1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/devres.c - device resource management
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8
9 #include <linux/device.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/percpu.h>
13
14 #include <asm/sections.h>
15
16 #include "base.h"
17 #include "trace.h"
18
19 struct devres_node {
20 struct list_head entry;
21 dr_release_t release;
22 const char *name;
23 size_t size;
24 };
25
26 struct devres {
27 struct devres_node node;
28 /*
29 * Some archs want to perform DMA into kmalloc caches
30 * and need a guaranteed alignment larger than
31 * the alignment of a 64-bit integer.
32 * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
33 * buffer alignment as if it was allocated by plain kmalloc().
34 */
35 u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
36 };
37
38 struct devres_group {
39 struct devres_node node[2];
40 void *id;
41 int color;
42 /* -- 8 pointers */
43 };
44
set_node_dbginfo(struct devres_node * node,const char * name,size_t size)45 static void set_node_dbginfo(struct devres_node *node, const char *name,
46 size_t size)
47 {
48 node->name = name;
49 node->size = size;
50 }
51
52 #ifdef CONFIG_DEBUG_DEVRES
53 static int log_devres = 0;
54 module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
55
devres_dbg(struct device * dev,struct devres_node * node,const char * op)56 static void devres_dbg(struct device *dev, struct devres_node *node,
57 const char *op)
58 {
59 if (unlikely(log_devres))
60 dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n",
61 op, node, node->name, node->size);
62 }
63 #else /* CONFIG_DEBUG_DEVRES */
64 #define devres_dbg(dev, node, op) do {} while (0)
65 #endif /* CONFIG_DEBUG_DEVRES */
66
devres_log(struct device * dev,struct devres_node * node,const char * op)67 static void devres_log(struct device *dev, struct devres_node *node,
68 const char *op)
69 {
70 trace_devres_log(dev, op, node, node->name, node->size);
71 devres_dbg(dev, node, op);
72 }
73
74 /*
75 * Release functions for devres group. These callbacks are used only
76 * for identification.
77 */
group_open_release(struct device * dev,void * res)78 static void group_open_release(struct device *dev, void *res)
79 {
80 /* noop */
81 }
82
group_close_release(struct device * dev,void * res)83 static void group_close_release(struct device *dev, void *res)
84 {
85 /* noop */
86 }
87
node_to_group(struct devres_node * node)88 static struct devres_group * node_to_group(struct devres_node *node)
89 {
90 if (node->release == &group_open_release)
91 return container_of(node, struct devres_group, node[0]);
92 if (node->release == &group_close_release)
93 return container_of(node, struct devres_group, node[1]);
94 return NULL;
95 }
96
check_dr_size(size_t size,size_t * tot_size)97 static bool check_dr_size(size_t size, size_t *tot_size)
98 {
99 /* We must catch any near-SIZE_MAX cases that could overflow. */
100 if (unlikely(check_add_overflow(sizeof(struct devres),
101 size, tot_size)))
102 return false;
103
104 return true;
105 }
106
alloc_dr(dr_release_t release,size_t size,gfp_t gfp,int nid)107 static __always_inline struct devres * alloc_dr(dr_release_t release,
108 size_t size, gfp_t gfp, int nid)
109 {
110 size_t tot_size;
111 struct devres *dr;
112
113 if (!check_dr_size(size, &tot_size))
114 return NULL;
115
116 dr = kmalloc_node_track_caller(tot_size, gfp, nid);
117 if (unlikely(!dr))
118 return NULL;
119
120 /* No need to clear memory twice */
121 if (!(gfp & __GFP_ZERO))
122 memset(dr, 0, offsetof(struct devres, data));
123
124 INIT_LIST_HEAD(&dr->node.entry);
125 dr->node.release = release;
126 return dr;
127 }
128
add_dr(struct device * dev,struct devres_node * node)129 static void add_dr(struct device *dev, struct devres_node *node)
130 {
131 devres_log(dev, node, "ADD");
132 BUG_ON(!list_empty(&node->entry));
133 list_add_tail(&node->entry, &dev->devres_head);
134 }
135
replace_dr(struct device * dev,struct devres_node * old,struct devres_node * new)136 static void replace_dr(struct device *dev,
137 struct devres_node *old, struct devres_node *new)
138 {
139 devres_log(dev, old, "REPLACE");
140 BUG_ON(!list_empty(&new->entry));
141 list_replace(&old->entry, &new->entry);
142 }
143
144 /**
145 * __devres_alloc_node - Allocate device resource data
146 * @release: Release function devres will be associated with
147 * @size: Allocation size
148 * @gfp: Allocation flags
149 * @nid: NUMA node
150 * @name: Name of the resource
151 *
152 * Allocate devres of @size bytes. The allocated area is zeroed, then
153 * associated with @release. The returned pointer can be passed to
154 * other devres_*() functions.
155 *
156 * RETURNS:
157 * Pointer to allocated devres on success, NULL on failure.
158 */
__devres_alloc_node(dr_release_t release,size_t size,gfp_t gfp,int nid,const char * name)159 void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
160 const char *name)
161 {
162 struct devres *dr;
163
164 dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
165 if (unlikely(!dr))
166 return NULL;
167 set_node_dbginfo(&dr->node, name, size);
168 return dr->data;
169 }
170 EXPORT_SYMBOL_GPL(__devres_alloc_node);
171
172 /**
173 * devres_for_each_res - Resource iterator
174 * @dev: Device to iterate resource from
175 * @release: Look for resources associated with this release function
176 * @match: Match function (optional)
177 * @match_data: Data for the match function
178 * @fn: Function to be called for each matched resource.
179 * @data: Data for @fn, the 3rd parameter of @fn
180 *
181 * Call @fn for each devres of @dev which is associated with @release
182 * and for which @match returns 1.
183 *
184 * RETURNS:
185 * void
186 */
devres_for_each_res(struct device * dev,dr_release_t release,dr_match_t match,void * match_data,void (* fn)(struct device *,void *,void *),void * data)187 void devres_for_each_res(struct device *dev, dr_release_t release,
188 dr_match_t match, void *match_data,
189 void (*fn)(struct device *, void *, void *),
190 void *data)
191 {
192 struct devres_node *node;
193 struct devres_node *tmp;
194 unsigned long flags;
195
196 if (!fn)
197 return;
198
199 spin_lock_irqsave(&dev->devres_lock, flags);
200 list_for_each_entry_safe_reverse(node, tmp,
201 &dev->devres_head, entry) {
202 struct devres *dr = container_of(node, struct devres, node);
203
204 if (node->release != release)
205 continue;
206 if (match && !match(dev, dr->data, match_data))
207 continue;
208 fn(dev, dr->data, data);
209 }
210 spin_unlock_irqrestore(&dev->devres_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(devres_for_each_res);
213
214 /**
215 * devres_free - Free device resource data
216 * @res: Pointer to devres data to free
217 *
218 * Free devres created with devres_alloc().
219 */
devres_free(void * res)220 void devres_free(void *res)
221 {
222 if (res) {
223 struct devres *dr = container_of(res, struct devres, data);
224
225 BUG_ON(!list_empty(&dr->node.entry));
226 kfree(dr);
227 }
228 }
229 EXPORT_SYMBOL_GPL(devres_free);
230
231 /**
232 * devres_add - Register device resource
233 * @dev: Device to add resource to
234 * @res: Resource to register
235 *
236 * Register devres @res to @dev. @res should have been allocated
237 * using devres_alloc(). On driver detach, the associated release
238 * function will be invoked and devres will be freed automatically.
239 */
devres_add(struct device * dev,void * res)240 void devres_add(struct device *dev, void *res)
241 {
242 struct devres *dr = container_of(res, struct devres, data);
243 unsigned long flags;
244
245 spin_lock_irqsave(&dev->devres_lock, flags);
246 add_dr(dev, &dr->node);
247 spin_unlock_irqrestore(&dev->devres_lock, flags);
248 }
249 EXPORT_SYMBOL_GPL(devres_add);
250
find_dr(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)251 static struct devres *find_dr(struct device *dev, dr_release_t release,
252 dr_match_t match, void *match_data)
253 {
254 struct devres_node *node;
255
256 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
257 struct devres *dr = container_of(node, struct devres, node);
258
259 if (node->release != release)
260 continue;
261 if (match && !match(dev, dr->data, match_data))
262 continue;
263 return dr;
264 }
265
266 return NULL;
267 }
268
269 /**
270 * devres_find - Find device resource
271 * @dev: Device to lookup resource from
272 * @release: Look for resources associated with this release function
273 * @match: Match function (optional)
274 * @match_data: Data for the match function
275 *
276 * Find the latest devres of @dev which is associated with @release
277 * and for which @match returns 1. If @match is NULL, it's considered
278 * to match all.
279 *
280 * RETURNS:
281 * Pointer to found devres, NULL if not found.
282 */
devres_find(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)283 void * devres_find(struct device *dev, dr_release_t release,
284 dr_match_t match, void *match_data)
285 {
286 struct devres *dr;
287 unsigned long flags;
288
289 spin_lock_irqsave(&dev->devres_lock, flags);
290 dr = find_dr(dev, release, match, match_data);
291 spin_unlock_irqrestore(&dev->devres_lock, flags);
292
293 if (dr)
294 return dr->data;
295 return NULL;
296 }
297 EXPORT_SYMBOL_GPL(devres_find);
298
299 /**
300 * devres_get - Find devres, if non-existent, add one atomically
301 * @dev: Device to lookup or add devres for
302 * @new_res: Pointer to new initialized devres to add if not found
303 * @match: Match function (optional)
304 * @match_data: Data for the match function
305 *
306 * Find the latest devres of @dev which has the same release function
307 * as @new_res and for which @match return 1. If found, @new_res is
308 * freed; otherwise, @new_res is added atomically.
309 *
310 * RETURNS:
311 * Pointer to found or added devres.
312 */
devres_get(struct device * dev,void * new_res,dr_match_t match,void * match_data)313 void * devres_get(struct device *dev, void *new_res,
314 dr_match_t match, void *match_data)
315 {
316 struct devres *new_dr = container_of(new_res, struct devres, data);
317 struct devres *dr;
318 unsigned long flags;
319
320 spin_lock_irqsave(&dev->devres_lock, flags);
321 dr = find_dr(dev, new_dr->node.release, match, match_data);
322 if (!dr) {
323 add_dr(dev, &new_dr->node);
324 dr = new_dr;
325 new_res = NULL;
326 }
327 spin_unlock_irqrestore(&dev->devres_lock, flags);
328 devres_free(new_res);
329
330 return dr->data;
331 }
332 EXPORT_SYMBOL_GPL(devres_get);
333
334 /**
335 * devres_remove - Find a device resource and remove it
336 * @dev: Device to find resource from
337 * @release: Look for resources associated with this release function
338 * @match: Match function (optional)
339 * @match_data: Data for the match function
340 *
341 * Find the latest devres of @dev associated with @release and for
342 * which @match returns 1. If @match is NULL, it's considered to
343 * match all. If found, the resource is removed atomically and
344 * returned.
345 *
346 * RETURNS:
347 * Pointer to removed devres on success, NULL if not found.
348 */
devres_remove(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)349 void * devres_remove(struct device *dev, dr_release_t release,
350 dr_match_t match, void *match_data)
351 {
352 struct devres *dr;
353 unsigned long flags;
354
355 spin_lock_irqsave(&dev->devres_lock, flags);
356 dr = find_dr(dev, release, match, match_data);
357 if (dr) {
358 list_del_init(&dr->node.entry);
359 devres_log(dev, &dr->node, "REM");
360 }
361 spin_unlock_irqrestore(&dev->devres_lock, flags);
362
363 if (dr)
364 return dr->data;
365 return NULL;
366 }
367 EXPORT_SYMBOL_GPL(devres_remove);
368
369 /**
370 * devres_destroy - Find a device resource and destroy it
371 * @dev: Device to find resource from
372 * @release: Look for resources associated with this release function
373 * @match: Match function (optional)
374 * @match_data: Data for the match function
375 *
376 * Find the latest devres of @dev associated with @release and for
377 * which @match returns 1. If @match is NULL, it's considered to
378 * match all. If found, the resource is removed atomically and freed.
379 *
380 * Note that the release function for the resource will not be called,
381 * only the devres-allocated data will be freed. The caller becomes
382 * responsible for freeing any other data.
383 *
384 * RETURNS:
385 * 0 if devres is found and freed, -ENOENT if not found.
386 */
devres_destroy(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)387 int devres_destroy(struct device *dev, dr_release_t release,
388 dr_match_t match, void *match_data)
389 {
390 void *res;
391
392 res = devres_remove(dev, release, match, match_data);
393 if (unlikely(!res))
394 return -ENOENT;
395
396 devres_free(res);
397 return 0;
398 }
399 EXPORT_SYMBOL_GPL(devres_destroy);
400
401
402 /**
403 * devres_release - Find a device resource and destroy it, calling release
404 * @dev: Device to find resource from
405 * @release: Look for resources associated with this release function
406 * @match: Match function (optional)
407 * @match_data: Data for the match function
408 *
409 * Find the latest devres of @dev associated with @release and for
410 * which @match returns 1. If @match is NULL, it's considered to
411 * match all. If found, the resource is removed atomically, the
412 * release function called and the resource freed.
413 *
414 * RETURNS:
415 * 0 if devres is found and freed, -ENOENT if not found.
416 */
devres_release(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)417 int devres_release(struct device *dev, dr_release_t release,
418 dr_match_t match, void *match_data)
419 {
420 void *res;
421
422 res = devres_remove(dev, release, match, match_data);
423 if (unlikely(!res))
424 return -ENOENT;
425
426 (*release)(dev, res);
427 devres_free(res);
428 return 0;
429 }
430 EXPORT_SYMBOL_GPL(devres_release);
431
remove_nodes(struct device * dev,struct list_head * first,struct list_head * end,struct list_head * todo)432 static int remove_nodes(struct device *dev,
433 struct list_head *first, struct list_head *end,
434 struct list_head *todo)
435 {
436 struct devres_node *node, *n;
437 int cnt = 0, nr_groups = 0;
438
439 /* First pass - move normal devres entries to @todo and clear
440 * devres_group colors.
441 */
442 node = list_entry(first, struct devres_node, entry);
443 list_for_each_entry_safe_from(node, n, end, entry) {
444 struct devres_group *grp;
445
446 grp = node_to_group(node);
447 if (grp) {
448 /* clear color of group markers in the first pass */
449 grp->color = 0;
450 nr_groups++;
451 } else {
452 /* regular devres entry */
453 if (&node->entry == first)
454 first = first->next;
455 list_move_tail(&node->entry, todo);
456 cnt++;
457 }
458 }
459
460 if (!nr_groups)
461 return cnt;
462
463 /* Second pass - Scan groups and color them. A group gets
464 * color value of two iff the group is wholly contained in
465 * [current node, end). That is, for a closed group, both opening
466 * and closing markers should be in the range, while just the
467 * opening marker is enough for an open group.
468 */
469 node = list_entry(first, struct devres_node, entry);
470 list_for_each_entry_safe_from(node, n, end, entry) {
471 struct devres_group *grp;
472
473 grp = node_to_group(node);
474 BUG_ON(!grp || list_empty(&grp->node[0].entry));
475
476 grp->color++;
477 if (list_empty(&grp->node[1].entry))
478 grp->color++;
479
480 BUG_ON(grp->color <= 0 || grp->color > 2);
481 if (grp->color == 2) {
482 /* No need to update current node or end. The removed
483 * nodes are always before both.
484 */
485 list_move_tail(&grp->node[0].entry, todo);
486 list_del_init(&grp->node[1].entry);
487 }
488 }
489
490 return cnt;
491 }
492
release_nodes(struct device * dev,struct list_head * todo)493 static void release_nodes(struct device *dev, struct list_head *todo)
494 {
495 struct devres *dr, *tmp;
496
497 /* Release. Note that both devres and devres_group are
498 * handled as devres in the following loop. This is safe.
499 */
500 list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) {
501 devres_log(dev, &dr->node, "REL");
502 dr->node.release(dev, dr->data);
503 kfree(dr);
504 }
505 }
506
507 /**
508 * devres_release_all - Release all managed resources
509 * @dev: Device to release resources for
510 *
511 * Release all resources associated with @dev. This function is
512 * called on driver detach.
513 */
devres_release_all(struct device * dev)514 int devres_release_all(struct device *dev)
515 {
516 unsigned long flags;
517 LIST_HEAD(todo);
518 int cnt;
519
520 /* Looks like an uninitialized device structure */
521 if (WARN_ON(dev->devres_head.next == NULL))
522 return -ENODEV;
523
524 /* Nothing to release if list is empty */
525 if (list_empty(&dev->devres_head))
526 return 0;
527
528 spin_lock_irqsave(&dev->devres_lock, flags);
529 cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo);
530 spin_unlock_irqrestore(&dev->devres_lock, flags);
531
532 release_nodes(dev, &todo);
533 return cnt;
534 }
535
536 /**
537 * devres_open_group - Open a new devres group
538 * @dev: Device to open devres group for
539 * @id: Separator ID
540 * @gfp: Allocation flags
541 *
542 * Open a new devres group for @dev with @id. For @id, using a
543 * pointer to an object which won't be used for another group is
544 * recommended. If @id is NULL, address-wise unique ID is created.
545 *
546 * RETURNS:
547 * ID of the new group, NULL on failure.
548 */
devres_open_group(struct device * dev,void * id,gfp_t gfp)549 void * devres_open_group(struct device *dev, void *id, gfp_t gfp)
550 {
551 struct devres_group *grp;
552 unsigned long flags;
553
554 grp = kmalloc(sizeof(*grp), gfp);
555 if (unlikely(!grp))
556 return NULL;
557
558 grp->node[0].release = &group_open_release;
559 grp->node[1].release = &group_close_release;
560 INIT_LIST_HEAD(&grp->node[0].entry);
561 INIT_LIST_HEAD(&grp->node[1].entry);
562 set_node_dbginfo(&grp->node[0], "grp<", 0);
563 set_node_dbginfo(&grp->node[1], "grp>", 0);
564 grp->id = grp;
565 if (id)
566 grp->id = id;
567
568 spin_lock_irqsave(&dev->devres_lock, flags);
569 add_dr(dev, &grp->node[0]);
570 spin_unlock_irqrestore(&dev->devres_lock, flags);
571 return grp->id;
572 }
573 EXPORT_SYMBOL_GPL(devres_open_group);
574
575 /* Find devres group with ID @id. If @id is NULL, look for the latest. */
find_group(struct device * dev,void * id)576 static struct devres_group * find_group(struct device *dev, void *id)
577 {
578 struct devres_node *node;
579
580 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
581 struct devres_group *grp;
582
583 if (node->release != &group_open_release)
584 continue;
585
586 grp = container_of(node, struct devres_group, node[0]);
587
588 if (id) {
589 if (grp->id == id)
590 return grp;
591 } else if (list_empty(&grp->node[1].entry))
592 return grp;
593 }
594
595 return NULL;
596 }
597
598 /**
599 * devres_close_group - Close a devres group
600 * @dev: Device to close devres group for
601 * @id: ID of target group, can be NULL
602 *
603 * Close the group identified by @id. If @id is NULL, the latest open
604 * group is selected.
605 */
devres_close_group(struct device * dev,void * id)606 void devres_close_group(struct device *dev, void *id)
607 {
608 struct devres_group *grp;
609 unsigned long flags;
610
611 spin_lock_irqsave(&dev->devres_lock, flags);
612
613 grp = find_group(dev, id);
614 if (grp)
615 add_dr(dev, &grp->node[1]);
616 else
617 WARN_ON(1);
618
619 spin_unlock_irqrestore(&dev->devres_lock, flags);
620 }
621 EXPORT_SYMBOL_GPL(devres_close_group);
622
623 /**
624 * devres_remove_group - Remove a devres group
625 * @dev: Device to remove group for
626 * @id: ID of target group, can be NULL
627 *
628 * Remove the group identified by @id. If @id is NULL, the latest
629 * open group is selected. Note that removing a group doesn't affect
630 * any other resources.
631 */
devres_remove_group(struct device * dev,void * id)632 void devres_remove_group(struct device *dev, void *id)
633 {
634 struct devres_group *grp;
635 unsigned long flags;
636
637 spin_lock_irqsave(&dev->devres_lock, flags);
638
639 grp = find_group(dev, id);
640 if (grp) {
641 list_del_init(&grp->node[0].entry);
642 list_del_init(&grp->node[1].entry);
643 devres_log(dev, &grp->node[0], "REM");
644 } else
645 WARN_ON(1);
646
647 spin_unlock_irqrestore(&dev->devres_lock, flags);
648
649 kfree(grp);
650 }
651 EXPORT_SYMBOL_GPL(devres_remove_group);
652
653 /**
654 * devres_release_group - Release resources in a devres group
655 * @dev: Device to release group for
656 * @id: ID of target group, can be NULL
657 *
658 * Release all resources in the group identified by @id. If @id is
659 * NULL, the latest open group is selected. The selected group and
660 * groups properly nested inside the selected group are removed.
661 *
662 * RETURNS:
663 * The number of released non-group resources.
664 */
devres_release_group(struct device * dev,void * id)665 int devres_release_group(struct device *dev, void *id)
666 {
667 struct devres_group *grp;
668 unsigned long flags;
669 LIST_HEAD(todo);
670 int cnt = 0;
671
672 spin_lock_irqsave(&dev->devres_lock, flags);
673
674 grp = find_group(dev, id);
675 if (grp) {
676 struct list_head *first = &grp->node[0].entry;
677 struct list_head *end = &dev->devres_head;
678
679 if (!list_empty(&grp->node[1].entry))
680 end = grp->node[1].entry.next;
681
682 cnt = remove_nodes(dev, first, end, &todo);
683 spin_unlock_irqrestore(&dev->devres_lock, flags);
684
685 release_nodes(dev, &todo);
686 } else {
687 WARN_ON(1);
688 spin_unlock_irqrestore(&dev->devres_lock, flags);
689 }
690
691 return cnt;
692 }
693 EXPORT_SYMBOL_GPL(devres_release_group);
694
695 /*
696 * Custom devres actions allow inserting a simple function call
697 * into the teardown sequence.
698 */
699
700 struct action_devres {
701 void *data;
702 void (*action)(void *);
703 };
704
devm_action_match(struct device * dev,void * res,void * p)705 static int devm_action_match(struct device *dev, void *res, void *p)
706 {
707 struct action_devres *devres = res;
708 struct action_devres *target = p;
709
710 return devres->action == target->action &&
711 devres->data == target->data;
712 }
713
devm_action_release(struct device * dev,void * res)714 static void devm_action_release(struct device *dev, void *res)
715 {
716 struct action_devres *devres = res;
717
718 devres->action(devres->data);
719 }
720
721 /**
722 * devm_add_action() - add a custom action to list of managed resources
723 * @dev: Device that owns the action
724 * @action: Function that should be called
725 * @data: Pointer to data passed to @action implementation
726 *
727 * This adds a custom action to the list of managed resources so that
728 * it gets executed as part of standard resource unwinding.
729 */
devm_add_action(struct device * dev,void (* action)(void *),void * data)730 int devm_add_action(struct device *dev, void (*action)(void *), void *data)
731 {
732 struct action_devres *devres;
733
734 devres = devres_alloc(devm_action_release,
735 sizeof(struct action_devres), GFP_KERNEL);
736 if (!devres)
737 return -ENOMEM;
738
739 devres->data = data;
740 devres->action = action;
741
742 devres_add(dev, devres);
743 return 0;
744 }
745 EXPORT_SYMBOL_GPL(devm_add_action);
746
747 /**
748 * devm_remove_action() - removes previously added custom action
749 * @dev: Device that owns the action
750 * @action: Function implementing the action
751 * @data: Pointer to data passed to @action implementation
752 *
753 * Removes instance of @action previously added by devm_add_action().
754 * Both action and data should match one of the existing entries.
755 */
devm_remove_action(struct device * dev,void (* action)(void *),void * data)756 void devm_remove_action(struct device *dev, void (*action)(void *), void *data)
757 {
758 struct action_devres devres = {
759 .data = data,
760 .action = action,
761 };
762
763 WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match,
764 &devres));
765 }
766 EXPORT_SYMBOL_GPL(devm_remove_action);
767
768 /**
769 * devm_release_action() - release previously added custom action
770 * @dev: Device that owns the action
771 * @action: Function implementing the action
772 * @data: Pointer to data passed to @action implementation
773 *
774 * Releases and removes instance of @action previously added by
775 * devm_add_action(). Both action and data should match one of the
776 * existing entries.
777 */
devm_release_action(struct device * dev,void (* action)(void *),void * data)778 void devm_release_action(struct device *dev, void (*action)(void *), void *data)
779 {
780 struct action_devres devres = {
781 .data = data,
782 .action = action,
783 };
784
785 WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
786 &devres));
787
788 }
789 EXPORT_SYMBOL_GPL(devm_release_action);
790
791 /*
792 * Managed kmalloc/kfree
793 */
devm_kmalloc_release(struct device * dev,void * res)794 static void devm_kmalloc_release(struct device *dev, void *res)
795 {
796 /* noop */
797 }
798
devm_kmalloc_match(struct device * dev,void * res,void * data)799 static int devm_kmalloc_match(struct device *dev, void *res, void *data)
800 {
801 return res == data;
802 }
803
804 /**
805 * devm_kmalloc - Resource-managed kmalloc
806 * @dev: Device to allocate memory for
807 * @size: Allocation size
808 * @gfp: Allocation gfp flags
809 *
810 * Managed kmalloc. Memory allocated with this function is
811 * automatically freed on driver detach. Like all other devres
812 * resources, guaranteed alignment is unsigned long long.
813 *
814 * RETURNS:
815 * Pointer to allocated memory on success, NULL on failure.
816 */
devm_kmalloc(struct device * dev,size_t size,gfp_t gfp)817 void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
818 {
819 struct devres *dr;
820
821 if (unlikely(!size))
822 return ZERO_SIZE_PTR;
823
824 /* use raw alloc_dr for kmalloc caller tracing */
825 dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
826 if (unlikely(!dr))
827 return NULL;
828
829 /*
830 * This is named devm_kzalloc_release for historical reasons
831 * The initial implementation did not support kmalloc, only kzalloc
832 */
833 set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
834 devres_add(dev, dr->data);
835 return dr->data;
836 }
837 EXPORT_SYMBOL_GPL(devm_kmalloc);
838
839 /**
840 * devm_krealloc - Resource-managed krealloc()
841 * @dev: Device to re-allocate memory for
842 * @ptr: Pointer to the memory chunk to re-allocate
843 * @new_size: New allocation size
844 * @gfp: Allocation gfp flags
845 *
846 * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
847 * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
848 * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
849 * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
850 * change the order in which the release callback for the re-alloc'ed devres
851 * will be called (except when falling back to devm_kmalloc() or when freeing
852 * resources when new_size is zero). The contents of the memory are preserved
853 * up to the lesser of new and old sizes.
854 */
devm_krealloc(struct device * dev,void * ptr,size_t new_size,gfp_t gfp)855 void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
856 {
857 size_t total_new_size, total_old_size;
858 struct devres *old_dr, *new_dr;
859 unsigned long flags;
860
861 if (unlikely(!new_size)) {
862 devm_kfree(dev, ptr);
863 return ZERO_SIZE_PTR;
864 }
865
866 if (unlikely(ZERO_OR_NULL_PTR(ptr)))
867 return devm_kmalloc(dev, new_size, gfp);
868
869 if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
870 /*
871 * We cannot reliably realloc a const string returned by
872 * devm_kstrdup_const().
873 */
874 return NULL;
875
876 if (!check_dr_size(new_size, &total_new_size))
877 return NULL;
878
879 total_old_size = ksize(container_of(ptr, struct devres, data));
880 if (total_old_size == 0) {
881 WARN(1, "Pointer doesn't point to dynamically allocated memory.");
882 return NULL;
883 }
884
885 /*
886 * If new size is smaller or equal to the actual number of bytes
887 * allocated previously - just return the same pointer.
888 */
889 if (total_new_size <= total_old_size)
890 return ptr;
891
892 /*
893 * Otherwise: allocate new, larger chunk. We need to allocate before
894 * taking the lock as most probably the caller uses GFP_KERNEL.
895 */
896 new_dr = alloc_dr(devm_kmalloc_release,
897 total_new_size, gfp, dev_to_node(dev));
898 if (!new_dr)
899 return NULL;
900
901 /*
902 * The spinlock protects the linked list against concurrent
903 * modifications but not the resource itself.
904 */
905 spin_lock_irqsave(&dev->devres_lock, flags);
906
907 old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
908 if (!old_dr) {
909 spin_unlock_irqrestore(&dev->devres_lock, flags);
910 kfree(new_dr);
911 WARN(1, "Memory chunk not managed or managed by a different device.");
912 return NULL;
913 }
914
915 replace_dr(dev, &old_dr->node, &new_dr->node);
916
917 spin_unlock_irqrestore(&dev->devres_lock, flags);
918
919 /*
920 * We can copy the memory contents after releasing the lock as we're
921 * no longer modifying the list links.
922 */
923 memcpy(new_dr->data, old_dr->data,
924 total_old_size - offsetof(struct devres, data));
925 /*
926 * Same for releasing the old devres - it's now been removed from the
927 * list. This is also the reason why we must not use devm_kfree() - the
928 * links are no longer valid.
929 */
930 kfree(old_dr);
931
932 return new_dr->data;
933 }
934 EXPORT_SYMBOL_GPL(devm_krealloc);
935
936 /**
937 * devm_kstrdup - Allocate resource managed space and
938 * copy an existing string into that.
939 * @dev: Device to allocate memory for
940 * @s: the string to duplicate
941 * @gfp: the GFP mask used in the devm_kmalloc() call when
942 * allocating memory
943 * RETURNS:
944 * Pointer to allocated string on success, NULL on failure.
945 */
devm_kstrdup(struct device * dev,const char * s,gfp_t gfp)946 char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
947 {
948 size_t size;
949 char *buf;
950
951 if (!s)
952 return NULL;
953
954 size = strlen(s) + 1;
955 buf = devm_kmalloc(dev, size, gfp);
956 if (buf)
957 memcpy(buf, s, size);
958 return buf;
959 }
960 EXPORT_SYMBOL_GPL(devm_kstrdup);
961
962 /**
963 * devm_kstrdup_const - resource managed conditional string duplication
964 * @dev: device for which to duplicate the string
965 * @s: the string to duplicate
966 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
967 *
968 * Strings allocated by devm_kstrdup_const will be automatically freed when
969 * the associated device is detached.
970 *
971 * RETURNS:
972 * Source string if it is in .rodata section otherwise it falls back to
973 * devm_kstrdup.
974 */
devm_kstrdup_const(struct device * dev,const char * s,gfp_t gfp)975 const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
976 {
977 if (is_kernel_rodata((unsigned long)s))
978 return s;
979
980 return devm_kstrdup(dev, s, gfp);
981 }
982 EXPORT_SYMBOL_GPL(devm_kstrdup_const);
983
984 /**
985 * devm_kvasprintf - Allocate resource managed space and format a string
986 * into that.
987 * @dev: Device to allocate memory for
988 * @gfp: the GFP mask used in the devm_kmalloc() call when
989 * allocating memory
990 * @fmt: The printf()-style format string
991 * @ap: Arguments for the format string
992 * RETURNS:
993 * Pointer to allocated string on success, NULL on failure.
994 */
devm_kvasprintf(struct device * dev,gfp_t gfp,const char * fmt,va_list ap)995 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
996 va_list ap)
997 {
998 unsigned int len;
999 char *p;
1000 va_list aq;
1001
1002 va_copy(aq, ap);
1003 len = vsnprintf(NULL, 0, fmt, aq);
1004 va_end(aq);
1005
1006 p = devm_kmalloc(dev, len+1, gfp);
1007 if (!p)
1008 return NULL;
1009
1010 vsnprintf(p, len+1, fmt, ap);
1011
1012 return p;
1013 }
1014 EXPORT_SYMBOL(devm_kvasprintf);
1015
1016 /**
1017 * devm_kasprintf - Allocate resource managed space and format a string
1018 * into that.
1019 * @dev: Device to allocate memory for
1020 * @gfp: the GFP mask used in the devm_kmalloc() call when
1021 * allocating memory
1022 * @fmt: The printf()-style format string
1023 * @...: Arguments for the format string
1024 * RETURNS:
1025 * Pointer to allocated string on success, NULL on failure.
1026 */
devm_kasprintf(struct device * dev,gfp_t gfp,const char * fmt,...)1027 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1028 {
1029 va_list ap;
1030 char *p;
1031
1032 va_start(ap, fmt);
1033 p = devm_kvasprintf(dev, gfp, fmt, ap);
1034 va_end(ap);
1035
1036 return p;
1037 }
1038 EXPORT_SYMBOL_GPL(devm_kasprintf);
1039
1040 /**
1041 * devm_kfree - Resource-managed kfree
1042 * @dev: Device this memory belongs to
1043 * @p: Memory to free
1044 *
1045 * Free memory allocated with devm_kmalloc().
1046 */
devm_kfree(struct device * dev,const void * p)1047 void devm_kfree(struct device *dev, const void *p)
1048 {
1049 int rc;
1050
1051 /*
1052 * Special cases: pointer to a string in .rodata returned by
1053 * devm_kstrdup_const() or NULL/ZERO ptr.
1054 */
1055 if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1056 return;
1057
1058 rc = devres_destroy(dev, devm_kmalloc_release,
1059 devm_kmalloc_match, (void *)p);
1060 WARN_ON(rc);
1061 }
1062 EXPORT_SYMBOL_GPL(devm_kfree);
1063
1064 /**
1065 * devm_kmemdup - Resource-managed kmemdup
1066 * @dev: Device this memory belongs to
1067 * @src: Memory region to duplicate
1068 * @len: Memory region length
1069 * @gfp: GFP mask to use
1070 *
1071 * Duplicate region of a memory using resource managed kmalloc
1072 */
devm_kmemdup(struct device * dev,const void * src,size_t len,gfp_t gfp)1073 void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1074 {
1075 void *p;
1076
1077 p = devm_kmalloc(dev, len, gfp);
1078 if (p)
1079 memcpy(p, src, len);
1080
1081 return p;
1082 }
1083 EXPORT_SYMBOL_GPL(devm_kmemdup);
1084
1085 struct pages_devres {
1086 unsigned long addr;
1087 unsigned int order;
1088 };
1089
devm_pages_match(struct device * dev,void * res,void * p)1090 static int devm_pages_match(struct device *dev, void *res, void *p)
1091 {
1092 struct pages_devres *devres = res;
1093 struct pages_devres *target = p;
1094
1095 return devres->addr == target->addr;
1096 }
1097
devm_pages_release(struct device * dev,void * res)1098 static void devm_pages_release(struct device *dev, void *res)
1099 {
1100 struct pages_devres *devres = res;
1101
1102 free_pages(devres->addr, devres->order);
1103 }
1104
1105 /**
1106 * devm_get_free_pages - Resource-managed __get_free_pages
1107 * @dev: Device to allocate memory for
1108 * @gfp_mask: Allocation gfp flags
1109 * @order: Allocation size is (1 << order) pages
1110 *
1111 * Managed get_free_pages. Memory allocated with this function is
1112 * automatically freed on driver detach.
1113 *
1114 * RETURNS:
1115 * Address of allocated memory on success, 0 on failure.
1116 */
1117
devm_get_free_pages(struct device * dev,gfp_t gfp_mask,unsigned int order)1118 unsigned long devm_get_free_pages(struct device *dev,
1119 gfp_t gfp_mask, unsigned int order)
1120 {
1121 struct pages_devres *devres;
1122 unsigned long addr;
1123
1124 addr = __get_free_pages(gfp_mask, order);
1125
1126 if (unlikely(!addr))
1127 return 0;
1128
1129 devres = devres_alloc(devm_pages_release,
1130 sizeof(struct pages_devres), GFP_KERNEL);
1131 if (unlikely(!devres)) {
1132 free_pages(addr, order);
1133 return 0;
1134 }
1135
1136 devres->addr = addr;
1137 devres->order = order;
1138
1139 devres_add(dev, devres);
1140 return addr;
1141 }
1142 EXPORT_SYMBOL_GPL(devm_get_free_pages);
1143
1144 /**
1145 * devm_free_pages - Resource-managed free_pages
1146 * @dev: Device this memory belongs to
1147 * @addr: Memory to free
1148 *
1149 * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1150 * there is no need to supply the @order.
1151 */
devm_free_pages(struct device * dev,unsigned long addr)1152 void devm_free_pages(struct device *dev, unsigned long addr)
1153 {
1154 struct pages_devres devres = { .addr = addr };
1155
1156 WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1157 &devres));
1158 }
1159 EXPORT_SYMBOL_GPL(devm_free_pages);
1160
devm_percpu_release(struct device * dev,void * pdata)1161 static void devm_percpu_release(struct device *dev, void *pdata)
1162 {
1163 void __percpu *p;
1164
1165 p = *(void __percpu **)pdata;
1166 free_percpu(p);
1167 }
1168
devm_percpu_match(struct device * dev,void * data,void * p)1169 static int devm_percpu_match(struct device *dev, void *data, void *p)
1170 {
1171 struct devres *devr = container_of(data, struct devres, data);
1172
1173 return *(void **)devr->data == p;
1174 }
1175
1176 /**
1177 * __devm_alloc_percpu - Resource-managed alloc_percpu
1178 * @dev: Device to allocate per-cpu memory for
1179 * @size: Size of per-cpu memory to allocate
1180 * @align: Alignment of per-cpu memory to allocate
1181 *
1182 * Managed alloc_percpu. Per-cpu memory allocated with this function is
1183 * automatically freed on driver detach.
1184 *
1185 * RETURNS:
1186 * Pointer to allocated memory on success, NULL on failure.
1187 */
__devm_alloc_percpu(struct device * dev,size_t size,size_t align)1188 void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1189 size_t align)
1190 {
1191 void *p;
1192 void __percpu *pcpu;
1193
1194 pcpu = __alloc_percpu(size, align);
1195 if (!pcpu)
1196 return NULL;
1197
1198 p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1199 if (!p) {
1200 free_percpu(pcpu);
1201 return NULL;
1202 }
1203
1204 *(void __percpu **)p = pcpu;
1205
1206 devres_add(dev, p);
1207
1208 return pcpu;
1209 }
1210 EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1211
1212 /**
1213 * devm_free_percpu - Resource-managed free_percpu
1214 * @dev: Device this memory belongs to
1215 * @pdata: Per-cpu memory to free
1216 *
1217 * Free memory allocated with devm_alloc_percpu().
1218 */
devm_free_percpu(struct device * dev,void __percpu * pdata)1219 void devm_free_percpu(struct device *dev, void __percpu *pdata)
1220 {
1221 WARN_ON(devres_destroy(dev, devm_percpu_release, devm_percpu_match,
1222 (__force void *)pdata));
1223 }
1224 EXPORT_SYMBOL_GPL(devm_free_percpu);
1225