1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_path_cachep;
46 extern struct kmem_cache *btrfs_free_space_cachep;
47 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
48 struct btrfs_ordered_sum;
49 struct btrfs_ref;
50 struct btrfs_bio;
51 struct btrfs_ioctl_encoded_io_args;
52 struct btrfs_device;
53 struct btrfs_fs_devices;
54 struct btrfs_balance_control;
55 struct btrfs_delayed_root;
56 struct reloc_control;
57
58 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
59
60 /*
61 * Maximum number of mirrors that can be available for all profiles counting
62 * the target device of dev-replace as one. During an active device replace
63 * procedure, the target device of the copy operation is a mirror for the
64 * filesystem data as well that can be used to read data in order to repair
65 * read errors on other disks.
66 *
67 * Current value is derived from RAID1C4 with 4 copies.
68 */
69 #define BTRFS_MAX_MIRRORS (4 + 1)
70
71 #define BTRFS_MAX_LEVEL 8
72
73 #define BTRFS_OLDEST_GENERATION 0ULL
74
75 /*
76 * we can actually store much bigger names, but lets not confuse the rest
77 * of linux
78 */
79 #define BTRFS_NAME_LEN 255
80
81 /*
82 * Theoretical limit is larger, but we keep this down to a sane
83 * value. That should limit greatly the possibility of collisions on
84 * inode ref items.
85 */
86 #define BTRFS_LINK_MAX 65535U
87
88 #define BTRFS_EMPTY_DIR_SIZE 0
89
90 /* ioprio of readahead is set to idle */
91 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
92
93 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M
94
95 /*
96 * Use large batch size to reduce overhead of metadata updates. On the reader
97 * side, we only read it when we are close to ENOSPC and the read overhead is
98 * mostly related to the number of CPUs, so it is OK to use arbitrary large
99 * value here.
100 */
101 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M
102
103 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
104
105 /*
106 * Deltas are an effective way to populate global statistics. Give macro names
107 * to make it clear what we're doing. An example is discard_extents in
108 * btrfs_free_space_ctl.
109 */
110 #define BTRFS_STAT_NR_ENTRIES 2
111 #define BTRFS_STAT_CURR 0
112 #define BTRFS_STAT_PREV 1
113
btrfs_chunk_item_size(int num_stripes)114 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
115 {
116 BUG_ON(num_stripes == 0);
117 return sizeof(struct btrfs_chunk) +
118 sizeof(struct btrfs_stripe) * (num_stripes - 1);
119 }
120
121 /*
122 * Runtime (in-memory) states of filesystem
123 */
124 enum {
125 /* Global indicator of serious filesystem errors */
126 BTRFS_FS_STATE_ERROR,
127 /*
128 * Filesystem is being remounted, allow to skip some operations, like
129 * defrag
130 */
131 BTRFS_FS_STATE_REMOUNTING,
132 /* Filesystem in RO mode */
133 BTRFS_FS_STATE_RO,
134 /* Track if a transaction abort has been reported on this filesystem */
135 BTRFS_FS_STATE_TRANS_ABORTED,
136 /*
137 * Bio operations should be blocked on this filesystem because a source
138 * or target device is being destroyed as part of a device replace
139 */
140 BTRFS_FS_STATE_DEV_REPLACING,
141 /* The btrfs_fs_info created for self-tests */
142 BTRFS_FS_STATE_DUMMY_FS_INFO,
143
144 BTRFS_FS_STATE_NO_CSUMS,
145
146 /* Indicates there was an error cleaning up a log tree. */
147 BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
148
149 BTRFS_FS_STATE_COUNT
150 };
151
152 #define BTRFS_BACKREF_REV_MAX 256
153 #define BTRFS_BACKREF_REV_SHIFT 56
154 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
155 BTRFS_BACKREF_REV_SHIFT)
156
157 #define BTRFS_OLD_BACKREF_REV 0
158 #define BTRFS_MIXED_BACKREF_REV 1
159
160 /*
161 * every tree block (leaf or node) starts with this header.
162 */
163 struct btrfs_header {
164 /* these first four must match the super block */
165 u8 csum[BTRFS_CSUM_SIZE];
166 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
167 __le64 bytenr; /* which block this node is supposed to live in */
168 __le64 flags;
169
170 /* allowed to be different from the super from here on down */
171 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
172 __le64 generation;
173 __le64 owner;
174 __le32 nritems;
175 u8 level;
176 } __attribute__ ((__packed__));
177
178 /*
179 * this is a very generous portion of the super block, giving us
180 * room to translate 14 chunks with 3 stripes each.
181 */
182 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
183
184 /*
185 * just in case we somehow lose the roots and are not able to mount,
186 * we store an array of the roots from previous transactions
187 * in the super.
188 */
189 #define BTRFS_NUM_BACKUP_ROOTS 4
190 struct btrfs_root_backup {
191 __le64 tree_root;
192 __le64 tree_root_gen;
193
194 __le64 chunk_root;
195 __le64 chunk_root_gen;
196
197 __le64 extent_root;
198 __le64 extent_root_gen;
199
200 __le64 fs_root;
201 __le64 fs_root_gen;
202
203 __le64 dev_root;
204 __le64 dev_root_gen;
205
206 __le64 csum_root;
207 __le64 csum_root_gen;
208
209 __le64 total_bytes;
210 __le64 bytes_used;
211 __le64 num_devices;
212 /* future */
213 __le64 unused_64[4];
214
215 u8 tree_root_level;
216 u8 chunk_root_level;
217 u8 extent_root_level;
218 u8 fs_root_level;
219 u8 dev_root_level;
220 u8 csum_root_level;
221 /* future and to align */
222 u8 unused_8[10];
223 } __attribute__ ((__packed__));
224
225 #define BTRFS_SUPER_INFO_OFFSET SZ_64K
226 #define BTRFS_SUPER_INFO_SIZE 4096
227
228 /*
229 * The reserved space at the beginning of each device.
230 * It covers the primary super block and leaves space for potential use by other
231 * tools like bootloaders or to lower potential damage of accidental overwrite.
232 */
233 #define BTRFS_DEVICE_RANGE_RESERVED (SZ_1M)
234
235 /*
236 * the super block basically lists the main trees of the FS
237 * it currently lacks any block count etc etc
238 */
239 struct btrfs_super_block {
240 /* the first 4 fields must match struct btrfs_header */
241 u8 csum[BTRFS_CSUM_SIZE];
242 /* FS specific UUID, visible to user */
243 u8 fsid[BTRFS_FSID_SIZE];
244 __le64 bytenr; /* this block number */
245 __le64 flags;
246
247 /* allowed to be different from the btrfs_header from here own down */
248 __le64 magic;
249 __le64 generation;
250 __le64 root;
251 __le64 chunk_root;
252 __le64 log_root;
253
254 /*
255 * This member has never been utilized since the very beginning, thus
256 * it's always 0 regardless of kernel version. We always use
257 * generation + 1 to read log tree root. So here we mark it deprecated.
258 */
259 __le64 __unused_log_root_transid;
260 __le64 total_bytes;
261 __le64 bytes_used;
262 __le64 root_dir_objectid;
263 __le64 num_devices;
264 __le32 sectorsize;
265 __le32 nodesize;
266 __le32 __unused_leafsize;
267 __le32 stripesize;
268 __le32 sys_chunk_array_size;
269 __le64 chunk_root_generation;
270 __le64 compat_flags;
271 __le64 compat_ro_flags;
272 __le64 incompat_flags;
273 __le16 csum_type;
274 u8 root_level;
275 u8 chunk_root_level;
276 u8 log_root_level;
277 struct btrfs_dev_item dev_item;
278
279 char label[BTRFS_LABEL_SIZE];
280
281 __le64 cache_generation;
282 __le64 uuid_tree_generation;
283
284 /* the UUID written into btree blocks */
285 u8 metadata_uuid[BTRFS_FSID_SIZE];
286
287 /* future expansion */
288 u8 reserved8[8];
289 __le64 reserved[27];
290 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
291 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
292
293 /* Padded to 4096 bytes */
294 u8 padding[565];
295 } __attribute__ ((__packed__));
296 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
297
298 /*
299 * Compat flags that we support. If any incompat flags are set other than the
300 * ones specified below then we will fail to mount
301 */
302 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
303 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
304 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
305
306 #define BTRFS_FEATURE_COMPAT_RO_SUPP \
307 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
308 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
309 BTRFS_FEATURE_COMPAT_RO_VERITY | \
310 BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE)
311
312 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
313 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
314
315 #ifdef CONFIG_BTRFS_DEBUG
316 /*
317 * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG
318 */
319 #define BTRFS_FEATURE_INCOMPAT_SUPP \
320 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
321 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
322 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
323 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
324 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
325 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
326 BTRFS_FEATURE_INCOMPAT_RAID56 | \
327 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
328 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
329 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
330 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
331 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \
332 BTRFS_FEATURE_INCOMPAT_ZONED | \
333 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
334 #else
335 #define BTRFS_FEATURE_INCOMPAT_SUPP \
336 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
337 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
338 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
339 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
340 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
341 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
342 BTRFS_FEATURE_INCOMPAT_RAID56 | \
343 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
344 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
345 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
346 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
347 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \
348 BTRFS_FEATURE_INCOMPAT_ZONED)
349 #endif
350
351 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
352 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
353 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
354
355 /*
356 * A leaf is full of items. offset and size tell us where to find
357 * the item in the leaf (relative to the start of the data area)
358 */
359 struct btrfs_item {
360 struct btrfs_disk_key key;
361 __le32 offset;
362 __le32 size;
363 } __attribute__ ((__packed__));
364
365 /*
366 * leaves have an item area and a data area:
367 * [item0, item1....itemN] [free space] [dataN...data1, data0]
368 *
369 * The data is separate from the items to get the keys closer together
370 * during searches.
371 */
372 struct btrfs_leaf {
373 struct btrfs_header header;
374 struct btrfs_item items[];
375 } __attribute__ ((__packed__));
376
377 /*
378 * all non-leaf blocks are nodes, they hold only keys and pointers to
379 * other blocks
380 */
381 struct btrfs_key_ptr {
382 struct btrfs_disk_key key;
383 __le64 blockptr;
384 __le64 generation;
385 } __attribute__ ((__packed__));
386
387 struct btrfs_node {
388 struct btrfs_header header;
389 struct btrfs_key_ptr ptrs[];
390 } __attribute__ ((__packed__));
391
392 /* Read ahead values for struct btrfs_path.reada */
393 enum {
394 READA_NONE,
395 READA_BACK,
396 READA_FORWARD,
397 /*
398 * Similar to READA_FORWARD but unlike it:
399 *
400 * 1) It will trigger readahead even for leaves that are not close to
401 * each other on disk;
402 * 2) It also triggers readahead for nodes;
403 * 3) During a search, even when a node or leaf is already in memory, it
404 * will still trigger readahead for other nodes and leaves that follow
405 * it.
406 *
407 * This is meant to be used only when we know we are iterating over the
408 * entire tree or a very large part of it.
409 */
410 READA_FORWARD_ALWAYS,
411 };
412
413 /*
414 * btrfs_paths remember the path taken from the root down to the leaf.
415 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
416 * to any other levels that are present.
417 *
418 * The slots array records the index of the item or block pointer
419 * used while walking the tree.
420 */
421 struct btrfs_path {
422 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
423 int slots[BTRFS_MAX_LEVEL];
424 /* if there is real range locking, this locks field will change */
425 u8 locks[BTRFS_MAX_LEVEL];
426 u8 reada;
427 /* keep some upper locks as we walk down */
428 u8 lowest_level;
429
430 /*
431 * set by btrfs_split_item, tells search_slot to keep all locks
432 * and to force calls to keep space in the nodes
433 */
434 unsigned int search_for_split:1;
435 unsigned int keep_locks:1;
436 unsigned int skip_locking:1;
437 unsigned int search_commit_root:1;
438 unsigned int need_commit_sem:1;
439 unsigned int skip_release_on_error:1;
440 /*
441 * Indicate that new item (btrfs_search_slot) is extending already
442 * existing item and ins_len contains only the data size and not item
443 * header (ie. sizeof(struct btrfs_item) is not included).
444 */
445 unsigned int search_for_extension:1;
446 /* Stop search if any locks need to be taken (for read) */
447 unsigned int nowait:1;
448 };
449
450 struct btrfs_dev_replace {
451 u64 replace_state; /* see #define above */
452 time64_t time_started; /* seconds since 1-Jan-1970 */
453 time64_t time_stopped; /* seconds since 1-Jan-1970 */
454 atomic64_t num_write_errors;
455 atomic64_t num_uncorrectable_read_errors;
456
457 u64 cursor_left;
458 u64 committed_cursor_left;
459 u64 cursor_left_last_write_of_item;
460 u64 cursor_right;
461
462 u64 cont_reading_from_srcdev_mode; /* see #define above */
463
464 int is_valid;
465 int item_needs_writeback;
466 struct btrfs_device *srcdev;
467 struct btrfs_device *tgtdev;
468
469 struct mutex lock_finishing_cancel_unmount;
470 struct rw_semaphore rwsem;
471
472 struct btrfs_scrub_progress scrub_progress;
473
474 struct percpu_counter bio_counter;
475 wait_queue_head_t replace_wait;
476 };
477
478 /*
479 * free clusters are used to claim free space in relatively large chunks,
480 * allowing us to do less seeky writes. They are used for all metadata
481 * allocations. In ssd_spread mode they are also used for data allocations.
482 */
483 struct btrfs_free_cluster {
484 spinlock_t lock;
485 spinlock_t refill_lock;
486 struct rb_root root;
487
488 /* largest extent in this cluster */
489 u64 max_size;
490
491 /* first extent starting offset */
492 u64 window_start;
493
494 /* We did a full search and couldn't create a cluster */
495 bool fragmented;
496
497 struct btrfs_block_group *block_group;
498 /*
499 * when a cluster is allocated from a block group, we put the
500 * cluster onto a list in the block group so that it can
501 * be freed before the block group is freed.
502 */
503 struct list_head block_group_list;
504 };
505
506 /* Discard control. */
507 /*
508 * Async discard uses multiple lists to differentiate the discard filter
509 * parameters. Index 0 is for completely free block groups where we need to
510 * ensure the entire block group is trimmed without being lossy. Indices
511 * afterwards represent monotonically decreasing discard filter sizes to
512 * prioritize what should be discarded next.
513 */
514 #define BTRFS_NR_DISCARD_LISTS 3
515 #define BTRFS_DISCARD_INDEX_UNUSED 0
516 #define BTRFS_DISCARD_INDEX_START 1
517
518 struct btrfs_discard_ctl {
519 struct workqueue_struct *discard_workers;
520 struct delayed_work work;
521 spinlock_t lock;
522 struct btrfs_block_group *block_group;
523 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
524 u64 prev_discard;
525 u64 prev_discard_time;
526 atomic_t discardable_extents;
527 atomic64_t discardable_bytes;
528 u64 max_discard_size;
529 u64 delay_ms;
530 u32 iops_limit;
531 u32 kbps_limit;
532 u64 discard_extent_bytes;
533 u64 discard_bitmap_bytes;
534 atomic64_t discard_bytes_saved;
535 };
536
537 enum {
538 BTRFS_FS_CLOSING_START,
539 BTRFS_FS_CLOSING_DONE,
540 BTRFS_FS_LOG_RECOVERING,
541 BTRFS_FS_OPEN,
542 BTRFS_FS_QUOTA_ENABLED,
543 BTRFS_FS_UPDATE_UUID_TREE_GEN,
544 BTRFS_FS_CREATING_FREE_SPACE_TREE,
545 BTRFS_FS_BTREE_ERR,
546 BTRFS_FS_LOG1_ERR,
547 BTRFS_FS_LOG2_ERR,
548 BTRFS_FS_QUOTA_OVERRIDE,
549 /* Used to record internally whether fs has been frozen */
550 BTRFS_FS_FROZEN,
551 /*
552 * Indicate that balance has been set up from the ioctl and is in the
553 * main phase. The fs_info::balance_ctl is initialized.
554 */
555 BTRFS_FS_BALANCE_RUNNING,
556
557 /*
558 * Indicate that relocation of a chunk has started, it's set per chunk
559 * and is toggled between chunks.
560 */
561 BTRFS_FS_RELOC_RUNNING,
562
563 /* Indicate that the cleaner thread is awake and doing something. */
564 BTRFS_FS_CLEANER_RUNNING,
565
566 /*
567 * The checksumming has an optimized version and is considered fast,
568 * so we don't need to offload checksums to workqueues.
569 */
570 BTRFS_FS_CSUM_IMPL_FAST,
571
572 /* Indicate that the discard workqueue can service discards. */
573 BTRFS_FS_DISCARD_RUNNING,
574
575 /* Indicate that we need to cleanup space cache v1 */
576 BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
577
578 /* Indicate that we can't trust the free space tree for caching yet */
579 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
580
581 /* Indicate whether there are any tree modification log users */
582 BTRFS_FS_TREE_MOD_LOG_USERS,
583
584 /* Indicate that we want the transaction kthread to commit right now. */
585 BTRFS_FS_COMMIT_TRANS,
586
587 /* Indicate we have half completed snapshot deletions pending. */
588 BTRFS_FS_UNFINISHED_DROPS,
589
590 /* Indicate we have to finish a zone to do next allocation. */
591 BTRFS_FS_NEED_ZONE_FINISH,
592
593 /*
594 * Indicate metadata over-commit is disabled. This is set when active
595 * zone tracking is needed.
596 */
597 BTRFS_FS_NO_OVERCOMMIT,
598
599 #if BITS_PER_LONG == 32
600 /* Indicate if we have error/warn message printed on 32bit systems */
601 BTRFS_FS_32BIT_ERROR,
602 BTRFS_FS_32BIT_WARN,
603 #endif
604 };
605
606 /*
607 * Exclusive operations (device replace, resize, device add/remove, balance)
608 */
609 enum btrfs_exclusive_operation {
610 BTRFS_EXCLOP_NONE,
611 BTRFS_EXCLOP_BALANCE_PAUSED,
612 BTRFS_EXCLOP_BALANCE,
613 BTRFS_EXCLOP_DEV_ADD,
614 BTRFS_EXCLOP_DEV_REMOVE,
615 BTRFS_EXCLOP_DEV_REPLACE,
616 BTRFS_EXCLOP_RESIZE,
617 BTRFS_EXCLOP_SWAP_ACTIVATE,
618 };
619
620 /* Store data about transaction commits, exported via sysfs. */
621 struct btrfs_commit_stats {
622 /* Total number of commits */
623 u64 commit_count;
624 /* The maximum commit duration so far in ns */
625 u64 max_commit_dur;
626 /* The last commit duration in ns */
627 u64 last_commit_dur;
628 /* The total commit duration in ns */
629 u64 total_commit_dur;
630 };
631
632 struct btrfs_fs_info {
633 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
634 unsigned long flags;
635 struct btrfs_root *tree_root;
636 struct btrfs_root *chunk_root;
637 struct btrfs_root *dev_root;
638 struct btrfs_root *fs_root;
639 struct btrfs_root *quota_root;
640 struct btrfs_root *uuid_root;
641 struct btrfs_root *data_reloc_root;
642 struct btrfs_root *block_group_root;
643
644 /* the log root tree is a directory of all the other log roots */
645 struct btrfs_root *log_root_tree;
646
647 /* The tree that holds the global roots (csum, extent, etc) */
648 rwlock_t global_root_lock;
649 struct rb_root global_root_tree;
650
651 spinlock_t fs_roots_radix_lock;
652 struct radix_tree_root fs_roots_radix;
653
654 /* block group cache stuff */
655 rwlock_t block_group_cache_lock;
656 struct rb_root_cached block_group_cache_tree;
657
658 /* keep track of unallocated space */
659 atomic64_t free_chunk_space;
660
661 /* Track ranges which are used by log trees blocks/logged data extents */
662 struct extent_io_tree excluded_extents;
663
664 /* logical->physical extent mapping */
665 struct extent_map_tree mapping_tree;
666
667 /*
668 * block reservation for extent, checksum, root tree and
669 * delayed dir index item
670 */
671 struct btrfs_block_rsv global_block_rsv;
672 /* block reservation for metadata operations */
673 struct btrfs_block_rsv trans_block_rsv;
674 /* block reservation for chunk tree */
675 struct btrfs_block_rsv chunk_block_rsv;
676 /* block reservation for delayed operations */
677 struct btrfs_block_rsv delayed_block_rsv;
678 /* block reservation for delayed refs */
679 struct btrfs_block_rsv delayed_refs_rsv;
680
681 struct btrfs_block_rsv empty_block_rsv;
682
683 u64 generation;
684 u64 last_trans_committed;
685 /*
686 * Generation of the last transaction used for block group relocation
687 * since the filesystem was last mounted (or 0 if none happened yet).
688 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
689 */
690 u64 last_reloc_trans;
691 u64 avg_delayed_ref_runtime;
692
693 /*
694 * this is updated to the current trans every time a full commit
695 * is required instead of the faster short fsync log commits
696 */
697 u64 last_trans_log_full_commit;
698 unsigned long mount_opt;
699 /*
700 * Track requests for actions that need to be done during transaction
701 * commit (like for some mount options).
702 */
703 unsigned long pending_changes;
704 unsigned long compress_type:4;
705 unsigned int compress_level;
706 u32 commit_interval;
707 /*
708 * It is a suggestive number, the read side is safe even it gets a
709 * wrong number because we will write out the data into a regular
710 * extent. The write side(mount/remount) is under ->s_umount lock,
711 * so it is also safe.
712 */
713 u64 max_inline;
714
715 struct btrfs_transaction *running_transaction;
716 wait_queue_head_t transaction_throttle;
717 wait_queue_head_t transaction_wait;
718 wait_queue_head_t transaction_blocked_wait;
719 wait_queue_head_t async_submit_wait;
720
721 /*
722 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
723 * when they are updated.
724 *
725 * Because we do not clear the flags for ever, so we needn't use
726 * the lock on the read side.
727 *
728 * We also needn't use the lock when we mount the fs, because
729 * there is no other task which will update the flag.
730 */
731 spinlock_t super_lock;
732 struct btrfs_super_block *super_copy;
733 struct btrfs_super_block *super_for_commit;
734 struct super_block *sb;
735 struct inode *btree_inode;
736 struct mutex tree_log_mutex;
737 struct mutex transaction_kthread_mutex;
738 struct mutex cleaner_mutex;
739 struct mutex chunk_mutex;
740
741 /*
742 * this is taken to make sure we don't set block groups ro after
743 * the free space cache has been allocated on them
744 */
745 struct mutex ro_block_group_mutex;
746
747 /* this is used during read/modify/write to make sure
748 * no two ios are trying to mod the same stripe at the same
749 * time
750 */
751 struct btrfs_stripe_hash_table *stripe_hash_table;
752
753 /*
754 * this protects the ordered operations list only while we are
755 * processing all of the entries on it. This way we make
756 * sure the commit code doesn't find the list temporarily empty
757 * because another function happens to be doing non-waiting preflush
758 * before jumping into the main commit.
759 */
760 struct mutex ordered_operations_mutex;
761
762 struct rw_semaphore commit_root_sem;
763
764 struct rw_semaphore cleanup_work_sem;
765
766 struct rw_semaphore subvol_sem;
767
768 spinlock_t trans_lock;
769 /*
770 * the reloc mutex goes with the trans lock, it is taken
771 * during commit to protect us from the relocation code
772 */
773 struct mutex reloc_mutex;
774
775 struct list_head trans_list;
776 struct list_head dead_roots;
777 struct list_head caching_block_groups;
778
779 spinlock_t delayed_iput_lock;
780 struct list_head delayed_iputs;
781 atomic_t nr_delayed_iputs;
782 wait_queue_head_t delayed_iputs_wait;
783
784 atomic64_t tree_mod_seq;
785
786 /* this protects tree_mod_log and tree_mod_seq_list */
787 rwlock_t tree_mod_log_lock;
788 struct rb_root tree_mod_log;
789 struct list_head tree_mod_seq_list;
790
791 atomic_t async_delalloc_pages;
792
793 /*
794 * this is used to protect the following list -- ordered_roots.
795 */
796 spinlock_t ordered_root_lock;
797
798 /*
799 * all fs/file tree roots in which there are data=ordered extents
800 * pending writeback are added into this list.
801 *
802 * these can span multiple transactions and basically include
803 * every dirty data page that isn't from nodatacow
804 */
805 struct list_head ordered_roots;
806
807 struct mutex delalloc_root_mutex;
808 spinlock_t delalloc_root_lock;
809 /* all fs/file tree roots that have delalloc inodes. */
810 struct list_head delalloc_roots;
811
812 /*
813 * there is a pool of worker threads for checksumming during writes
814 * and a pool for checksumming after reads. This is because readers
815 * can run with FS locks held, and the writers may be waiting for
816 * those locks. We don't want ordering in the pending list to cause
817 * deadlocks, and so the two are serviced separately.
818 *
819 * A third pool does submit_bio to avoid deadlocking with the other
820 * two
821 */
822 struct btrfs_workqueue *workers;
823 struct btrfs_workqueue *hipri_workers;
824 struct btrfs_workqueue *delalloc_workers;
825 struct btrfs_workqueue *flush_workers;
826 struct workqueue_struct *endio_workers;
827 struct workqueue_struct *endio_meta_workers;
828 struct workqueue_struct *endio_raid56_workers;
829 struct workqueue_struct *rmw_workers;
830 struct workqueue_struct *compressed_write_workers;
831 struct btrfs_workqueue *endio_write_workers;
832 struct btrfs_workqueue *endio_freespace_worker;
833 struct btrfs_workqueue *caching_workers;
834
835 /*
836 * fixup workers take dirty pages that didn't properly go through
837 * the cow mechanism and make them safe to write. It happens
838 * for the sys_munmap function call path
839 */
840 struct btrfs_workqueue *fixup_workers;
841 struct btrfs_workqueue *delayed_workers;
842
843 struct task_struct *transaction_kthread;
844 struct task_struct *cleaner_kthread;
845 u32 thread_pool_size;
846
847 struct kobject *space_info_kobj;
848 struct kobject *qgroups_kobj;
849 struct kobject *discard_kobj;
850
851 /* used to keep from writing metadata until there is a nice batch */
852 struct percpu_counter dirty_metadata_bytes;
853 struct percpu_counter delalloc_bytes;
854 struct percpu_counter ordered_bytes;
855 s32 dirty_metadata_batch;
856 s32 delalloc_batch;
857
858 struct list_head dirty_cowonly_roots;
859
860 struct btrfs_fs_devices *fs_devices;
861
862 /*
863 * The space_info list is effectively read only after initial
864 * setup. It is populated at mount time and cleaned up after
865 * all block groups are removed. RCU is used to protect it.
866 */
867 struct list_head space_info;
868
869 struct btrfs_space_info *data_sinfo;
870
871 struct reloc_control *reloc_ctl;
872
873 /* data_alloc_cluster is only used in ssd_spread mode */
874 struct btrfs_free_cluster data_alloc_cluster;
875
876 /* all metadata allocations go through this cluster */
877 struct btrfs_free_cluster meta_alloc_cluster;
878
879 /* auto defrag inodes go here */
880 spinlock_t defrag_inodes_lock;
881 struct rb_root defrag_inodes;
882 atomic_t defrag_running;
883
884 /* Used to protect avail_{data, metadata, system}_alloc_bits */
885 seqlock_t profiles_lock;
886 /*
887 * these three are in extended format (availability of single
888 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
889 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
890 */
891 u64 avail_data_alloc_bits;
892 u64 avail_metadata_alloc_bits;
893 u64 avail_system_alloc_bits;
894
895 /* restriper state */
896 spinlock_t balance_lock;
897 struct mutex balance_mutex;
898 atomic_t balance_pause_req;
899 atomic_t balance_cancel_req;
900 struct btrfs_balance_control *balance_ctl;
901 wait_queue_head_t balance_wait_q;
902
903 /* Cancellation requests for chunk relocation */
904 atomic_t reloc_cancel_req;
905
906 u32 data_chunk_allocations;
907 u32 metadata_ratio;
908
909 void *bdev_holder;
910
911 /* private scrub information */
912 struct mutex scrub_lock;
913 atomic_t scrubs_running;
914 atomic_t scrub_pause_req;
915 atomic_t scrubs_paused;
916 atomic_t scrub_cancel_req;
917 wait_queue_head_t scrub_pause_wait;
918 /*
919 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
920 * running.
921 */
922 refcount_t scrub_workers_refcnt;
923 struct workqueue_struct *scrub_workers;
924 struct workqueue_struct *scrub_wr_completion_workers;
925 struct workqueue_struct *scrub_parity_workers;
926 struct btrfs_subpage_info *subpage_info;
927
928 struct btrfs_discard_ctl discard_ctl;
929
930 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
931 u32 check_integrity_print_mask;
932 #endif
933 /* is qgroup tracking in a consistent state? */
934 u64 qgroup_flags;
935
936 /* holds configuration and tracking. Protected by qgroup_lock */
937 struct rb_root qgroup_tree;
938 spinlock_t qgroup_lock;
939
940 /*
941 * used to avoid frequently calling ulist_alloc()/ulist_free()
942 * when doing qgroup accounting, it must be protected by qgroup_lock.
943 */
944 struct ulist *qgroup_ulist;
945
946 /*
947 * Protect user change for quota operations. If a transaction is needed,
948 * it must be started before locking this lock.
949 */
950 struct mutex qgroup_ioctl_lock;
951
952 /* list of dirty qgroups to be written at next commit */
953 struct list_head dirty_qgroups;
954
955 /* used by qgroup for an efficient tree traversal */
956 u64 qgroup_seq;
957
958 /* qgroup rescan items */
959 struct mutex qgroup_rescan_lock; /* protects the progress item */
960 struct btrfs_key qgroup_rescan_progress;
961 struct btrfs_workqueue *qgroup_rescan_workers;
962 struct completion qgroup_rescan_completion;
963 struct btrfs_work qgroup_rescan_work;
964 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */
965 u8 qgroup_drop_subtree_thres;
966
967 /* filesystem state */
968 unsigned long fs_state;
969
970 struct btrfs_delayed_root *delayed_root;
971
972 /* Extent buffer radix tree */
973 spinlock_t buffer_lock;
974 /* Entries are eb->start / sectorsize */
975 struct radix_tree_root buffer_radix;
976
977 /* next backup root to be overwritten */
978 int backup_root_index;
979
980 /* device replace state */
981 struct btrfs_dev_replace dev_replace;
982
983 struct semaphore uuid_tree_rescan_sem;
984
985 /* Used to reclaim the metadata space in the background. */
986 struct work_struct async_reclaim_work;
987 struct work_struct async_data_reclaim_work;
988 struct work_struct preempt_reclaim_work;
989
990 /* Reclaim partially filled block groups in the background */
991 struct work_struct reclaim_bgs_work;
992 struct list_head reclaim_bgs;
993 int bg_reclaim_threshold;
994
995 spinlock_t unused_bgs_lock;
996 struct list_head unused_bgs;
997 struct mutex unused_bg_unpin_mutex;
998 /* Protect block groups that are going to be deleted */
999 struct mutex reclaim_bgs_lock;
1000
1001 /* Cached block sizes */
1002 u32 nodesize;
1003 u32 sectorsize;
1004 /* ilog2 of sectorsize, use to avoid 64bit division */
1005 u32 sectorsize_bits;
1006 u32 csum_size;
1007 u32 csums_per_leaf;
1008 u32 stripesize;
1009
1010 /*
1011 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular
1012 * filesystem, on zoned it depends on the device constraints.
1013 */
1014 u64 max_extent_size;
1015
1016 /* Block groups and devices containing active swapfiles. */
1017 spinlock_t swapfile_pins_lock;
1018 struct rb_root swapfile_pins;
1019
1020 struct crypto_shash *csum_shash;
1021
1022 /* Type of exclusive operation running, protected by super_lock */
1023 enum btrfs_exclusive_operation exclusive_operation;
1024
1025 /*
1026 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1027 * if the mode is enabled
1028 */
1029 u64 zone_size;
1030
1031 /* Max size to emit ZONE_APPEND write command */
1032 u64 max_zone_append_size;
1033 struct mutex zoned_meta_io_lock;
1034 spinlock_t treelog_bg_lock;
1035 u64 treelog_bg;
1036
1037 /*
1038 * Start of the dedicated data relocation block group, protected by
1039 * relocation_bg_lock.
1040 */
1041 spinlock_t relocation_bg_lock;
1042 u64 data_reloc_bg;
1043 struct mutex zoned_data_reloc_io_lock;
1044
1045 u64 nr_global_roots;
1046
1047 spinlock_t zone_active_bgs_lock;
1048 struct list_head zone_active_bgs;
1049
1050 /* Updates are not protected by any lock */
1051 struct btrfs_commit_stats commit_stats;
1052
1053 /*
1054 * Last generation where we dropped a non-relocation root.
1055 * Use btrfs_set_last_root_drop_gen() and btrfs_get_last_root_drop_gen()
1056 * to change it and to read it, respectively.
1057 */
1058 u64 last_root_drop_gen;
1059
1060 /*
1061 * Annotations for transaction events (structures are empty when
1062 * compiled without lockdep).
1063 */
1064 struct lockdep_map btrfs_trans_num_writers_map;
1065 struct lockdep_map btrfs_trans_num_extwriters_map;
1066 struct lockdep_map btrfs_state_change_map[4];
1067 struct lockdep_map btrfs_trans_pending_ordered_map;
1068 struct lockdep_map btrfs_ordered_extent_map;
1069
1070 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1071 spinlock_t ref_verify_lock;
1072 struct rb_root block_tree;
1073 #endif
1074
1075 #ifdef CONFIG_BTRFS_DEBUG
1076 struct kobject *debug_kobj;
1077 struct list_head allocated_roots;
1078
1079 spinlock_t eb_leak_lock;
1080 struct list_head allocated_ebs;
1081 #endif
1082 };
1083
btrfs_set_last_root_drop_gen(struct btrfs_fs_info * fs_info,u64 gen)1084 static inline void btrfs_set_last_root_drop_gen(struct btrfs_fs_info *fs_info,
1085 u64 gen)
1086 {
1087 WRITE_ONCE(fs_info->last_root_drop_gen, gen);
1088 }
1089
btrfs_get_last_root_drop_gen(const struct btrfs_fs_info * fs_info)1090 static inline u64 btrfs_get_last_root_drop_gen(const struct btrfs_fs_info *fs_info)
1091 {
1092 return READ_ONCE(fs_info->last_root_drop_gen);
1093 }
1094
btrfs_sb(struct super_block * sb)1095 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1096 {
1097 return sb->s_fs_info;
1098 }
1099
1100 /*
1101 * Take the number of bytes to be checksummed and figure out how many leaves
1102 * it would require to store the csums for that many bytes.
1103 */
btrfs_csum_bytes_to_leaves(const struct btrfs_fs_info * fs_info,u64 csum_bytes)1104 static inline u64 btrfs_csum_bytes_to_leaves(
1105 const struct btrfs_fs_info *fs_info, u64 csum_bytes)
1106 {
1107 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
1108
1109 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
1110 }
1111
1112 /*
1113 * Use this if we would be adding new items, as we could split nodes as we cow
1114 * down the tree.
1115 */
btrfs_calc_insert_metadata_size(struct btrfs_fs_info * fs_info,unsigned num_items)1116 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
1117 unsigned num_items)
1118 {
1119 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
1120 }
1121
1122 /*
1123 * Doing a truncate or a modification won't result in new nodes or leaves, just
1124 * what we need for COW.
1125 */
btrfs_calc_metadata_size(struct btrfs_fs_info * fs_info,unsigned num_items)1126 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
1127 unsigned num_items)
1128 {
1129 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
1130 }
1131
1132 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
1133 sizeof(struct btrfs_item))
1134
btrfs_is_zoned(const struct btrfs_fs_info * fs_info)1135 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
1136 {
1137 return fs_info->zone_size > 0;
1138 }
1139
1140 /*
1141 * Count how many fs_info->max_extent_size cover the @size
1142 */
count_max_extents(struct btrfs_fs_info * fs_info,u64 size)1143 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size)
1144 {
1145 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1146 if (!fs_info)
1147 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
1148 #endif
1149
1150 return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size);
1151 }
1152
1153 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
1154 enum btrfs_exclusive_operation type);
1155 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
1156 enum btrfs_exclusive_operation type);
1157 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
1158 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
1159 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
1160 enum btrfs_exclusive_operation op);
1161
1162 /*
1163 * The state of btrfs root
1164 */
1165 enum {
1166 /*
1167 * btrfs_record_root_in_trans is a multi-step process, and it can race
1168 * with the balancing code. But the race is very small, and only the
1169 * first time the root is added to each transaction. So IN_TRANS_SETUP
1170 * is used to tell us when more checks are required
1171 */
1172 BTRFS_ROOT_IN_TRANS_SETUP,
1173
1174 /*
1175 * Set if tree blocks of this root can be shared by other roots.
1176 * Only subvolume trees and their reloc trees have this bit set.
1177 * Conflicts with TRACK_DIRTY bit.
1178 *
1179 * This affects two things:
1180 *
1181 * - How balance works
1182 * For shareable roots, we need to use reloc tree and do path
1183 * replacement for balance, and need various pre/post hooks for
1184 * snapshot creation to handle them.
1185 *
1186 * While for non-shareable trees, we just simply do a tree search
1187 * with COW.
1188 *
1189 * - How dirty roots are tracked
1190 * For shareable roots, btrfs_record_root_in_trans() is needed to
1191 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
1192 * don't need to set this manually.
1193 */
1194 BTRFS_ROOT_SHAREABLE,
1195 BTRFS_ROOT_TRACK_DIRTY,
1196 BTRFS_ROOT_IN_RADIX,
1197 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1198 BTRFS_ROOT_DEFRAG_RUNNING,
1199 BTRFS_ROOT_FORCE_COW,
1200 BTRFS_ROOT_MULTI_LOG_TASKS,
1201 BTRFS_ROOT_DIRTY,
1202 BTRFS_ROOT_DELETING,
1203
1204 /*
1205 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1206 *
1207 * Set for the subvolume tree owning the reloc tree.
1208 */
1209 BTRFS_ROOT_DEAD_RELOC_TREE,
1210 /* Mark dead root stored on device whose cleanup needs to be resumed */
1211 BTRFS_ROOT_DEAD_TREE,
1212 /* The root has a log tree. Used for subvolume roots and the tree root. */
1213 BTRFS_ROOT_HAS_LOG_TREE,
1214 /* Qgroup flushing is in progress */
1215 BTRFS_ROOT_QGROUP_FLUSHING,
1216 /* We started the orphan cleanup for this root. */
1217 BTRFS_ROOT_ORPHAN_CLEANUP,
1218 /* This root has a drop operation that was started previously. */
1219 BTRFS_ROOT_UNFINISHED_DROP,
1220 /* This reloc root needs to have its buffers lockdep class reset. */
1221 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
1222 };
1223
1224 enum btrfs_lockdep_trans_states {
1225 BTRFS_LOCKDEP_TRANS_COMMIT_START,
1226 BTRFS_LOCKDEP_TRANS_UNBLOCKED,
1227 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED,
1228 BTRFS_LOCKDEP_TRANS_COMPLETED,
1229 };
1230
1231 /*
1232 * Lockdep annotation for wait events.
1233 *
1234 * @owner: The struct where the lockdep map is defined
1235 * @lock: The lockdep map corresponding to a wait event
1236 *
1237 * This macro is used to annotate a wait event. In this case a thread acquires
1238 * the lockdep map as writer (exclusive lock) because it has to block until all
1239 * the threads that hold the lock as readers signal the condition for the wait
1240 * event and release their locks.
1241 */
1242 #define btrfs_might_wait_for_event(owner, lock) \
1243 do { \
1244 rwsem_acquire(&owner->lock##_map, 0, 0, _THIS_IP_); \
1245 rwsem_release(&owner->lock##_map, _THIS_IP_); \
1246 } while (0)
1247
1248 /*
1249 * Protection for the resource/condition of a wait event.
1250 *
1251 * @owner: The struct where the lockdep map is defined
1252 * @lock: The lockdep map corresponding to a wait event
1253 *
1254 * Many threads can modify the condition for the wait event at the same time
1255 * and signal the threads that block on the wait event. The threads that modify
1256 * the condition and do the signaling acquire the lock as readers (shared
1257 * lock).
1258 */
1259 #define btrfs_lockdep_acquire(owner, lock) \
1260 rwsem_acquire_read(&owner->lock##_map, 0, 0, _THIS_IP_)
1261
1262 /*
1263 * Used after signaling the condition for a wait event to release the lockdep
1264 * map held by a reader thread.
1265 */
1266 #define btrfs_lockdep_release(owner, lock) \
1267 rwsem_release(&owner->lock##_map, _THIS_IP_)
1268
1269 /*
1270 * Macros for the transaction states wait events, similar to the generic wait
1271 * event macros.
1272 */
1273 #define btrfs_might_wait_for_state(owner, i) \
1274 do { \
1275 rwsem_acquire(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_); \
1276 rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_); \
1277 } while (0)
1278
1279 #define btrfs_trans_state_lockdep_acquire(owner, i) \
1280 rwsem_acquire_read(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_)
1281
1282 #define btrfs_trans_state_lockdep_release(owner, i) \
1283 rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_)
1284
1285 /* Initialization of the lockdep map */
1286 #define btrfs_lockdep_init_map(owner, lock) \
1287 do { \
1288 static struct lock_class_key lock##_key; \
1289 lockdep_init_map(&owner->lock##_map, #lock, &lock##_key, 0); \
1290 } while (0)
1291
1292 /* Initialization of the transaction states lockdep maps. */
1293 #define btrfs_state_lockdep_init_map(owner, lock, state) \
1294 do { \
1295 static struct lock_class_key lock##_key; \
1296 lockdep_init_map(&owner->btrfs_state_change_map[state], #lock, \
1297 &lock##_key, 0); \
1298 } while (0)
1299
btrfs_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1300 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1301 {
1302 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1303 }
1304
1305 /*
1306 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1307 * code. For detail check comment in fs/btrfs/qgroup.c.
1308 */
1309 struct btrfs_qgroup_swapped_blocks {
1310 spinlock_t lock;
1311 /* RM_EMPTY_ROOT() of above blocks[] */
1312 bool swapped;
1313 struct rb_root blocks[BTRFS_MAX_LEVEL];
1314 };
1315
1316 /*
1317 * in ram representation of the tree. extent_root is used for all allocations
1318 * and for the extent tree extent_root root.
1319 */
1320 struct btrfs_root {
1321 struct rb_node rb_node;
1322
1323 struct extent_buffer *node;
1324
1325 struct extent_buffer *commit_root;
1326 struct btrfs_root *log_root;
1327 struct btrfs_root *reloc_root;
1328
1329 unsigned long state;
1330 struct btrfs_root_item root_item;
1331 struct btrfs_key root_key;
1332 struct btrfs_fs_info *fs_info;
1333 struct extent_io_tree dirty_log_pages;
1334
1335 struct mutex objectid_mutex;
1336
1337 spinlock_t accounting_lock;
1338 struct btrfs_block_rsv *block_rsv;
1339
1340 struct mutex log_mutex;
1341 wait_queue_head_t log_writer_wait;
1342 wait_queue_head_t log_commit_wait[2];
1343 struct list_head log_ctxs[2];
1344 /* Used only for log trees of subvolumes, not for the log root tree */
1345 atomic_t log_writers;
1346 atomic_t log_commit[2];
1347 /* Used only for log trees of subvolumes, not for the log root tree */
1348 atomic_t log_batch;
1349 int log_transid;
1350 /* No matter the commit succeeds or not*/
1351 int log_transid_committed;
1352 /* Just be updated when the commit succeeds. */
1353 int last_log_commit;
1354 pid_t log_start_pid;
1355
1356 u64 last_trans;
1357
1358 u32 type;
1359
1360 u64 free_objectid;
1361
1362 struct btrfs_key defrag_progress;
1363 struct btrfs_key defrag_max;
1364
1365 /* The dirty list is only used by non-shareable roots */
1366 struct list_head dirty_list;
1367
1368 struct list_head root_list;
1369
1370 spinlock_t log_extents_lock[2];
1371 struct list_head logged_list[2];
1372
1373 spinlock_t inode_lock;
1374 /* red-black tree that keeps track of in-memory inodes */
1375 struct rb_root inode_tree;
1376
1377 /*
1378 * radix tree that keeps track of delayed nodes of every inode,
1379 * protected by inode_lock
1380 */
1381 struct radix_tree_root delayed_nodes_tree;
1382 /*
1383 * right now this just gets used so that a root has its own devid
1384 * for stat. It may be used for more later
1385 */
1386 dev_t anon_dev;
1387
1388 spinlock_t root_item_lock;
1389 refcount_t refs;
1390
1391 struct mutex delalloc_mutex;
1392 spinlock_t delalloc_lock;
1393 /*
1394 * all of the inodes that have delalloc bytes. It is possible for
1395 * this list to be empty even when there is still dirty data=ordered
1396 * extents waiting to finish IO.
1397 */
1398 struct list_head delalloc_inodes;
1399 struct list_head delalloc_root;
1400 u64 nr_delalloc_inodes;
1401
1402 struct mutex ordered_extent_mutex;
1403 /*
1404 * this is used by the balancing code to wait for all the pending
1405 * ordered extents
1406 */
1407 spinlock_t ordered_extent_lock;
1408
1409 /*
1410 * all of the data=ordered extents pending writeback
1411 * these can span multiple transactions and basically include
1412 * every dirty data page that isn't from nodatacow
1413 */
1414 struct list_head ordered_extents;
1415 struct list_head ordered_root;
1416 u64 nr_ordered_extents;
1417
1418 /*
1419 * Not empty if this subvolume root has gone through tree block swap
1420 * (relocation)
1421 *
1422 * Will be used by reloc_control::dirty_subvol_roots.
1423 */
1424 struct list_head reloc_dirty_list;
1425
1426 /*
1427 * Number of currently running SEND ioctls to prevent
1428 * manipulation with the read-only status via SUBVOL_SETFLAGS
1429 */
1430 int send_in_progress;
1431 /*
1432 * Number of currently running deduplication operations that have a
1433 * destination inode belonging to this root. Protected by the lock
1434 * root_item_lock.
1435 */
1436 int dedupe_in_progress;
1437 /* For exclusion of snapshot creation and nocow writes */
1438 struct btrfs_drew_lock snapshot_lock;
1439
1440 atomic_t snapshot_force_cow;
1441
1442 /* For qgroup metadata reserved space */
1443 spinlock_t qgroup_meta_rsv_lock;
1444 u64 qgroup_meta_rsv_pertrans;
1445 u64 qgroup_meta_rsv_prealloc;
1446 wait_queue_head_t qgroup_flush_wait;
1447
1448 /* Number of active swapfiles */
1449 atomic_t nr_swapfiles;
1450
1451 /* Record pairs of swapped blocks for qgroup */
1452 struct btrfs_qgroup_swapped_blocks swapped_blocks;
1453
1454 /* Used only by log trees, when logging csum items */
1455 struct extent_io_tree log_csum_range;
1456
1457 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1458 u64 alloc_bytenr;
1459 #endif
1460
1461 #ifdef CONFIG_BTRFS_DEBUG
1462 struct list_head leak_list;
1463 #endif
1464 };
1465
1466 /*
1467 * Structure that conveys information about an extent that is going to replace
1468 * all the extents in a file range.
1469 */
1470 struct btrfs_replace_extent_info {
1471 u64 disk_offset;
1472 u64 disk_len;
1473 u64 data_offset;
1474 u64 data_len;
1475 u64 file_offset;
1476 /* Pointer to a file extent item of type regular or prealloc. */
1477 char *extent_buf;
1478 /*
1479 * Set to true when attempting to replace a file range with a new extent
1480 * described by this structure, set to false when attempting to clone an
1481 * existing extent into a file range.
1482 */
1483 bool is_new_extent;
1484 /* Indicate if we should update the inode's mtime and ctime. */
1485 bool update_times;
1486 /* Meaningful only if is_new_extent is true. */
1487 int qgroup_reserved;
1488 /*
1489 * Meaningful only if is_new_extent is true.
1490 * Used to track how many extent items we have already inserted in a
1491 * subvolume tree that refer to the extent described by this structure,
1492 * so that we know when to create a new delayed ref or update an existing
1493 * one.
1494 */
1495 int insertions;
1496 };
1497
1498 /* Arguments for btrfs_drop_extents() */
1499 struct btrfs_drop_extents_args {
1500 /* Input parameters */
1501
1502 /*
1503 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1504 * If 'replace_extent' is true, this must not be NULL. Also the path
1505 * is always released except if 'replace_extent' is true and
1506 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1507 * the path is kept locked.
1508 */
1509 struct btrfs_path *path;
1510 /* Start offset of the range to drop extents from */
1511 u64 start;
1512 /* End (exclusive, last byte + 1) of the range to drop extents from */
1513 u64 end;
1514 /* If true drop all the extent maps in the range */
1515 bool drop_cache;
1516 /*
1517 * If true it means we want to insert a new extent after dropping all
1518 * the extents in the range. If this is true, the 'extent_item_size'
1519 * parameter must be set as well and the 'extent_inserted' field will
1520 * be set to true by btrfs_drop_extents() if it could insert the new
1521 * extent.
1522 * Note: when this is set to true the path must not be NULL.
1523 */
1524 bool replace_extent;
1525 /*
1526 * Used if 'replace_extent' is true. Size of the file extent item to
1527 * insert after dropping all existing extents in the range
1528 */
1529 u32 extent_item_size;
1530
1531 /* Output parameters */
1532
1533 /*
1534 * Set to the minimum between the input parameter 'end' and the end
1535 * (exclusive, last byte + 1) of the last dropped extent. This is always
1536 * set even if btrfs_drop_extents() returns an error.
1537 */
1538 u64 drop_end;
1539 /*
1540 * The number of allocated bytes found in the range. This can be smaller
1541 * than the range's length when there are holes in the range.
1542 */
1543 u64 bytes_found;
1544 /*
1545 * Only set if 'replace_extent' is true. Set to true if we were able
1546 * to insert a replacement extent after dropping all extents in the
1547 * range, otherwise set to false by btrfs_drop_extents().
1548 * Also, if btrfs_drop_extents() has set this to true it means it
1549 * returned with the path locked, otherwise if it has set this to
1550 * false it has returned with the path released.
1551 */
1552 bool extent_inserted;
1553 };
1554
1555 struct btrfs_file_private {
1556 void *filldir_buf;
1557 };
1558
1559
BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info * info)1560 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1561 {
1562
1563 return info->nodesize - sizeof(struct btrfs_header);
1564 }
1565
1566 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items)
1567
BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info * info)1568 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1569 {
1570 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1571 }
1572
BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info * info)1573 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1574 {
1575 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1576 }
1577
1578 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \
1579 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info * info)1580 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1581 {
1582 return BTRFS_MAX_ITEM_SIZE(info) -
1583 BTRFS_FILE_EXTENT_INLINE_DATA_START;
1584 }
1585
BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info * info)1586 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1587 {
1588 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1589 }
1590
1591 /*
1592 * Flags for mount options.
1593 *
1594 * Note: don't forget to add new options to btrfs_show_options()
1595 */
1596 enum {
1597 BTRFS_MOUNT_NODATASUM = (1UL << 0),
1598 BTRFS_MOUNT_NODATACOW = (1UL << 1),
1599 BTRFS_MOUNT_NOBARRIER = (1UL << 2),
1600 BTRFS_MOUNT_SSD = (1UL << 3),
1601 BTRFS_MOUNT_DEGRADED = (1UL << 4),
1602 BTRFS_MOUNT_COMPRESS = (1UL << 5),
1603 BTRFS_MOUNT_NOTREELOG = (1UL << 6),
1604 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7),
1605 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8),
1606 BTRFS_MOUNT_NOSSD = (1UL << 9),
1607 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10),
1608 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11),
1609 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12),
1610 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13),
1611 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14),
1612 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15),
1613 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16),
1614 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17),
1615 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18),
1616 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19),
1617 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20),
1618 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21),
1619 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22),
1620 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23),
1621 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24),
1622 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25),
1623 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26),
1624 BTRFS_MOUNT_REF_VERIFY = (1UL << 27),
1625 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28),
1626 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29),
1627 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30),
1628 };
1629
1630 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
1631 #define BTRFS_DEFAULT_MAX_INLINE (2048)
1632
1633 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
1634 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
1635 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
1636 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \
1637 BTRFS_MOUNT_##opt)
1638
1639 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \
1640 do { \
1641 if (!btrfs_test_opt(fs_info, opt)) \
1642 btrfs_info(fs_info, fmt, ##args); \
1643 btrfs_set_opt(fs_info->mount_opt, opt); \
1644 } while (0)
1645
1646 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \
1647 do { \
1648 if (btrfs_test_opt(fs_info, opt)) \
1649 btrfs_info(fs_info, fmt, ##args); \
1650 btrfs_clear_opt(fs_info->mount_opt, opt); \
1651 } while (0)
1652
1653 /*
1654 * Requests for changes that need to be done during transaction commit.
1655 *
1656 * Internal mount options that are used for special handling of the real
1657 * mount options (eg. cannot be set during remount and have to be set during
1658 * transaction commit)
1659 */
1660
1661 #define BTRFS_PENDING_COMMIT (0)
1662
1663 #define btrfs_test_pending(info, opt) \
1664 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1665 #define btrfs_set_pending(info, opt) \
1666 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1667 #define btrfs_clear_pending(info, opt) \
1668 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1669
1670 /*
1671 * Helpers for setting pending mount option changes.
1672 *
1673 * Expects corresponding macros
1674 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1675 */
1676 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \
1677 do { \
1678 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1679 btrfs_info((info), fmt, ##args); \
1680 btrfs_set_pending((info), SET_##opt); \
1681 btrfs_clear_pending((info), CLEAR_##opt); \
1682 } \
1683 } while(0)
1684
1685 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
1686 do { \
1687 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1688 btrfs_info((info), fmt, ##args); \
1689 btrfs_set_pending((info), CLEAR_##opt); \
1690 btrfs_clear_pending((info), SET_##opt); \
1691 } \
1692 } while(0)
1693
1694 /*
1695 * Inode flags
1696 */
1697 #define BTRFS_INODE_NODATASUM (1U << 0)
1698 #define BTRFS_INODE_NODATACOW (1U << 1)
1699 #define BTRFS_INODE_READONLY (1U << 2)
1700 #define BTRFS_INODE_NOCOMPRESS (1U << 3)
1701 #define BTRFS_INODE_PREALLOC (1U << 4)
1702 #define BTRFS_INODE_SYNC (1U << 5)
1703 #define BTRFS_INODE_IMMUTABLE (1U << 6)
1704 #define BTRFS_INODE_APPEND (1U << 7)
1705 #define BTRFS_INODE_NODUMP (1U << 8)
1706 #define BTRFS_INODE_NOATIME (1U << 9)
1707 #define BTRFS_INODE_DIRSYNC (1U << 10)
1708 #define BTRFS_INODE_COMPRESS (1U << 11)
1709
1710 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31)
1711
1712 #define BTRFS_INODE_FLAG_MASK \
1713 (BTRFS_INODE_NODATASUM | \
1714 BTRFS_INODE_NODATACOW | \
1715 BTRFS_INODE_READONLY | \
1716 BTRFS_INODE_NOCOMPRESS | \
1717 BTRFS_INODE_PREALLOC | \
1718 BTRFS_INODE_SYNC | \
1719 BTRFS_INODE_IMMUTABLE | \
1720 BTRFS_INODE_APPEND | \
1721 BTRFS_INODE_NODUMP | \
1722 BTRFS_INODE_NOATIME | \
1723 BTRFS_INODE_DIRSYNC | \
1724 BTRFS_INODE_COMPRESS | \
1725 BTRFS_INODE_ROOT_ITEM_INIT)
1726
1727 #define BTRFS_INODE_RO_VERITY (1U << 0)
1728
1729 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY)
1730
1731 struct btrfs_map_token {
1732 struct extent_buffer *eb;
1733 char *kaddr;
1734 unsigned long offset;
1735 };
1736
1737 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1738 ((bytes) >> (fs_info)->sectorsize_bits)
1739
btrfs_init_map_token(struct btrfs_map_token * token,struct extent_buffer * eb)1740 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1741 struct extent_buffer *eb)
1742 {
1743 token->eb = eb;
1744 token->kaddr = page_address(eb->pages[0]);
1745 token->offset = 0;
1746 }
1747
1748 /* some macros to generate set/get functions for the struct fields. This
1749 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1750 * one for u8:
1751 */
1752 #define le8_to_cpu(v) (v)
1753 #define cpu_to_le8(v) (v)
1754 #define __le8 u8
1755
get_unaligned_le8(const void * p)1756 static inline u8 get_unaligned_le8(const void *p)
1757 {
1758 return *(u8 *)p;
1759 }
1760
put_unaligned_le8(u8 val,void * p)1761 static inline void put_unaligned_le8(u8 val, void *p)
1762 {
1763 *(u8 *)p = val;
1764 }
1765
1766 #define read_eb_member(eb, ptr, type, member, result) (\
1767 read_extent_buffer(eb, (char *)(result), \
1768 ((unsigned long)(ptr)) + \
1769 offsetof(type, member), \
1770 sizeof(((type *)0)->member)))
1771
1772 #define write_eb_member(eb, ptr, type, member, result) (\
1773 write_extent_buffer(eb, (char *)(result), \
1774 ((unsigned long)(ptr)) + \
1775 offsetof(type, member), \
1776 sizeof(((type *)0)->member)))
1777
1778 #define DECLARE_BTRFS_SETGET_BITS(bits) \
1779 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \
1780 const void *ptr, unsigned long off); \
1781 void btrfs_set_token_##bits(struct btrfs_map_token *token, \
1782 const void *ptr, unsigned long off, \
1783 u##bits val); \
1784 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \
1785 const void *ptr, unsigned long off); \
1786 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \
1787 unsigned long off, u##bits val);
1788
1789 DECLARE_BTRFS_SETGET_BITS(8)
1790 DECLARE_BTRFS_SETGET_BITS(16)
1791 DECLARE_BTRFS_SETGET_BITS(32)
1792 DECLARE_BTRFS_SETGET_BITS(64)
1793
1794 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
1795 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \
1796 const type *s) \
1797 { \
1798 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1799 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
1800 } \
1801 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1802 u##bits val) \
1803 { \
1804 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1805 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
1806 } \
1807 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \
1808 const type *s) \
1809 { \
1810 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1811 return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1812 } \
1813 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1814 type *s, u##bits val) \
1815 { \
1816 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1817 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \
1818 }
1819
1820 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
1821 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \
1822 { \
1823 const type *p = page_address(eb->pages[0]) + \
1824 offset_in_page(eb->start); \
1825 return get_unaligned_le##bits(&p->member); \
1826 } \
1827 static inline void btrfs_set_##name(const struct extent_buffer *eb, \
1828 u##bits val) \
1829 { \
1830 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1831 put_unaligned_le##bits(val, &p->member); \
1832 }
1833
1834 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
1835 static inline u##bits btrfs_##name(const type *s) \
1836 { \
1837 return get_unaligned_le##bits(&s->member); \
1838 } \
1839 static inline void btrfs_set_##name(type *s, u##bits val) \
1840 { \
1841 put_unaligned_le##bits(val, &s->member); \
1842 }
1843
btrfs_device_total_bytes(const struct extent_buffer * eb,struct btrfs_dev_item * s)1844 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1845 struct btrfs_dev_item *s)
1846 {
1847 static_assert(sizeof(u64) ==
1848 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1849 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1850 total_bytes));
1851 }
btrfs_set_device_total_bytes(const struct extent_buffer * eb,struct btrfs_dev_item * s,u64 val)1852 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1853 struct btrfs_dev_item *s,
1854 u64 val)
1855 {
1856 static_assert(sizeof(u64) ==
1857 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1858 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1859 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1860 }
1861
1862
1863 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1864 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1865 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1866 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1867 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1868 start_offset, 64);
1869 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1870 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1871 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1872 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1873 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1874 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1875
1876 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1877 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1878 total_bytes, 64);
1879 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1880 bytes_used, 64);
1881 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1882 io_align, 32);
1883 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1884 io_width, 32);
1885 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1886 sector_size, 32);
1887 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1888 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1889 dev_group, 32);
1890 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1891 seek_speed, 8);
1892 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1893 bandwidth, 8);
1894 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1895 generation, 64);
1896
btrfs_device_uuid(struct btrfs_dev_item * d)1897 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1898 {
1899 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1900 }
1901
btrfs_device_fsid(struct btrfs_dev_item * d)1902 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1903 {
1904 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1905 }
1906
1907 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1908 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1909 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1910 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1911 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1912 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1913 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1914 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1915 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1916 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1917 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1918
btrfs_stripe_dev_uuid(struct btrfs_stripe * s)1919 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1920 {
1921 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1922 }
1923
1924 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1925 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1926 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1927 stripe_len, 64);
1928 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1929 io_align, 32);
1930 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1931 io_width, 32);
1932 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1933 sector_size, 32);
1934 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1935 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1936 num_stripes, 16);
1937 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1938 sub_stripes, 16);
1939 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1940 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1941
btrfs_stripe_nr(struct btrfs_chunk * c,int nr)1942 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1943 int nr)
1944 {
1945 unsigned long offset = (unsigned long)c;
1946 offset += offsetof(struct btrfs_chunk, stripe);
1947 offset += nr * sizeof(struct btrfs_stripe);
1948 return (struct btrfs_stripe *)offset;
1949 }
1950
btrfs_stripe_dev_uuid_nr(struct btrfs_chunk * c,int nr)1951 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1952 {
1953 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1954 }
1955
btrfs_stripe_offset_nr(const struct extent_buffer * eb,struct btrfs_chunk * c,int nr)1956 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1957 struct btrfs_chunk *c, int nr)
1958 {
1959 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1960 }
1961
btrfs_stripe_devid_nr(const struct extent_buffer * eb,struct btrfs_chunk * c,int nr)1962 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1963 struct btrfs_chunk *c, int nr)
1964 {
1965 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1966 }
1967
1968 /* struct btrfs_block_group_item */
1969 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1970 used, 64);
1971 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1972 used, 64);
1973 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1974 struct btrfs_block_group_item, chunk_objectid, 64);
1975
1976 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1977 struct btrfs_block_group_item, chunk_objectid, 64);
1978 BTRFS_SETGET_FUNCS(block_group_flags,
1979 struct btrfs_block_group_item, flags, 64);
1980 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1981 struct btrfs_block_group_item, flags, 64);
1982
1983 /* struct btrfs_free_space_info */
1984 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1985 extent_count, 32);
1986 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1987
1988 /* struct btrfs_inode_ref */
1989 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1990 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1991
1992 /* struct btrfs_inode_extref */
1993 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1994 parent_objectid, 64);
1995 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1996 name_len, 16);
1997 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1998
1999 /* struct btrfs_inode_item */
2000 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2001 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2002 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2003 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2004 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2005 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2006 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2007 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2008 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2009 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2010 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2011 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2012 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2013 generation, 64);
2014 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2015 sequence, 64);
2016 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2017 transid, 64);
2018 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2019 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2020 nbytes, 64);
2021 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2022 block_group, 64);
2023 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2024 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2025 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2026 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2027 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2028 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2029 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2030 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2031 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2032 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2033
2034 /* struct btrfs_dev_extent */
2035 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2036 chunk_tree, 64);
2037 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2038 chunk_objectid, 64);
2039 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2040 chunk_offset, 64);
2041 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2042 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2043 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2044 generation, 64);
2045 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2046
2047 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2048
btrfs_tree_block_key(const struct extent_buffer * eb,struct btrfs_tree_block_info * item,struct btrfs_disk_key * key)2049 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
2050 struct btrfs_tree_block_info *item,
2051 struct btrfs_disk_key *key)
2052 {
2053 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2054 }
2055
btrfs_set_tree_block_key(const struct extent_buffer * eb,struct btrfs_tree_block_info * item,struct btrfs_disk_key * key)2056 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
2057 struct btrfs_tree_block_info *item,
2058 struct btrfs_disk_key *key)
2059 {
2060 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2061 }
2062
2063 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2064 root, 64);
2065 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2066 objectid, 64);
2067 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2068 offset, 64);
2069 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2070 count, 32);
2071
2072 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2073 count, 32);
2074
2075 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2076 type, 8);
2077 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2078 offset, 64);
2079
btrfs_extent_inline_ref_size(int type)2080 static inline u32 btrfs_extent_inline_ref_size(int type)
2081 {
2082 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2083 type == BTRFS_SHARED_BLOCK_REF_KEY)
2084 return sizeof(struct btrfs_extent_inline_ref);
2085 if (type == BTRFS_SHARED_DATA_REF_KEY)
2086 return sizeof(struct btrfs_shared_data_ref) +
2087 sizeof(struct btrfs_extent_inline_ref);
2088 if (type == BTRFS_EXTENT_DATA_REF_KEY)
2089 return sizeof(struct btrfs_extent_data_ref) +
2090 offsetof(struct btrfs_extent_inline_ref, offset);
2091 return 0;
2092 }
2093
2094 /* struct btrfs_node */
2095 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2096 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2097 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2098 blockptr, 64);
2099 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2100 generation, 64);
2101
btrfs_node_blockptr(const struct extent_buffer * eb,int nr)2102 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
2103 {
2104 unsigned long ptr;
2105 ptr = offsetof(struct btrfs_node, ptrs) +
2106 sizeof(struct btrfs_key_ptr) * nr;
2107 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2108 }
2109
btrfs_set_node_blockptr(const struct extent_buffer * eb,int nr,u64 val)2110 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
2111 int nr, u64 val)
2112 {
2113 unsigned long ptr;
2114 ptr = offsetof(struct btrfs_node, ptrs) +
2115 sizeof(struct btrfs_key_ptr) * nr;
2116 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2117 }
2118
btrfs_node_ptr_generation(const struct extent_buffer * eb,int nr)2119 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
2120 {
2121 unsigned long ptr;
2122 ptr = offsetof(struct btrfs_node, ptrs) +
2123 sizeof(struct btrfs_key_ptr) * nr;
2124 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2125 }
2126
btrfs_set_node_ptr_generation(const struct extent_buffer * eb,int nr,u64 val)2127 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
2128 int nr, u64 val)
2129 {
2130 unsigned long ptr;
2131 ptr = offsetof(struct btrfs_node, ptrs) +
2132 sizeof(struct btrfs_key_ptr) * nr;
2133 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2134 }
2135
btrfs_node_key_ptr_offset(int nr)2136 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2137 {
2138 return offsetof(struct btrfs_node, ptrs) +
2139 sizeof(struct btrfs_key_ptr) * nr;
2140 }
2141
2142 void btrfs_node_key(const struct extent_buffer *eb,
2143 struct btrfs_disk_key *disk_key, int nr);
2144
btrfs_set_node_key(const struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)2145 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
2146 struct btrfs_disk_key *disk_key, int nr)
2147 {
2148 unsigned long ptr;
2149 ptr = btrfs_node_key_ptr_offset(nr);
2150 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2151 struct btrfs_key_ptr, key, disk_key);
2152 }
2153
2154 /* struct btrfs_item */
2155 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
2156 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
2157 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2158 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2159
btrfs_item_nr_offset(int nr)2160 static inline unsigned long btrfs_item_nr_offset(int nr)
2161 {
2162 return offsetof(struct btrfs_leaf, items) +
2163 sizeof(struct btrfs_item) * nr;
2164 }
2165
btrfs_item_nr(int nr)2166 static inline struct btrfs_item *btrfs_item_nr(int nr)
2167 {
2168 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2169 }
2170
2171 #define BTRFS_ITEM_SETGET_FUNCS(member) \
2172 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \
2173 int slot) \
2174 { \
2175 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \
2176 } \
2177 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \
2178 int slot, u32 val) \
2179 { \
2180 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \
2181 } \
2182 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \
2183 int slot) \
2184 { \
2185 struct btrfs_item *item = btrfs_item_nr(slot); \
2186 return btrfs_token_raw_item_##member(token, item); \
2187 } \
2188 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \
2189 int slot, u32 val) \
2190 { \
2191 struct btrfs_item *item = btrfs_item_nr(slot); \
2192 btrfs_set_token_raw_item_##member(token, item, val); \
2193 }
2194
2195 BTRFS_ITEM_SETGET_FUNCS(offset)
2196 BTRFS_ITEM_SETGET_FUNCS(size);
2197
btrfs_item_data_end(const struct extent_buffer * eb,int nr)2198 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2199 {
2200 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2201 }
2202
btrfs_item_key(const struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)2203 static inline void btrfs_item_key(const struct extent_buffer *eb,
2204 struct btrfs_disk_key *disk_key, int nr)
2205 {
2206 struct btrfs_item *item = btrfs_item_nr(nr);
2207 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2208 }
2209
btrfs_set_item_key(struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)2210 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2211 struct btrfs_disk_key *disk_key, int nr)
2212 {
2213 struct btrfs_item *item = btrfs_item_nr(nr);
2214 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2215 }
2216
2217 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2218
2219 /*
2220 * struct btrfs_root_ref
2221 */
2222 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2223 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2224 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2225
2226 /* struct btrfs_dir_item */
2227 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2228 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2229 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2230 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2231 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2232 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2233 data_len, 16);
2234 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2235 name_len, 16);
2236 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2237 transid, 64);
2238
btrfs_dir_item_key(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_disk_key * key)2239 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2240 const struct btrfs_dir_item *item,
2241 struct btrfs_disk_key *key)
2242 {
2243 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2244 }
2245
btrfs_set_dir_item_key(struct extent_buffer * eb,struct btrfs_dir_item * item,const struct btrfs_disk_key * key)2246 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2247 struct btrfs_dir_item *item,
2248 const struct btrfs_disk_key *key)
2249 {
2250 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2251 }
2252
2253 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2254 num_entries, 64);
2255 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2256 num_bitmaps, 64);
2257 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2258 generation, 64);
2259
btrfs_free_space_key(const struct extent_buffer * eb,const struct btrfs_free_space_header * h,struct btrfs_disk_key * key)2260 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2261 const struct btrfs_free_space_header *h,
2262 struct btrfs_disk_key *key)
2263 {
2264 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2265 }
2266
btrfs_set_free_space_key(struct extent_buffer * eb,struct btrfs_free_space_header * h,const struct btrfs_disk_key * key)2267 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2268 struct btrfs_free_space_header *h,
2269 const struct btrfs_disk_key *key)
2270 {
2271 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2272 }
2273
2274 /* struct btrfs_disk_key */
2275 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2276 objectid, 64);
2277 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2278 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2279
2280 #ifdef __LITTLE_ENDIAN
2281
2282 /*
2283 * Optimized helpers for little-endian architectures where CPU and on-disk
2284 * structures have the same endianness and we can skip conversions.
2285 */
2286
btrfs_disk_key_to_cpu(struct btrfs_key * cpu_key,const struct btrfs_disk_key * disk_key)2287 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2288 const struct btrfs_disk_key *disk_key)
2289 {
2290 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2291 }
2292
btrfs_cpu_key_to_disk(struct btrfs_disk_key * disk_key,const struct btrfs_key * cpu_key)2293 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2294 const struct btrfs_key *cpu_key)
2295 {
2296 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2297 }
2298
btrfs_node_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * cpu_key,int nr)2299 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2300 struct btrfs_key *cpu_key, int nr)
2301 {
2302 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2303
2304 btrfs_node_key(eb, disk_key, nr);
2305 }
2306
btrfs_item_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * cpu_key,int nr)2307 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2308 struct btrfs_key *cpu_key, int nr)
2309 {
2310 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2311
2312 btrfs_item_key(eb, disk_key, nr);
2313 }
2314
btrfs_dir_item_key_to_cpu(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_key * cpu_key)2315 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2316 const struct btrfs_dir_item *item,
2317 struct btrfs_key *cpu_key)
2318 {
2319 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2320
2321 btrfs_dir_item_key(eb, item, disk_key);
2322 }
2323
2324 #else
2325
btrfs_disk_key_to_cpu(struct btrfs_key * cpu,const struct btrfs_disk_key * disk)2326 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2327 const struct btrfs_disk_key *disk)
2328 {
2329 cpu->offset = le64_to_cpu(disk->offset);
2330 cpu->type = disk->type;
2331 cpu->objectid = le64_to_cpu(disk->objectid);
2332 }
2333
btrfs_cpu_key_to_disk(struct btrfs_disk_key * disk,const struct btrfs_key * cpu)2334 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2335 const struct btrfs_key *cpu)
2336 {
2337 disk->offset = cpu_to_le64(cpu->offset);
2338 disk->type = cpu->type;
2339 disk->objectid = cpu_to_le64(cpu->objectid);
2340 }
2341
btrfs_node_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * key,int nr)2342 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2343 struct btrfs_key *key, int nr)
2344 {
2345 struct btrfs_disk_key disk_key;
2346 btrfs_node_key(eb, &disk_key, nr);
2347 btrfs_disk_key_to_cpu(key, &disk_key);
2348 }
2349
btrfs_item_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * key,int nr)2350 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2351 struct btrfs_key *key, int nr)
2352 {
2353 struct btrfs_disk_key disk_key;
2354 btrfs_item_key(eb, &disk_key, nr);
2355 btrfs_disk_key_to_cpu(key, &disk_key);
2356 }
2357
btrfs_dir_item_key_to_cpu(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_key * key)2358 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2359 const struct btrfs_dir_item *item,
2360 struct btrfs_key *key)
2361 {
2362 struct btrfs_disk_key disk_key;
2363 btrfs_dir_item_key(eb, item, &disk_key);
2364 btrfs_disk_key_to_cpu(key, &disk_key);
2365 }
2366
2367 #endif
2368
2369 /* struct btrfs_header */
2370 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2371 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2372 generation, 64);
2373 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2374 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2375 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2376 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2377 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2378 generation, 64);
2379 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2380 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2381 nritems, 32);
2382 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2383
btrfs_header_flag(const struct extent_buffer * eb,u64 flag)2384 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2385 {
2386 return (btrfs_header_flags(eb) & flag) == flag;
2387 }
2388
btrfs_set_header_flag(struct extent_buffer * eb,u64 flag)2389 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2390 {
2391 u64 flags = btrfs_header_flags(eb);
2392 btrfs_set_header_flags(eb, flags | flag);
2393 }
2394
btrfs_clear_header_flag(struct extent_buffer * eb,u64 flag)2395 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2396 {
2397 u64 flags = btrfs_header_flags(eb);
2398 btrfs_set_header_flags(eb, flags & ~flag);
2399 }
2400
btrfs_header_backref_rev(const struct extent_buffer * eb)2401 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2402 {
2403 u64 flags = btrfs_header_flags(eb);
2404 return flags >> BTRFS_BACKREF_REV_SHIFT;
2405 }
2406
btrfs_set_header_backref_rev(struct extent_buffer * eb,int rev)2407 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2408 int rev)
2409 {
2410 u64 flags = btrfs_header_flags(eb);
2411 flags &= ~BTRFS_BACKREF_REV_MASK;
2412 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2413 btrfs_set_header_flags(eb, flags);
2414 }
2415
btrfs_is_leaf(const struct extent_buffer * eb)2416 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2417 {
2418 return btrfs_header_level(eb) == 0;
2419 }
2420
2421 /* struct btrfs_root_item */
2422 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2423 generation, 64);
2424 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2425 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2426 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2427
2428 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2429 generation, 64);
2430 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2431 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2432 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2433 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2434 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2435 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2436 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2437 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2438 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2439 last_snapshot, 64);
2440 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2441 generation_v2, 64);
2442 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2443 ctransid, 64);
2444 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2445 otransid, 64);
2446 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2447 stransid, 64);
2448 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2449 rtransid, 64);
2450
btrfs_root_readonly(const struct btrfs_root * root)2451 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2452 {
2453 /* Byte-swap the constant at compile time, root_item::flags is LE */
2454 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2455 }
2456
btrfs_root_dead(const struct btrfs_root * root)2457 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2458 {
2459 /* Byte-swap the constant at compile time, root_item::flags is LE */
2460 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2461 }
2462
btrfs_root_id(const struct btrfs_root * root)2463 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2464 {
2465 return root->root_key.objectid;
2466 }
2467
2468 /* struct btrfs_root_backup */
2469 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2470 tree_root, 64);
2471 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2472 tree_root_gen, 64);
2473 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2474 tree_root_level, 8);
2475
2476 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2477 chunk_root, 64);
2478 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2479 chunk_root_gen, 64);
2480 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2481 chunk_root_level, 8);
2482
2483 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2484 extent_root, 64);
2485 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2486 extent_root_gen, 64);
2487 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2488 extent_root_level, 8);
2489
2490 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2491 fs_root, 64);
2492 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2493 fs_root_gen, 64);
2494 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2495 fs_root_level, 8);
2496
2497 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2498 dev_root, 64);
2499 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2500 dev_root_gen, 64);
2501 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2502 dev_root_level, 8);
2503
2504 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2505 csum_root, 64);
2506 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2507 csum_root_gen, 64);
2508 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2509 csum_root_level, 8);
2510 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2511 total_bytes, 64);
2512 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2513 bytes_used, 64);
2514 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2515 num_devices, 64);
2516
2517 /* struct btrfs_balance_item */
2518 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2519
btrfs_balance_data(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2520 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2521 const struct btrfs_balance_item *bi,
2522 struct btrfs_disk_balance_args *ba)
2523 {
2524 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2525 }
2526
btrfs_set_balance_data(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2527 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2528 struct btrfs_balance_item *bi,
2529 const struct btrfs_disk_balance_args *ba)
2530 {
2531 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2532 }
2533
btrfs_balance_meta(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2534 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2535 const struct btrfs_balance_item *bi,
2536 struct btrfs_disk_balance_args *ba)
2537 {
2538 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2539 }
2540
btrfs_set_balance_meta(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2541 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2542 struct btrfs_balance_item *bi,
2543 const struct btrfs_disk_balance_args *ba)
2544 {
2545 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2546 }
2547
btrfs_balance_sys(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2548 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2549 const struct btrfs_balance_item *bi,
2550 struct btrfs_disk_balance_args *ba)
2551 {
2552 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2553 }
2554
btrfs_set_balance_sys(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2555 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2556 struct btrfs_balance_item *bi,
2557 const struct btrfs_disk_balance_args *ba)
2558 {
2559 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2560 }
2561
2562 static inline void
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)2563 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2564 const struct btrfs_disk_balance_args *disk)
2565 {
2566 memset(cpu, 0, sizeof(*cpu));
2567
2568 cpu->profiles = le64_to_cpu(disk->profiles);
2569 cpu->usage = le64_to_cpu(disk->usage);
2570 cpu->devid = le64_to_cpu(disk->devid);
2571 cpu->pstart = le64_to_cpu(disk->pstart);
2572 cpu->pend = le64_to_cpu(disk->pend);
2573 cpu->vstart = le64_to_cpu(disk->vstart);
2574 cpu->vend = le64_to_cpu(disk->vend);
2575 cpu->target = le64_to_cpu(disk->target);
2576 cpu->flags = le64_to_cpu(disk->flags);
2577 cpu->limit = le64_to_cpu(disk->limit);
2578 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2579 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2580 }
2581
2582 static inline void
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)2583 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2584 const struct btrfs_balance_args *cpu)
2585 {
2586 memset(disk, 0, sizeof(*disk));
2587
2588 disk->profiles = cpu_to_le64(cpu->profiles);
2589 disk->usage = cpu_to_le64(cpu->usage);
2590 disk->devid = cpu_to_le64(cpu->devid);
2591 disk->pstart = cpu_to_le64(cpu->pstart);
2592 disk->pend = cpu_to_le64(cpu->pend);
2593 disk->vstart = cpu_to_le64(cpu->vstart);
2594 disk->vend = cpu_to_le64(cpu->vend);
2595 disk->target = cpu_to_le64(cpu->target);
2596 disk->flags = cpu_to_le64(cpu->flags);
2597 disk->limit = cpu_to_le64(cpu->limit);
2598 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2599 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2600 }
2601
2602 /* struct btrfs_super_block */
2603 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2604 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2605 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2606 generation, 64);
2607 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2608 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2609 struct btrfs_super_block, sys_chunk_array_size, 32);
2610 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2611 struct btrfs_super_block, chunk_root_generation, 64);
2612 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2613 root_level, 8);
2614 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2615 chunk_root, 64);
2616 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2617 chunk_root_level, 8);
2618 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2619 log_root, 64);
2620 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2621 log_root_level, 8);
2622 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2623 total_bytes, 64);
2624 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2625 bytes_used, 64);
2626 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2627 sectorsize, 32);
2628 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2629 nodesize, 32);
2630 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2631 stripesize, 32);
2632 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2633 root_dir_objectid, 64);
2634 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2635 num_devices, 64);
2636 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2637 compat_flags, 64);
2638 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2639 compat_ro_flags, 64);
2640 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2641 incompat_flags, 64);
2642 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2643 csum_type, 16);
2644 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2645 cache_generation, 64);
2646 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2647 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2648 uuid_tree_generation, 64);
2649
2650 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2651 const char *btrfs_super_csum_name(u16 csum_type);
2652 const char *btrfs_super_csum_driver(u16 csum_type);
2653 size_t __attribute_const__ btrfs_get_num_csums(void);
2654
2655
2656 /*
2657 * The leaf data grows from end-to-front in the node.
2658 * this returns the address of the start of the last item,
2659 * which is the stop of the leaf data stack
2660 */
leaf_data_end(const struct extent_buffer * leaf)2661 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2662 {
2663 u32 nr = btrfs_header_nritems(leaf);
2664
2665 if (nr == 0)
2666 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2667 return btrfs_item_offset(leaf, nr - 1);
2668 }
2669
2670 /* struct btrfs_file_extent_item */
2671 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2672 type, 8);
2673 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2674 struct btrfs_file_extent_item, disk_bytenr, 64);
2675 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2676 struct btrfs_file_extent_item, offset, 64);
2677 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2678 struct btrfs_file_extent_item, generation, 64);
2679 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2680 struct btrfs_file_extent_item, num_bytes, 64);
2681 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2682 struct btrfs_file_extent_item, ram_bytes, 64);
2683 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2684 struct btrfs_file_extent_item, disk_num_bytes, 64);
2685 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2686 struct btrfs_file_extent_item, compression, 8);
2687
2688 static inline unsigned long
btrfs_file_extent_inline_start(const struct btrfs_file_extent_item * e)2689 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2690 {
2691 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2692 }
2693
btrfs_file_extent_calc_inline_size(u32 datasize)2694 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2695 {
2696 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2697 }
2698
2699 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2700 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2701 disk_bytenr, 64);
2702 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2703 generation, 64);
2704 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2705 disk_num_bytes, 64);
2706 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2707 offset, 64);
2708 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2709 num_bytes, 64);
2710 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2711 ram_bytes, 64);
2712 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2713 compression, 8);
2714 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2715 encryption, 8);
2716 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2717 other_encoding, 16);
2718
2719 /*
2720 * this returns the number of bytes used by the item on disk, minus the
2721 * size of any extent headers. If a file is compressed on disk, this is
2722 * the compressed size
2723 */
btrfs_file_extent_inline_item_len(const struct extent_buffer * eb,int nr)2724 static inline u32 btrfs_file_extent_inline_item_len(
2725 const struct extent_buffer *eb,
2726 int nr)
2727 {
2728 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2729 }
2730
2731 /* btrfs_qgroup_status_item */
2732 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2733 generation, 64);
2734 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2735 version, 64);
2736 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2737 flags, 64);
2738 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2739 rescan, 64);
2740
2741 /* btrfs_qgroup_info_item */
2742 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2743 generation, 64);
2744 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2745 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2746 rfer_cmpr, 64);
2747 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2748 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2749 excl_cmpr, 64);
2750
2751 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2752 struct btrfs_qgroup_info_item, generation, 64);
2753 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2754 rfer, 64);
2755 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2756 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2757 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2758 excl, 64);
2759 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2760 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2761
2762 /* btrfs_qgroup_limit_item */
2763 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2764 flags, 64);
2765 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2766 max_rfer, 64);
2767 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2768 max_excl, 64);
2769 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2770 rsv_rfer, 64);
2771 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2772 rsv_excl, 64);
2773
2774 /* btrfs_dev_replace_item */
2775 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2776 struct btrfs_dev_replace_item, src_devid, 64);
2777 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2778 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2779 64);
2780 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2781 replace_state, 64);
2782 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2783 time_started, 64);
2784 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2785 time_stopped, 64);
2786 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2787 num_write_errors, 64);
2788 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2789 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2790 64);
2791 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2792 cursor_left, 64);
2793 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2794 cursor_right, 64);
2795
2796 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2797 struct btrfs_dev_replace_item, src_devid, 64);
2798 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2799 struct btrfs_dev_replace_item,
2800 cont_reading_from_srcdev_mode, 64);
2801 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2802 struct btrfs_dev_replace_item, replace_state, 64);
2803 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2804 struct btrfs_dev_replace_item, time_started, 64);
2805 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2806 struct btrfs_dev_replace_item, time_stopped, 64);
2807 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2808 struct btrfs_dev_replace_item, num_write_errors, 64);
2809 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2810 struct btrfs_dev_replace_item,
2811 num_uncorrectable_read_errors, 64);
2812 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2813 struct btrfs_dev_replace_item, cursor_left, 64);
2814 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2815 struct btrfs_dev_replace_item, cursor_right, 64);
2816
2817 /* helper function to cast into the data area of the leaf. */
2818 #define btrfs_item_ptr(leaf, slot, type) \
2819 ((type *)(BTRFS_LEAF_DATA_OFFSET + \
2820 btrfs_item_offset(leaf, slot)))
2821
2822 #define btrfs_item_ptr_offset(leaf, slot) \
2823 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2824 btrfs_item_offset(leaf, slot)))
2825
btrfs_crc32c(u32 crc,const void * address,unsigned length)2826 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2827 {
2828 return crc32c(crc, address, length);
2829 }
2830
btrfs_crc32c_final(u32 crc,u8 * result)2831 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2832 {
2833 put_unaligned_le32(~crc, result);
2834 }
2835
btrfs_name_hash(const char * name,int len)2836 static inline u64 btrfs_name_hash(const char *name, int len)
2837 {
2838 return crc32c((u32)~1, name, len);
2839 }
2840
2841 /*
2842 * Figure the key offset of an extended inode ref
2843 */
btrfs_extref_hash(u64 parent_objectid,const char * name,int len)2844 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2845 int len)
2846 {
2847 return (u64) crc32c(parent_objectid, name, len);
2848 }
2849
btrfs_alloc_write_mask(struct address_space * mapping)2850 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2851 {
2852 return mapping_gfp_constraint(mapping, ~__GFP_FS);
2853 }
2854
2855 /* extent-tree.c */
2856
2857 enum btrfs_inline_ref_type {
2858 BTRFS_REF_TYPE_INVALID,
2859 BTRFS_REF_TYPE_BLOCK,
2860 BTRFS_REF_TYPE_DATA,
2861 BTRFS_REF_TYPE_ANY,
2862 };
2863
2864 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2865 struct btrfs_extent_inline_ref *iref,
2866 enum btrfs_inline_ref_type is_data);
2867 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2868
2869
2870 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2871 u64 start, u64 num_bytes);
2872 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2873 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2874 unsigned long count);
2875 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2876 struct btrfs_delayed_ref_root *delayed_refs,
2877 struct btrfs_delayed_ref_head *head);
2878 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2879 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2880 struct btrfs_fs_info *fs_info, u64 bytenr,
2881 u64 offset, int metadata, u64 *refs, u64 *flags);
2882 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2883 int reserved);
2884 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2885 u64 bytenr, u64 num_bytes);
2886 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2887 int btrfs_cross_ref_exist(struct btrfs_root *root,
2888 u64 objectid, u64 offset, u64 bytenr, bool strict,
2889 struct btrfs_path *path);
2890 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2891 struct btrfs_root *root,
2892 u64 parent, u64 root_objectid,
2893 const struct btrfs_disk_key *key,
2894 int level, u64 hint,
2895 u64 empty_size,
2896 enum btrfs_lock_nesting nest);
2897 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2898 u64 root_id,
2899 struct extent_buffer *buf,
2900 u64 parent, int last_ref);
2901 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2902 struct btrfs_root *root, u64 owner,
2903 u64 offset, u64 ram_bytes,
2904 struct btrfs_key *ins);
2905 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2906 u64 root_objectid, u64 owner, u64 offset,
2907 struct btrfs_key *ins);
2908 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2909 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2910 struct btrfs_key *ins, int is_data, int delalloc);
2911 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2912 struct extent_buffer *buf, int full_backref);
2913 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2914 struct extent_buffer *buf, int full_backref);
2915 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2916 struct extent_buffer *eb, u64 flags, int level);
2917 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2918
2919 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2920 u64 start, u64 len, int delalloc);
2921 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2922 u64 len);
2923 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2924 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2925 struct btrfs_ref *generic_ref);
2926
2927 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2928
2929 /*
2930 * Different levels for to flush space when doing space reservations.
2931 *
2932 * The higher the level, the more methods we try to reclaim space.
2933 */
2934 enum btrfs_reserve_flush_enum {
2935 /* If we are in the transaction, we can't flush anything.*/
2936 BTRFS_RESERVE_NO_FLUSH,
2937
2938 /*
2939 * Flush space by:
2940 * - Running delayed inode items
2941 * - Allocating a new chunk
2942 */
2943 BTRFS_RESERVE_FLUSH_LIMIT,
2944
2945 /*
2946 * Flush space by:
2947 * - Running delayed inode items
2948 * - Running delayed refs
2949 * - Running delalloc and waiting for ordered extents
2950 * - Allocating a new chunk
2951 */
2952 BTRFS_RESERVE_FLUSH_EVICT,
2953
2954 /*
2955 * Flush space by above mentioned methods and by:
2956 * - Running delayed iputs
2957 * - Committing transaction
2958 *
2959 * Can be interrupted by a fatal signal.
2960 */
2961 BTRFS_RESERVE_FLUSH_DATA,
2962 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2963 BTRFS_RESERVE_FLUSH_ALL,
2964
2965 /*
2966 * Pretty much the same as FLUSH_ALL, but can also steal space from
2967 * global rsv.
2968 *
2969 * Can be interrupted by a fatal signal.
2970 */
2971 BTRFS_RESERVE_FLUSH_ALL_STEAL,
2972 };
2973
2974 enum btrfs_flush_state {
2975 FLUSH_DELAYED_ITEMS_NR = 1,
2976 FLUSH_DELAYED_ITEMS = 2,
2977 FLUSH_DELAYED_REFS_NR = 3,
2978 FLUSH_DELAYED_REFS = 4,
2979 FLUSH_DELALLOC = 5,
2980 FLUSH_DELALLOC_WAIT = 6,
2981 FLUSH_DELALLOC_FULL = 7,
2982 ALLOC_CHUNK = 8,
2983 ALLOC_CHUNK_FORCE = 9,
2984 RUN_DELAYED_IPUTS = 10,
2985 COMMIT_TRANS = 11,
2986 };
2987
2988 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2989 struct btrfs_block_rsv *rsv,
2990 int nitems, bool use_global_rsv);
2991 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2992 struct btrfs_block_rsv *rsv);
2993 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2994
2995 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
2996 u64 disk_num_bytes, bool noflush);
2997 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2998 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2999 u64 start, u64 end);
3000 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
3001 u64 num_bytes, u64 *actual_bytes);
3002 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
3003
3004 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3005 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3006 struct btrfs_fs_info *fs_info);
3007 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
3008 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
3009 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
3010
3011 /* ctree.c */
3012 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
3013 int *slot);
3014 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
3015 int btrfs_previous_item(struct btrfs_root *root,
3016 struct btrfs_path *path, u64 min_objectid,
3017 int type);
3018 int btrfs_previous_extent_item(struct btrfs_root *root,
3019 struct btrfs_path *path, u64 min_objectid);
3020 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3021 struct btrfs_path *path,
3022 const struct btrfs_key *new_key);
3023 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3024 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3025 struct btrfs_key *key, int lowest_level,
3026 u64 min_trans);
3027 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3028 struct btrfs_path *path,
3029 u64 min_trans);
3030 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
3031 int slot);
3032
3033 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3034 struct btrfs_root *root, struct extent_buffer *buf,
3035 struct extent_buffer *parent, int parent_slot,
3036 struct extent_buffer **cow_ret,
3037 enum btrfs_lock_nesting nest);
3038 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3039 struct btrfs_root *root,
3040 struct extent_buffer *buf,
3041 struct extent_buffer **cow_ret, u64 new_root_objectid);
3042 int btrfs_block_can_be_shared(struct btrfs_root *root,
3043 struct extent_buffer *buf);
3044 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
3045 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
3046 int btrfs_split_item(struct btrfs_trans_handle *trans,
3047 struct btrfs_root *root,
3048 struct btrfs_path *path,
3049 const struct btrfs_key *new_key,
3050 unsigned long split_offset);
3051 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3052 struct btrfs_root *root,
3053 struct btrfs_path *path,
3054 const struct btrfs_key *new_key);
3055 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3056 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3057 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3058 const struct btrfs_key *key, struct btrfs_path *p,
3059 int ins_len, int cow);
3060 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
3061 struct btrfs_path *p, u64 time_seq);
3062 int btrfs_search_slot_for_read(struct btrfs_root *root,
3063 const struct btrfs_key *key,
3064 struct btrfs_path *p, int find_higher,
3065 int return_any);
3066 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3067 struct btrfs_root *root, struct extent_buffer *parent,
3068 int start_slot, u64 *last_ret,
3069 struct btrfs_key *progress);
3070 void btrfs_release_path(struct btrfs_path *p);
3071 struct btrfs_path *btrfs_alloc_path(void);
3072 void btrfs_free_path(struct btrfs_path *p);
3073
3074 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3075 struct btrfs_path *path, int slot, int nr);
btrfs_del_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)3076 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3077 struct btrfs_root *root,
3078 struct btrfs_path *path)
3079 {
3080 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3081 }
3082
3083 /*
3084 * Describes a batch of items to insert in a btree. This is used by
3085 * btrfs_insert_empty_items().
3086 */
3087 struct btrfs_item_batch {
3088 /*
3089 * Pointer to an array containing the keys of the items to insert (in
3090 * sorted order).
3091 */
3092 const struct btrfs_key *keys;
3093 /* Pointer to an array containing the data size for each item to insert. */
3094 const u32 *data_sizes;
3095 /*
3096 * The sum of data sizes for all items. The caller can compute this while
3097 * setting up the data_sizes array, so it ends up being more efficient
3098 * than having btrfs_insert_empty_items() or setup_item_for_insert()
3099 * doing it, as it would avoid an extra loop over a potentially large
3100 * array, and in the case of setup_item_for_insert(), we would be doing
3101 * it while holding a write lock on a leaf and often on upper level nodes
3102 * too, unnecessarily increasing the size of a critical section.
3103 */
3104 u32 total_data_size;
3105 /* Size of the keys and data_sizes arrays (number of items in the batch). */
3106 int nr;
3107 };
3108
3109 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3110 struct btrfs_path *path,
3111 const struct btrfs_key *key,
3112 u32 data_size);
3113 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3114 const struct btrfs_key *key, void *data, u32 data_size);
3115 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3116 struct btrfs_root *root,
3117 struct btrfs_path *path,
3118 const struct btrfs_item_batch *batch);
3119
btrfs_insert_empty_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)3120 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3121 struct btrfs_root *root,
3122 struct btrfs_path *path,
3123 const struct btrfs_key *key,
3124 u32 data_size)
3125 {
3126 struct btrfs_item_batch batch;
3127
3128 batch.keys = key;
3129 batch.data_sizes = &data_size;
3130 batch.total_data_size = data_size;
3131 batch.nr = 1;
3132
3133 return btrfs_insert_empty_items(trans, root, path, &batch);
3134 }
3135
3136 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3137 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3138 u64 time_seq);
3139
3140 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
3141 struct btrfs_path *path);
3142
3143 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
3144 struct btrfs_path *path);
3145
3146 /*
3147 * Search in @root for a given @key, and store the slot found in @found_key.
3148 *
3149 * @root: The root node of the tree.
3150 * @key: The key we are looking for.
3151 * @found_key: Will hold the found item.
3152 * @path: Holds the current slot/leaf.
3153 * @iter_ret: Contains the value returned from btrfs_search_slot or
3154 * btrfs_get_next_valid_item, whichever was executed last.
3155 *
3156 * The @iter_ret is an output variable that will contain the return value of
3157 * btrfs_search_slot, if it encountered an error, or the value returned from
3158 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
3159 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
3160 *
3161 * It's recommended to use a separate variable for iter_ret and then use it to
3162 * set the function return value so there's no confusion of the 0/1/errno
3163 * values stemming from btrfs_search_slot.
3164 */
3165 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
3166 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
3167 (iter_ret) >= 0 && \
3168 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
3169 (path)->slots[0]++ \
3170 )
3171
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * p,u64 time_seq)3172 static inline int btrfs_next_old_item(struct btrfs_root *root,
3173 struct btrfs_path *p, u64 time_seq)
3174 {
3175 ++p->slots[0];
3176 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3177 return btrfs_next_old_leaf(root, p, time_seq);
3178 return 0;
3179 }
3180
3181 /*
3182 * Search the tree again to find a leaf with greater keys.
3183 *
3184 * Returns 0 if it found something or 1 if there are no greater leaves.
3185 * Returns < 0 on error.
3186 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)3187 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3188 {
3189 return btrfs_next_old_leaf(root, path, 0);
3190 }
3191
btrfs_next_item(struct btrfs_root * root,struct btrfs_path * p)3192 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3193 {
3194 return btrfs_next_old_item(root, p, 0);
3195 }
3196 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3197 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3198 int for_reloc);
3199 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3200 struct btrfs_root *root,
3201 struct extent_buffer *node,
3202 struct extent_buffer *parent);
btrfs_fs_closing(struct btrfs_fs_info * fs_info)3203 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3204 {
3205 /*
3206 * Do it this way so we only ever do one test_bit in the normal case.
3207 */
3208 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3209 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3210 return 2;
3211 return 1;
3212 }
3213 return 0;
3214 }
3215
3216 /*
3217 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3218 * anything except sleeping. This function is used to check the status of
3219 * the fs.
3220 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3221 * since setting and checking for SB_RDONLY in the superblock's flags is not
3222 * atomic.
3223 */
btrfs_need_cleaner_sleep(struct btrfs_fs_info * fs_info)3224 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3225 {
3226 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3227 btrfs_fs_closing(fs_info);
3228 }
3229
btrfs_set_sb_rdonly(struct super_block * sb)3230 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3231 {
3232 sb->s_flags |= SB_RDONLY;
3233 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3234 }
3235
btrfs_clear_sb_rdonly(struct super_block * sb)3236 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3237 {
3238 sb->s_flags &= ~SB_RDONLY;
3239 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3240 }
3241
3242 /* root-item.c */
3243 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3244 u64 ref_id, u64 dirid, u64 sequence, const char *name,
3245 int name_len);
3246 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3247 u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3248 int name_len);
3249 int btrfs_del_root(struct btrfs_trans_handle *trans,
3250 const struct btrfs_key *key);
3251 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3252 const struct btrfs_key *key,
3253 struct btrfs_root_item *item);
3254 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3255 struct btrfs_root *root,
3256 struct btrfs_key *key,
3257 struct btrfs_root_item *item);
3258 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3259 struct btrfs_path *path, struct btrfs_root_item *root_item,
3260 struct btrfs_key *root_key);
3261 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3262 void btrfs_set_root_node(struct btrfs_root_item *item,
3263 struct extent_buffer *node);
3264 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3265 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3266 struct btrfs_root *root);
3267
3268 /* uuid-tree.c */
3269 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3270 u64 subid);
3271 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3272 u64 subid);
3273 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3274
3275 /* dir-item.c */
3276 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3277 const char *name, int name_len);
3278 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3279 int name_len, struct btrfs_inode *dir,
3280 struct btrfs_key *location, u8 type, u64 index);
3281 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3282 struct btrfs_root *root,
3283 struct btrfs_path *path, u64 dir,
3284 const char *name, int name_len,
3285 int mod);
3286 struct btrfs_dir_item *
3287 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3288 struct btrfs_root *root,
3289 struct btrfs_path *path, u64 dir,
3290 u64 index, const char *name, int name_len,
3291 int mod);
3292 struct btrfs_dir_item *
3293 btrfs_search_dir_index_item(struct btrfs_root *root,
3294 struct btrfs_path *path, u64 dirid,
3295 const char *name, int name_len);
3296 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3297 struct btrfs_root *root,
3298 struct btrfs_path *path,
3299 struct btrfs_dir_item *di);
3300 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3301 struct btrfs_root *root,
3302 struct btrfs_path *path, u64 objectid,
3303 const char *name, u16 name_len,
3304 const void *data, u16 data_len);
3305 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3306 struct btrfs_root *root,
3307 struct btrfs_path *path, u64 dir,
3308 const char *name, u16 name_len,
3309 int mod);
3310 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3311 struct btrfs_path *path,
3312 const char *name,
3313 int name_len);
3314
3315 /* orphan.c */
3316 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3317 struct btrfs_root *root, u64 offset);
3318 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3319 struct btrfs_root *root, u64 offset);
3320 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3321
3322 /* file-item.c */
3323 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3324 struct btrfs_root *root, u64 bytenr, u64 len);
3325 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3326 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
3327 struct btrfs_root *root, u64 objectid, u64 pos,
3328 u64 num_bytes);
3329 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3330 struct btrfs_root *root,
3331 struct btrfs_path *path, u64 objectid,
3332 u64 bytenr, int mod);
3333 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3334 struct btrfs_root *root,
3335 struct btrfs_ordered_sum *sums);
3336 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3337 u64 offset, bool one_ordered);
3338 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3339 struct list_head *list, int search_commit,
3340 bool nowait);
3341 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3342 const struct btrfs_path *path,
3343 struct btrfs_file_extent_item *fi,
3344 const bool new_inline,
3345 struct extent_map *em);
3346 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3347 u64 len);
3348 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3349 u64 len);
3350 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3351 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3352
3353 /* inode.c */
3354 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num);
3355 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio,
3356 int mirror_num, enum btrfs_compression_type compress_type);
3357 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3358 u32 pgoff, u8 *csum, const u8 * const csum_expected);
3359 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3360 u32 bio_offset, struct page *page, u32 pgoff);
3361 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3362 u32 bio_offset, struct page *page,
3363 u64 start, u64 end);
3364 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3365 u32 bio_offset, struct page *page, u32 pgoff);
3366 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3367 u64 *orig_start, u64 *orig_block_len,
3368 u64 *ram_bytes, bool nowait, bool strict);
3369
3370 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3371 struct btrfs_inode *inode);
3372 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3373 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3374 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3375 struct btrfs_inode *dir, struct btrfs_inode *inode,
3376 const char *name, int name_len);
3377 int btrfs_add_link(struct btrfs_trans_handle *trans,
3378 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3379 const char *name, int name_len, int add_backref, u64 index);
3380 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3381 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3382 int front);
3383
3384 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3385 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3386 bool in_reclaim_context);
3387 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3388 unsigned int extra_bits,
3389 struct extent_state **cached_state);
3390 struct btrfs_new_inode_args {
3391 /* Input */
3392 struct inode *dir;
3393 struct dentry *dentry;
3394 struct inode *inode;
3395 bool orphan;
3396 bool subvol;
3397
3398 /*
3399 * Output from btrfs_new_inode_prepare(), input to
3400 * btrfs_create_new_inode().
3401 */
3402 struct posix_acl *default_acl;
3403 struct posix_acl *acl;
3404 };
3405 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
3406 unsigned int *trans_num_items);
3407 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
3408 struct btrfs_new_inode_args *args);
3409 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
3410 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
3411 struct inode *dir);
3412 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3413 u32 bits);
3414 void btrfs_clear_delalloc_extent(struct inode *inode,
3415 struct extent_state *state, u32 bits);
3416 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3417 struct extent_state *other);
3418 void btrfs_split_delalloc_extent(struct inode *inode,
3419 struct extent_state *orig, u64 split);
3420 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3421 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3422 void btrfs_evict_inode(struct inode *inode);
3423 struct inode *btrfs_alloc_inode(struct super_block *sb);
3424 void btrfs_destroy_inode(struct inode *inode);
3425 void btrfs_free_inode(struct inode *inode);
3426 int btrfs_drop_inode(struct inode *inode);
3427 int __init btrfs_init_cachep(void);
3428 void __cold btrfs_destroy_cachep(void);
3429 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3430 struct btrfs_root *root, struct btrfs_path *path);
3431 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3432 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3433 struct page *page, size_t pg_offset,
3434 u64 start, u64 end);
3435 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3436 struct btrfs_root *root, struct btrfs_inode *inode);
3437 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3438 struct btrfs_root *root, struct btrfs_inode *inode);
3439 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3440 struct btrfs_inode *inode);
3441 int btrfs_orphan_cleanup(struct btrfs_root *root);
3442 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3443 void btrfs_add_delayed_iput(struct inode *inode);
3444 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3445 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3446 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3447 u64 start, u64 num_bytes, u64 min_size,
3448 loff_t actual_len, u64 *alloc_hint);
3449 int btrfs_prealloc_file_range_trans(struct inode *inode,
3450 struct btrfs_trans_handle *trans, int mode,
3451 u64 start, u64 num_bytes, u64 min_size,
3452 loff_t actual_len, u64 *alloc_hint);
3453 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3454 u64 start, u64 end, int *page_started, unsigned long *nr_written,
3455 struct writeback_control *wbc);
3456 int btrfs_writepage_cow_fixup(struct page *page);
3457 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3458 struct page *page, u64 start,
3459 u64 end, bool uptodate);
3460 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
3461 int compress_type);
3462 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
3463 u64 file_offset, u64 disk_bytenr,
3464 u64 disk_io_size,
3465 struct page **pages);
3466 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
3467 struct btrfs_ioctl_encoded_io_args *encoded);
3468 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
3469 const struct btrfs_ioctl_encoded_io_args *encoded);
3470
3471 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter,
3472 size_t done_before);
3473 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
3474 size_t done_before);
3475
3476 extern const struct dentry_operations btrfs_dentry_operations;
3477
3478 /* Inode locking type flags, by default the exclusive lock is taken */
3479 #define BTRFS_ILOCK_SHARED (1U << 0)
3480 #define BTRFS_ILOCK_TRY (1U << 1)
3481 #define BTRFS_ILOCK_MMAP (1U << 2)
3482
3483 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3484 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3485 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3486 const u64 add_bytes,
3487 const u64 del_bytes);
3488 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
3489
3490 /* ioctl.c */
3491 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3492 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3493 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3494 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3495 struct dentry *dentry, struct fileattr *fa);
3496 int btrfs_ioctl_get_supported_features(void __user *arg);
3497 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3498 int __pure btrfs_is_empty_uuid(u8 *uuid);
3499 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3500 struct btrfs_ioctl_defrag_range_args *range,
3501 u64 newer_than, unsigned long max_to_defrag);
3502 void btrfs_get_block_group_info(struct list_head *groups_list,
3503 struct btrfs_ioctl_space_info *space);
3504 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3505 struct btrfs_ioctl_balance_args *bargs);
3506
3507 /* file.c */
3508 int __init btrfs_auto_defrag_init(void);
3509 void __cold btrfs_auto_defrag_exit(void);
3510 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3511 struct btrfs_inode *inode, u32 extent_thresh);
3512 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3513 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3514 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3515 extern const struct file_operations btrfs_file_operations;
3516 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3517 struct btrfs_root *root, struct btrfs_inode *inode,
3518 struct btrfs_drop_extents_args *args);
3519 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3520 struct btrfs_path *path, const u64 start,
3521 const u64 end,
3522 struct btrfs_replace_extent_info *extent_info,
3523 struct btrfs_trans_handle **trans_out);
3524 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3525 struct btrfs_inode *inode, u64 start, u64 end);
3526 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
3527 const struct btrfs_ioctl_encoded_io_args *encoded);
3528 int btrfs_release_file(struct inode *inode, struct file *file);
3529 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3530 size_t num_pages, loff_t pos, size_t write_bytes,
3531 struct extent_state **cached, bool noreserve);
3532 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3533 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3534 size_t *write_bytes, bool nowait);
3535 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3536 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3537 u64 *delalloc_start_ret, u64 *delalloc_end_ret);
3538
3539 /* tree-defrag.c */
3540 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3541 struct btrfs_root *root);
3542
3543 /* super.c */
3544 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3545 unsigned long new_flags);
3546 int btrfs_sync_fs(struct super_block *sb, int wait);
3547 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3548 u64 subvol_objectid);
3549
3550 static inline __printf(2, 3) __cold
btrfs_no_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)3551 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3552 {
3553 }
3554
3555 #ifdef CONFIG_PRINTK_INDEX
3556
3557 #define btrfs_printk(fs_info, fmt, args...) \
3558 do { \
3559 printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt); \
3560 _btrfs_printk(fs_info, fmt, ##args); \
3561 } while (0)
3562
3563 __printf(2, 3)
3564 __cold
3565 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3566
3567 #elif defined(CONFIG_PRINTK)
3568
3569 #define btrfs_printk(fs_info, fmt, args...) \
3570 _btrfs_printk(fs_info, fmt, ##args)
3571
3572 __printf(2, 3)
3573 __cold
3574 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3575
3576 #else
3577
3578 #define btrfs_printk(fs_info, fmt, args...) \
3579 btrfs_no_printk(fs_info, fmt, ##args)
3580 #endif
3581
3582 #define btrfs_emerg(fs_info, fmt, args...) \
3583 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3584 #define btrfs_alert(fs_info, fmt, args...) \
3585 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3586 #define btrfs_crit(fs_info, fmt, args...) \
3587 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3588 #define btrfs_err(fs_info, fmt, args...) \
3589 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3590 #define btrfs_warn(fs_info, fmt, args...) \
3591 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3592 #define btrfs_notice(fs_info, fmt, args...) \
3593 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3594 #define btrfs_info(fs_info, fmt, args...) \
3595 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3596
3597 /*
3598 * Wrappers that use printk_in_rcu
3599 */
3600 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3601 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3602 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3603 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3604 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3605 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3606 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3607 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3608 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3609 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3610 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3611 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3612 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3613 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3614
3615 /*
3616 * Wrappers that use a ratelimited printk_in_rcu
3617 */
3618 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3619 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3620 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3621 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3622 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3623 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3624 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3625 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3626 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3627 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3628 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3629 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3630 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3631 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3632
3633 /*
3634 * Wrappers that use a ratelimited printk
3635 */
3636 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3637 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3638 #define btrfs_alert_rl(fs_info, fmt, args...) \
3639 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3640 #define btrfs_crit_rl(fs_info, fmt, args...) \
3641 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3642 #define btrfs_err_rl(fs_info, fmt, args...) \
3643 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3644 #define btrfs_warn_rl(fs_info, fmt, args...) \
3645 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3646 #define btrfs_notice_rl(fs_info, fmt, args...) \
3647 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3648 #define btrfs_info_rl(fs_info, fmt, args...) \
3649 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3650
3651 #if defined(CONFIG_DYNAMIC_DEBUG)
3652 #define btrfs_debug(fs_info, fmt, args...) \
3653 _dynamic_func_call_no_desc(fmt, btrfs_printk, \
3654 fs_info, KERN_DEBUG fmt, ##args)
3655 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3656 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \
3657 fs_info, KERN_DEBUG fmt, ##args)
3658 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3659 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \
3660 fs_info, KERN_DEBUG fmt, ##args)
3661 #define btrfs_debug_rl(fs_info, fmt, args...) \
3662 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \
3663 fs_info, KERN_DEBUG fmt, ##args)
3664 #elif defined(DEBUG)
3665 #define btrfs_debug(fs_info, fmt, args...) \
3666 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3667 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3668 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3669 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3670 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3671 #define btrfs_debug_rl(fs_info, fmt, args...) \
3672 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3673 #else
3674 #define btrfs_debug(fs_info, fmt, args...) \
3675 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3676 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3677 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3678 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3679 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3680 #define btrfs_debug_rl(fs_info, fmt, args...) \
3681 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3682 #endif
3683
3684 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \
3685 do { \
3686 rcu_read_lock(); \
3687 btrfs_printk(fs_info, fmt, ##args); \
3688 rcu_read_unlock(); \
3689 } while (0)
3690
3691 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \
3692 do { \
3693 rcu_read_lock(); \
3694 btrfs_no_printk(fs_info, fmt, ##args); \
3695 rcu_read_unlock(); \
3696 } while (0)
3697
3698 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \
3699 do { \
3700 static DEFINE_RATELIMIT_STATE(_rs, \
3701 DEFAULT_RATELIMIT_INTERVAL, \
3702 DEFAULT_RATELIMIT_BURST); \
3703 if (__ratelimit(&_rs)) \
3704 btrfs_printk(fs_info, fmt, ##args); \
3705 } while (0)
3706
3707 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \
3708 do { \
3709 rcu_read_lock(); \
3710 btrfs_printk_ratelimited(fs_info, fmt, ##args); \
3711 rcu_read_unlock(); \
3712 } while (0)
3713
3714 #ifdef CONFIG_BTRFS_ASSERT
3715 __cold __noreturn
assertfail(const char * expr,const char * file,int line)3716 static inline void assertfail(const char *expr, const char *file, int line)
3717 {
3718 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3719 BUG();
3720 }
3721
3722 #define ASSERT(expr) \
3723 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3724
3725 #else
assertfail(const char * expr,const char * file,int line)3726 static inline void assertfail(const char *expr, const char* file, int line) { }
3727 #define ASSERT(expr) (void)(expr)
3728 #endif
3729
3730 #if BITS_PER_LONG == 32
3731 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3732 /*
3733 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3734 * addresses of extents.
3735 *
3736 * For 4K page size it's about 10T, for 64K it's 160T.
3737 */
3738 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3739 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3740 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3741 #endif
3742
3743 /*
3744 * Get the correct offset inside the page of extent buffer.
3745 *
3746 * @eb: target extent buffer
3747 * @start: offset inside the extent buffer
3748 *
3749 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3750 */
get_eb_offset_in_page(const struct extent_buffer * eb,unsigned long offset)3751 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3752 unsigned long offset)
3753 {
3754 /*
3755 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3756 * to PAGE_SIZE, thus adding it won't cause any difference.
3757 *
3758 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3759 * to the eb, thus we have to take the eb->start into consideration.
3760 */
3761 return offset_in_page(offset + eb->start);
3762 }
3763
get_eb_page_index(unsigned long offset)3764 static inline unsigned long get_eb_page_index(unsigned long offset)
3765 {
3766 /*
3767 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3768 *
3769 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3770 * and have ensured that all tree blocks are contained in one page,
3771 * thus we always get index == 0.
3772 */
3773 return offset >> PAGE_SHIFT;
3774 }
3775
3776 /*
3777 * Use that for functions that are conditionally exported for sanity tests but
3778 * otherwise static
3779 */
3780 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3781 #define EXPORT_FOR_TESTS static
3782 #else
3783 #define EXPORT_FOR_TESTS
3784 #endif
3785
3786 __cold
btrfs_print_v0_err(struct btrfs_fs_info * fs_info)3787 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3788 {
3789 btrfs_err(fs_info,
3790 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3791 }
3792
3793 __printf(5, 6)
3794 __cold
3795 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3796 unsigned int line, int errno, const char *fmt, ...);
3797
3798 const char * __attribute_const__ btrfs_decode_error(int errno);
3799
3800 __cold
3801 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3802 const char *function,
3803 unsigned int line, int errno, bool first_hit);
3804
3805 bool __cold abort_should_print_stack(int errno);
3806
3807 /*
3808 * Call btrfs_abort_transaction as early as possible when an error condition is
3809 * detected, that way the exact stack trace is reported for some errors.
3810 */
3811 #define btrfs_abort_transaction(trans, errno) \
3812 do { \
3813 bool first = false; \
3814 /* Report first abort since mount */ \
3815 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
3816 &((trans)->fs_info->fs_state))) { \
3817 first = true; \
3818 if (WARN(abort_should_print_stack(errno), \
3819 KERN_DEBUG \
3820 "BTRFS: Transaction aborted (error %d)\n", \
3821 (errno))) { \
3822 /* Stack trace printed. */ \
3823 } else { \
3824 btrfs_debug((trans)->fs_info, \
3825 "Transaction aborted (error %d)", \
3826 (errno)); \
3827 } \
3828 } \
3829 __btrfs_abort_transaction((trans), __func__, \
3830 __LINE__, (errno), first); \
3831 } while (0)
3832
3833 #ifdef CONFIG_PRINTK_INDEX
3834
3835 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3836 do { \
3837 printk_index_subsys_emit( \
3838 "BTRFS: error (device %s%s) in %s:%d: errno=%d %s", \
3839 KERN_CRIT, fmt); \
3840 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3841 (errno), fmt, ##args); \
3842 } while (0)
3843
3844 #else
3845
3846 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3847 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3848 (errno), fmt, ##args)
3849
3850 #endif
3851
3852 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3853 &(fs_info)->fs_state)))
3854 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \
3855 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \
3856 &(fs_info)->fs_state)))
3857
3858 __printf(5, 6)
3859 __cold
3860 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3861 unsigned int line, int errno, const char *fmt, ...);
3862 /*
3863 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3864 * will panic(). Otherwise we BUG() here.
3865 */
3866 #define btrfs_panic(fs_info, errno, fmt, args...) \
3867 do { \
3868 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3869 BUG(); \
3870 } while (0)
3871
3872
3873 /* compatibility and incompatibility defines */
3874
3875 #define btrfs_set_fs_incompat(__fs_info, opt) \
3876 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3877 #opt)
3878
__btrfs_set_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3879 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3880 u64 flag, const char* name)
3881 {
3882 struct btrfs_super_block *disk_super;
3883 u64 features;
3884
3885 disk_super = fs_info->super_copy;
3886 features = btrfs_super_incompat_flags(disk_super);
3887 if (!(features & flag)) {
3888 spin_lock(&fs_info->super_lock);
3889 features = btrfs_super_incompat_flags(disk_super);
3890 if (!(features & flag)) {
3891 features |= flag;
3892 btrfs_set_super_incompat_flags(disk_super, features);
3893 btrfs_info(fs_info,
3894 "setting incompat feature flag for %s (0x%llx)",
3895 name, flag);
3896 }
3897 spin_unlock(&fs_info->super_lock);
3898 }
3899 }
3900
3901 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3902 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3903 #opt)
3904
__btrfs_clear_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3905 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3906 u64 flag, const char* name)
3907 {
3908 struct btrfs_super_block *disk_super;
3909 u64 features;
3910
3911 disk_super = fs_info->super_copy;
3912 features = btrfs_super_incompat_flags(disk_super);
3913 if (features & flag) {
3914 spin_lock(&fs_info->super_lock);
3915 features = btrfs_super_incompat_flags(disk_super);
3916 if (features & flag) {
3917 features &= ~flag;
3918 btrfs_set_super_incompat_flags(disk_super, features);
3919 btrfs_info(fs_info,
3920 "clearing incompat feature flag for %s (0x%llx)",
3921 name, flag);
3922 }
3923 spin_unlock(&fs_info->super_lock);
3924 }
3925 }
3926
3927 #define btrfs_fs_incompat(fs_info, opt) \
3928 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3929
__btrfs_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag)3930 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3931 {
3932 struct btrfs_super_block *disk_super;
3933 disk_super = fs_info->super_copy;
3934 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3935 }
3936
3937 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3938 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3939 #opt)
3940
__btrfs_set_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3941 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3942 u64 flag, const char *name)
3943 {
3944 struct btrfs_super_block *disk_super;
3945 u64 features;
3946
3947 disk_super = fs_info->super_copy;
3948 features = btrfs_super_compat_ro_flags(disk_super);
3949 if (!(features & flag)) {
3950 spin_lock(&fs_info->super_lock);
3951 features = btrfs_super_compat_ro_flags(disk_super);
3952 if (!(features & flag)) {
3953 features |= flag;
3954 btrfs_set_super_compat_ro_flags(disk_super, features);
3955 btrfs_info(fs_info,
3956 "setting compat-ro feature flag for %s (0x%llx)",
3957 name, flag);
3958 }
3959 spin_unlock(&fs_info->super_lock);
3960 }
3961 }
3962
3963 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3964 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3965 #opt)
3966
__btrfs_clear_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3967 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3968 u64 flag, const char *name)
3969 {
3970 struct btrfs_super_block *disk_super;
3971 u64 features;
3972
3973 disk_super = fs_info->super_copy;
3974 features = btrfs_super_compat_ro_flags(disk_super);
3975 if (features & flag) {
3976 spin_lock(&fs_info->super_lock);
3977 features = btrfs_super_compat_ro_flags(disk_super);
3978 if (features & flag) {
3979 features &= ~flag;
3980 btrfs_set_super_compat_ro_flags(disk_super, features);
3981 btrfs_info(fs_info,
3982 "clearing compat-ro feature flag for %s (0x%llx)",
3983 name, flag);
3984 }
3985 spin_unlock(&fs_info->super_lock);
3986 }
3987 }
3988
3989 #define btrfs_fs_compat_ro(fs_info, opt) \
3990 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3991
__btrfs_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag)3992 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3993 {
3994 struct btrfs_super_block *disk_super;
3995 disk_super = fs_info->super_copy;
3996 return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3997 }
3998
3999 /* acl.c */
4000 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
4001 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
4002 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
4003 struct posix_acl *acl, int type);
4004 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode,
4005 struct posix_acl *acl, int type);
4006 #else
4007 #define btrfs_get_acl NULL
4008 #define btrfs_set_acl NULL
__btrfs_set_acl(struct btrfs_trans_handle * trans,struct inode * inode,struct posix_acl * acl,int type)4009 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans,
4010 struct inode *inode, struct posix_acl *acl,
4011 int type)
4012 {
4013 return -EOPNOTSUPP;
4014 }
4015 #endif
4016
4017 /* relocation.c */
4018 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
4019 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4020 struct btrfs_root *root);
4021 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4022 struct btrfs_root *root);
4023 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info);
4024 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
4025 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4026 struct btrfs_root *root, struct extent_buffer *buf,
4027 struct extent_buffer *cow);
4028 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4029 u64 *bytes_to_reserve);
4030 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4031 struct btrfs_pending_snapshot *pending);
4032 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
4033 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
4034 u64 bytenr);
4035 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
4036
4037 /* scrub.c */
4038 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4039 u64 end, struct btrfs_scrub_progress *progress,
4040 int readonly, int is_dev_replace);
4041 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
4042 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
4043 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4044 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
4045 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4046 struct btrfs_scrub_progress *progress);
4047
4048 /* dev-replace.c */
4049 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4050 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
4051
btrfs_bio_counter_dec(struct btrfs_fs_info * fs_info)4052 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4053 {
4054 btrfs_bio_counter_sub(fs_info, 1);
4055 }
4056
is_fstree(u64 rootid)4057 static inline int is_fstree(u64 rootid)
4058 {
4059 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4060 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4061 !btrfs_qgroup_level(rootid)))
4062 return 1;
4063 return 0;
4064 }
4065
btrfs_defrag_cancelled(struct btrfs_fs_info * fs_info)4066 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4067 {
4068 return signal_pending(current);
4069 }
4070
4071 /* verity.c */
4072 #ifdef CONFIG_FS_VERITY
4073
4074 extern const struct fsverity_operations btrfs_verityops;
4075 int btrfs_drop_verity_items(struct btrfs_inode *inode);
4076 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size);
4077
4078 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
4079 encryption, 8);
4080 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
4081 size, 64);
4082 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
4083 struct btrfs_verity_descriptor_item, encryption, 8);
4084 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
4085 struct btrfs_verity_descriptor_item, size, 64);
4086
4087 #else
4088
btrfs_drop_verity_items(struct btrfs_inode * inode)4089 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
4090 {
4091 return 0;
4092 }
4093
btrfs_get_verity_descriptor(struct inode * inode,void * buf,size_t buf_size)4094 static inline int btrfs_get_verity_descriptor(struct inode *inode, void *buf,
4095 size_t buf_size)
4096 {
4097 return -EPERM;
4098 }
4099
4100 #endif
4101
4102 /* Sanity test specific functions */
4103 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4104 void btrfs_test_destroy_inode(struct inode *inode);
btrfs_is_testing(struct btrfs_fs_info * fs_info)4105 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4106 {
4107 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
4108 }
4109 #else
btrfs_is_testing(struct btrfs_fs_info * fs_info)4110 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4111 {
4112 return 0;
4113 }
4114 #endif
4115
btrfs_is_data_reloc_root(const struct btrfs_root * root)4116 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
4117 {
4118 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
4119 }
4120
4121 /*
4122 * We use page status Private2 to indicate there is an ordered extent with
4123 * unfinished IO.
4124 *
4125 * Rename the Private2 accessors to Ordered, to improve readability.
4126 */
4127 #define PageOrdered(page) PagePrivate2(page)
4128 #define SetPageOrdered(page) SetPagePrivate2(page)
4129 #define ClearPageOrdered(page) ClearPagePrivate2(page)
4130 #define folio_test_ordered(folio) folio_test_private_2(folio)
4131 #define folio_set_ordered(folio) folio_set_private_2(folio)
4132 #define folio_clear_ordered(folio) folio_clear_private_2(folio)
4133
4134 #endif
4135