate_attrs[] = {
3963 	&nr_hugepages_attr.attr,
3964 	&nr_overcommit_hugepages_attr.attr,
3965 	&free_hugepages_attr.attr,
3966 	&resv_hugepages_attr.attr,
3967 	&surplus_hugepages_attr.attr,
3968 #ifdef CONFIG_NUMA
3969 	&nr_hugepages_mempolicy_attr.attr,
3970 #endif
3971 	NULL,
3972 };
3973 
3974 static const struct attribute_group hstate_attr_group = {
3975 	.attrs = hstate_attrs,
3976 };
3977 
3978 static struct attribute *hstate_demote_attrs[] = {
3979 	&demote_size_attr.attr,
3980 	&demote_attr.attr,
3981 	NULL,
3982 };
3983 
3984 static const struct attribute_group hstate_demote_attr_group = {
3985 	.attrs = hstate_demote_attrs,
3986 };
3987 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)3988 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3989 				    struct kobject **hstate_kobjs,
3990 				    const struct attribute_group *hstate_attr_group)
3991 {
3992 	int retval;
3993 	int hi = hstate_index(h);
3994 
3995 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3996 	if (!hstate_kobjs[hi])
3997 		return -ENOMEM;
3998 
3999 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4000 	if (retval) {
4001 		kobject_put(hstate_kobjs[hi]);
4002 		hstate_kobjs[hi] = NULL;
4003 		return retval;
4004 	}
4005 
4006 	if (h->demote_order) {
4007 		retval = sysfs_create_group(hstate_kobjs[hi],
4008 					    &hstate_demote_attr_group);
4009 		if (retval) {
4010 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4011 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4012 			kobject_put(hstate_kobjs[hi]);
4013 			hstate_kobjs[hi] = NULL;
4014 			return retval;
4015 		}
4016 	}
4017 
4018 	return 0;
4019 }
4020 
4021 #ifdef CONFIG_NUMA
4022 static bool hugetlb_sysfs_initialized __ro_after_init;
4023 
4024 /*
4025  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4026  * with node devices in node_devices[] using a parallel array.  The array
4027  * index of a node device or _hstate == node id.
4028  * This is here to avoid any static dependency of the node device driver, in
4029  * the base kernel, on the hugetlb module.
4030  */
4031 struct node_hstate {
4032 	struct kobject		*hugepages_kobj;
4033 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4034 };
4035 static struct node_hstate node_hstates[MAX_NUMNODES];
4036 
4037 /*
4038  * A subset of global hstate attributes for node devices
4039  */
4040 static struct attribute *per_node_hstate_attrs[] = {
4041 	&nr_hugepages_attr.attr,
4042 	&free_hugepages_attr.attr,
4043 	&surplus_hugepages_attr.attr,
4044 	NULL,
4045 };
4046 
4047 static const struct attribute_group per_node_hstate_attr_group = {
4048 	.attrs = per_node_hstate_attrs,
4049 };
4050 
4051 /*
4052  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4053  * Returns node id via non-NULL nidp.
4054  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4055 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4056 {
4057 	int nid;
4058 
4059 	for (nid = 0; nid < nr_node_ids; nid++) {
4060 		struct node_hstate *nhs = &node_hstates[nid];
4061 		int i;
4062 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4063 			if (nhs->hstate_kobjs[i] == kobj) {
4064 				if (nidp)
4065 					*nidp = nid;
4066 				return &hstates[i];
4067 			}
4068 	}
4069 
4070 	BUG();
4071 	return NULL;
4072 }
4073 
4074 /*
4075  * Unregister hstate attributes from a single node device.
4076  * No-op if no hstate attributes attached.
4077  */
hugetlb_unregister_node(struct node * node)4078 void hugetlb_unregister_node(struct node *node)
4079 {
4080 	struct hstate *h;
4081 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4082 
4083 	if (!nhs->hugepages_kobj)
4084 		return;		/* no hstate attributes */
4085 
4086 	for_each_hstate(h) {
4087 		int idx = hstate_index(h);
4088 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4089 
4090 		if (!hstate_kobj)
4091 			continue;
4092 		if (h->demote_order)
4093 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4094 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4095 		kobject_put(hstate_kobj);
4096 		nhs->hstate_kobjs[idx] = NULL;
4097 	}
4098 
4099 	kobject_put(nhs->hugepages_kobj);
4100 	nhs->hugepages_kobj = NULL;
4101 }
4102 
4103 
4104 /*
4105  * Register hstate attributes for a single node device.
4106  * No-op if attributes already registered.
4107  */
hugetlb_register_node(struct node * node)4108 void hugetlb_register_node(struct node *node)
4109 {
4110 	struct hstate *h;
4111 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4112 	int err;
4113 
4114 	if (!hugetlb_sysfs_initialized)
4115 		return;
4116 
4117 	if (nhs->hugepages_kobj)
4118 		return;		/* already allocated */
4119 
4120 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4121 							&node->dev.kobj);
4122 	if (!nhs->hugepages_kobj)
4123 		return;
4124 
4125 	for_each_hstate(h) {
4126 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4127 						nhs->hstate_kobjs,
4128 						&per_node_hstate_attr_group);
4129 		if (err) {
4130 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4131 				h->name, node->dev.id);
4132 			hugetlb_unregister_node(node);
4133 			break;
4134 		}
4135 	}
4136 }
4137 
4138 /*
4139  * hugetlb init time:  register hstate attributes for all registered node
4140  * devices of nodes that have memory.  All on-line nodes should have
4141  * registered their associated device by this time.
4142  */
hugetlb_register_all_nodes(void)4143 static void __init hugetlb_register_all_nodes(void)
4144 {
4145 	int nid;
4146 
4147 	for_each_online_node(nid)
4148 		hugetlb_register_node(node_devices[nid]);
4149 }
4150 #else	/* !CONFIG_NUMA */
4151 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4152 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4153 {
4154 	BUG();
4155 	if (nidp)
4156 		*nidp = -1;
4157 	return NULL;
4158 }
4159 
hugetlb_register_all_nodes(void)4160 static void hugetlb_register_all_nodes(void) { }
4161 
4162 #endif
4163 
4164 #ifdef CONFIG_CMA
4165 static void __init hugetlb_cma_check(void);
4166 #else
hugetlb_cma_check(void)4167 static inline __init void hugetlb_cma_check(void)
4168 {
4169 }
4170 #endif
4171 
hugetlb_sysfs_init(void)4172 static void __init hugetlb_sysfs_init(void)
4173 {
4174 	struct hstate *h;
4175 	int err;
4176 
4177 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4178 	if (!hugepages_kobj)
4179 		return;
4180 
4181 	for_each_hstate(h) {
4182 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4183 					 hstate_kobjs, &hstate_attr_group);
4184 		if (err)
4185 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4186 	}
4187 
4188 #ifdef CONFIG_NUMA
4189 	hugetlb_sysfs_initialized = true;
4190 #endif
4191 	hugetlb_register_all_nodes();
4192 }
4193 
hugetlb_init(void)4194 static int __init hugetlb_init(void)
4195 {
4196 	int i;
4197 
4198 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4199 			__NR_HPAGEFLAGS);
4200 
4201 	if (!hugepages_supported()) {
4202 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4203 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4204 		return 0;
4205 	}
4206 
4207 	/*
4208 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4209 	 * architectures depend on setup being done here.
4210 	 */
4211 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4212 	if (!parsed_default_hugepagesz) {
4213 		/*
4214 		 * If we did not parse a default huge page size, set
4215 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4216 		 * number of huge pages for this default size was implicitly
4217 		 * specified, set that here as well.
4218 		 * Note that the implicit setting will overwrite an explicit
4219 		 * setting.  A warning will be printed in this case.
4220 		 */
4221 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4222 		if (default_hstate_max_huge_pages) {
4223 			if (default_hstate.max_huge_pages) {
4224 				char buf[32];
4225 
4226 				string_get_size(huge_page_size(&default_hstate),
4227 					1, STRING_UNITS_2, buf, 32);
4228 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4229 					default_hstate.max_huge_pages, buf);
4230 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4231 					default_hstate_max_huge_pages);
4232 			}
4233 			default_hstate.max_huge_pages =
4234 				default_hstate_max_huge_pages;
4235 
4236 			for_each_online_node(i)
4237 				default_hstate.max_huge_pages_node[i] =
4238 					default_hugepages_in_node[i];
4239 		}
4240 	}
4241 
4242 	hugetlb_cma_check();
4243 	hugetlb_init_hstates();
4244 	gather_bootmem_prealloc();
4245 	report_hugepages();
4246 
4247 	hugetlb_sysfs_init();
4248 	hugetlb_cgroup_file_init();
4249 
4250 #ifdef CONFIG_SMP
4251 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4252 #else
4253 	num_fault_mutexes = 1;
4254 #endif
4255 	hugetlb_fault_mutex_table =
4256 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4257 			      GFP_KERNEL);
4258 	BUG_ON(!hugetlb_fault_mutex_table);
4259 
4260 	for (i = 0; i < num_fault_mutexes; i++)
4261 		mutex_init(&hugetlb_fault_mutex_table[i]);
4262 	return 0;
4263 }
4264 subsys_initcall(hugetlb_init);
4265 
4266 /* Overwritten by architectures with more huge page sizes */
__init(weak)4267 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4268 {
4269 	return size == HPAGE_SIZE;
4270 }
4271 
hugetlb_add_hstate(unsigned int order)4272 void __init hugetlb_add_hstate(unsigned int order)
4273 {
4274 	struct hstate *h;
4275 	unsigned long i;
4276 
4277 	if (size_to_hstate(PAGE_SIZE << order)) {
4278 		return;
4279 	}
4280 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4281 	BUG_ON(order == 0);
4282 	h = &hstates[hugetlb_max_hstate++];
4283 	mutex_init(&h->resize_lock);
4284 	h->order = order;
4285 	h->mask = ~(huge_page_size(h) - 1);
4286 	for (i = 0; i < MAX_NUMNODES; ++i)
4287 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4288 	INIT_LIST_HEAD(&h->hugepage_activelist);
4289 	h->next_nid_to_alloc = first_memory_node;
4290 	h->next_nid_to_free = first_memory_node;
4291 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4292 					huge_page_size(h)/SZ_1K);
4293 
4294 	parsed_hstate = h;
4295 }
4296 
hugetlb_node_alloc_supported(void)4297 bool __init __weak hugetlb_node_alloc_supported(void)
4298 {
4299 	return true;
4300 }
4301 
hugepages_clear_pages_in_node(void)4302 static void __init hugepages_clear_pages_in_node(void)
4303 {
4304 	if (!hugetlb_max_hstate) {
4305 		default_hstate_max_huge_pages = 0;
4306 		memset(default_hugepages_in_node, 0,
4307 			sizeof(default_hugepages_in_node));
4308 	} else {
4309 		parsed_hstate->max_huge_pages = 0;
4310 		memset(parsed_hstate->max_huge_pages_node, 0,
4311 			sizeof(parsed_hstate->max_huge_pages_node));
4312 	}
4313 }
4314 
4315 /*
4316  * hugepages command line processing
4317  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4318  * specification.  If not, ignore the hugepages value.  hugepages can also
4319  * be the first huge page command line  option in which case it implicitly
4320  * specifies the number of huge pages for the default size.
4321  */
hugepages_setup(char * s)4322 static int __init hugepages_setup(char *s)
4323 {
4324 	unsigned long *mhp;
4325 	static unsigned long *last_mhp;
4326 	int node = NUMA_NO_NODE;
4327 	int count;
4328 	unsigned long tmp;
4329 	char *p = s;
4330 
4331 	if (!parsed_valid_hugepagesz) {
4332 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4333 		parsed_valid_hugepagesz = true;
4334 		return 1;
4335 	}
4336 
4337 	/*
4338 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4339 	 * yet, so this hugepages= parameter goes to the "default hstate".
4340 	 * Otherwise, it goes with the previously parsed hugepagesz or
4341 	 * default_hugepagesz.
4342 	 */
4343 	else if (!hugetlb_max_hstate)
4344 		mhp = &default_hstate_max_huge_pages;
4345 	else
4346 		mhp = &parsed_hstate->max_huge_pages;
4347 
4348 	if (mhp == last_mhp) {
4349 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4350 		return 1;
4351 	}
4352 
4353 	while (*p) {
4354 		count = 0;
4355 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4356 			goto invalid;
4357 		/* Parameter is node format */
4358 		if (p[count] == ':') {
4359 			if (!hugetlb_node_alloc_supported()) {
4360 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4361 				return 1;
4362 			}
4363 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4364 				goto invalid;
4365 			node = array_index_nospec(tmp, MAX_NUMNODES);
4366 			p += count + 1;
4367 			/* Parse hugepages */
4368 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4369 				goto invalid;
4370 			if (!hugetlb_max_hstate)
4371 				default_hugepages_in_node[node] = tmp;
4372 			else
4373 				parsed_hstate->max_huge_pages_node[node] = tmp;
4374 			*mhp += tmp;
4375 			/* Go to parse next node*/
4376 			if (p[count] == ',')
4377 				p += count + 1;
4378 			else
4379 				break;
4380 		} else {
4381 			if (p != s)
4382 				goto invalid;
4383 			*mhp = tmp;
4384 			break;
4385 		}
4386 	}
4387 
4388 	/*
4389 	 * Global state is always initialized later in hugetlb_init.
4390 	 * But we need to allocate gigantic hstates here early to still
4391 	 * use the bootmem allocator.
4392 	 */
4393 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4394 		hugetlb_hstate_alloc_pages(parsed_hstate);
4395 
4396 	last_mhp = mhp;
4397 
4398 	return 1;
4399 
4400 invalid:
4401 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4402 	hugepages_clear_pages_in_node();
4403 	return 1;
4404 }
4405 __setup("hugepages=", hugepages_setup);
4406 
4407 /*
4408  * hugepagesz command line processing
4409  * A specific huge page size can only be specified once with hugepagesz.
4410  * hugepagesz is followed by hugepages on the command line.  The global
4411  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4412  * hugepagesz argument was valid.
4413  */
hugepagesz_setup(char * s)4414 static int __init hugepagesz_setup(char *s)
4415 {
4416 	unsigned long size;
4417 	struct hstate *h;
4418 
4419 	parsed_valid_hugepagesz = false;
4420 	size = (unsigned long)memparse(s, NULL);
4421 
4422 	if (!arch_hugetlb_valid_size(size)) {
4423 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4424 		return 1;
4425 	}
4426 
4427 	h = size_to_hstate(size);
4428 	if (h) {
4429 		/*
4430 		 * hstate for this size already exists.  This is normally
4431 		 * an error, but is allowed if the existing hstate is the
4432 		 * default hstate.  More specifically, it is only allowed if
4433 		 * the number of huge pages for the default hstate was not
4434 		 * previously specified.
4435 		 */
4436 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4437 		    default_hstate.max_huge_pages) {
4438 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4439 			return 1;
4440 		}
4441 
4442 		/*
4443 		 * No need to call hugetlb_add_hstate() as hstate already
4444 		 * exists.  But, do set parsed_hstate so that a following
4445 		 * hugepages= parameter will be applied to this hstate.
4446 		 */
4447 		parsed_hstate = h;
4448 		parsed_valid_hugepagesz = true;
4449 		return 1;
4450 	}
4451 
4452 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4453 	parsed_valid_hugepagesz = true;
4454 	return 1;
4455 }
4456 __setup("hugepagesz=", hugepagesz_setup);
4457 
4458 /*
4459  * default_hugepagesz command line input
4460  * Only one instance of default_hugepagesz allowed on command line.
4461  */
default_hugepagesz_setup(char * s)4462 static int __init default_hugepagesz_setup(char *s)
4463 {
4464 	unsigned long size;
4465 	int i;
4466 
4467 	parsed_valid_hugepagesz = false;
4468 	if (parsed_default_hugepagesz) {
4469 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4470 		return 1;
4471 	}
4472 
4473 	size = (unsigned long)memparse(s, NULL);
4474 
4475 	if (!arch_hugetlb_valid_size(size)) {
4476 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4477 		return 1;
4478 	}
4479 
4480 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4481 	parsed_valid_hugepagesz = true;
4482 	parsed_default_hugepagesz = true;
4483 	default_hstate_idx = hstate_index(size_to_hstate(size));
4484 
4485 	/*
4486 	 * The number of default huge pages (for this size) could have been
4487 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4488 	 * then default_hstate_max_huge_pages is set.  If the default huge
4489 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4490 	 * allocated here from bootmem allocator.
4491 	 */
4492 	if (default_hstate_max_huge_pages) {
4493 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4494 		for_each_online_node(i)
4495 			default_hstate.max_huge_pages_node[i] =
4496 				default_hugepages_in_node[i];
4497 		if (hstate_is_gigantic(&default_hstate))
4498 			hugetlb_hstate_alloc_pages(&default_hstate);
4499 		default_hstate_max_huge_pages = 0;
4500 	}
4501 
4502 	return 1;
4503 }
4504 __setup("default_hugepagesz=", default_hugepagesz_setup);
4505 
policy_mbind_nodemask(gfp_t gfp)4506 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4507 {
4508 #ifdef CONFIG_NUMA
4509 	struct mempolicy *mpol = get_task_policy(current);
4510 
4511 	/*
4512 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4513 	 * (from policy_nodemask) specifically for hugetlb case
4514 	 */
4515 	if (mpol->mode == MPOL_BIND &&
4516 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4517 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4518 		return &mpol->nodes;
4519 #endif
4520 	return NULL;
4521 }
4522 
allowed_mems_nr(struct hstate * h)4523 static unsigned int allowed_mems_nr(struct hstate *h)
4524 {
4525 	int node;
4526 	unsigned int nr = 0;
4527 	nodemask_t *mbind_nodemask;
4528 	unsigned int *array = h->free_huge_pages_node;
4529 	gfp_t gfp_mask = htlb_alloc_mask(h);
4530 
4531 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4532 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4533 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4534 			nr += array[node];
4535 	}
4536 
4537 	return nr;
4538 }
4539 
4540 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)4541 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4542 					  void *buffer, size_t *length,
4543 					  loff_t *ppos, unsigned long *out)
4544 {
4545 	struct ctl_table dup_table;
4546 
4547 	/*
4548 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4549 	 * can duplicate the @table and alter the duplicate of it.
4550 	 */
4551 	dup_table = *table;
4552 	dup_table.data = out;
4553 
4554 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4555 }
4556 
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4557 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4558 			 struct ctl_table *table, int write,
4559 			 void *buffer, size_t *length, loff_t *ppos)
4560 {
4561 	struct hstate *h = &default_hstate;
4562 	unsigned long tmp = h->max_huge_pages;
4563 	int ret;
4564 
4565 	if (!hugepages_supported())
4566 		return -EOPNOTSUPP;
4567 
4568 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4569 					     &tmp);
4570 	if (ret)
4571 		goto out;
4572 
4573 	if (write)
4574 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4575 						  NUMA_NO_NODE, tmp, *length);
4576 out:
4577 	return ret;
4578 }
4579 
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4580 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4581 			  void *buffer, size_t *length, loff_t *ppos)
4582 {
4583 
4584 	return hugetlb_sysctl_handler_common(false, table, write,
4585 							buffer, length, ppos);
4586 }
4587 
4588 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4589 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4590 			  void *buffer, size_t *length, loff_t *ppos)
4591 {
4592 	return hugetlb_sysctl_handler_common(true, table, write,
4593 							buffer, length, ppos);
4594 }
4595 #endif /* CONFIG_NUMA */
4596 
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4597 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4598 		void *buffer, size_t *length, loff_t *ppos)
4599 {
4600 	struct hstate *h = &default_hstate;
4601 	unsigned long tmp;
4602 	int ret;
4603 
4604 	if (!hugepages_supported())
4605 		return -EOPNOTSUPP;
4606 
4607 	tmp = h->nr_overcommit_huge_pages;
4608 
4609 	if (write && hstate_is_gigantic(h))
4610 		return -EINVAL;
4611 
4612 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4613 					     &tmp);
4614 	if (ret)
4615 		goto out;
4616 
4617 	if (write) {
4618 		spin_lock_irq(&hugetlb_lock);
4619 		h->nr_overcommit_huge_pages = tmp;
4620 		spin_unlock_irq(&hugetlb_lock);
4621 	}
4622 out:
4623 	return ret;
4624 }
4625 
4626 #endif /* CONFIG_SYSCTL */
4627 
hugetlb_report_meminfo(struct seq_file * m)4628 void hugetlb_report_meminfo(struct seq_file *m)
4629 {
4630 	struct hstate *h;
4631 	unsigned long total = 0;
4632 
4633 	if (!hugepages_supported())
4634 		return;
4635 
4636 	for_each_hstate(h) {
4637 		unsigned long count = h->nr_huge_pages;
4638 
4639 		total += huge_page_size(h) * count;
4640 
4641 		if (h == &default_hstate)
4642 			seq_printf(m,
4643 				   "HugePages_Total:   %5lu\n"
4644 				   "HugePages_Free:    %5lu\n"
4645 				   "HugePages_Rsvd:    %5lu\n"
4646 				   "HugePages_Surp:    %5lu\n"
4647 				   "Hugepagesize:   %8lu kB\n",
4648 				   count,
4649 				   h->free_huge_pages,
4650 				   h->resv_huge_pages,
4651 				   h->surplus_huge_pages,
4652 				   huge_page_size(h) / SZ_1K);
4653 	}
4654 
4655 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4656 }
4657 
hugetlb_report_node_meminfo(char * buf,int len,int nid)4658 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4659 {
4660 	struct hstate *h = &default_hstate;
4661 
4662 	if (!hugepages_supported())
4663 		return 0;
4664 
4665 	return sysfs_emit_at(buf, len,
4666 			     "Node %d HugePages_Total: %5u\n"
4667 			     "Node %d HugePages_Free:  %5u\n"
4668 			     "Node %d HugePages_Surp:  %5u\n",
4669 			     nid, h->nr_huge_pages_node[nid],
4670 			     nid, h->free_huge_pages_node[nid],
4671 			     nid, h->surplus_huge_pages_node[nid]);
4672 }
4673 
hugetlb_show_meminfo_node(int nid)4674 void hugetlb_show_meminfo_node(int nid)
4675 {
4676 	struct hstate *h;
4677 
4678 	if (!hugepages_supported())
4679 		return;
4680 
4681 	for_each_hstate(h)
4682 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4683 			nid,
4684 			h->nr_huge_pages_node[nid],
4685 			h->free_huge_pages_node[nid],
4686 			h->surplus_huge_pages_node[nid],
4687 			huge_page_size(h) / SZ_1K);
4688 }
4689 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4690 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4691 {
4692 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4693 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4694 }
4695 
4696 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4697 unsigned long hugetlb_total_pages(void)
4698 {
4699 	struct hstate *h;
4700 	unsigned long nr_total_pages = 0;
4701 
4702 	for_each_hstate(h)
4703 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4704 	return nr_total_pages;
4705 }
4706 
hugetlb_acct_memory(struct hstate * h,long delta)4707 static int hugetlb_acct_memory(struct hstate *h, long delta)
4708 {
4709 	int ret = -ENOMEM;
4710 
4711 	if (!delta)
4712 		return 0;
4713 
4714 	spin_lock_irq(&hugetlb_lock);
4715 	/*
4716 	 * When cpuset is configured, it breaks the strict hugetlb page
4717 	 * reservation as the accounting is done on a global variable. Such
4718 	 * reservation is completely rubbish in the presence of cpuset because
4719 	 * the reservation is not checked against page availability for the
4720 	 * current cpuset. Application can still potentially OOM'ed by kernel
4721 	 * with lack of free htlb page in cpuset that the task is in.
4722 	 * Attempt to enforce strict accounting with cpuset is almost
4723 	 * impossible (or too ugly) because cpuset is too fluid that
4724 	 * task or memory node can be dynamically moved between cpusets.
4725 	 *
4726 	 * The change of semantics for shared hugetlb mapping with cpuset is
4727 	 * undesirable. However, in order to preserve some of the semantics,
4728 	 * we fall back to check against current free page availability as
4729 	 * a best attempt and hopefully to minimize the impact of changing
4730 	 * semantics that cpuset has.
4731 	 *
4732 	 * Apart from cpuset, we also have memory policy mechanism that
4733 	 * also determines from which node the kernel will allocate memory
4734 	 * in a NUMA system. So similar to cpuset, we also should consider
4735 	 * the memory policy of the current task. Similar to the description
4736 	 * above.
4737 	 */
4738 	if (delta > 0) {
4739 		if (gather_surplus_pages(h, delta) < 0)
4740 			goto out;
4741 
4742 		if (delta > allowed_mems_nr(h)) {
4743 			return_unused_surplus_pages(h, delta);
4744 			goto out;
4745 		}
4746 	}
4747 
4748 	ret = 0;
4749 	if (delta < 0)
4750 		return_unused_surplus_pages(h, (unsigned long) -delta);
4751 
4752 out:
4753 	spin_unlock_irq(&hugetlb_lock);
4754 	return ret;
4755 }
4756 
hugetlb_vm_op_open(struct vm_area_struct * vma)4757 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4758 {
4759 	struct resv_map *resv = vma_resv_map(vma);
4760 
4761 	/*
4762 	 * HPAGE_RESV_OWNER indicates a private mapping.
4763 	 * This new VMA should share its siblings reservation map if present.
4764 	 * The VMA will only ever have a valid reservation map pointer where
4765 	 * it is being copied for another still existing VMA.  As that VMA
4766 	 * has a reference to the reservation map it cannot disappear until
4767 	 * after this open call completes.  It is therefore safe to take a
4768 	 * new reference here without additional locking.
4769 	 */
4770 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4771 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4772 		kref_get(&resv->refs);
4773 	}
4774 
4775 	/*
4776 	 * vma_lock structure for sharable mappings is vma specific.
4777 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4778 	 * new structure.  Before clearing, make sure vma_lock is not
4779 	 * for this vma.
4780 	 */
4781 	if (vma->vm_flags & VM_MAYSHARE) {
4782 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4783 
4784 		if (vma_lock) {
4785 			if (vma_lock->vma != vma) {
4786 				vma->vm_private_data = NULL;
4787 				hugetlb_vma_lock_alloc(vma);
4788 			} else
4789 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4790 		} else
4791 			hugetlb_vma_lock_alloc(vma);
4792 	}
4793 }
4794 
hugetlb_vm_op_close(struct vm_area_struct * vma)4795 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4796 {
4797 	struct hstate *h = hstate_vma(vma);
4798 	struct resv_map *resv;
4799 	struct hugepage_subpool *spool = subpool_vma(vma);
4800 	unsigned long reserve, start, end;
4801 	long gbl_reserve;
4802 
4803 	hugetlb_vma_lock_free(vma);
4804 
4805 	resv = vma_resv_map(vma);
4806 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4807 		return;
4808 
4809 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4810 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4811 
4812 	reserve = (end - start) - region_count(resv, start, end);
4813 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4814 	if (reserve) {
4815 		/*
4816 		 * Decrement reserve counts.  The global reserve count may be
4817 		 * adjusted if the subpool has a minimum size.
4818 		 */
4819 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4820 		hugetlb_acct_memory(h, -gbl_reserve);
4821 	}
4822 
4823 	kref_put(&resv->refs, resv_map_release);
4824 }
4825 
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)4826 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4827 {
4828 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4829 		return -EINVAL;
4830 
4831 	/*
4832 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4833 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4834 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4835 	 */
4836 	if (addr & ~PUD_MASK) {
4837 		/*
4838 		 * hugetlb_vm_op_split is called right before we attempt to
4839 		 * split the VMA. We will need to unshare PMDs in the old and
4840 		 * new VMAs, so let's unshare before we split.
4841 		 */
4842 		unsigned long floor = addr & PUD_MASK;
4843 		unsigned long ceil = floor + PUD_SIZE;
4844 
4845 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4846 			hugetlb_unshare_pmds(vma, floor, ceil);
4847 	}
4848 
4849 	return 0;
4850 }
4851 
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)4852 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4853 {
4854 	return huge_page_size(hstate_vma(vma));
4855 }
4856 
4857 /*
4858  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4859  * handle_mm_fault() to try to instantiate regular-sized pages in the
4860  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4861  * this far.
4862  */
hugetlb_vm_op_fault(struct vm_fault * vmf)4863 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4864 {
4865 	BUG();
4866 	return 0;
4867 }
4868 
4869 /*
4870  * When a new function is introduced to vm_operations_struct and added
4871  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4872  * This is because under System V memory model, mappings created via
4873  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4874  * their original vm_ops are overwritten with shm_vm_ops.
4875  */
4876 const struct vm_operations_struct hugetlb_vm_ops = {
4877 	.fault = hugetlb_vm_op_fault,
4878 	.open = hugetlb_vm_op_open,
4879 	.close = hugetlb_vm_op_close,
4880 	.may_split = hugetlb_vm_op_split,
4881 	.pagesize = hugetlb_vm_op_pagesize,
4882 };
4883 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)4884 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4885 				int writable)
4886 {
4887 	pte_t entry;
4888 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4889 
4890 	if (writable) {
4891 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4892 					 vma->vm_page_prot)));
4893 	} else {
4894 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4895 					   vma->vm_page_prot));
4896 	}
4897 	entry = pte_mkyoung(entry);
4898 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4899 
4900 	return entry;
4901 }
4902 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)4903 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4904 				   unsigned long address, pte_t *ptep)
4905 {
4906 	pte_t entry;
4907 
4908 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4909 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4910 		update_mmu_cache(vma, address, ptep);
4911 }
4912 
is_hugetlb_entry_migration(pte_t pte)4913 bool is_hugetlb_entry_migration(pte_t pte)
4914 {
4915 	swp_entry_t swp;
4916 
4917 	if (huge_pte_none(pte) || pte_present(pte))
4918 		return false;
4919 	swp = pte_to_swp_entry(pte);
4920 	if (is_migration_entry(swp))
4921 		return true;
4922 	else
4923 		return false;
4924 }
4925 
is_hugetlb_entry_hwpoisoned(pte_t pte)4926 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4927 {
4928 	swp_entry_t swp;
4929 
4930 	if (huge_pte_none(pte) || pte_present(pte))
4931 		return false;
4932 	swp = pte_to_swp_entry(pte);
4933 	if (is_hwpoison_entry(swp))
4934 		return true;
4935 	else
4936 		return false;
4937 }
4938 
4939 static void
hugetlb_install_page(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct page * new_page)4940 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4941 		     struct page *new_page)
4942 {
4943 	__SetPageUptodate(new_page);
4944 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4945 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4946 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4947 	ClearHPageRestoreReserve(new_page);
4948 	SetHPageMigratable(new_page);
4949 }
4950 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)4951 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4952 			    struct vm_area_struct *dst_vma,
4953 			    struct vm_area_struct *src_vma)
4954 {
4955 	pte_t *src_pte, *dst_pte, entry;
4956 	struct page *ptepage;
4957 	unsigned long addr;
4958 	bool cow = is_cow_mapping(src_vma->vm_flags);
4959 	struct hstate *h = hstate_vma(src_vma);
4960 	unsigned long sz = huge_page_size(h);
4961 	unsigned long npages = pages_per_huge_page(h);
4962 	struct mmu_notifier_range range;
4963 	unsigned long last_addr_mask;
4964 	int ret = 0;
4965 
4966 	if (cow) {
4967 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4968 					src_vma->vm_start,
4969 					src_vma->vm_end);
4970 		mmu_notifier_invalidate_range_start(&range);
4971 		mmap_assert_write_locked(src);
4972 		raw_write_seqcount_begin(&src->write_protect_seq);
4973 	} else {
4974 		/*
4975 		 * For shared mappings the vma lock must be held before
4976 		 * calling huge_pte_offset in the src vma. Otherwise, the
4977 		 * returned ptep could go away if part of a shared pmd and
4978 		 * another thread calls huge_pmd_unshare.
4979 		 */
4980 		hugetlb_vma_lock_read(src_vma);
4981 	}
4982 
4983 	last_addr_mask = hugetlb_mask_last_page(h);
4984 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4985 		spinlock_t *src_ptl, *dst_ptl;
4986 		src_pte = huge_pte_offset(src, addr, sz);
4987 		if (!src_pte) {
4988 			addr |= last_addr_mask;
4989 			continue;
4990 		}
4991 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4992 		if (!dst_pte) {
4993 			ret = -ENOMEM;
4994 			break;
4995 		}
4996 
4997 		/*
4998 		 * If the pagetables are shared don't copy or take references.
4999 		 *
5000 		 * dst_pte == src_pte is the common case of src/dest sharing.
5001 		 * However, src could have 'unshared' and dst shares with
5002 		 * another vma. So page_count of ptep page is checked instead
5003 		 * to reliably determine whether pte is shared.
5004 		 */
5005 		if (page_count(virt_to_page(dst_pte)) > 1) {
5006 			addr |= last_addr_mask;
5007 			continue;
5008 		}
5009 
5010 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5011 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5012 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5013 		entry = huge_ptep_get(src_pte);
5014 again:
5015 		if (huge_pte_none(entry)) {
5016 			/*
5017 			 * Skip if src entry none.
5018 			 */
5019 			;
5020 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5021 			bool uffd_wp = huge_pte_uffd_wp(entry);
5022 
5023 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
5024 				entry = huge_pte_clear_uffd_wp(entry);
5025 			set_huge_pte_at(dst, addr, dst_pte, entry);
5026 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5027 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5028 			bool uffd_wp = huge_pte_uffd_wp(entry);
5029 
5030 			if (!is_readable_migration_entry(swp_entry) && cow) {
5031 				/*
5032 				 * COW mappings require pages in both
5033 				 * parent and child to be set to read.
5034 				 */
5035 				swp_entry = make_readable_migration_entry(
5036 							swp_offset(swp_entry));
5037 				entry = swp_entry_to_pte(swp_entry);
5038 				if (userfaultfd_wp(src_vma) && uffd_wp)
5039 					entry = huge_pte_mkuffd_wp(entry);
5040 				set_huge_pte_at(src, addr, src_pte, entry);
5041 			}
5042 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
5043 				entry = huge_pte_clear_uffd_wp(entry);
5044 			set_huge_pte_at(dst, addr, dst_pte, entry);
5045 		} else if (unlikely(is_pte_marker(entry))) {
5046 			/*
5047 			 * We copy the pte marker only if the dst vma has
5048 			 * uffd-wp enabled.
5049 			 */
5050 			if (userfaultfd_wp(dst_vma))
5051 				set_huge_pte_at(dst, addr, dst_pte, entry);
5052 		} else {
5053 			entry = huge_ptep_get(src_pte);
5054 			ptepage = pte_page(entry);
5055 			get_page(ptepage);
5056 
5057 			/*
5058 			 * Failing to duplicate the anon rmap is a rare case
5059 			 * where we see pinned hugetlb pages while they're
5060 			 * prone to COW. We need to do the COW earlier during
5061 			 * fork.
5062 			 *
5063 			 * When pre-allocating the page or copying data, we
5064 			 * need to be without the pgtable locks since we could
5065 			 * sleep during the process.
5066 			 */
5067 			if (!PageAnon(ptepage)) {
5068 				page_dup_file_rmap(ptepage, true);
5069 			} else if (page_try_dup_anon_rmap(ptepage, true,
5070 							  src_vma)) {
5071 				pte_t src_pte_old = entry;
5072 				struct page *new;
5073 
5074 				spin_unlock(src_ptl);
5075 				spin_unlock(dst_ptl);
5076 				/* Do not use reserve as it's private owned */
5077 				new = alloc_huge_page(dst_vma, addr, 1);
5078 				if (IS_ERR(new)) {
5079 					put_page(ptepage);
5080 					ret = PTR_ERR(new);
5081 					break;
5082 				}
5083 				copy_user_huge_page(new, ptepage, addr, dst_vma,
5084 						    npages);
5085 				put_page(ptepage);
5086 
5087 				/* Install the new huge page if src pte stable */
5088 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5089 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5090 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5091 				entry = huge_ptep_get(src_pte);
5092 				if (!pte_same(src_pte_old, entry)) {
5093 					restore_reserve_on_error(h, dst_vma, addr,
5094 								new);
5095 					put_page(new);
5096 					/* huge_ptep of dst_pte won't change as in child */
5097 					goto again;
5098 				}
5099 				hugetlb_install_page(dst_vma, dst_pte, addr, new);
5100 				spin_unlock(src_ptl);
5101 				spin_unlock(dst_ptl);
5102 				continue;
5103 			}
5104 
5105 			if (cow) {
5106 				/*
5107 				 * No need to notify as we are downgrading page
5108 				 * table protection not changing it to point
5109 				 * to a new page.
5110 				 *
5111 				 * See Documentation/mm/mmu_notifier.rst
5112 				 */
5113 				huge_ptep_set_wrprotect(src, addr, src_pte);
5114 				entry = huge_pte_wrprotect(entry);
5115 			}
5116 
5117 			set_huge_pte_at(dst, addr, dst_pte, entry);
5118 			hugetlb_count_add(npages, dst);
5119 		}
5120 		spin_unlock(src_ptl);
5121 		spin_unlock(dst_ptl);
5122 	}
5123 
5124 	if (cow) {
5125 		raw_write_seqcount_end(&src->write_protect_seq);
5126 		mmu_notifier_invalidate_range_end(&range);
5127 	} else {
5128 		hugetlb_vma_unlock_read(src_vma);
5129 	}
5130 
5131 	return ret;
5132 }
5133 
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte)5134 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5135 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5136 {
5137 	struct hstate *h = hstate_vma(vma);
5138 	struct mm_struct *mm = vma->vm_mm;
5139 	spinlock_t *src_ptl, *dst_ptl;
5140 	pte_t pte;
5141 
5142 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5143 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5144 
5145 	/*
5146 	 * We don't have to worry about the ordering of src and dst ptlocks
5147 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
5148 	 */
5149 	if (src_ptl != dst_ptl)
5150 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5151 
5152 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5153 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
5154 
5155 	if (src_ptl != dst_ptl)
5156 		spin_unlock(src_ptl);
5157 	spin_unlock(dst_ptl);
5158 }
5159 
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5160 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5161 			     struct vm_area_struct *new_vma,
5162 			     unsigned long old_addr, unsigned long new_addr,
5163 			     unsigned long len)
5164 {
5165 	struct hstate *h = hstate_vma(vma);
5166 	struct address_space *mapping = vma->vm_file->f_mapping;
5167 	unsigned long sz = huge_page_size(h);
5168 	struct mm_struct *mm = vma->vm_mm;
5169 	unsigned long old_end = old_addr + len;
5170 	unsigned long last_addr_mask;
5171 	pte_t *src_pte, *dst_pte;
5172 	struct mmu_notifier_range range;
5173 	bool shared_pmd = false;
5174 
5175 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5176 				old_end);
5177 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5178 	/*
5179 	 * In case of shared PMDs, we should cover the maximum possible
5180 	 * range.
5181 	 */
5182 	flush_cache_range(vma, range.start, range.end);
5183 
5184 	mmu_notifier_invalidate_range_start(&range);
5185 	last_addr_mask = hugetlb_mask_last_page(h);
5186 	/* Prevent race with file truncation */
5187 	hugetlb_vma_lock_write(vma);
5188 	i_mmap_lock_write(mapping);
5189 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5190 		src_pte = huge_pte_offset(mm, old_addr, sz);
5191 		if (!src_pte) {
5192 			old_addr |= last_addr_mask;
5193 			new_addr |= last_addr_mask;
5194 			continue;
5195 		}
5196 		if (huge_pte_none(huge_ptep_get(src_pte)))
5197 			continue;
5198 
5199 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5200 			shared_pmd = true;
5201 			old_addr |= last_addr_mask;
5202 			new_addr |= last_addr_mask;
5203 			continue;
5204 		}
5205 
5206 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5207 		if (!dst_pte)
5208 			break;
5209 
5210 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5211 	}
5212 
5213 	if (shared_pmd)
5214 		flush_tlb_range(vma, range.start, range.end);
5215 	else
5216 		flush_tlb_range(vma, old_end - len, old_end);
5217 	mmu_notifier_invalidate_range_end(&range);
5218 	i_mmap_unlock_write(mapping);
5219 	hugetlb_vma_unlock_write(vma);
5220 
5221 	return len + old_addr - old_end;
5222 }
5223 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5224 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5225 				   unsigned long start, unsigned long end,
5226 				   struct page *ref_page, zap_flags_t zap_flags)
5227 {
5228 	struct mm_struct *mm = vma->vm_mm;
5229 	unsigned long address;
5230 	pte_t *ptep;
5231 	pte_t pte;
5232 	spinlock_t *ptl;
5233 	struct page *page;
5234 	struct hstate *h = hstate_vma(vma);
5235 	unsigned long sz = huge_page_size(h);
5236 	struct mmu_notifier_range range;
5237 	unsigned long last_addr_mask;
5238 	bool force_flush = false;
5239 
5240 	WARN_ON(!is_vm_hugetlb_page(vma));
5241 	BUG_ON(start & ~huge_page_mask(h));
5242 	BUG_ON(end & ~huge_page_mask(h));
5243 
5244 	/*
5245 	 * This is a hugetlb vma, all the pte entries should point
5246 	 * to huge page.
5247 	 */
5248 	tlb_change_page_size(tlb, sz);
5249 	tlb_start_vma(tlb, vma);
5250 
5251 	/*
5252 	 * If sharing possible, alert mmu notifiers of worst case.
5253 	 */
5254 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5255 				end);
5256 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5257 	mmu_notifier_invalidate_range_start(&range);
5258 	last_addr_mask = hugetlb_mask_last_page(h);
5259 	address = start;
5260 	for (; address < end; address += sz) {
5261 		ptep = huge_pte_offset(mm, address, sz);
5262 		if (!ptep) {
5263 			address |= last_addr_mask;
5264 			continue;
5265 		}
5266 
5267 		ptl = huge_pte_lock(h, mm, ptep);
5268 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5269 			spin_unlock(ptl);
5270 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5271 			force_flush = true;
5272 			address |= last_addr_mask;
5273 			continue;
5274 		}
5275 
5276 		pte = huge_ptep_get(ptep);
5277 		if (huge_pte_none(pte)) {
5278 			spin_unlock(ptl);
5279 			continue;
5280 		}
5281 
5282 		/*
5283 		 * Migrating hugepage or HWPoisoned hugepage is already
5284 		 * unmapped and its refcount is dropped, so just clear pte here.
5285 		 */
5286 		if (unlikely(!pte_present(pte))) {
5287 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5288 			/*
5289 			 * If the pte was wr-protected by uffd-wp in any of the
5290 			 * swap forms, meanwhile the caller does not want to
5291 			 * drop the uffd-wp bit in this zap, then replace the
5292 			 * pte with a marker.
5293 			 */
5294 			if (pte_swp_uffd_wp_any(pte) &&
5295 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5296 				set_huge_pte_at(mm, address, ptep,
5297 						make_pte_marker(PTE_MARKER_UFFD_WP));
5298 			else
5299 #endif
5300 				huge_pte_clear(mm, address, ptep, sz);
5301 			spin_unlock(ptl);
5302 			continue;
5303 		}
5304 
5305 		page = pte_page(pte);
5306 		/*
5307 		 * If a reference page is supplied, it is because a specific
5308 		 * page is being unmapped, not a range. Ensure the page we
5309 		 * are about to unmap is the actual page of interest.
5310 		 */
5311 		if (ref_page) {
5312 			if (page != ref_page) {
5313 				spin_unlock(ptl);
5314 				continue;
5315 			}
5316 			/*
5317 			 * Mark the VMA as having unmapped its page so that
5318 			 * future faults in this VMA will fail rather than
5319 			 * looking like data was lost
5320 			 */
5321 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5322 		}
5323 
5324 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5325 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5326 		if (huge_pte_dirty(pte))
5327 			set_page_dirty(page);
5328 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5329 		/* Leave a uffd-wp pte marker if needed */
5330 		if (huge_pte_uffd_wp(pte) &&
5331 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5332 			set_huge_pte_at(mm, address, ptep,
5333 					make_pte_marker(PTE_MARKER_UFFD_WP));
5334 #endif
5335 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5336 		page_remove_rmap(page, vma, true);
5337 
5338 		spin_unlock(ptl);
5339 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5340 		/*
5341 		 * Bail out after unmapping reference page if supplied
5342 		 */
5343 		if (ref_page)
5344 			break;
5345 	}
5346 	mmu_notifier_invalidate_range_end(&range);
5347 	tlb_end_vma(tlb, vma);
5348 
5349 	/*
5350 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5351 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5352 	 * guaranteed that the last refernece would not be dropped. But we must
5353 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5354 	 * dropped and the last reference to the shared PMDs page might be
5355 	 * dropped as well.
5356 	 *
5357 	 * In theory we could defer the freeing of the PMD pages as well, but
5358 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5359 	 * detect sharing, so we cannot defer the release of the page either.
5360 	 * Instead, do flush now.
5361 	 */
5362 	if (force_flush)
5363 		tlb_flush_mmu_tlbonly(tlb);
5364 }
5365 
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5366 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5367 			  struct vm_area_struct *vma, unsigned long start,
5368 			  unsigned long end, struct page *ref_page,
5369 			  zap_flags_t zap_flags)
5370 {
5371 	hugetlb_vma_lock_write(vma);
5372 	i_mmap_lock_write(vma->vm_file->f_mapping);
5373 
5374 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5375 
5376 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5377 		/*
5378 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5379 		 * When the vma_lock is freed, this makes the vma ineligible
5380 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5381 		 * pmd sharing.  This is important as page tables for this
5382 		 * unmapped range will be asynchrously deleted.  If the page
5383 		 * tables are shared, there will be issues when accessed by
5384 		 * someone else.
5385 		 */
5386 		__hugetlb_vma_unlock_write_free(vma);
5387 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5388 	} else {
5389 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5390 		hugetlb_vma_unlock_write(vma);
5391 	}
5392 }
5393 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5394 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5395 			  unsigned long end, struct page *ref_page,
5396 			  zap_flags_t zap_flags)
5397 {
5398 	struct mmu_gather tlb;
5399 
5400 	tlb_gather_mmu(&tlb, vma->vm_mm);
5401 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5402 	tlb_finish_mmu(&tlb);
5403 }
5404 
5405 /*
5406  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5407  * mapping it owns the reserve page for. The intention is to unmap the page
5408  * from other VMAs and let the children be SIGKILLed if they are faulting the
5409  * same region.
5410  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)5411 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5412 			      struct page *page, unsigned long address)
5413 {
5414 	struct hstate *h = hstate_vma(vma);
5415 	struct vm_area_struct *iter_vma;
5416 	struct address_space *mapping;
5417 	pgoff_t pgoff;
5418 
5419 	/*
5420 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5421 	 * from page cache lookup which is in HPAGE_SIZE units.
5422 	 */
5423 	address = address & huge_page_mask(h);
5424 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5425 			vma->vm_pgoff;
5426 	mapping = vma->vm_file->f_mapping;
5427 
5428 	/*
5429 	 * Take the mapping lock for the duration of the table walk. As
5430 	 * this mapping should be shared between all the VMAs,
5431 	 * __unmap_hugepage_range() is called as the lock is already held
5432 	 */
5433 	i_mmap_lock_write(mapping);
5434 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5435 		/* Do not unmap the current VMA */
5436 		if (iter_vma == vma)
5437 			continue;
5438 
5439 		/*
5440 		 * Shared VMAs have their own reserves and do not affect
5441 		 * MAP_PRIVATE accounting but it is possible that a shared
5442 		 * VMA is using the same page so check and skip such VMAs.
5443 		 */
5444 		if (iter_vma->vm_flags & VM_MAYSHARE)
5445 			continue;
5446 
5447 		/*
5448 		 * Unmap the page from other VMAs without their own reserves.
5449 		 * They get marked to be SIGKILLed if they fault in these
5450 		 * areas. This is because a future no-page fault on this VMA
5451 		 * could insert a zeroed page instead of the data existing
5452 		 * from the time of fork. This would look like data corruption
5453 		 */
5454 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5455 			unmap_hugepage_range(iter_vma, address,
5456 					     address + huge_page_size(h), page, 0);
5457 	}
5458 	i_mmap_unlock_write(mapping);
5459 }
5460 
5461 /*
5462  * hugetlb_wp() should be called with page lock of the original hugepage held.
5463  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5464  * cannot race with other handlers or page migration.
5465  * Keep the pte_same checks anyway to make transition from the mutex easier.
5466  */
hugetlb_wp(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int flags,struct page * pagecache_page,spinlock_t * ptl)5467 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5468 		       unsigned long address, pte_t *ptep, unsigned int flags,
5469 		       struct page *pagecache_page, spinlock_t *ptl)
5470 {
5471 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5472 	pte_t pte;
5473 	struct hstate *h = hstate_vma(vma);
5474 	struct page *old_page, *new_page;
5475 	int outside_reserve = 0;
5476 	vm_fault_t ret = 0;
5477 	unsigned long haddr = address & huge_page_mask(h);
5478 	struct mmu_notifier_range range;
5479 
5480 	VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5481 	VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5482 
5483 	/*
5484 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5485 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5486 	 */
5487 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5488 		return VM_FAULT_SIGSEGV;
5489 
5490 	/* Let's take out MAP_SHARED mappings first. */
5491 	if (vma->vm_flags & VM_MAYSHARE) {
5492 		if (unlikely(unshare))
5493 			return 0;
5494 		set_huge_ptep_writable(vma, haddr, ptep);
5495 		return 0;
5496 	}
5497 
5498 	pte = huge_ptep_get(ptep);
5499 	old_page = pte_page(pte);
5500 
5501 	delayacct_wpcopy_start();
5502 
5503 retry_avoidcopy:
5504 	/*
5505 	 * If no-one else is actually using this page, we're the exclusive
5506 	 * owner and can reuse this page.
5507 	 */
5508 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5509 		if (!PageAnonExclusive(old_page))
5510 			page_move_anon_rmap(old_page, vma);
5511 		if (likely(!unshare))
5512 			set_huge_ptep_writable(vma, haddr, ptep);
5513 
5514 		delayacct_wpcopy_end();
5515 		return 0;
5516 	}
5517 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5518 		       old_page);
5519 
5520 	/*
5521 	 * If the process that created a MAP_PRIVATE mapping is about to
5522 	 * perform a COW due to a shared page count, attempt to satisfy
5523 	 * the allocation without using the existing reserves. The pagecache
5524 	 * page is used to determine if the reserve at this address was
5525 	 * consumed or not. If reserves were used, a partial faulted mapping
5526 	 * at the time of fork() could consume its reserves on COW instead
5527 	 * of the full address range.
5528 	 */
5529 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5530 			old_page != pagecache_page)
5531 		outside_reserve = 1;
5532 
5533 	get_page(old_page);
5534 
5535 	/*
5536 	 * Drop page table lock as buddy allocator may be called. It will
5537 	 * be acquired again before returning to the caller, as expected.
5538 	 */
5539 	spin_unlock(ptl);
5540 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5541 
5542 	if (IS_ERR(new_page)) {
5543 		/*
5544 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5545 		 * it is due to references held by a child and an insufficient
5546 		 * huge page pool. To guarantee the original mappers
5547 		 * reliability, unmap the page from child processes. The child
5548 		 * may get SIGKILLed if it later faults.
5549 		 */
5550 		if (outside_reserve) {
5551 			struct address_space *mapping = vma->vm_file->f_mapping;
5552 			pgoff_t idx;
5553 			u32 hash;
5554 
5555 			put_page(old_page);
5556 			/*
5557 			 * Drop hugetlb_fault_mutex and vma_lock before
5558 			 * unmapping.  unmapping needs to hold vma_lock
5559 			 * in write mode.  Dropping vma_lock in read mode
5560 			 * here is OK as COW mappings do not interact with
5561 			 * PMD sharing.
5562 			 *
5563 			 * Reacquire both after unmap operation.
5564 			 */
5565 			idx = vma_hugecache_offset(h, vma, haddr);
5566 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5567 			hugetlb_vma_unlock_read(vma);
5568 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5569 
5570 			unmap_ref_private(mm, vma, old_page, haddr);
5571 
5572 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5573 			hugetlb_vma_lock_read(vma);
5574 			spin_lock(ptl);
5575 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5576 			if (likely(ptep &&
5577 				   pte_same(huge_ptep_get(ptep), pte)))
5578 				goto retry_avoidcopy;
5579 			/*
5580 			 * race occurs while re-acquiring page table
5581 			 * lock, and our job is done.
5582 			 */
5583 			delayacct_wpcopy_end();
5584 			return 0;
5585 		}
5586 
5587 		ret = vmf_error(PTR_ERR(new_page));
5588 		goto out_release_old;
5589 	}
5590 
5591 	/*
5592 	 * When the original hugepage is shared one, it does not have
5593 	 * anon_vma prepared.
5594 	 */
5595 	if (unlikely(anon_vma_prepare(vma))) {
5596 		ret = VM_FAULT_OOM;
5597 		goto out_release_all;
5598 	}
5599 
5600 	copy_user_huge_page(new_page, old_page, address, vma,
5601 			    pages_per_huge_page(h));
5602 	__SetPageUptodate(new_page);
5603 
5604 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5605 				haddr + huge_page_size(h));
5606 	mmu_notifier_invalidate_range_start(&range);
5607 
5608 	/*
5609 	 * Retake the page table lock to check for racing updates
5610 	 * before the page tables are altered
5611 	 */
5612 	spin_lock(ptl);
5613 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5614 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5615 		ClearHPageRestoreReserve(new_page);
5616 
5617 		/* Break COW or unshare */
5618 		huge_ptep_clear_flush(vma, haddr, ptep);
5619 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5620 		page_remove_rmap(old_page, vma, true);
5621 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5622 		set_huge_pte_at(mm, haddr, ptep,
5623 				make_huge_pte(vma, new_page, !unshare));
5624 		SetHPageMigratable(new_page);
5625 		/* Make the old page be freed below */
5626 		new_page = old_page;
5627 	}
5628 	spin_unlock(ptl);
5629 	mmu_notifier_invalidate_range_end(&range);
5630 out_release_all:
5631 	/*
5632 	 * No restore in case of successful pagetable update (Break COW or
5633 	 * unshare)
5634 	 */
5635 	if (new_page != old_page)
5636 		restore_reserve_on_error(h, vma, haddr, new_page);
5637 	put_page(new_page);
5638 out_release_old:
5639 	put_page(old_page);
5640 
5641 	spin_lock(ptl); /* Caller expects lock to be held */
5642 
5643 	delayacct_wpcopy_end();
5644 	return ret;
5645 }
5646 
5647 /*
5648  * Return whether there is a pagecache page to back given address within VMA.
5649  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5650  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)5651 static bool hugetlbfs_pagecache_present(struct hstate *h,
5652 			struct vm_area_struct *vma, unsigned long address)
5653 {
5654 	struct address_space *mapping;
5655 	pgoff_t idx;
5656 	struct page *page;
5657 
5658 	mapping = vma->vm_file->f_mapping;
5659 	idx = vma_hugecache_offset(h, vma, address);
5660 
5661 	page = find_get_page(mapping, idx);
5662 	if (page)
5663 		put_page(page);
5664 	return page != NULL;
5665 }
5666 
hugetlb_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t idx)5667 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5668 			   pgoff_t idx)
5669 {
5670 	struct folio *folio = page_folio(page);
5671 	struct inode *inode = mapping->host;
5672 	struct hstate *h = hstate_inode(inode);
5673 	int err;
5674 
5675 	__folio_set_locked(folio);
5676 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5677 
5678 	if (unlikely(err)) {
5679 		__folio_clear_locked(folio);
5680 		return err;
5681 	}
5682 	ClearHPageRestoreReserve(page);
5683 
5684 	/*
5685 	 * mark folio dirty so that it will not be removed from cache/file
5686 	 * by non-hugetlbfs specific code paths.
5687 	 */
5688 	folio_mark_dirty(folio);
5689 
5690 	spin_lock(&inode->i_lock);
5691 	inode->i_blocks += blocks_per_huge_page(h);
5692 	spin_unlock(&inode->i_lock);
5693 	return 0;
5694 }
5695 
hugetlb_handle_userfault(struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned int flags,unsigned long haddr,unsigned long addr,unsigned long reason)5696 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5697 						  struct address_space *mapping,
5698 						  pgoff_t idx,
5699 						  unsigned int flags,
5700 						  unsigned long haddr,
5701 						  unsigned long addr,
5702 						  unsigned long reason)
5703 {
5704 	u32 hash;
5705 	struct vm_fault vmf = {
5706 		.vma = vma,
5707 		.address = haddr,
5708 		.real_address = addr,
5709 		.flags = flags,
5710 
5711 		/*
5712 		 * Hard to debug if it ends up being
5713 		 * used by a callee that assumes
5714 		 * something about the other
5715 		 * uninitialized fields... same as in
5716 		 * memory.c
5717 		 */
5718 	};
5719 
5720 	/*
5721 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5722 	 * userfault. Also mmap_lock could be dropped due to handling
5723 	 * userfault, any vma operation should be careful from here.
5724 	 */
5725 	hugetlb_vma_unlock_read(vma);
5726 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5727 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5728 	return handle_userfault(&vmf, reason);
5729 }
5730 
5731 /*
5732  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5733  * false if pte changed or is changing.
5734  */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,pte_t * ptep,pte_t old_pte)5735 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5736 			       pte_t *ptep, pte_t old_pte)
5737 {
5738 	spinlock_t *ptl;
5739 	bool same;
5740 
5741 	ptl = huge_pte_lock(h, mm, ptep);
5742 	same = pte_same(huge_ptep_get(ptep), old_pte);
5743 	spin_unlock(ptl);
5744 
5745 	return same;
5746 }
5747 
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,pte_t old_pte,unsigned int flags)5748 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5749 			struct vm_area_struct *vma,
5750 			struct address_space *mapping, pgoff_t idx,
5751 			unsigned long address, pte_t *ptep,
5752 			pte_t old_pte, unsigned int flags)
5753 {
5754 	struct hstate *h = hstate_vma(vma);
5755 	vm_fault_t ret = VM_FAULT_SIGBUS;
5756 	int anon_rmap = 0;
5757 	unsigned long size;
5758 	struct page *page;
5759 	pte_t new_pte;
5760 	spinlock_t *ptl;
5761 	unsigned long haddr = address & huge_page_mask(h);
5762 	bool new_page, new_pagecache_page = false;
5763 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5764 
5765 	/*
5766 	 * Currently, we are forced to kill the process in the event the
5767 	 * original mapper has unmapped pages from the child due to a failed
5768 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5769 	 * be obvious.
5770 	 */
5771 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5772 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5773 			   current->pid);
5774 		goto out;
5775 	}
5776 
5777 	/*
5778 	 * Use page lock to guard against racing truncation
5779 	 * before we get page_table_lock.
5780 	 */
5781 	new_page = false;
5782 	page = find_lock_page(mapping, idx);
5783 	if (!page) {
5784 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5785 		if (idx >= size)
5786 			goto out;
5787 		/* Check for page in userfault range */
5788 		if (userfaultfd_missing(vma)) {
5789 			/*
5790 			 * Since hugetlb_no_page() was examining pte
5791 			 * without pgtable lock, we need to re-test under
5792 			 * lock because the pte may not be stable and could
5793 			 * have changed from under us.  Try to detect
5794 			 * either changed or during-changing ptes and retry
5795 			 * properly when needed.
5796 			 *
5797 			 * Note that userfaultfd is actually fine with
5798 			 * false positives (e.g. caused by pte changed),
5799 			 * but not wrong logical events (e.g. caused by
5800 			 * reading a pte during changing).  The latter can
5801 			 * confuse the userspace, so the strictness is very
5802 			 * much preferred.  E.g., MISSING event should
5803 			 * never happen on the page after UFFDIO_COPY has
5804 			 * correctly installed the page and returned.
5805 			 */
5806 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5807 				ret = 0;
5808 				goto out;
5809 			}
5810 
5811 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5812 							haddr, address,
5813 							VM_UFFD_MISSING);
5814 		}
5815 
5816 		page = alloc_huge_page(vma, haddr, 0);
5817 		if (IS_ERR(page)) {
5818 			/*
5819 			 * Returning error will result in faulting task being
5820 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5821 			 * tasks from racing to fault in the same page which
5822 			 * could result in false unable to allocate errors.
5823 			 * Page migration does not take the fault mutex, but
5824 			 * does a clear then write of pte's under page table
5825 			 * lock.  Page fault code could race with migration,
5826 			 * notice the clear pte and try to allocate a page
5827 			 * here.  Before returning error, get ptl and make
5828 			 * sure there really is no pte entry.
5829 			 */
5830 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5831 				ret = vmf_error(PTR_ERR(page));
5832 			else
5833 				ret = 0;
5834 			goto out;
5835 		}
5836 		clear_huge_page(page, address, pages_per_huge_page(h));
5837 		__SetPageUptodate(page);
5838 		new_page = true;
5839 
5840 		if (vma->vm_flags & VM_MAYSHARE) {
5841 			int err = hugetlb_add_to_page_cache(page, mapping, idx);
5842 			if (err) {
5843 				/*
5844 				 * err can't be -EEXIST which implies someone
5845 				 * else consumed the reservation since hugetlb
5846 				 * fault mutex is held when add a hugetlb page
5847 				 * to the page cache. So it's safe to call
5848 				 * restore_reserve_on_error() here.
5849 				 */
5850 				restore_reserve_on_error(h, vma, haddr, page);
5851 				put_page(page);
5852 				goto out;
5853 			}
5854 			new_pagecache_page = true;
5855 		} else {
5856 			lock_page(page);
5857 			if (unlikely(anon_vma_prepare(vma))) {
5858 				ret = VM_FAULT_OOM;
5859 				goto backout_unlocked;
5860 			}
5861 			anon_rmap = 1;
5862 		}
5863 	} else {
5864 		/*
5865 		 * If memory error occurs between mmap() and fault, some process
5866 		 * don't have hwpoisoned swap entry for errored virtual address.
5867 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5868 		 */
5869 		if (unlikely(PageHWPoison(page))) {
5870 			ret = VM_FAULT_HWPOISON_LARGE |
5871 				VM_FAULT_SET_HINDEX(hstate_index(h));
5872 			goto backout_unlocked;
5873 		}
5874 
5875 		/* Check for page in userfault range. */
5876 		if (userfaultfd_minor(vma)) {
5877 			unlock_page(page);
5878 			put_page(page);
5879 			/* See comment in userfaultfd_missing() block above */
5880 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5881 				ret = 0;
5882 				goto out;
5883 			}
5884 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5885 							haddr, address,
5886 							VM_UFFD_MINOR);
5887 		}
5888 	}
5889 
5890 	/*
5891 	 * If we are going to COW a private mapping later, we examine the
5892 	 * pending reservations for this page now. This will ensure that
5893 	 * any allocations necessary to record that reservation occur outside
5894 	 * the spinlock.
5895 	 */
5896 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5897 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5898 			ret = VM_FAULT_OOM;
5899 			goto backout_unlocked;
5900 		}
5901 		/* Just decrements count, does not deallocate */
5902 		vma_end_reservation(h, vma, haddr);
5903 	}
5904 
5905 	ptl = huge_pte_lock(h, mm, ptep);
5906 	ret = 0;
5907 	/* If pte changed from under us, retry */
5908 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5909 		goto backout;
5910 
5911 	if (anon_rmap) {
5912 		ClearHPageRestoreReserve(page);
5913 		hugepage_add_new_anon_rmap(page, vma, haddr);
5914 	} else
5915 		page_dup_file_rmap(page, true);
5916 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5917 				&& (vma->vm_flags & VM_SHARED)));
5918 	/*
5919 	 * If this pte was previously wr-protected, keep it wr-protected even
5920 	 * if populated.
5921 	 */
5922 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5923 		new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5924 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5925 
5926 	hugetlb_count_add(pages_per_huge_page(h), mm);
5927 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5928 		/* Optimization, do the COW without a second fault */
5929 		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5930 	}
5931 
5932 	spin_unlock(ptl);
5933 
5934 	/*
5935 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5936 	 * found in the pagecache may not have HPageMigratableset if they have
5937 	 * been isolated for migration.
5938 	 */
5939 	if (new_page)
5940 		SetHPageMigratable(page);
5941 
5942 	unlock_page(page);
5943 out:
5944 	hugetlb_vma_unlock_read(vma);
5945 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5946 	return ret;
5947 
5948 backout:
5949 	spin_unlock(ptl);
5950 backout_unlocked:
5951 	if (new_page && !new_pagecache_page)
5952 		restore_reserve_on_error(h, vma, haddr, page);
5953 
5954 	unlock_page(page);
5955 	put_page(page);
5956 	goto out;
5957 }
5958 
5959 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)5960 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5961 {
5962 	unsigned long key[2];
5963 	u32 hash;
5964 
5965 	key[0] = (unsigned long) mapping;
5966 	key[1] = idx;
5967 
5968 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5969 
5970 	return hash & (num_fault_mutexes - 1);
5971 }
5972 #else
5973 /*
5974  * For uniprocessor systems we always use a single mutex, so just
5975  * return 0 and avoid the hashing overhead.
5976  */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)5977 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5978 {
5979 	return 0;
5980 }
5981 #endif
5982 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)5983 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5984 			unsigned long address, unsigned int flags)
5985 {
5986 	pte_t *ptep, entry;
5987 	spinlock_t *ptl;
5988 	vm_fault_t ret;
5989 	u32 hash;
5990 	pgoff_t idx;
5991 	struct page *page = NULL;
5992 	struct page *pagecache_page = NULL;
5993 	struct hstate *h = hstate_vma(vma);
5994 	struct address_space *mapping;
5995 	int need_wait_lock = 0;
5996 	unsigned long haddr = address & huge_page_mask(h);
5997 
5998 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5999 	if (ptep) {
6000 		/*
6001 		 * Since we hold no locks, ptep could be stale.  That is
6002 		 * OK as we are only making decisions based on content and
6003 		 * not actually modifying content here.
6004 		 */
6005 		entry = huge_ptep_get(ptep);
6006 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6007 			migration_entry_wait_huge(vma, ptep);
6008 			return 0;
6009 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6010 			return VM_FAULT_HWPOISON_LARGE |
6011 				VM_FAULT_SET_HINDEX(hstate_index(h));
6012 	}
6013 
6014 	/*
6015 	 * Serialize hugepage allocation and instantiation, so that we don't
6016 	 * get spurious allocation failures if two CPUs race to instantiate
6017 	 * the same page in the page cache.
6018 	 */
6019 	mapping = vma->vm_file->f_mapping;
6020 	idx = vma_hugecache_offset(h, vma, haddr);
6021 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6022 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6023 
6024 	/*
6025 	 * Acquire vma lock before calling huge_pte_alloc and hold
6026 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6027 	 * being called elsewhere and making the ptep no longer valid.
6028 	 *
6029 	 * ptep could have already be assigned via huge_pte_offset.  That
6030 	 * is OK, as huge_pte_alloc will return the same value unless
6031 	 * something has changed.
6032 	 */
6033 	hugetlb_vma_lock_read(vma);
6034 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6035 	if (!ptep) {
6036 		hugetlb_vma_unlock_read(vma);
6037 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6038 		return VM_FAULT_OOM;
6039 	}
6040 
6041 	entry = huge_ptep_get(ptep);
6042 	/* PTE markers should be handled the same way as none pte */
6043 	if (huge_pte_none_mostly(entry))
6044 		/*
6045 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6046 		 * mutex internally, which make us return immediately.
6047 		 */
6048 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6049 				      entry, flags);
6050 
6051 	ret = 0;
6052 
6053 	/*
6054 	 * entry could be a migration/hwpoison entry at this point, so this
6055 	 * check prevents the kernel from going below assuming that we have
6056 	 * an active hugepage in pagecache. This goto expects the 2nd page
6057 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6058 	 * properly handle it.
6059 	 */
6060 	if (!pte_present(entry))
6061 		goto out_mutex;
6062 
6063 	/*
6064 	 * If we are going to COW/unshare the mapping later, we examine the
6065 	 * pending reservations for this page now. This will ensure that any
6066 	 * allocations necessary to record that reservation occur outside the
6067 	 * spinlock. Also lookup the pagecache page now as it is used to
6068 	 * determine if a reservation has been consumed.
6069 	 */
6070 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6071 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6072 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6073 			ret = VM_FAULT_OOM;
6074 			goto out_mutex;
6075 		}
6076 		/* Just decrements count, does not deallocate */
6077 		vma_end_reservation(h, vma, haddr);
6078 
6079 		pagecache_page = find_lock_page(mapping, idx);
6080 	}
6081 
6082 	ptl = huge_pte_lock(h, mm, ptep);
6083 
6084 	/* Check for a racing update before calling hugetlb_wp() */
6085 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6086 		goto out_ptl;
6087 
6088 	/* Handle userfault-wp first, before trying to lock more pages */
6089 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6090 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6091 		struct vm_fault vmf = {
6092 			.vma = vma,
6093 			.address = haddr,
6094 			.real_address = address,
6095 			.flags = flags,
6096 		};
6097 
6098 		spin_unlock(ptl);
6099 		if (pagecache_page) {
6100 			unlock_page(pagecache_page);
6101 			put_page(pagecache_page);
6102 		}
6103 		hugetlb_vma_unlock_read(vma);
6104 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6105 		return handle_userfault(&vmf, VM_UFFD_WP);
6106 	}
6107 
6108 	/*
6109 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6110 	 * pagecache_page, so here we need take the former one
6111 	 * when page != pagecache_page or !pagecache_page.
6112 	 */
6113 	page = pte_page(entry);
6114 	if (page != pagecache_page)
6115 		if (!trylock_page(page)) {
6116 			need_wait_lock = 1;
6117 			goto out_ptl;
6118 		}
6119 
6120 	get_page(page);
6121 
6122 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6123 		if (!huge_pte_write(entry)) {
6124 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6125 					 pagecache_page, ptl);
6126 			goto out_put_page;
6127 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6128 			entry = huge_pte_mkdirty(entry);
6129 		}
6130 	}
6131 	entry = pte_mkyoung(entry);
6132 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6133 						flags & FAULT_FLAG_WRITE))
6134 		update_mmu_cache(vma, haddr, ptep);
6135 out_put_page:
6136 	if (page != pagecache_page)
6137 		unlock_page(page);
6138 	put_page(page);
6139 out_ptl:
6140 	spin_unlock(ptl);
6141 
6142 	if (pagecache_page) {
6143 		unlock_page(pagecache_page);
6144 		put_page(pagecache_page);
6145 	}
6146 out_mutex:
6147 	hugetlb_vma_unlock_read(vma);
6148 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6149 	/*
6150 	 * Generally it's safe to hold refcount during waiting page lock. But
6151 	 * here we just wait to defer the next page fault to avoid busy loop and
6152 	 * the page is not used after unlocked before returning from the current
6153 	 * page fault. So we are safe from accessing freed page, even if we wait
6154 	 * here without taking refcount.
6155 	 */
6156 	if (need_wait_lock)
6157 		wait_on_page_locked(page);
6158 	return ret;
6159 }
6160 
6161 #ifdef CONFIG_USERFAULTFD
6162 /*
6163  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
6164  * modifications for huge pages.
6165  */
hugetlb_mcopy_atomic_pte(struct mm_struct * dst_mm,pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,enum mcopy_atomic_mode mode,struct page ** pagep,bool wp_copy)6166 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6167 			    pte_t *dst_pte,
6168 			    struct vm_area_struct *dst_vma,
6169 			    unsigned long dst_addr,
6170 			    unsigned long src_addr,
6171 			    enum mcopy_atomic_mode mode,
6172 			    struct page **pagep,
6173 			    bool wp_copy)
6174 {
6175 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6176 	struct hstate *h = hstate_vma(dst_vma);
6177 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6178 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6179 	unsigned long size;
6180 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6181 	pte_t _dst_pte;
6182 	spinlock_t *ptl;
6183 	int ret = -ENOMEM;
6184 	struct page *page;
6185 	int writable;
6186 	bool page_in_pagecache = false;
6187 
6188 	if (is_continue) {
6189 		ret = -EFAULT;
6190 		page = find_lock_page(mapping, idx);
6191 		if (!page)
6192 			goto out;
6193 		page_in_pagecache = true;
6194 	} else if (!*pagep) {
6195 		/* If a page already exists, then it's UFFDIO_COPY for
6196 		 * a non-missing case. Return -EEXIST.
6197 		 */
6198 		if (vm_shared &&
6199 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6200 			ret = -EEXIST;
6201 			goto out;
6202 		}
6203 
6204 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6205 		if (IS_ERR(page)) {
6206 			ret = -ENOMEM;
6207 			goto out;
6208 		}
6209 
6210 		ret = copy_huge_page_from_user(page,
6211 						(const void __user *) src_addr,
6212 						pages_per_huge_page(h), false);
6213 
6214 		/* fallback to copy_from_user outside mmap_lock */
6215 		if (unlikely(ret)) {
6216 			ret = -ENOENT;
6217 			/* Free the allocated page which may have
6218 			 * consumed a reservation.
6219 			 */
6220 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
6221 			put_page(page);
6222 
6223 			/* Allocate a temporary page to hold the copied
6224 			 * contents.
6225 			 */
6226 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6227 			if (!page) {
6228 				ret = -ENOMEM;
6229 				goto out;
6230 			}
6231 			*pagep = page;
6232 			/* Set the outparam pagep and return to the caller to
6233 			 * copy the contents outside the lock. Don't free the
6234 			 * page.
6235 			 */
6236 			goto out;
6237 		}
6238 	} else {
6239 		if (vm_shared &&
6240 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6241 			put_page(*pagep);
6242 			ret = -EEXIST;
6243 			*pagep = NULL;
6244 			goto out;
6245 		}
6246 
6247 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6248 		if (IS_ERR(page)) {
6249 			put_page(*pagep);
6250 			ret = -ENOMEM;
6251 			*pagep = NULL;
6252 			goto out;
6253 		}
6254 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6255 				    pages_per_huge_page(h));
6256 		put_page(*pagep);
6257 		*pagep = NULL;
6258 	}
6259 
6260 	/*
6261 	 * The memory barrier inside __SetPageUptodate makes sure that
6262 	 * preceding stores to the page contents become visible before
6263 	 * the set_pte_at() write.
6264 	 */
6265 	__SetPageUptodate(page);
6266 
6267 	/* Add shared, newly allocated pages to the page cache. */
6268 	if (vm_shared && !is_continue) {
6269 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6270 		ret = -EFAULT;
6271 		if (idx >= size)
6272 			goto out_release_nounlock;
6273 
6274 		/*
6275 		 * Serialization between remove_inode_hugepages() and
6276 		 * hugetlb_add_to_page_cache() below happens through the
6277 		 * hugetlb_fault_mutex_table that here must be hold by
6278 		 * the caller.
6279 		 */
6280 		ret = hugetlb_add_to_page_cache(page, mapping, idx);
6281 		if (ret)
6282 			goto out_release_nounlock;
6283 		page_in_pagecache = true;
6284 	}
6285 
6286 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6287 
6288 	ret = -EIO;
6289 	if (PageHWPoison(page))
6290 		goto out_release_unlock;
6291 
6292 	/*
6293 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6294 	 * registered, we firstly wr-protect a none pte which has no page cache
6295 	 * page backing it, then access the page.
6296 	 */
6297 	ret = -EEXIST;
6298 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6299 		goto out_release_unlock;
6300 
6301 	if (page_in_pagecache) {
6302 		page_dup_file_rmap(page, true);
6303 	} else {
6304 		ClearHPageRestoreReserve(page);
6305 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6306 	}
6307 
6308 	/*
6309 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6310 	 * with wp flag set, don't set pte write bit.
6311 	 */
6312 	if (wp_copy || (is_continue && !vm_shared))
6313 		writable = 0;
6314 	else
6315 		writable = dst_vma->vm_flags & VM_WRITE;
6316 
6317 	_dst_pte = make_huge_pte(dst_vma, page, writable);
6318 	/*
6319 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6320 	 * extremely important for hugetlbfs for now since swapping is not
6321 	 * supported, but we should still be clear in that this page cannot be
6322 	 * thrown away at will, even if write bit not set.
6323 	 */
6324 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6325 	_dst_pte = pte_mkyoung(_dst_pte);
6326 
6327 	if (wp_copy)
6328 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6329 
6330 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6331 
6332 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6333 
6334 	/* No need to invalidate - it was non-present before */
6335 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6336 
6337 	spin_unlock(ptl);
6338 	if (!is_continue)
6339 		SetHPageMigratable(page);
6340 	if (vm_shared || is_continue)
6341 		unlock_page(page);
6342 	ret = 0;
6343 out:
6344 	return ret;
6345 out_release_unlock:
6346 	spin_unlock(ptl);
6347 	if (vm_shared || is_continue)
6348 		unlock_page(page);
6349 out_release_nounlock:
6350 	if (!page_in_pagecache)
6351 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
6352 	put_page(page);
6353 	goto out;
6354 }
6355 #endif /* CONFIG_USERFAULTFD */
6356 
record_subpages_vmas(struct page * page,struct vm_area_struct * vma,int refs,struct page ** pages,struct vm_area_struct ** vmas)6357 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6358 				 int refs, struct page **pages,
6359 				 struct vm_area_struct **vmas)
6360 {
6361 	int nr;
6362 
6363 	for (nr = 0; nr < refs; nr++) {
6364 		if (likely(pages))
6365 			pages[nr] = nth_page(page, nr);
6366 		if (vmas)
6367 			vmas[nr] = vma;
6368 	}
6369 }
6370 
__follow_hugetlb_must_fault(unsigned int flags,pte_t * pte,bool * unshare)6371 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6372 					       bool *unshare)
6373 {
6374 	pte_t pteval = huge_ptep_get(pte);
6375 
6376 	*unshare = false;
6377 	if (is_swap_pte(pteval))
6378 		return true;
6379 	if (huge_pte_write(pteval))
6380 		return false;
6381 	if (flags & FOLL_WRITE)
6382 		return true;
6383 	if (gup_must_unshare(flags, pte_page(pteval))) {
6384 		*unshare = true;
6385 		return true;
6386 	}
6387 	return false;
6388 }
6389 
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags,int * locked)6390 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6391 			 struct page **pages, struct vm_area_struct **vmas,
6392 			 unsigned long *position, unsigned long *nr_pages,
6393 			 long i, unsigned int flags, int *locked)
6394 {
6395 	unsigned long pfn_offset;
6396 	unsigned long vaddr = *position;
6397 	unsigned long remainder = *nr_pages;
6398 	struct hstate *h = hstate_vma(vma);
6399 	int err = -EFAULT, refs;
6400 
6401 	while (vaddr < vma->vm_end && remainder) {
6402 		pte_t *pte;
6403 		spinlock_t *ptl = NULL;
6404 		bool unshare = false;
6405 		int absent;
6406 		struct page *page;
6407 
6408 		/*
6409 		 * If we have a pending SIGKILL, don't keep faulting pages and
6410 		 * potentially allocating memory.
6411 		 */
6412 		if (fatal_signal_pending(current)) {
6413 			remainder = 0;
6414 			break;
6415 		}
6416 
6417 		/*
6418 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6419 		 * each hugepage.  We have to make sure we get the
6420 		 * first, for the page indexing below to work.
6421 		 *
6422 		 * Note that page table lock is not held when pte is null.
6423 		 */
6424 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6425 				      huge_page_size(h));
6426 		if (pte)
6427 			ptl = huge_pte_lock(h, mm, pte);
6428 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6429 
6430 		/*
6431 		 * When coredumping, it suits get_dump_page if we just return
6432 		 * an error where there's an empty slot with no huge pagecache
6433 		 * to back it.  This way, we avoid allocating a hugepage, and
6434 		 * the sparse dumpfile avoids allocating disk blocks, but its
6435 		 * huge holes still show up with zeroes where they need to be.
6436 		 */
6437 		if (absent && (flags & FOLL_DUMP) &&
6438 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6439 			if (pte)
6440 				spin_unlock(ptl);
6441 			remainder = 0;
6442 			break;
6443 		}
6444 
6445 		/*
6446 		 * We need call hugetlb_fault for both hugepages under migration
6447 		 * (in which case hugetlb_fault waits for the migration,) and
6448 		 * hwpoisoned hugepages (in which case we need to prevent the
6449 		 * caller from accessing to them.) In order to do this, we use
6450 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6451 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6452 		 * both cases, and because we can't follow correct pages
6453 		 * directly from any kind of swap entries.
6454 		 */
6455 		if (absent ||
6456 		    __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6457 			vm_fault_t ret;
6458 			unsigned int fault_flags = 0;
6459 
6460 			if (pte)
6461 				spin_unlock(ptl);
6462 			if (flags & FOLL_WRITE)
6463 				fault_flags |= FAULT_FLAG_WRITE;
6464 			else if (unshare)
6465 				fault_flags |= FAULT_FLAG_UNSHARE;
6466 			if (locked)
6467 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6468 					FAULT_FLAG_KILLABLE;
6469 			if (flags & FOLL_NOWAIT)
6470 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6471 					FAULT_FLAG_RETRY_NOWAIT;
6472 			if (flags & FOLL_TRIED) {
6473 				/*
6474 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6475 				 * FAULT_FLAG_TRIED can co-exist
6476 				 */
6477 				fault_flags |= FAULT_FLAG_TRIED;
6478 			}
6479 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6480 			if (ret & VM_FAULT_ERROR) {
6481 				err = vm_fault_to_errno(ret, flags);
6482 				remainder = 0;
6483 				break;
6484 			}
6485 			if (ret & VM_FAULT_RETRY) {
6486 				if (locked &&
6487 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6488 					*locked = 0;
6489 				*nr_pages = 0;
6490 				/*
6491 				 * VM_FAULT_RETRY must not return an
6492 				 * error, it will return zero
6493 				 * instead.
6494 				 *
6495 				 * No need to update "position" as the
6496 				 * caller will not check it after
6497 				 * *nr_pages is set to 0.
6498 				 */
6499 				return i;
6500 			}
6501 			continue;
6502 		}
6503 
6504 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6505 		page = pte_page(huge_ptep_get(pte));
6506 
6507 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6508 			       !PageAnonExclusive(page), page);
6509 
6510 		/*
6511 		 * If subpage information not requested, update counters
6512 		 * and skip the same_page loop below.
6513 		 */
6514 		if (!pages && !vmas && !pfn_offset &&
6515 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6516 		    (remainder >= pages_per_huge_page(h))) {
6517 			vaddr += huge_page_size(h);
6518 			remainder -= pages_per_huge_page(h);
6519 			i += pages_per_huge_page(h);
6520 			spin_unlock(ptl);
6521 			continue;
6522 		}
6523 
6524 		/* vaddr may not be aligned to PAGE_SIZE */
6525 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6526 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6527 
6528 		if (pages || vmas)
6529 			record_subpages_vmas(nth_page(page, pfn_offset),
6530 					     vma, refs,
6531 					     likely(pages) ? pages + i : NULL,
6532 					     vmas ? vmas + i : NULL);
6533 
6534 		if (pages) {
6535 			/*
6536 			 * try_grab_folio() should always succeed here,
6537 			 * because: a) we hold the ptl lock, and b) we've just
6538 			 * checked that the huge page is present in the page
6539 			 * tables. If the huge page is present, then the tail
6540 			 * pages must also be present. The ptl prevents the
6541 			 * head page and tail pages from being rearranged in
6542 			 * any way. So this page must be available at this
6543 			 * point, unless the page refcount overflowed:
6544 			 */
6545 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6546 							 flags))) {
6547 				spin_unlock(ptl);
6548 				remainder = 0;
6549 				err = -ENOMEM;
6550 				break;
6551 			}
6552 		}
6553 
6554 		vaddr += (refs << PAGE_SHIFT);
6555 		remainder -= refs;
6556 		i += refs;
6557 
6558 		spin_unlock(ptl);
6559 	}
6560 	*nr_pages = remainder;
6561 	/*
6562 	 * setting position is actually required only if remainder is
6563 	 * not zero but it's faster not to add a "if (remainder)"
6564 	 * branch.
6565 	 */
6566 	*position = vaddr;
6567 
6568 	return i ? i : err;
6569 }
6570 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6571 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6572 		unsigned long address, unsigned long end,
6573 		pgprot_t newprot, unsigned long cp_flags)
6574 {
6575 	struct mm_struct *mm = vma->vm_mm;
6576 	unsigned long start = address;
6577 	pte_t *ptep;
6578 	pte_t pte;
6579 	struct hstate *h = hstate_vma(vma);
6580 	unsigned long pages = 0, psize = huge_page_size(h);
6581 	bool shared_pmd = false;
6582 	struct mmu_notifier_range range;
6583 	unsigned long last_addr_mask;
6584 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6585 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6586 
6587 	/*
6588 	 * In the case of shared PMDs, the area to flush could be beyond
6589 	 * start/end.  Set range.start/range.end to cover the maximum possible
6590 	 * range if PMD sharing is possible.
6591 	 */
6592 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6593 				0, vma, mm, start, end);
6594 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6595 
6596 	BUG_ON(address >= end);
6597 	flush_cache_range(vma, range.start, range.end);
6598 
6599 	mmu_notifier_invalidate_range_start(&range);
6600 	hugetlb_vma_lock_write(vma);
6601 	i_mmap_lock_write(vma->vm_file->f_mapping);
6602 	last_addr_mask = hugetlb_mask_last_page(h);
6603 	for (; address < end; address += psize) {
6604 		spinlock_t *ptl;
6605 		ptep = huge_pte_offset(mm, address, psize);
6606 		if (!ptep) {
6607 			if (!uffd_wp) {
6608 				address |= last_addr_mask;
6609 				continue;
6610 			}
6611 			/*
6612 			 * Userfaultfd wr-protect requires pgtable
6613 			 * pre-allocations to install pte markers.
6614 			 */
6615 			ptep = huge_pte_alloc(mm, vma, address, psize);
6616 			if (!ptep)
6617 				break;
6618 		}
6619 		ptl = huge_pte_lock(h, mm, ptep);
6620 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6621 			/*
6622 			 * When uffd-wp is enabled on the vma, unshare
6623 			 * shouldn't happen at all.  Warn about it if it
6624 			 * happened due to some reason.
6625 			 */
6626 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6627 			pages++;
6628 			spin_unlock(ptl);
6629 			shared_pmd = true;
6630 			address |= last_addr_mask;
6631 			continue;
6632 		}
6633 		pte = huge_ptep_get(ptep);
6634 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6635 			/* Nothing to do. */
6636 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6637 			swp_entry_t entry = pte_to_swp_entry(pte);
6638 			struct page *page = pfn_swap_entry_to_page(entry);
6639 			pte_t newpte = pte;
6640 
6641 			if (is_writable_migration_entry(entry)) {
6642 				if (PageAnon(page))
6643 					entry = make_readable_exclusive_migration_entry(
6644 								swp_offset(entry));
6645 				else
6646 					entry = make_readable_migration_entry(
6647 								swp_offset(entry));
6648 				newpte = swp_entry_to_pte(entry);
6649 				pages++;
6650 			}
6651 
6652 			if (uffd_wp)
6653 				newpte = pte_swp_mkuffd_wp(newpte);
6654 			else if (uffd_wp_resolve)
6655 				newpte = pte_swp_clear_uffd_wp(newpte);
6656 			if (!pte_same(pte, newpte))
6657 				set_huge_pte_at(mm, address, ptep, newpte);
6658 		} else if (unlikely(is_pte_marker(pte))) {
6659 			/* No other markers apply for now. */
6660 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6661 			if (uffd_wp_resolve)
6662 				/* Safe to modify directly (non-present->none). */
6663 				huge_pte_clear(mm, address, ptep, psize);
6664 		} else if (!huge_pte_none(pte)) {
6665 			pte_t old_pte;
6666 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6667 
6668 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6669 			pte = huge_pte_modify(old_pte, newprot);
6670 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6671 			if (uffd_wp)
6672 				pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6673 			else if (uffd_wp_resolve)
6674 				pte = huge_pte_clear_uffd_wp(pte);
6675 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6676 			pages++;
6677 		} else {
6678 			/* None pte */
6679 			if (unlikely(uffd_wp))
6680 				/* Safe to modify directly (none->non-present). */
6681 				set_huge_pte_at(mm, address, ptep,
6682 						make_pte_marker(PTE_MARKER_UFFD_WP));
6683 		}
6684 		spin_unlock(ptl);
6685 	}
6686 	/*
6687 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6688 	 * may have cleared our pud entry and done put_page on the page table:
6689 	 * once we release i_mmap_rwsem, another task can do the final put_page
6690 	 * and that page table be reused and filled with junk.  If we actually
6691 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6692 	 */
6693 	if (shared_pmd)
6694 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6695 	else
6696 		flush_hugetlb_tlb_range(vma, start, end);
6697 	/*
6698 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6699 	 * page table protection not changing it to point to a new page.
6700 	 *
6701 	 * See Documentation/mm/mmu_notifier.rst
6702 	 */
6703 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6704 	hugetlb_vma_unlock_write(vma);
6705 	mmu_notifier_invalidate_range_end(&range);
6706 
6707 	return pages << h->order;
6708 }
6709 
6710 /* Return true if reservation was successful, false otherwise.  */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)6711 bool hugetlb_reserve_pages(struct inode *inode,
6712 					long from, long to,
6713 					struct vm_area_struct *vma,
6714 					vm_flags_t vm_flags)
6715 {
6716 	long chg, add = -1;
6717 	struct hstate *h = hstate_inode(inode);
6718 	struct hugepage_subpool *spool = subpool_inode(inode);
6719 	struct resv_map *resv_map;
6720 	struct hugetlb_cgroup *h_cg = NULL;
6721 	long gbl_reserve, regions_needed = 0;
6722 
6723 	/* This should never happen */
6724 	if (from > to) {
6725 		VM_WARN(1, "%s called with a negative range\n", __func__);
6726 		return false;
6727 	}
6728 
6729 	/*
6730 	 * vma specific semaphore used for pmd sharing and fault/truncation
6731 	 * synchronization
6732 	 */
6733 	hugetlb_vma_lock_alloc(vma);
6734 
6735 	/*
6736 	 * Only apply hugepage reservation if asked. At fault time, an
6737 	 * attempt will be made for VM_NORESERVE to allocate a page
6738 	 * without using reserves
6739 	 */
6740 	if (vm_flags & VM_NORESERVE)
6741 		return true;
6742 
6743 	/*
6744 	 * Shared mappings base their reservation on the number of pages that
6745 	 * are already allocated on behalf of the file. Private mappings need
6746 	 * to reserve the full area even if read-only as mprotect() may be
6747 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6748 	 */
6749 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6750 		/*
6751 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6752 		 * called for inodes for which resv_maps were created (see
6753 		 * hugetlbfs_get_inode).
6754 		 */
6755 		resv_map = inode_resv_map(inode);
6756 
6757 		chg = region_chg(resv_map, from, to, &regions_needed);
6758 	} else {
6759 		/* Private mapping. */
6760 		resv_map = resv_map_alloc();
6761 		if (!resv_map)
6762 			goto out_err;
6763 
6764 		chg = to - from;
6765 
6766 		set_vma_resv_map(vma, resv_map);
6767 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6768 	}
6769 
6770 	if (chg < 0)
6771 		goto out_err;
6772 
6773 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6774 				chg * pages_per_huge_page(h), &h_cg) < 0)
6775 		goto out_err;
6776 
6777 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6778 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6779 		 * of the resv_map.
6780 		 */
6781 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6782 	}
6783 
6784 	/*
6785 	 * There must be enough pages in the subpool for the mapping. If
6786 	 * the subpool has a minimum size, there may be some global
6787 	 * reservations already in place (gbl_reserve).
6788 	 */
6789 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6790 	if (gbl_reserve < 0)
6791 		goto out_uncharge_cgroup;
6792 
6793 	/*
6794 	 * Check enough hugepages are available for the reservation.
6795 	 * Hand the pages back to the subpool if there are not
6796 	 */
6797 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6798 		goto out_put_pages;
6799 
6800 	/*
6801 	 * Account for the reservations made. Shared mappings record regions
6802 	 * that have reservations as they are shared by multiple VMAs.
6803 	 * When the last VMA disappears, the region map says how much
6804 	 * the reservation was and the page cache tells how much of
6805 	 * the reservation was consumed. Private mappings are per-VMA and
6806 	 * only the consumed reservations are tracked. When the VMA
6807 	 * disappears, the original reservation is the VMA size and the
6808 	 * consumed reservations are stored in the map. Hence, nothing
6809 	 * else has to be done for private mappings here
6810 	 */
6811 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6812 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6813 
6814 		if (unlikely(add < 0)) {
6815 			hugetlb_acct_memory(h, -gbl_reserve);
6816 			goto out_put_pages;
6817 		} else if (unlikely(chg > add)) {
6818 			/*
6819 			 * pages in this range were added to the reserve
6820 			 * map between region_chg and region_add.  This
6821 			 * indicates a race with alloc_huge_page.  Adjust
6822 			 * the subpool and reserve counts modified above
6823 			 * based on the difference.
6824 			 */
6825 			long rsv_adjust;
6826 
6827 			/*
6828 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6829 			 * reference to h_cg->css. See comment below for detail.
6830 			 */
6831 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6832 				hstate_index(h),
6833 				(chg - add) * pages_per_huge_page(h), h_cg);
6834 
6835 			rsv_adjust = hugepage_subpool_put_pages(spool,
6836 								chg - add);
6837 			hugetlb_acct_memory(h, -rsv_adjust);
6838 		} else if (h_cg) {
6839 			/*
6840 			 * The file_regions will hold their own reference to
6841 			 * h_cg->css. So we should release the reference held
6842 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6843 			 * done.
6844 			 */
6845 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6846 		}
6847 	}
6848 	return true;
6849 
6850 out_put_pages:
6851 	/* put back original number of pages, chg */
6852 	(void)hugepage_subpool_put_pages(spool, chg);
6853 out_uncharge_cgroup:
6854 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6855 					    chg * pages_per_huge_page(h), h_cg);
6856 out_err:
6857 	hugetlb_vma_lock_free(vma);
6858 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6859 		/* Only call region_abort if the region_chg succeeded but the
6860 		 * region_add failed or didn't run.
6861 		 */
6862 		if (chg >= 0 && add < 0)
6863 			region_abort(resv_map, from, to, regions_needed);
6864 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6865 		kref_put(&resv_map->refs, resv_map_release);
6866 	return false;
6867 }
6868 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)6869 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6870 								long freed)
6871 {
6872 	struct hstate *h = hstate_inode(inode);
6873 	struct resv_map *resv_map = inode_resv_map(inode);
6874 	long chg = 0;
6875 	struct hugepage_subpool *spool = subpool_inode(inode);
6876 	long gbl_reserve;
6877 
6878 	/*
6879 	 * Since this routine can be called in the evict inode path for all
6880 	 * hugetlbfs inodes, resv_map could be NULL.
6881 	 */
6882 	if (resv_map) {
6883 		chg = region_del(resv_map, start, end);
6884 		/*
6885 		 * region_del() can fail in the rare case where a region
6886 		 * must be split and another region descriptor can not be
6887 		 * allocated.  If end == LONG_MAX, it will not fail.
6888 		 */
6889 		if (chg < 0)
6890 			return chg;
6891 	}
6892 
6893 	spin_lock(&inode->i_lock);
6894 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6895 	spin_unlock(&inode->i_lock);
6896 
6897 	/*
6898 	 * If the subpool has a minimum size, the number of global
6899 	 * reservations to be released may be adjusted.
6900 	 *
6901 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6902 	 * won't go negative.
6903 	 */
6904 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6905 	hugetlb_acct_memory(h, -gbl_reserve);
6906 
6907 	return 0;
6908 }
6909 
6910 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)6911 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6912 				struct vm_area_struct *vma,
6913 				unsigned long addr, pgoff_t idx)
6914 {
6915 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6916 				svma->vm_start;
6917 	unsigned long sbase = saddr & PUD_MASK;
6918 	unsigned long s_end = sbase + PUD_SIZE;
6919 
6920 	/* Allow segments to share if only one is marked locked */
6921 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6922 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6923 
6924 	/*
6925 	 * match the virtual addresses, permission and the alignment of the
6926 	 * page table page.
6927 	 *
6928 	 * Also, vma_lock (vm_private_data) is required for sharing.
6929 	 */
6930 	if (pmd_index(addr) != pmd_index(saddr) ||
6931 	    vm_flags != svm_flags ||
6932 	    !range_in_vma(svma, sbase, s_end) ||
6933 	    !svma->vm_private_data)
6934 		return 0;
6935 
6936 	return saddr;
6937 }
6938 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)6939 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6940 {
6941 	unsigned long start = addr & PUD_MASK;
6942 	unsigned long end = start + PUD_SIZE;
6943 
6944 #ifdef CONFIG_USERFAULTFD
6945 	if (uffd_disable_huge_pmd_share(vma))
6946 		return false;
6947 #endif
6948 	/*
6949 	 * check on proper vm_flags and page table alignment
6950 	 */
6951 	if (!(vma->vm_flags & VM_MAYSHARE))
6952 		return false;
6953 	if (!vma->vm_private_data)	/* vma lock required for sharing */
6954 		return false;
6955 	if (!range_in_vma(vma, start, end))
6956 		return false;
6957 	return true;
6958 }
6959 
6960 /*
6961  * Determine if start,end range within vma could be mapped by shared pmd.
6962  * If yes, adjust start and end to cover range associated with possible
6963  * shared pmd mappings.
6964  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6965 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6966 				unsigned long *start, unsigned long *end)
6967 {
6968 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6969 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6970 
6971 	/*
6972 	 * vma needs to span at least one aligned PUD size, and the range
6973 	 * must be at least partially within in.
6974 	 */
6975 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6976 		(*end <= v_start) || (*start >= v_end))
6977 		return;
6978 
6979 	/* Extend the range to be PUD aligned for a worst case scenario */
6980 	if (*start > v_start)
6981 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6982 
6983 	if (*end < v_end)
6984 		*end = ALIGN(*end, PUD_SIZE);
6985 }
6986 
6987 /*
6988  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6989  * and returns the corresponding pte. While this is not necessary for the
6990  * !shared pmd case because we can allocate the pmd later as well, it makes the
6991  * code much cleaner. pmd allocation is essential for the shared case because
6992  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6993  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6994  * bad pmd for sharing.
6995  */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6996 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6997 		      unsigned long addr, pud_t *pud)
6998 {
6999 	struct address_space *mapping = vma->vm_file->f_mapping;
7000 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7001 			vma->vm_pgoff;
7002 	struct vm_area_struct *svma;
7003 	unsigned long saddr;
7004 	pte_t *spte = NULL;
7005 	pte_t *pte;
7006 	spinlock_t *ptl;
7007 
7008 	i_mmap_lock_read(mapping);
7009 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7010 		if (svma == vma)
7011 			continue;
7012 
7013 		saddr = page_table_shareable(svma, vma, addr, idx);
7014 		if (saddr) {
7015 			spte = huge_pte_offset(svma->vm_mm, saddr,
7016 					       vma_mmu_pagesize(svma));
7017 			if (spte) {
7018 				get_page(virt_to_page(spte));
7019 				break;
7020 			}
7021 		}
7022 	}
7023 
7024 	if (!spte)
7025 		goto out;
7026 
7027 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7028 	if (pud_none(*pud)) {
7029 		pud_populate(mm, pud,
7030 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7031 		mm_inc_nr_pmds(mm);
7032 	} else {
7033 		put_page(virt_to_page(spte));
7034 	}
7035 	spin_unlock(ptl);
7036 out:
7037 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7038 	i_mmap_unlock_read(mapping);
7039 	return pte;
7040 }
7041 
7042 /*
7043  * unmap huge page backed by shared pte.
7044  *
7045  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7046  * indicated by page_count > 1, unmap is achieved by clearing pud and
7047  * decrementing the ref count. If count == 1, the pte page is not shared.
7048  *
7049  * Called with page table lock held.
7050  *
7051  * returns: 1 successfully unmapped a shared pte page
7052  *	    0 the underlying pte page is not shared, or it is the last user
7053  */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7054 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7055 					unsigned long addr, pte_t *ptep)
7056 {
7057 	pgd_t *pgd = pgd_offset(mm, addr);
7058 	p4d_t *p4d = p4d_offset(pgd, addr);
7059 	pud_t *pud = pud_offset(p4d, addr);
7060 
7061 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7062 	hugetlb_vma_assert_locked(vma);
7063 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7064 	if (page_count(virt_to_page(ptep)) == 1)
7065 		return 0;
7066 
7067 	pud_clear(pud);
7068 	put_page(virt_to_page(ptep));
7069 	mm_dec_nr_pmds(mm);
7070 	return 1;
7071 }
7072 
7073 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7074 
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7075 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7076 		      unsigned long addr, pud_t *pud)
7077 {
7078 	return NULL;
7079 }
7080 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7081 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7082 				unsigned long addr, pte_t *ptep)
7083 {
7084 	return 0;
7085 }
7086 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7087 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7088 				unsigned long *start, unsigned long *end)
7089 {
7090 }
7091 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7092 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7093 {
7094 	return false;
7095 }
7096 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7097 
7098 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7099 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7100 			unsigned long addr, unsigned long sz)
7101 {
7102 	pgd_t *pgd;
7103 	p4d_t *p4d;
7104 	pud_t *pud;
7105 	pte_t *pte = NULL;
7106 
7107 	pgd = pgd_offset(mm, addr);
7108 	p4d = p4d_alloc(mm, pgd, addr);
7109 	if (!p4d)
7110 		return NULL;
7111 	pud = pud_alloc(mm, p4d, addr);
7112 	if (pud) {
7113 		if (sz == PUD_SIZE) {
7114 			pte = (pte_t *)pud;
7115 		} else {
7116 			BUG_ON(sz != PMD_SIZE);
7117 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7118 				pte = huge_pmd_share(mm, vma, addr, pud);
7119 			else
7120 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7121 		}
7122 	}
7123 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7124 
7125 	return pte;
7126 }
7127 
7128 /*
7129  * huge_pte_offset() - Walk the page table to resolve the hugepage
7130  * entry at address @addr
7131  *
7132  * Return: Pointer to page table entry (PUD or PMD) for
7133  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7134  * size @sz doesn't match the hugepage size at this level of the page
7135  * table.
7136  */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7137 pte_t *huge_pte_offset(struct mm_struct *mm,
7138 		       unsigned long addr, unsigned long sz)
7139 {
7140 	pgd_t *pgd;
7141 	p4d_t *p4d;
7142 	pud_t *pud;
7143 	pmd_t *pmd;
7144 
7145 	pgd = pgd_offset(mm, addr);
7146 	if (!pgd_present(*pgd))
7147 		return NULL;
7148 	p4d = p4d_offset(pgd, addr);
7149 	if (!p4d_present(*p4d))
7150 		return NULL;
7151 
7152 	pud = pud_offset(p4d, addr);
7153 	if (sz == PUD_SIZE)
7154 		/* must be pud huge, non-present or none */
7155 		return (pte_t *)pud;
7156 	if (!pud_present(*pud))
7157 		return NULL;
7158 	/* must have a valid entry and size to go further */
7159 
7160 	pmd = pmd_offset(pud, addr);
7161 	/* must be pmd huge, non-present or none */
7162 	return (pte_t *)pmd;
7163 }
7164 
7165 /*
7166  * Return a mask that can be used to update an address to the last huge
7167  * page in a page table page mapping size.  Used to skip non-present
7168  * page table entries when linearly scanning address ranges.  Architectures
7169  * with unique huge page to page table relationships can define their own
7170  * version of this routine.
7171  */
hugetlb_mask_last_page(struct hstate * h)7172 unsigned long hugetlb_mask_last_page(struct hstate *h)
7173 {
7174 	unsigned long hp_size = huge_page_size(h);
7175 
7176 	if (hp_size == PUD_SIZE)
7177 		return P4D_SIZE - PUD_SIZE;
7178 	else if (hp_size == PMD_SIZE)
7179 		return PUD_SIZE - PMD_SIZE;
7180 	else
7181 		return 0UL;
7182 }
7183 
7184 #else
7185 
7186 /* See description above.  Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7187 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7188 {
7189 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7190 	if (huge_page_size(h) == PMD_SIZE)
7191 		return PUD_SIZE - PMD_SIZE;
7192 #endif
7193 	return 0UL;
7194 }
7195 
7196 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7197 
7198 /*
7199  * These functions are overwritable if your architecture needs its own
7200  * behavior.
7201  */
7202 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)7203 follow_huge_addr(struct mm_struct *mm, unsigned long address,
7204 			      int write)
7205 {
7206 	return ERR_PTR(-EINVAL);
7207 }
7208 
7209 struct page * __weak
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)7210 follow_huge_pd(struct vm_area_struct *vma,
7211 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
7212 {
7213 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7214 	return NULL;
7215 }
7216 
7217 struct page * __weak
follow_huge_pmd_pte(struct vm_area_struct * vma,unsigned long address,int flags)7218 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
7219 {
7220 	struct hstate *h = hstate_vma(vma);
7221 	struct mm_struct *mm = vma->vm_mm;
7222 	struct page *page = NULL;
7223 	spinlock_t *ptl;
7224 	pte_t *ptep, pte;
7225 
7226 	/*
7227 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7228 	 * follow_hugetlb_page().
7229 	 */
7230 	if (WARN_ON_ONCE(flags & FOLL_PIN))
7231 		return NULL;
7232 
7233 retry:
7234 	ptep = huge_pte_offset(mm, address, huge_page_size(h));
7235 	if (!ptep)
7236 		return NULL;
7237 
7238 	ptl = huge_pte_lock(h, mm, ptep);
7239 	pte = huge_ptep_get(ptep);
7240 	if (pte_present(pte)) {
7241 		page = pte_page(pte) +
7242 			((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
7243 		/*
7244 		 * try_grab_page() should always succeed here, because: a) we
7245 		 * hold the pmd (ptl) lock, and b) we've just checked that the
7246 		 * huge pmd (head) page is present in the page tables. The ptl
7247 		 * prevents the head page and tail pages from being rearranged
7248 		 * in any way. So this page must be available at this point,
7249 		 * unless the page refcount overflowed:
7250 		 */
7251 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7252 			page = NULL;
7253 			goto out;
7254 		}
7255 	} else {
7256 		if (is_hugetlb_entry_migration(pte)) {
7257 			spin_unlock(ptl);
7258 			__migration_entry_wait_huge(ptep, ptl);
7259 			goto retry;
7260 		}
7261 		/*
7262 		 * hwpoisoned entry is treated as no_page_table in
7263 		 * follow_page_mask().
7264 		 */
7265 	}
7266 out:
7267 	spin_unlock(ptl);
7268 	return page;
7269 }
7270 
7271 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)7272 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7273 		pud_t *pud, int flags)
7274 {
7275 	struct page *page = NULL;
7276 	spinlock_t *ptl;
7277 	pte_t pte;
7278 
7279 	if (WARN_ON_ONCE(flags & FOLL_PIN))
7280 		return NULL;
7281 
7282 retry:
7283 	ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7284 	if (!pud_huge(*pud))
7285 		goto out;
7286 	pte = huge_ptep_get((pte_t *)pud);
7287 	if (pte_present(pte)) {
7288 		page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7289 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7290 			page = NULL;
7291 			goto out;
7292 		}
7293 	} else {
7294 		if (is_hugetlb_entry_migration(pte)) {
7295 			spin_unlock(ptl);
7296 			__migration_entry_wait(mm, (pte_t *)pud, ptl);
7297 			goto retry;
7298 		}
7299 		/*
7300 		 * hwpoisoned entry is treated as no_page_table in
7301 		 * follow_page_mask().
7302 		 */
7303 	}
7304 out:
7305 	spin_unlock(ptl);
7306 	return page;
7307 }
7308 
7309 struct page * __weak
follow_huge_pgd(struct mm_struct * mm,unsigned long address,pgd_t * pgd,int flags)7310 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7311 {
7312 	if (flags & (FOLL_GET | FOLL_PIN))
7313 		return NULL;
7314 
7315 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7316 }
7317 
isolate_hugetlb(struct page * page,struct list_head * list)7318 int isolate_hugetlb(struct page *page, struct list_head *list)
7319 {
7320 	int ret = 0;
7321 
7322 	spin_lock_irq(&hugetlb_lock);
7323 	if (!PageHeadHuge(page) ||
7324 	    !HPageMigratable(page) ||
7325 	    !get_page_unless_zero(page)) {
7326 		ret = -EBUSY;
7327 		goto unlock;
7328 	}
7329 	ClearHPageMigratable(page);
7330 	list_move_tail(&page->lru, list);
7331 unlock:
7332 	spin_unlock_irq(&hugetlb_lock);
7333 	return ret;
7334 }
7335 
get_hwpoison_huge_page(struct page * page,bool * hugetlb)7336 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7337 {
7338 	int ret = 0;
7339 
7340 	*hugetlb = false;
7341 	spin_lock_irq(&hugetlb_lock);
7342 	if (PageHeadHuge(page)) {
7343 		*hugetlb = true;
7344 		if (HPageFreed(page))
7345 			ret = 0;
7346 		else if (HPageMigratable(page))
7347 			ret = get_page_unless_zero(page);
7348 		else
7349 			ret = -EBUSY;
7350 	}
7351 	spin_unlock_irq(&hugetlb_lock);
7352 	return ret;
7353 }
7354 
get_huge_page_for_hwpoison(unsigned long pfn,int flags)7355 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7356 {
7357 	int ret;
7358 
7359 	spin_lock_irq(&hugetlb_lock);
7360 	ret = __get_huge_page_for_hwpoison(pfn, flags);
7361 	spin_unlock_irq(&hugetlb_lock);
7362 	return ret;
7363 }
7364 
putback_active_hugepage(struct page * page)7365 void putback_active_hugepage(struct page *page)
7366 {
7367 	spin_lock_irq(&hugetlb_lock);
7368 	SetHPageMigratable(page);
7369 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7370 	spin_unlock_irq(&hugetlb_lock);
7371 	put_page(page);
7372 }
7373 
move_hugetlb_state(struct page * oldpage,struct page * newpage,int reason)7374 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7375 {
7376 	struct hstate *h = page_hstate(oldpage);
7377 
7378 	hugetlb_cgroup_migrate(oldpage, newpage);
7379 	set_page_owner_migrate_reason(newpage, reason);
7380 
7381 	/*
7382 	 * transfer temporary state of the new huge page. This is
7383 	 * reverse to other transitions because the newpage is going to
7384 	 * be final while the old one will be freed so it takes over
7385 	 * the temporary status.
7386 	 *
7387 	 * Also note that we have to transfer the per-node surplus state
7388 	 * here as well otherwise the global surplus count will not match
7389 	 * the per-node's.
7390 	 */
7391 	if (HPageTemporary(newpage)) {
7392 		int old_nid = page_to_nid(oldpage);
7393 		int new_nid = page_to_nid(newpage);
7394 
7395 		SetHPageTemporary(oldpage);
7396 		ClearHPageTemporary(newpage);
7397 
7398 		/*
7399 		 * There is no need to transfer the per-node surplus state
7400 		 * when we do not cross the node.
7401 		 */
7402 		if (new_nid == old_nid)
7403 			return;
7404 		spin_lock_irq(&hugetlb_lock);
7405 		if (h->surplus_huge_pages_node[old_nid]) {
7406 			h->surplus_huge_pages_node[old_nid]--;
7407 			h->surplus_huge_pages_node[new_nid]++;
7408 		}
7409 		spin_unlock_irq(&hugetlb_lock);
7410 	}
7411 }
7412 
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)7413 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7414 				   unsigned long start,
7415 				   unsigned long end)
7416 {
7417 	struct hstate *h = hstate_vma(vma);
7418 	unsigned long sz = huge_page_size(h);
7419 	struct mm_struct *mm = vma->vm_mm;
7420 	struct mmu_notifier_range range;
7421 	unsigned long address;
7422 	spinlock_t *ptl;
7423 	pte_t *ptep;
7424 
7425 	if (!(vma->vm_flags & VM_MAYSHARE))
7426 		return;
7427 
7428 	if (start >= end)
7429 		return;
7430 
7431 	flush_cache_range(vma, start, end);
7432 	/*
7433 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7434 	 * we have already done the PUD_SIZE alignment.
7435 	 */
7436 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7437 				start, end);
7438 	mmu_notifier_invalidate_range_start(&range);
7439 	hugetlb_vma_lock_write(vma);
7440 	i_mmap_lock_write(vma->vm_file->f_mapping);
7441 	for (address = start; address < end; address += PUD_SIZE) {
7442 		ptep = huge_pte_offset(mm, address, sz);
7443 		if (!ptep)
7444 			continue;
7445 		ptl = huge_pte_lock(h, mm, ptep);
7446 		huge_pmd_unshare(mm, vma, address, ptep);
7447 		spin_unlock(ptl);
7448 	}
7449 	flush_hugetlb_tlb_range(vma, start, end);
7450 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7451 	hugetlb_vma_unlock_write(vma);
7452 	/*
7453 	 * No need to call mmu_notifier_invalidate_range(), see
7454 	 * Documentation/mm/mmu_notifier.rst.
7455 	 */
7456 	mmu_notifier_invalidate_range_end(&range);
7457 }
7458 
7459 /*
7460  * This function will unconditionally remove all the shared pmd pgtable entries
7461  * within the specific vma for a hugetlbfs memory range.
7462  */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7463 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7464 {
7465 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7466 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7467 }
7468 
7469 #ifdef CONFIG_CMA
7470 static bool cma_reserve_called __initdata;
7471 
cmdline_parse_hugetlb_cma(char * p)7472 static int __init cmdline_parse_hugetlb_cma(char *p)
7473 {
7474 	int nid, count = 0;
7475 	unsigned long tmp;
7476 	char *s = p;
7477 
7478 	while (*s) {
7479 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7480 			break;
7481 
7482 		if (s[count] == ':') {
7483 			if (tmp >= MAX_NUMNODES)
7484 				break;
7485 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7486 
7487 			s += count + 1;
7488 			tmp = memparse(s, &s);
7489 			hugetlb_cma_size_in_node[nid] = tmp;
7490 			hugetlb_cma_size += tmp;
7491 
7492 			/*
7493 			 * Skip the separator if have one, otherwise
7494 			 * break the parsing.
7495 			 */
7496 			if (*s == ',')
7497 				s++;
7498 			else
7499 				break;
7500 		} else {
7501 			hugetlb_cma_size = memparse(p, &p);
7502 			break;
7503 		}
7504 	}
7505 
7506 	return 0;
7507 }
7508 
7509 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7510 
hugetlb_cma_reserve(int order)7511 void __init hugetlb_cma_reserve(int order)
7512 {
7513 	unsigned long size, reserved, per_node;
7514 	bool node_specific_cma_alloc = false;
7515 	int nid;
7516 
7517 	cma_reserve_called = true;
7518 
7519 	if (!hugetlb_cma_size)
7520 		return;
7521 
7522 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7523 		if (hugetlb_cma_size_in_node[nid] == 0)
7524 			continue;
7525 
7526 		if (!node_online(nid)) {
7527 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7528 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7529 			hugetlb_cma_size_in_node[nid] = 0;
7530 			continue;
7531 		}
7532 
7533 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7534 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7535 				nid, (PAGE_SIZE << order) / SZ_1M);
7536 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7537 			hugetlb_cma_size_in_node[nid] = 0;
7538 		} else {
7539 			node_specific_cma_alloc = true;
7540 		}
7541 	}
7542 
7543 	/* Validate the CMA size again in case some invalid nodes specified. */
7544 	if (!hugetlb_cma_size)
7545 		return;
7546 
7547 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7548 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7549 			(PAGE_SIZE << order) / SZ_1M);
7550 		hugetlb_cma_size = 0;
7551 		return;
7552 	}
7553 
7554 	if (!node_specific_cma_alloc) {
7555 		/*
7556 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7557 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7558 		 */
7559 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7560 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7561 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7562 	}
7563 
7564 	reserved = 0;
7565 	for_each_online_node(nid) {
7566 		int res;
7567 		char name[CMA_MAX_NAME];
7568 
7569 		if (node_specific_cma_alloc) {
7570 			if (hugetlb_cma_size_in_node[nid] == 0)
7571 				continue;
7572 
7573 			size = hugetlb_cma_size_in_node[nid];
7574 		} else {
7575 			size = min(per_node, hugetlb_cma_size - reserved);
7576 		}
7577 
7578 		size = round_up(size, PAGE_SIZE << order);
7579 
7580 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7581 		/*
7582 		 * Note that 'order per bit' is based on smallest size that
7583 		 * may be returned to CMA allocator in the case of
7584 		 * huge page demotion.
7585 		 */
7586 		res = cma_declare_contiguous_nid(0, size, 0,
7587 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7588 						 0, false, name,
7589 						 &hugetlb_cma[nid], nid);
7590 		if (res) {
7591 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7592 				res, nid);
7593 			continue;
7594 		}
7595 
7596 		reserved += size;
7597 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7598 			size / SZ_1M, nid);
7599 
7600 		if (reserved >= hugetlb_cma_size)
7601 			break;
7602 	}
7603 
7604 	if (!reserved)
7605 		/*
7606 		 * hugetlb_cma_size is used to determine if allocations from
7607 		 * cma are possible.  Set to zero if no cma regions are set up.
7608 		 */
7609 		hugetlb_cma_size = 0;
7610 }
7611 
hugetlb_cma_check(void)7612 static void __init hugetlb_cma_check(void)
7613 {
7614 	if (!hugetlb_cma_size || cma_reserve_called)
7615 		return;
7616 
7617 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7618 }
7619 
7620 #endif /* CONFIG_CMA */
7621