1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DFS referral cache routines
4  *
5  * Copyright (c) 2018-2019 Paulo Alcantara <palcantara@suse.de>
6  */
7 
8 #include <linux/jhash.h>
9 #include <linux/ktime.h>
10 #include <linux/slab.h>
11 #include <linux/proc_fs.h>
12 #include <linux/nls.h>
13 #include <linux/workqueue.h>
14 #include <linux/uuid.h>
15 #include "cifsglob.h"
16 #include "smb2pdu.h"
17 #include "smb2proto.h"
18 #include "cifsproto.h"
19 #include "cifs_debug.h"
20 #include "cifs_unicode.h"
21 #include "smb2glob.h"
22 #include "dns_resolve.h"
23 #include "dfs.h"
24 
25 #include "dfs_cache.h"
26 
27 #define CACHE_HTABLE_SIZE	32
28 #define CACHE_MAX_ENTRIES	64
29 #define CACHE_MIN_TTL		120 /* 2 minutes */
30 #define CACHE_DEFAULT_TTL	300 /* 5 minutes */
31 
32 struct cache_dfs_tgt {
33 	char *name;
34 	int path_consumed;
35 	struct list_head list;
36 };
37 
38 struct cache_entry {
39 	struct hlist_node hlist;
40 	const char *path;
41 	int hdr_flags; /* RESP_GET_DFS_REFERRAL.ReferralHeaderFlags */
42 	int ttl; /* DFS_REREFERRAL_V3.TimeToLive */
43 	int srvtype; /* DFS_REREFERRAL_V3.ServerType */
44 	int ref_flags; /* DFS_REREFERRAL_V3.ReferralEntryFlags */
45 	struct timespec64 etime;
46 	int path_consumed; /* RESP_GET_DFS_REFERRAL.PathConsumed */
47 	int numtgts;
48 	struct list_head tlist;
49 	struct cache_dfs_tgt *tgthint;
50 };
51 
52 static struct kmem_cache *cache_slab __read_mostly;
53 struct workqueue_struct *dfscache_wq;
54 
55 atomic_t dfs_cache_ttl;
56 
57 static struct nls_table *cache_cp;
58 
59 /*
60  * Number of entries in the cache
61  */
62 static atomic_t cache_count;
63 
64 static struct hlist_head cache_htable[CACHE_HTABLE_SIZE];
65 static DECLARE_RWSEM(htable_rw_lock);
66 
67 /**
68  * dfs_cache_canonical_path - get a canonical DFS path
69  *
70  * @path: DFS path
71  * @cp: codepage
72  * @remap: mapping type
73  *
74  * Return canonical path if success, otherwise error.
75  */
dfs_cache_canonical_path(const char * path,const struct nls_table * cp,int remap)76 char *dfs_cache_canonical_path(const char *path, const struct nls_table *cp, int remap)
77 {
78 	char *tmp;
79 	int plen = 0;
80 	char *npath;
81 
82 	if (!path || strlen(path) < 3 || (*path != '\\' && *path != '/'))
83 		return ERR_PTR(-EINVAL);
84 
85 	if (unlikely(strcmp(cp->charset, cache_cp->charset))) {
86 		tmp = (char *)cifs_strndup_to_utf16(path, strlen(path), &plen, cp, remap);
87 		if (!tmp) {
88 			cifs_dbg(VFS, "%s: failed to convert path to utf16\n", __func__);
89 			return ERR_PTR(-EINVAL);
90 		}
91 
92 		npath = cifs_strndup_from_utf16(tmp, plen, true, cache_cp);
93 		kfree(tmp);
94 
95 		if (!npath) {
96 			cifs_dbg(VFS, "%s: failed to convert path from utf16\n", __func__);
97 			return ERR_PTR(-EINVAL);
98 		}
99 	} else {
100 		npath = kstrdup(path, GFP_KERNEL);
101 		if (!npath)
102 			return ERR_PTR(-ENOMEM);
103 	}
104 	convert_delimiter(npath, '\\');
105 	return npath;
106 }
107 
cache_entry_expired(const struct cache_entry * ce)108 static inline bool cache_entry_expired(const struct cache_entry *ce)
109 {
110 	struct timespec64 ts;
111 
112 	ktime_get_coarse_real_ts64(&ts);
113 	return timespec64_compare(&ts, &ce->etime) >= 0;
114 }
115 
free_tgts(struct cache_entry * ce)116 static inline void free_tgts(struct cache_entry *ce)
117 {
118 	struct cache_dfs_tgt *t, *n;
119 
120 	list_for_each_entry_safe(t, n, &ce->tlist, list) {
121 		list_del(&t->list);
122 		kfree(t->name);
123 		kfree(t);
124 	}
125 }
126 
flush_cache_ent(struct cache_entry * ce)127 static inline void flush_cache_ent(struct cache_entry *ce)
128 {
129 	hlist_del_init(&ce->hlist);
130 	kfree(ce->path);
131 	free_tgts(ce);
132 	atomic_dec(&cache_count);
133 	kmem_cache_free(cache_slab, ce);
134 }
135 
flush_cache_ents(void)136 static void flush_cache_ents(void)
137 {
138 	int i;
139 
140 	for (i = 0; i < CACHE_HTABLE_SIZE; i++) {
141 		struct hlist_head *l = &cache_htable[i];
142 		struct hlist_node *n;
143 		struct cache_entry *ce;
144 
145 		hlist_for_each_entry_safe(ce, n, l, hlist) {
146 			if (!hlist_unhashed(&ce->hlist))
147 				flush_cache_ent(ce);
148 		}
149 	}
150 }
151 
152 /*
153  * dfs cache /proc file
154  */
dfscache_proc_show(struct seq_file * m,void * v)155 static int dfscache_proc_show(struct seq_file *m, void *v)
156 {
157 	int i;
158 	struct cache_entry *ce;
159 	struct cache_dfs_tgt *t;
160 
161 	seq_puts(m, "DFS cache\n---------\n");
162 
163 	down_read(&htable_rw_lock);
164 	for (i = 0; i < CACHE_HTABLE_SIZE; i++) {
165 		struct hlist_head *l = &cache_htable[i];
166 
167 		hlist_for_each_entry(ce, l, hlist) {
168 			if (hlist_unhashed(&ce->hlist))
169 				continue;
170 
171 			seq_printf(m,
172 				   "cache entry: path=%s,type=%s,ttl=%d,etime=%ld,hdr_flags=0x%x,ref_flags=0x%x,interlink=%s,path_consumed=%d,expired=%s\n",
173 				   ce->path, ce->srvtype == DFS_TYPE_ROOT ? "root" : "link",
174 				   ce->ttl, ce->etime.tv_nsec, ce->hdr_flags, ce->ref_flags,
175 				   DFS_INTERLINK(ce->hdr_flags) ? "yes" : "no",
176 				   ce->path_consumed, cache_entry_expired(ce) ? "yes" : "no");
177 
178 			list_for_each_entry(t, &ce->tlist, list) {
179 				seq_printf(m, "  %s%s\n",
180 					   t->name,
181 					   READ_ONCE(ce->tgthint) == t ? " (target hint)" : "");
182 			}
183 		}
184 	}
185 	up_read(&htable_rw_lock);
186 
187 	return 0;
188 }
189 
dfscache_proc_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)190 static ssize_t dfscache_proc_write(struct file *file, const char __user *buffer,
191 				   size_t count, loff_t *ppos)
192 {
193 	char c;
194 	int rc;
195 
196 	rc = get_user(c, buffer);
197 	if (rc)
198 		return rc;
199 
200 	if (c != '0')
201 		return -EINVAL;
202 
203 	cifs_dbg(FYI, "clearing dfs cache\n");
204 
205 	down_write(&htable_rw_lock);
206 	flush_cache_ents();
207 	up_write(&htable_rw_lock);
208 
209 	return count;
210 }
211 
dfscache_proc_open(struct inode * inode,struct file * file)212 static int dfscache_proc_open(struct inode *inode, struct file *file)
213 {
214 	return single_open(file, dfscache_proc_show, NULL);
215 }
216 
217 const struct proc_ops dfscache_proc_ops = {
218 	.proc_open	= dfscache_proc_open,
219 	.proc_read	= seq_read,
220 	.proc_lseek	= seq_lseek,
221 	.proc_release	= single_release,
222 	.proc_write	= dfscache_proc_write,
223 };
224 
225 #ifdef CONFIG_CIFS_DEBUG2
dump_tgts(const struct cache_entry * ce)226 static inline void dump_tgts(const struct cache_entry *ce)
227 {
228 	struct cache_dfs_tgt *t;
229 
230 	cifs_dbg(FYI, "target list:\n");
231 	list_for_each_entry(t, &ce->tlist, list) {
232 		cifs_dbg(FYI, "  %s%s\n", t->name,
233 			 READ_ONCE(ce->tgthint) == t ? " (target hint)" : "");
234 	}
235 }
236 
dump_ce(const struct cache_entry * ce)237 static inline void dump_ce(const struct cache_entry *ce)
238 {
239 	cifs_dbg(FYI, "cache entry: path=%s,type=%s,ttl=%d,etime=%ld,hdr_flags=0x%x,ref_flags=0x%x,interlink=%s,path_consumed=%d,expired=%s\n",
240 		 ce->path,
241 		 ce->srvtype == DFS_TYPE_ROOT ? "root" : "link", ce->ttl,
242 		 ce->etime.tv_nsec,
243 		 ce->hdr_flags, ce->ref_flags,
244 		 DFS_INTERLINK(ce->hdr_flags) ? "yes" : "no",
245 		 ce->path_consumed,
246 		 cache_entry_expired(ce) ? "yes" : "no");
247 	dump_tgts(ce);
248 }
249 
dump_refs(const struct dfs_info3_param * refs,int numrefs)250 static inline void dump_refs(const struct dfs_info3_param *refs, int numrefs)
251 {
252 	int i;
253 
254 	cifs_dbg(FYI, "DFS referrals returned by the server:\n");
255 	for (i = 0; i < numrefs; i++) {
256 		const struct dfs_info3_param *ref = &refs[i];
257 
258 		cifs_dbg(FYI,
259 			 "\n"
260 			 "flags:         0x%x\n"
261 			 "path_consumed: %d\n"
262 			 "server_type:   0x%x\n"
263 			 "ref_flag:      0x%x\n"
264 			 "path_name:     %s\n"
265 			 "node_name:     %s\n"
266 			 "ttl:           %d (%dm)\n",
267 			 ref->flags, ref->path_consumed, ref->server_type,
268 			 ref->ref_flag, ref->path_name, ref->node_name,
269 			 ref->ttl, ref->ttl / 60);
270 	}
271 }
272 #else
273 #define dump_tgts(e)
274 #define dump_ce(e)
275 #define dump_refs(r, n)
276 #endif
277 
278 /**
279  * dfs_cache_init - Initialize DFS referral cache.
280  *
281  * Return zero if initialized successfully, otherwise non-zero.
282  */
dfs_cache_init(void)283 int dfs_cache_init(void)
284 {
285 	int rc;
286 	int i;
287 
288 	dfscache_wq = alloc_workqueue("cifs-dfscache",
289 				      WQ_UNBOUND|WQ_FREEZABLE|WQ_MEM_RECLAIM,
290 				      0);
291 	if (!dfscache_wq)
292 		return -ENOMEM;
293 
294 	cache_slab = kmem_cache_create("cifs_dfs_cache",
295 				       sizeof(struct cache_entry), 0,
296 				       SLAB_HWCACHE_ALIGN, NULL);
297 	if (!cache_slab) {
298 		rc = -ENOMEM;
299 		goto out_destroy_wq;
300 	}
301 
302 	for (i = 0; i < CACHE_HTABLE_SIZE; i++)
303 		INIT_HLIST_HEAD(&cache_htable[i]);
304 
305 	atomic_set(&cache_count, 0);
306 	atomic_set(&dfs_cache_ttl, CACHE_DEFAULT_TTL);
307 	cache_cp = load_nls("utf8");
308 	if (!cache_cp)
309 		cache_cp = load_nls_default();
310 
311 	cifs_dbg(FYI, "%s: initialized DFS referral cache\n", __func__);
312 	return 0;
313 
314 out_destroy_wq:
315 	destroy_workqueue(dfscache_wq);
316 	return rc;
317 }
318 
cache_entry_hash(const void * data,int size,unsigned int * hash)319 static int cache_entry_hash(const void *data, int size, unsigned int *hash)
320 {
321 	int i, clen;
322 	const unsigned char *s = data;
323 	wchar_t c;
324 	unsigned int h = 0;
325 
326 	for (i = 0; i < size; i += clen) {
327 		clen = cache_cp->char2uni(&s[i], size - i, &c);
328 		if (unlikely(clen < 0)) {
329 			cifs_dbg(VFS, "%s: can't convert char\n", __func__);
330 			return clen;
331 		}
332 		c = cifs_toupper(c);
333 		h = jhash(&c, sizeof(c), h);
334 	}
335 	*hash = h % CACHE_HTABLE_SIZE;
336 	return 0;
337 }
338 
339 /* Return target hint of a DFS cache entry */
get_tgt_name(const struct cache_entry * ce)340 static inline char *get_tgt_name(const struct cache_entry *ce)
341 {
342 	struct cache_dfs_tgt *t = READ_ONCE(ce->tgthint);
343 
344 	return t ? t->name : ERR_PTR(-ENOENT);
345 }
346 
347 /* Return expire time out of a new entry's TTL */
get_expire_time(int ttl)348 static inline struct timespec64 get_expire_time(int ttl)
349 {
350 	struct timespec64 ts = {
351 		.tv_sec = ttl,
352 		.tv_nsec = 0,
353 	};
354 	struct timespec64 now;
355 
356 	ktime_get_coarse_real_ts64(&now);
357 	return timespec64_add(now, ts);
358 }
359 
360 /* Allocate a new DFS target */
alloc_target(const char * name,int path_consumed)361 static struct cache_dfs_tgt *alloc_target(const char *name, int path_consumed)
362 {
363 	struct cache_dfs_tgt *t;
364 
365 	t = kmalloc(sizeof(*t), GFP_ATOMIC);
366 	if (!t)
367 		return ERR_PTR(-ENOMEM);
368 	t->name = kstrdup(name, GFP_ATOMIC);
369 	if (!t->name) {
370 		kfree(t);
371 		return ERR_PTR(-ENOMEM);
372 	}
373 	t->path_consumed = path_consumed;
374 	INIT_LIST_HEAD(&t->list);
375 	return t;
376 }
377 
378 /*
379  * Copy DFS referral information to a cache entry and conditionally update
380  * target hint.
381  */
copy_ref_data(const struct dfs_info3_param * refs,int numrefs,struct cache_entry * ce,const char * tgthint)382 static int copy_ref_data(const struct dfs_info3_param *refs, int numrefs,
383 			 struct cache_entry *ce, const char *tgthint)
384 {
385 	struct cache_dfs_tgt *target;
386 	int i;
387 
388 	ce->ttl = max_t(int, refs[0].ttl, CACHE_MIN_TTL);
389 	ce->etime = get_expire_time(ce->ttl);
390 	ce->srvtype = refs[0].server_type;
391 	ce->hdr_flags = refs[0].flags;
392 	ce->ref_flags = refs[0].ref_flag;
393 	ce->path_consumed = refs[0].path_consumed;
394 
395 	for (i = 0; i < numrefs; i++) {
396 		struct cache_dfs_tgt *t;
397 
398 		t = alloc_target(refs[i].node_name, refs[i].path_consumed);
399 		if (IS_ERR(t)) {
400 			free_tgts(ce);
401 			return PTR_ERR(t);
402 		}
403 		if (tgthint && !strcasecmp(t->name, tgthint)) {
404 			list_add(&t->list, &ce->tlist);
405 			tgthint = NULL;
406 		} else {
407 			list_add_tail(&t->list, &ce->tlist);
408 		}
409 		ce->numtgts++;
410 	}
411 
412 	target = list_first_entry_or_null(&ce->tlist, struct cache_dfs_tgt,
413 					  list);
414 	WRITE_ONCE(ce->tgthint, target);
415 
416 	return 0;
417 }
418 
419 /* Allocate a new cache entry */
alloc_cache_entry(struct dfs_info3_param * refs,int numrefs)420 static struct cache_entry *alloc_cache_entry(struct dfs_info3_param *refs, int numrefs)
421 {
422 	struct cache_entry *ce;
423 	int rc;
424 
425 	ce = kmem_cache_zalloc(cache_slab, GFP_KERNEL);
426 	if (!ce)
427 		return ERR_PTR(-ENOMEM);
428 
429 	ce->path = refs[0].path_name;
430 	refs[0].path_name = NULL;
431 
432 	INIT_HLIST_NODE(&ce->hlist);
433 	INIT_LIST_HEAD(&ce->tlist);
434 
435 	rc = copy_ref_data(refs, numrefs, ce, NULL);
436 	if (rc) {
437 		kfree(ce->path);
438 		kmem_cache_free(cache_slab, ce);
439 		ce = ERR_PTR(rc);
440 	}
441 	return ce;
442 }
443 
remove_oldest_entry_locked(void)444 static void remove_oldest_entry_locked(void)
445 {
446 	int i;
447 	struct cache_entry *ce;
448 	struct cache_entry *to_del = NULL;
449 
450 	WARN_ON(!rwsem_is_locked(&htable_rw_lock));
451 
452 	for (i = 0; i < CACHE_HTABLE_SIZE; i++) {
453 		struct hlist_head *l = &cache_htable[i];
454 
455 		hlist_for_each_entry(ce, l, hlist) {
456 			if (hlist_unhashed(&ce->hlist))
457 				continue;
458 			if (!to_del || timespec64_compare(&ce->etime,
459 							  &to_del->etime) < 0)
460 				to_del = ce;
461 		}
462 	}
463 
464 	if (!to_del) {
465 		cifs_dbg(FYI, "%s: no entry to remove\n", __func__);
466 		return;
467 	}
468 
469 	cifs_dbg(FYI, "%s: removing entry\n", __func__);
470 	dump_ce(to_del);
471 	flush_cache_ent(to_del);
472 }
473 
474 /* Add a new DFS cache entry */
add_cache_entry_locked(struct dfs_info3_param * refs,int numrefs)475 static struct cache_entry *add_cache_entry_locked(struct dfs_info3_param *refs,
476 						  int numrefs)
477 {
478 	int rc;
479 	struct cache_entry *ce;
480 	unsigned int hash;
481 	int ttl;
482 
483 	WARN_ON(!rwsem_is_locked(&htable_rw_lock));
484 
485 	if (atomic_read(&cache_count) >= CACHE_MAX_ENTRIES) {
486 		cifs_dbg(FYI, "%s: reached max cache size (%d)\n", __func__, CACHE_MAX_ENTRIES);
487 		remove_oldest_entry_locked();
488 	}
489 
490 	rc = cache_entry_hash(refs[0].path_name, strlen(refs[0].path_name), &hash);
491 	if (rc)
492 		return ERR_PTR(rc);
493 
494 	ce = alloc_cache_entry(refs, numrefs);
495 	if (IS_ERR(ce))
496 		return ce;
497 
498 	ttl = min_t(int, atomic_read(&dfs_cache_ttl), ce->ttl);
499 	atomic_set(&dfs_cache_ttl, ttl);
500 
501 	hlist_add_head(&ce->hlist, &cache_htable[hash]);
502 	dump_ce(ce);
503 
504 	atomic_inc(&cache_count);
505 
506 	return ce;
507 }
508 
509 /* Check if two DFS paths are equal.  @s1 and @s2 are expected to be in @cache_cp's charset */
dfs_path_equal(const char * s1,int len1,const char * s2,int len2)510 static bool dfs_path_equal(const char *s1, int len1, const char *s2, int len2)
511 {
512 	int i, l1, l2;
513 	wchar_t c1, c2;
514 
515 	if (len1 != len2)
516 		return false;
517 
518 	for (i = 0; i < len1; i += l1) {
519 		l1 = cache_cp->char2uni(&s1[i], len1 - i, &c1);
520 		l2 = cache_cp->char2uni(&s2[i], len2 - i, &c2);
521 		if (unlikely(l1 < 0 && l2 < 0)) {
522 			if (s1[i] != s2[i])
523 				return false;
524 			l1 = 1;
525 			continue;
526 		}
527 		if (l1 != l2)
528 			return false;
529 		if (cifs_toupper(c1) != cifs_toupper(c2))
530 			return false;
531 	}
532 	return true;
533 }
534 
__lookup_cache_entry(const char * path,unsigned int hash,int len)535 static struct cache_entry *__lookup_cache_entry(const char *path, unsigned int hash, int len)
536 {
537 	struct cache_entry *ce;
538 
539 	hlist_for_each_entry(ce, &cache_htable[hash], hlist) {
540 		if (dfs_path_equal(ce->path, strlen(ce->path), path, len)) {
541 			dump_ce(ce);
542 			return ce;
543 		}
544 	}
545 	return ERR_PTR(-ENOENT);
546 }
547 
548 /*
549  * Find a DFS cache entry in hash table and optionally check prefix path against normalized @path.
550  *
551  * Use whole path components in the match.  Must be called with htable_rw_lock held.
552  *
553  * Return cached entry if successful.
554  * Return ERR_PTR(-ENOENT) if the entry is not found.
555  * Return error ptr otherwise.
556  */
lookup_cache_entry(const char * path)557 static struct cache_entry *lookup_cache_entry(const char *path)
558 {
559 	struct cache_entry *ce;
560 	int cnt = 0;
561 	const char *s = path, *e;
562 	char sep = *s;
563 	unsigned int hash;
564 	int rc;
565 
566 	while ((s = strchr(s, sep)) && ++cnt < 3)
567 		s++;
568 
569 	if (cnt < 3) {
570 		rc = cache_entry_hash(path, strlen(path), &hash);
571 		if (rc)
572 			return ERR_PTR(rc);
573 		return __lookup_cache_entry(path, hash, strlen(path));
574 	}
575 	/*
576 	 * Handle paths that have more than two path components and are a complete prefix of the DFS
577 	 * referral request path (@path).
578 	 *
579 	 * See MS-DFSC 3.2.5.5 "Receiving a Root Referral Request or Link Referral Request".
580 	 */
581 	e = path + strlen(path) - 1;
582 	while (e > s) {
583 		int len;
584 
585 		/* skip separators */
586 		while (e > s && *e == sep)
587 			e--;
588 		if (e == s)
589 			break;
590 
591 		len = e + 1 - path;
592 		rc = cache_entry_hash(path, len, &hash);
593 		if (rc)
594 			return ERR_PTR(rc);
595 		ce = __lookup_cache_entry(path, hash, len);
596 		if (!IS_ERR(ce))
597 			return ce;
598 
599 		/* backward until separator */
600 		while (e > s && *e != sep)
601 			e--;
602 	}
603 	return ERR_PTR(-ENOENT);
604 }
605 
606 /**
607  * dfs_cache_destroy - destroy DFS referral cache
608  */
dfs_cache_destroy(void)609 void dfs_cache_destroy(void)
610 {
611 	unload_nls(cache_cp);
612 	flush_cache_ents();
613 	kmem_cache_destroy(cache_slab);
614 	destroy_workqueue(dfscache_wq);
615 
616 	cifs_dbg(FYI, "%s: destroyed DFS referral cache\n", __func__);
617 }
618 
619 /* Update a cache entry with the new referral in @refs */
update_cache_entry_locked(struct cache_entry * ce,const struct dfs_info3_param * refs,int numrefs)620 static int update_cache_entry_locked(struct cache_entry *ce, const struct dfs_info3_param *refs,
621 				     int numrefs)
622 {
623 	struct cache_dfs_tgt *target;
624 	char *th = NULL;
625 	int rc;
626 
627 	WARN_ON(!rwsem_is_locked(&htable_rw_lock));
628 
629 	target = READ_ONCE(ce->tgthint);
630 	if (target) {
631 		th = kstrdup(target->name, GFP_ATOMIC);
632 		if (!th)
633 			return -ENOMEM;
634 	}
635 
636 	free_tgts(ce);
637 	ce->numtgts = 0;
638 
639 	rc = copy_ref_data(refs, numrefs, ce, th);
640 
641 	kfree(th);
642 
643 	return rc;
644 }
645 
get_dfs_referral(const unsigned int xid,struct cifs_ses * ses,const char * path,struct dfs_info3_param ** refs,int * numrefs)646 static int get_dfs_referral(const unsigned int xid, struct cifs_ses *ses, const char *path,
647 			    struct dfs_info3_param **refs, int *numrefs)
648 {
649 	int rc;
650 	int i;
651 
652 	*refs = NULL;
653 	*numrefs = 0;
654 
655 	if (!ses || !ses->server || !ses->server->ops->get_dfs_refer)
656 		return -EOPNOTSUPP;
657 	if (unlikely(!cache_cp))
658 		return -EINVAL;
659 
660 	cifs_dbg(FYI, "%s: ipc=%s referral=%s\n", __func__, ses->tcon_ipc->tree_name, path);
661 	rc =  ses->server->ops->get_dfs_refer(xid, ses, path, refs, numrefs, cache_cp,
662 					      NO_MAP_UNI_RSVD);
663 	if (!rc) {
664 		struct dfs_info3_param *ref = *refs;
665 
666 		for (i = 0; i < *numrefs; i++)
667 			convert_delimiter(ref[i].path_name, '\\');
668 	}
669 	return rc;
670 }
671 
672 /*
673  * Find, create or update a DFS cache entry.
674  *
675  * If the entry wasn't found, it will create a new one. Or if it was found but
676  * expired, then it will update the entry accordingly.
677  *
678  * For interlinks, cifs_mount() and expand_dfs_referral() are supposed to
679  * handle them properly.
680  *
681  * On success, return entry with acquired lock for reading, otherwise error ptr.
682  */
cache_refresh_path(const unsigned int xid,struct cifs_ses * ses,const char * path,bool force_refresh)683 static struct cache_entry *cache_refresh_path(const unsigned int xid,
684 					      struct cifs_ses *ses,
685 					      const char *path,
686 					      bool force_refresh)
687 {
688 	struct dfs_info3_param *refs = NULL;
689 	struct cache_entry *ce;
690 	int numrefs = 0;
691 	int rc;
692 
693 	cifs_dbg(FYI, "%s: search path: %s\n", __func__, path);
694 
695 	down_read(&htable_rw_lock);
696 
697 	ce = lookup_cache_entry(path);
698 	if (!IS_ERR(ce)) {
699 		if (!force_refresh && !cache_entry_expired(ce))
700 			return ce;
701 	} else if (PTR_ERR(ce) != -ENOENT) {
702 		up_read(&htable_rw_lock);
703 		return ce;
704 	}
705 
706 	/*
707 	 * Unlock shared access as we don't want to hold any locks while getting
708 	 * a new referral.  The @ses used for performing the I/O could be
709 	 * reconnecting and it acquires @htable_rw_lock to look up the dfs cache
710 	 * in order to failover -- if necessary.
711 	 */
712 	up_read(&htable_rw_lock);
713 
714 	/*
715 	 * Either the entry was not found, or it is expired, or it is a forced
716 	 * refresh.
717 	 * Request a new DFS referral in order to create or update a cache entry.
718 	 */
719 	rc = get_dfs_referral(xid, ses, path, &refs, &numrefs);
720 	if (rc) {
721 		ce = ERR_PTR(rc);
722 		goto out;
723 	}
724 
725 	dump_refs(refs, numrefs);
726 
727 	down_write(&htable_rw_lock);
728 	/* Re-check as another task might have it added or refreshed already */
729 	ce = lookup_cache_entry(path);
730 	if (!IS_ERR(ce)) {
731 		if (force_refresh || cache_entry_expired(ce)) {
732 			rc = update_cache_entry_locked(ce, refs, numrefs);
733 			if (rc)
734 				ce = ERR_PTR(rc);
735 		}
736 	} else if (PTR_ERR(ce) == -ENOENT) {
737 		ce = add_cache_entry_locked(refs, numrefs);
738 	}
739 
740 	if (IS_ERR(ce)) {
741 		up_write(&htable_rw_lock);
742 		goto out;
743 	}
744 
745 	downgrade_write(&htable_rw_lock);
746 out:
747 	free_dfs_info_array(refs, numrefs);
748 	return ce;
749 }
750 
751 /*
752  * Set up a DFS referral from a given cache entry.
753  *
754  * Must be called with htable_rw_lock held.
755  */
setup_referral(const char * path,struct cache_entry * ce,struct dfs_info3_param * ref,const char * target)756 static int setup_referral(const char *path, struct cache_entry *ce,
757 			  struct dfs_info3_param *ref, const char *target)
758 {
759 	int rc;
760 
761 	cifs_dbg(FYI, "%s: set up new ref\n", __func__);
762 
763 	memset(ref, 0, sizeof(*ref));
764 
765 	ref->path_name = kstrdup(path, GFP_ATOMIC);
766 	if (!ref->path_name)
767 		return -ENOMEM;
768 
769 	ref->node_name = kstrdup(target, GFP_ATOMIC);
770 	if (!ref->node_name) {
771 		rc = -ENOMEM;
772 		goto err_free_path;
773 	}
774 
775 	ref->path_consumed = ce->path_consumed;
776 	ref->ttl = ce->ttl;
777 	ref->server_type = ce->srvtype;
778 	ref->ref_flag = ce->ref_flags;
779 	ref->flags = ce->hdr_flags;
780 
781 	return 0;
782 
783 err_free_path:
784 	kfree(ref->path_name);
785 	ref->path_name = NULL;
786 	return rc;
787 }
788 
789 /* Return target list of a DFS cache entry */
get_targets(struct cache_entry * ce,struct dfs_cache_tgt_list * tl)790 static int get_targets(struct cache_entry *ce, struct dfs_cache_tgt_list *tl)
791 {
792 	int rc;
793 	struct list_head *head = &tl->tl_list;
794 	struct cache_dfs_tgt *t;
795 	struct dfs_cache_tgt_iterator *it, *nit;
796 
797 	memset(tl, 0, sizeof(*tl));
798 	INIT_LIST_HEAD(head);
799 
800 	list_for_each_entry(t, &ce->tlist, list) {
801 		it = kzalloc(sizeof(*it), GFP_ATOMIC);
802 		if (!it) {
803 			rc = -ENOMEM;
804 			goto err_free_it;
805 		}
806 
807 		it->it_name = kstrdup(t->name, GFP_ATOMIC);
808 		if (!it->it_name) {
809 			kfree(it);
810 			rc = -ENOMEM;
811 			goto err_free_it;
812 		}
813 		it->it_path_consumed = t->path_consumed;
814 
815 		if (READ_ONCE(ce->tgthint) == t)
816 			list_add(&it->it_list, head);
817 		else
818 			list_add_tail(&it->it_list, head);
819 	}
820 
821 	tl->tl_numtgts = ce->numtgts;
822 
823 	return 0;
824 
825 err_free_it:
826 	list_for_each_entry_safe(it, nit, head, it_list) {
827 		list_del(&it->it_list);
828 		kfree(it->it_name);
829 		kfree(it);
830 	}
831 	return rc;
832 }
833 
834 /**
835  * dfs_cache_find - find a DFS cache entry
836  *
837  * If it doesn't find the cache entry, then it will get a DFS referral
838  * for @path and create a new entry.
839  *
840  * In case the cache entry exists but expired, it will get a DFS referral
841  * for @path and then update the respective cache entry.
842  *
843  * These parameters are passed down to the get_dfs_refer() call if it
844  * needs to be issued:
845  * @xid: syscall xid
846  * @ses: smb session to issue the request on
847  * @cp: codepage
848  * @remap: path character remapping type
849  * @path: path to lookup in DFS referral cache.
850  *
851  * @ref: when non-NULL, store single DFS referral result in it.
852  * @tgt_list: when non-NULL, store complete DFS target list in it.
853  *
854  * Return zero if the target was found, otherwise non-zero.
855  */
dfs_cache_find(const unsigned int xid,struct cifs_ses * ses,const struct nls_table * cp,int remap,const char * path,struct dfs_info3_param * ref,struct dfs_cache_tgt_list * tgt_list)856 int dfs_cache_find(const unsigned int xid, struct cifs_ses *ses, const struct nls_table *cp,
857 		   int remap, const char *path, struct dfs_info3_param *ref,
858 		   struct dfs_cache_tgt_list *tgt_list)
859 {
860 	int rc;
861 	const char *npath;
862 	struct cache_entry *ce;
863 
864 	npath = dfs_cache_canonical_path(path, cp, remap);
865 	if (IS_ERR(npath))
866 		return PTR_ERR(npath);
867 
868 	ce = cache_refresh_path(xid, ses, npath, false);
869 	if (IS_ERR(ce)) {
870 		rc = PTR_ERR(ce);
871 		goto out_free_path;
872 	}
873 
874 	if (ref)
875 		rc = setup_referral(path, ce, ref, get_tgt_name(ce));
876 	else
877 		rc = 0;
878 	if (!rc && tgt_list)
879 		rc = get_targets(ce, tgt_list);
880 
881 	up_read(&htable_rw_lock);
882 
883 out_free_path:
884 	kfree(npath);
885 	return rc;
886 }
887 
888 /**
889  * dfs_cache_noreq_find - find a DFS cache entry without sending any requests to
890  * the currently connected server.
891  *
892  * NOTE: This function will neither update a cache entry in case it was
893  * expired, nor create a new cache entry if @path hasn't been found. It heavily
894  * relies on an existing cache entry.
895  *
896  * @path: canonical DFS path to lookup in the DFS referral cache.
897  * @ref: when non-NULL, store single DFS referral result in it.
898  * @tgt_list: when non-NULL, store complete DFS target list in it.
899  *
900  * Return 0 if successful.
901  * Return -ENOENT if the entry was not found.
902  * Return non-zero for other errors.
903  */
dfs_cache_noreq_find(const char * path,struct dfs_info3_param * ref,struct dfs_cache_tgt_list * tgt_list)904 int dfs_cache_noreq_find(const char *path, struct dfs_info3_param *ref,
905 			 struct dfs_cache_tgt_list *tgt_list)
906 {
907 	int rc;
908 	struct cache_entry *ce;
909 
910 	cifs_dbg(FYI, "%s: path: %s\n", __func__, path);
911 
912 	down_read(&htable_rw_lock);
913 
914 	ce = lookup_cache_entry(path);
915 	if (IS_ERR(ce)) {
916 		rc = PTR_ERR(ce);
917 		goto out_unlock;
918 	}
919 
920 	if (ref)
921 		rc = setup_referral(path, ce, ref, get_tgt_name(ce));
922 	else
923 		rc = 0;
924 	if (!rc && tgt_list)
925 		rc = get_targets(ce, tgt_list);
926 
927 out_unlock:
928 	up_read(&htable_rw_lock);
929 	return rc;
930 }
931 
932 /**
933  * dfs_cache_noreq_update_tgthint - update target hint of a DFS cache entry
934  * without sending any requests to the currently connected server.
935  *
936  * NOTE: This function will neither update a cache entry in case it was
937  * expired, nor create a new cache entry if @path hasn't been found. It heavily
938  * relies on an existing cache entry.
939  *
940  * @path: canonical DFS path to lookup in DFS referral cache.
941  * @it: target iterator which contains the target hint to update the cache
942  * entry with.
943  *
944  * Return zero if the target hint was updated successfully, otherwise non-zero.
945  */
dfs_cache_noreq_update_tgthint(const char * path,const struct dfs_cache_tgt_iterator * it)946 void dfs_cache_noreq_update_tgthint(const char *path, const struct dfs_cache_tgt_iterator *it)
947 {
948 	struct cache_dfs_tgt *t;
949 	struct cache_entry *ce;
950 
951 	if (!path || !it)
952 		return;
953 
954 	cifs_dbg(FYI, "%s: path: %s\n", __func__, path);
955 
956 	down_read(&htable_rw_lock);
957 
958 	ce = lookup_cache_entry(path);
959 	if (IS_ERR(ce))
960 		goto out_unlock;
961 
962 	t = READ_ONCE(ce->tgthint);
963 
964 	if (unlikely(!strcasecmp(it->it_name, t->name)))
965 		goto out_unlock;
966 
967 	list_for_each_entry(t, &ce->tlist, list) {
968 		if (!strcasecmp(t->name, it->it_name)) {
969 			WRITE_ONCE(ce->tgthint, t);
970 			cifs_dbg(FYI, "%s: new target hint: %s\n", __func__,
971 				 it->it_name);
972 			break;
973 		}
974 	}
975 
976 out_unlock:
977 	up_read(&htable_rw_lock);
978 }
979 
980 /**
981  * dfs_cache_get_tgt_referral - returns a DFS referral (@ref) from a given
982  * target iterator (@it).
983  *
984  * @path: canonical DFS path to lookup in DFS referral cache.
985  * @it: DFS target iterator.
986  * @ref: DFS referral pointer to set up the gathered information.
987  *
988  * Return zero if the DFS referral was set up correctly, otherwise non-zero.
989  */
dfs_cache_get_tgt_referral(const char * path,const struct dfs_cache_tgt_iterator * it,struct dfs_info3_param * ref)990 int dfs_cache_get_tgt_referral(const char *path, const struct dfs_cache_tgt_iterator *it,
991 			       struct dfs_info3_param *ref)
992 {
993 	int rc;
994 	struct cache_entry *ce;
995 
996 	if (!it || !ref)
997 		return -EINVAL;
998 
999 	cifs_dbg(FYI, "%s: path: %s\n", __func__, path);
1000 
1001 	down_read(&htable_rw_lock);
1002 
1003 	ce = lookup_cache_entry(path);
1004 	if (IS_ERR(ce)) {
1005 		rc = PTR_ERR(ce);
1006 		goto out_unlock;
1007 	}
1008 
1009 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, it->it_name);
1010 
1011 	rc = setup_referral(path, ce, ref, it->it_name);
1012 
1013 out_unlock:
1014 	up_read(&htable_rw_lock);
1015 	return rc;
1016 }
1017 
1018 /* Extract share from DFS target and return a pointer to prefix path or NULL */
parse_target_share(const char * target,char ** share)1019 static const char *parse_target_share(const char *target, char **share)
1020 {
1021 	const char *s, *seps = "/\\";
1022 	size_t len;
1023 
1024 	s = strpbrk(target + 1, seps);
1025 	if (!s)
1026 		return ERR_PTR(-EINVAL);
1027 
1028 	len = strcspn(s + 1, seps);
1029 	if (!len)
1030 		return ERR_PTR(-EINVAL);
1031 	s += len;
1032 
1033 	len = s - target + 1;
1034 	*share = kstrndup(target, len, GFP_KERNEL);
1035 	if (!*share)
1036 		return ERR_PTR(-ENOMEM);
1037 
1038 	s = target + len;
1039 	return s + strspn(s, seps);
1040 }
1041 
1042 /**
1043  * dfs_cache_get_tgt_share - parse a DFS target
1044  *
1045  * @path: DFS full path
1046  * @it: DFS target iterator.
1047  * @share: tree name.
1048  * @prefix: prefix path.
1049  *
1050  * Return zero if target was parsed correctly, otherwise non-zero.
1051  */
dfs_cache_get_tgt_share(char * path,const struct dfs_cache_tgt_iterator * it,char ** share,char ** prefix)1052 int dfs_cache_get_tgt_share(char *path, const struct dfs_cache_tgt_iterator *it, char **share,
1053 			    char **prefix)
1054 {
1055 	char sep;
1056 	char *target_share;
1057 	char *ppath = NULL;
1058 	const char *target_ppath, *dfsref_ppath;
1059 	size_t target_pplen, dfsref_pplen;
1060 	size_t len, c;
1061 
1062 	if (!it || !path || !share || !prefix || strlen(path) < it->it_path_consumed)
1063 		return -EINVAL;
1064 
1065 	sep = it->it_name[0];
1066 	if (sep != '\\' && sep != '/')
1067 		return -EINVAL;
1068 
1069 	target_ppath = parse_target_share(it->it_name, &target_share);
1070 	if (IS_ERR(target_ppath))
1071 		return PTR_ERR(target_ppath);
1072 
1073 	/* point to prefix in DFS referral path */
1074 	dfsref_ppath = path + it->it_path_consumed;
1075 	dfsref_ppath += strspn(dfsref_ppath, "/\\");
1076 
1077 	target_pplen = strlen(target_ppath);
1078 	dfsref_pplen = strlen(dfsref_ppath);
1079 
1080 	/* merge prefix paths from DFS referral path and target node */
1081 	if (target_pplen || dfsref_pplen) {
1082 		len = target_pplen + dfsref_pplen + 2;
1083 		ppath = kzalloc(len, GFP_KERNEL);
1084 		if (!ppath) {
1085 			kfree(target_share);
1086 			return -ENOMEM;
1087 		}
1088 		c = strscpy(ppath, target_ppath, len);
1089 		if (c && dfsref_pplen)
1090 			ppath[c] = sep;
1091 		strlcat(ppath, dfsref_ppath, len);
1092 	}
1093 	*share = target_share;
1094 	*prefix = ppath;
1095 	return 0;
1096 }
1097 
target_share_equal(struct TCP_Server_Info * server,const char * s1,const char * s2)1098 static bool target_share_equal(struct TCP_Server_Info *server, const char *s1, const char *s2)
1099 {
1100 	char unc[sizeof("\\\\") + SERVER_NAME_LENGTH] = {0};
1101 	const char *host;
1102 	size_t hostlen;
1103 	struct sockaddr_storage ss;
1104 	bool match;
1105 	int rc;
1106 
1107 	if (strcasecmp(s1, s2))
1108 		return false;
1109 
1110 	/*
1111 	 * Resolve share's hostname and check if server address matches.  Otherwise just ignore it
1112 	 * as we could not have upcall to resolve hostname or failed to convert ip address.
1113 	 */
1114 	extract_unc_hostname(s1, &host, &hostlen);
1115 	scnprintf(unc, sizeof(unc), "\\\\%.*s", (int)hostlen, host);
1116 
1117 	rc = dns_resolve_server_name_to_ip(unc, (struct sockaddr *)&ss, NULL);
1118 	if (rc < 0) {
1119 		cifs_dbg(FYI, "%s: could not resolve %.*s. assuming server address matches.\n",
1120 			 __func__, (int)hostlen, host);
1121 		return true;
1122 	}
1123 
1124 	cifs_server_lock(server);
1125 	match = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1126 	cifs_server_unlock(server);
1127 
1128 	return match;
1129 }
1130 
1131 /*
1132  * Mark dfs tcon for reconnecting when the currently connected tcon does not match any of the new
1133  * target shares in @refs.
1134  */
mark_for_reconnect_if_needed(struct TCP_Server_Info * server,const char * path,struct dfs_cache_tgt_list * old_tl,struct dfs_cache_tgt_list * new_tl)1135 static void mark_for_reconnect_if_needed(struct TCP_Server_Info *server,
1136 					 const char *path,
1137 					 struct dfs_cache_tgt_list *old_tl,
1138 					 struct dfs_cache_tgt_list *new_tl)
1139 {
1140 	struct dfs_cache_tgt_iterator *oit, *nit;
1141 
1142 	for (oit = dfs_cache_get_tgt_iterator(old_tl); oit;
1143 	     oit = dfs_cache_get_next_tgt(old_tl, oit)) {
1144 		for (nit = dfs_cache_get_tgt_iterator(new_tl); nit;
1145 		     nit = dfs_cache_get_next_tgt(new_tl, nit)) {
1146 			if (target_share_equal(server,
1147 					       dfs_cache_get_tgt_name(oit),
1148 					       dfs_cache_get_tgt_name(nit))) {
1149 				dfs_cache_noreq_update_tgthint(path, nit);
1150 				return;
1151 			}
1152 		}
1153 	}
1154 
1155 	cifs_dbg(FYI, "%s: no cached or matched targets. mark dfs share for reconnect.\n", __func__);
1156 	cifs_signal_cifsd_for_reconnect(server, true);
1157 }
1158 
is_ses_good(struct cifs_ses * ses)1159 static bool is_ses_good(struct cifs_ses *ses)
1160 {
1161 	struct TCP_Server_Info *server = ses->server;
1162 	struct cifs_tcon *tcon = ses->tcon_ipc;
1163 	bool ret;
1164 
1165 	spin_lock(&ses->ses_lock);
1166 	spin_lock(&ses->chan_lock);
1167 	ret = !cifs_chan_needs_reconnect(ses, server) &&
1168 		ses->ses_status == SES_GOOD &&
1169 		!tcon->need_reconnect;
1170 	spin_unlock(&ses->chan_lock);
1171 	spin_unlock(&ses->ses_lock);
1172 	return ret;
1173 }
1174 
1175 /* Refresh dfs referral of tcon and mark it for reconnect if needed */
__refresh_tcon(const char * path,struct cifs_ses * ses,bool force_refresh)1176 static int __refresh_tcon(const char *path, struct cifs_ses *ses, bool force_refresh)
1177 {
1178 	struct TCP_Server_Info *server = ses->server;
1179 	DFS_CACHE_TGT_LIST(old_tl);
1180 	DFS_CACHE_TGT_LIST(new_tl);
1181 	bool needs_refresh = false;
1182 	struct cache_entry *ce;
1183 	unsigned int xid;
1184 	int rc = 0;
1185 
1186 	xid = get_xid();
1187 
1188 	down_read(&htable_rw_lock);
1189 	ce = lookup_cache_entry(path);
1190 	needs_refresh = force_refresh || IS_ERR(ce) || cache_entry_expired(ce);
1191 	if (!IS_ERR(ce)) {
1192 		rc = get_targets(ce, &old_tl);
1193 		cifs_dbg(FYI, "%s: get_targets: %d\n", __func__, rc);
1194 	}
1195 	up_read(&htable_rw_lock);
1196 
1197 	if (!needs_refresh) {
1198 		rc = 0;
1199 		goto out;
1200 	}
1201 
1202 	ses = CIFS_DFS_ROOT_SES(ses);
1203 	if (!is_ses_good(ses)) {
1204 		cifs_dbg(FYI, "%s: skip cache refresh due to disconnected ipc\n",
1205 			 __func__);
1206 		goto out;
1207 	}
1208 
1209 	ce = cache_refresh_path(xid, ses, path, true);
1210 	if (!IS_ERR(ce)) {
1211 		rc = get_targets(ce, &new_tl);
1212 		up_read(&htable_rw_lock);
1213 		cifs_dbg(FYI, "%s: get_targets: %d\n", __func__, rc);
1214 		mark_for_reconnect_if_needed(server, path, &old_tl, &new_tl);
1215 	}
1216 
1217 out:
1218 	free_xid(xid);
1219 	dfs_cache_free_tgts(&old_tl);
1220 	dfs_cache_free_tgts(&new_tl);
1221 	return rc;
1222 }
1223 
refresh_tcon(struct cifs_tcon * tcon,bool force_refresh)1224 static int refresh_tcon(struct cifs_tcon *tcon, bool force_refresh)
1225 {
1226 	struct TCP_Server_Info *server = tcon->ses->server;
1227 	struct cifs_ses *ses = tcon->ses;
1228 
1229 	mutex_lock(&server->refpath_lock);
1230 	if (server->leaf_fullpath)
1231 		__refresh_tcon(server->leaf_fullpath + 1, ses, force_refresh);
1232 	mutex_unlock(&server->refpath_lock);
1233 	return 0;
1234 }
1235 
1236 /**
1237  * dfs_cache_remount_fs - remount a DFS share
1238  *
1239  * Reconfigure dfs mount by forcing a new DFS referral and if the currently cached targets do not
1240  * match any of the new targets, mark it for reconnect.
1241  *
1242  * @cifs_sb: cifs superblock.
1243  *
1244  * Return zero if remounted, otherwise non-zero.
1245  */
dfs_cache_remount_fs(struct cifs_sb_info * cifs_sb)1246 int dfs_cache_remount_fs(struct cifs_sb_info *cifs_sb)
1247 {
1248 	struct cifs_tcon *tcon;
1249 
1250 	if (!cifs_sb || !cifs_sb->master_tlink)
1251 		return -EINVAL;
1252 
1253 	tcon = cifs_sb_master_tcon(cifs_sb);
1254 
1255 	spin_lock(&tcon->tc_lock);
1256 	if (!tcon->origin_fullpath) {
1257 		spin_unlock(&tcon->tc_lock);
1258 		cifs_dbg(FYI, "%s: not a dfs mount\n", __func__);
1259 		return 0;
1260 	}
1261 	spin_unlock(&tcon->tc_lock);
1262 
1263 	/*
1264 	 * After reconnecting to a different server, unique ids won't match anymore, so we disable
1265 	 * serverino. This prevents dentry revalidation to think the dentry are stale (ESTALE).
1266 	 */
1267 	cifs_autodisable_serverino(cifs_sb);
1268 	/*
1269 	 * Force the use of prefix path to support failover on DFS paths that resolve to targets
1270 	 * that have different prefix paths.
1271 	 */
1272 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1273 
1274 	return refresh_tcon(tcon, true);
1275 }
1276 
1277 /* Refresh all DFS referrals related to DFS tcon */
dfs_cache_refresh(struct work_struct * work)1278 void dfs_cache_refresh(struct work_struct *work)
1279 {
1280 	struct TCP_Server_Info *server;
1281 	struct dfs_root_ses *rses;
1282 	struct cifs_tcon *tcon;
1283 	struct cifs_ses *ses;
1284 
1285 	tcon = container_of(work, struct cifs_tcon, dfs_cache_work.work);
1286 	ses = tcon->ses;
1287 	server = ses->server;
1288 
1289 	mutex_lock(&server->refpath_lock);
1290 	if (server->leaf_fullpath)
1291 		__refresh_tcon(server->leaf_fullpath + 1, ses, false);
1292 	mutex_unlock(&server->refpath_lock);
1293 
1294 	list_for_each_entry(rses, &tcon->dfs_ses_list, list) {
1295 		ses = rses->ses;
1296 		server = ses->server;
1297 		mutex_lock(&server->refpath_lock);
1298 		if (server->leaf_fullpath)
1299 			__refresh_tcon(server->leaf_fullpath + 1, ses, false);
1300 		mutex_unlock(&server->refpath_lock);
1301 	}
1302 
1303 	queue_delayed_work(dfscache_wq, &tcon->dfs_cache_work,
1304 			   atomic_read(&dfs_cache_ttl) * HZ);
1305 }
1306