1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
23
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/bug.h>
27 #include <linux/scatterlist.h>
28 #include <linux/bitmap.h>
29 #include <linux/types.h>
30 #include <asm/page.h>
31
32 /**
33 * typedef dma_cookie_t - an opaque DMA cookie
34 *
35 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
36 */
37 typedef s32 dma_cookie_t;
38 #define DMA_MIN_COOKIE 1
39 #define DMA_MAX_COOKIE INT_MAX
40
41 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
42
43 /**
44 * enum dma_status - DMA transaction status
45 * @DMA_SUCCESS: transaction completed successfully
46 * @DMA_IN_PROGRESS: transaction not yet processed
47 * @DMA_PAUSED: transaction is paused
48 * @DMA_ERROR: transaction failed
49 */
50 enum dma_status {
51 DMA_SUCCESS,
52 DMA_IN_PROGRESS,
53 DMA_PAUSED,
54 DMA_ERROR,
55 };
56
57 /**
58 * enum dma_transaction_type - DMA transaction types/indexes
59 *
60 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
61 * automatically set as dma devices are registered.
62 */
63 enum dma_transaction_type {
64 DMA_MEMCPY,
65 DMA_XOR,
66 DMA_PQ,
67 DMA_XOR_VAL,
68 DMA_PQ_VAL,
69 DMA_MEMSET,
70 DMA_INTERRUPT,
71 DMA_SG,
72 DMA_PRIVATE,
73 DMA_ASYNC_TX,
74 DMA_SLAVE,
75 DMA_CYCLIC,
76 DMA_INTERLEAVE,
77 /* last transaction type for creation of the capabilities mask */
78 DMA_TX_TYPE_END,
79 };
80
81 /**
82 * enum dma_transfer_direction - dma transfer mode and direction indicator
83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
87 */
88 enum dma_transfer_direction {
89 DMA_MEM_TO_MEM,
90 DMA_MEM_TO_DEV,
91 DMA_DEV_TO_MEM,
92 DMA_DEV_TO_DEV,
93 DMA_TRANS_NONE,
94 };
95
96 /**
97 * Interleaved Transfer Request
98 * ----------------------------
99 * A chunk is collection of contiguous bytes to be transfered.
100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
101 * ICGs may or maynot change between chunks.
102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
103 * that when repeated an integral number of times, specifies the transfer.
104 * A transfer template is specification of a Frame, the number of times
105 * it is to be repeated and other per-transfer attributes.
106 *
107 * Practically, a client driver would have ready a template for each
108 * type of transfer it is going to need during its lifetime and
109 * set only 'src_start' and 'dst_start' before submitting the requests.
110 *
111 *
112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
114 *
115 * == Chunk size
116 * ... ICG
117 */
118
119 /**
120 * struct data_chunk - Element of scatter-gather list that makes a frame.
121 * @size: Number of bytes to read from source.
122 * size_dst := fn(op, size_src), so doesn't mean much for destination.
123 * @icg: Number of bytes to jump after last src/dst address of this
124 * chunk and before first src/dst address for next chunk.
125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
127 */
128 struct data_chunk {
129 size_t size;
130 size_t icg;
131 };
132
133 /**
134 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
135 * and attributes.
136 * @src_start: Bus address of source for the first chunk.
137 * @dst_start: Bus address of destination for the first chunk.
138 * @dir: Specifies the type of Source and Destination.
139 * @src_inc: If the source address increments after reading from it.
140 * @dst_inc: If the destination address increments after writing to it.
141 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
142 * Otherwise, source is read contiguously (icg ignored).
143 * Ignored if src_inc is false.
144 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
145 * Otherwise, destination is filled contiguously (icg ignored).
146 * Ignored if dst_inc is false.
147 * @numf: Number of frames in this template.
148 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
149 * @sgl: Array of {chunk,icg} pairs that make up a frame.
150 */
151 struct dma_interleaved_template {
152 dma_addr_t src_start;
153 dma_addr_t dst_start;
154 enum dma_transfer_direction dir;
155 bool src_inc;
156 bool dst_inc;
157 bool src_sgl;
158 bool dst_sgl;
159 size_t numf;
160 size_t frame_size;
161 struct data_chunk sgl[0];
162 };
163
164 /**
165 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
166 * control completion, and communicate status.
167 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
168 * this transaction
169 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
170 * acknowledges receipt, i.e. has has a chance to establish any dependency
171 * chains
172 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
173 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
174 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
175 * (if not set, do the source dma-unmapping as page)
176 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
177 * (if not set, do the destination dma-unmapping as page)
178 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
179 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
180 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
181 * sources that were the result of a previous operation, in the case of a PQ
182 * operation it continues the calculation with new sources
183 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
184 * on the result of this operation
185 */
186 enum dma_ctrl_flags {
187 DMA_PREP_INTERRUPT = (1 << 0),
188 DMA_CTRL_ACK = (1 << 1),
189 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
190 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
191 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
192 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
193 DMA_PREP_PQ_DISABLE_P = (1 << 6),
194 DMA_PREP_PQ_DISABLE_Q = (1 << 7),
195 DMA_PREP_CONTINUE = (1 << 8),
196 DMA_PREP_FENCE = (1 << 9),
197 };
198
199 /**
200 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
201 * on a running channel.
202 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
203 * @DMA_PAUSE: pause ongoing transfers
204 * @DMA_RESUME: resume paused transfer
205 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
206 * that need to runtime reconfigure the slave channels (as opposed to passing
207 * configuration data in statically from the platform). An additional
208 * argument of struct dma_slave_config must be passed in with this
209 * command.
210 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
211 * into external start mode.
212 */
213 enum dma_ctrl_cmd {
214 DMA_TERMINATE_ALL,
215 DMA_PAUSE,
216 DMA_RESUME,
217 DMA_SLAVE_CONFIG,
218 FSLDMA_EXTERNAL_START,
219 };
220
221 /**
222 * enum sum_check_bits - bit position of pq_check_flags
223 */
224 enum sum_check_bits {
225 SUM_CHECK_P = 0,
226 SUM_CHECK_Q = 1,
227 };
228
229 /**
230 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
231 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
232 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
233 */
234 enum sum_check_flags {
235 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
236 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
237 };
238
239
240 /**
241 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
242 * See linux/cpumask.h
243 */
244 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
245
246 /**
247 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
248 * @memcpy_count: transaction counter
249 * @bytes_transferred: byte counter
250 */
251
252 struct dma_chan_percpu {
253 /* stats */
254 unsigned long memcpy_count;
255 unsigned long bytes_transferred;
256 };
257
258 /**
259 * struct dma_chan - devices supply DMA channels, clients use them
260 * @device: ptr to the dma device who supplies this channel, always !%NULL
261 * @cookie: last cookie value returned to client
262 * @completed_cookie: last completed cookie for this channel
263 * @chan_id: channel ID for sysfs
264 * @dev: class device for sysfs
265 * @device_node: used to add this to the device chan list
266 * @local: per-cpu pointer to a struct dma_chan_percpu
267 * @client-count: how many clients are using this channel
268 * @table_count: number of appearances in the mem-to-mem allocation table
269 * @private: private data for certain client-channel associations
270 */
271 struct dma_chan {
272 struct dma_device *device;
273 dma_cookie_t cookie;
274 dma_cookie_t completed_cookie;
275
276 /* sysfs */
277 int chan_id;
278 struct dma_chan_dev *dev;
279
280 struct list_head device_node;
281 struct dma_chan_percpu __percpu *local;
282 int client_count;
283 int table_count;
284 void *private;
285 };
286
287 /**
288 * struct dma_chan_dev - relate sysfs device node to backing channel device
289 * @chan - driver channel device
290 * @device - sysfs device
291 * @dev_id - parent dma_device dev_id
292 * @idr_ref - reference count to gate release of dma_device dev_id
293 */
294 struct dma_chan_dev {
295 struct dma_chan *chan;
296 struct device device;
297 int dev_id;
298 atomic_t *idr_ref;
299 };
300
301 /**
302 * enum dma_slave_buswidth - defines bus with of the DMA slave
303 * device, source or target buses
304 */
305 enum dma_slave_buswidth {
306 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
307 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
308 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
309 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
310 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
311 };
312
313 /**
314 * struct dma_slave_config - dma slave channel runtime config
315 * @direction: whether the data shall go in or out on this slave
316 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
317 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
318 * need to differentiate source and target addresses.
319 * @src_addr: this is the physical address where DMA slave data
320 * should be read (RX), if the source is memory this argument is
321 * ignored.
322 * @dst_addr: this is the physical address where DMA slave data
323 * should be written (TX), if the source is memory this argument
324 * is ignored.
325 * @src_addr_width: this is the width in bytes of the source (RX)
326 * register where DMA data shall be read. If the source
327 * is memory this may be ignored depending on architecture.
328 * Legal values: 1, 2, 4, 8.
329 * @dst_addr_width: same as src_addr_width but for destination
330 * target (TX) mutatis mutandis.
331 * @src_maxburst: the maximum number of words (note: words, as in
332 * units of the src_addr_width member, not bytes) that can be sent
333 * in one burst to the device. Typically something like half the
334 * FIFO depth on I/O peripherals so you don't overflow it. This
335 * may or may not be applicable on memory sources.
336 * @dst_maxburst: same as src_maxburst but for destination target
337 * mutatis mutandis.
338 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
339 * with 'true' if peripheral should be flow controller. Direction will be
340 * selected at Runtime.
341 *
342 * This struct is passed in as configuration data to a DMA engine
343 * in order to set up a certain channel for DMA transport at runtime.
344 * The DMA device/engine has to provide support for an additional
345 * command in the channel config interface, DMA_SLAVE_CONFIG
346 * and this struct will then be passed in as an argument to the
347 * DMA engine device_control() function.
348 *
349 * The rationale for adding configuration information to this struct
350 * is as follows: if it is likely that most DMA slave controllers in
351 * the world will support the configuration option, then make it
352 * generic. If not: if it is fixed so that it be sent in static from
353 * the platform data, then prefer to do that. Else, if it is neither
354 * fixed at runtime, nor generic enough (such as bus mastership on
355 * some CPU family and whatnot) then create a custom slave config
356 * struct and pass that, then make this config a member of that
357 * struct, if applicable.
358 */
359 struct dma_slave_config {
360 enum dma_transfer_direction direction;
361 dma_addr_t src_addr;
362 dma_addr_t dst_addr;
363 enum dma_slave_buswidth src_addr_width;
364 enum dma_slave_buswidth dst_addr_width;
365 u32 src_maxburst;
366 u32 dst_maxburst;
367 bool device_fc;
368 };
369
dma_chan_name(struct dma_chan * chan)370 static inline const char *dma_chan_name(struct dma_chan *chan)
371 {
372 return dev_name(&chan->dev->device);
373 }
374
375 void dma_chan_cleanup(struct kref *kref);
376
377 /**
378 * typedef dma_filter_fn - callback filter for dma_request_channel
379 * @chan: channel to be reviewed
380 * @filter_param: opaque parameter passed through dma_request_channel
381 *
382 * When this optional parameter is specified in a call to dma_request_channel a
383 * suitable channel is passed to this routine for further dispositioning before
384 * being returned. Where 'suitable' indicates a non-busy channel that
385 * satisfies the given capability mask. It returns 'true' to indicate that the
386 * channel is suitable.
387 */
388 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
389
390 typedef void (*dma_async_tx_callback)(void *dma_async_param);
391 /**
392 * struct dma_async_tx_descriptor - async transaction descriptor
393 * ---dma generic offload fields---
394 * @cookie: tracking cookie for this transaction, set to -EBUSY if
395 * this tx is sitting on a dependency list
396 * @flags: flags to augment operation preparation, control completion, and
397 * communicate status
398 * @phys: physical address of the descriptor
399 * @chan: target channel for this operation
400 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
401 * @callback: routine to call after this operation is complete
402 * @callback_param: general parameter to pass to the callback routine
403 * ---async_tx api specific fields---
404 * @next: at completion submit this descriptor
405 * @parent: pointer to the next level up in the dependency chain
406 * @lock: protect the parent and next pointers
407 */
408 struct dma_async_tx_descriptor {
409 dma_cookie_t cookie;
410 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
411 dma_addr_t phys;
412 struct dma_chan *chan;
413 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
414 dma_async_tx_callback callback;
415 void *callback_param;
416 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
417 struct dma_async_tx_descriptor *next;
418 struct dma_async_tx_descriptor *parent;
419 spinlock_t lock;
420 #endif
421 };
422
423 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)424 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
425 {
426 }
txd_unlock(struct dma_async_tx_descriptor * txd)427 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
428 {
429 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)430 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
431 {
432 BUG();
433 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)434 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
435 {
436 }
txd_clear_next(struct dma_async_tx_descriptor * txd)437 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
438 {
439 }
txd_next(struct dma_async_tx_descriptor * txd)440 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
441 {
442 return NULL;
443 }
txd_parent(struct dma_async_tx_descriptor * txd)444 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
445 {
446 return NULL;
447 }
448
449 #else
txd_lock(struct dma_async_tx_descriptor * txd)450 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
451 {
452 spin_lock_bh(&txd->lock);
453 }
txd_unlock(struct dma_async_tx_descriptor * txd)454 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
455 {
456 spin_unlock_bh(&txd->lock);
457 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)458 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
459 {
460 txd->next = next;
461 next->parent = txd;
462 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)463 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
464 {
465 txd->parent = NULL;
466 }
txd_clear_next(struct dma_async_tx_descriptor * txd)467 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
468 {
469 txd->next = NULL;
470 }
txd_parent(struct dma_async_tx_descriptor * txd)471 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
472 {
473 return txd->parent;
474 }
txd_next(struct dma_async_tx_descriptor * txd)475 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
476 {
477 return txd->next;
478 }
479 #endif
480
481 /**
482 * struct dma_tx_state - filled in to report the status of
483 * a transfer.
484 * @last: last completed DMA cookie
485 * @used: last issued DMA cookie (i.e. the one in progress)
486 * @residue: the remaining number of bytes left to transmit
487 * on the selected transfer for states DMA_IN_PROGRESS and
488 * DMA_PAUSED if this is implemented in the driver, else 0
489 */
490 struct dma_tx_state {
491 dma_cookie_t last;
492 dma_cookie_t used;
493 u32 residue;
494 };
495
496 /**
497 * struct dma_device - info on the entity supplying DMA services
498 * @chancnt: how many DMA channels are supported
499 * @privatecnt: how many DMA channels are requested by dma_request_channel
500 * @channels: the list of struct dma_chan
501 * @global_node: list_head for global dma_device_list
502 * @cap_mask: one or more dma_capability flags
503 * @max_xor: maximum number of xor sources, 0 if no capability
504 * @max_pq: maximum number of PQ sources and PQ-continue capability
505 * @copy_align: alignment shift for memcpy operations
506 * @xor_align: alignment shift for xor operations
507 * @pq_align: alignment shift for pq operations
508 * @fill_align: alignment shift for memset operations
509 * @dev_id: unique device ID
510 * @dev: struct device reference for dma mapping api
511 * @device_alloc_chan_resources: allocate resources and return the
512 * number of allocated descriptors
513 * @device_free_chan_resources: release DMA channel's resources
514 * @device_prep_dma_memcpy: prepares a memcpy operation
515 * @device_prep_dma_xor: prepares a xor operation
516 * @device_prep_dma_xor_val: prepares a xor validation operation
517 * @device_prep_dma_pq: prepares a pq operation
518 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
519 * @device_prep_dma_memset: prepares a memset operation
520 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
521 * @device_prep_slave_sg: prepares a slave dma operation
522 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
523 * The function takes a buffer of size buf_len. The callback function will
524 * be called after period_len bytes have been transferred.
525 * @device_prep_interleaved_dma: Transfer expression in a generic way.
526 * @device_control: manipulate all pending operations on a channel, returns
527 * zero or error code
528 * @device_tx_status: poll for transaction completion, the optional
529 * txstate parameter can be supplied with a pointer to get a
530 * struct with auxiliary transfer status information, otherwise the call
531 * will just return a simple status code
532 * @device_issue_pending: push pending transactions to hardware
533 */
534 struct dma_device {
535
536 unsigned int chancnt;
537 unsigned int privatecnt;
538 struct list_head channels;
539 struct list_head global_node;
540 dma_cap_mask_t cap_mask;
541 unsigned short max_xor;
542 unsigned short max_pq;
543 u8 copy_align;
544 u8 xor_align;
545 u8 pq_align;
546 u8 fill_align;
547 #define DMA_HAS_PQ_CONTINUE (1 << 15)
548
549 int dev_id;
550 struct device *dev;
551
552 int (*device_alloc_chan_resources)(struct dma_chan *chan);
553 void (*device_free_chan_resources)(struct dma_chan *chan);
554
555 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
556 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
557 size_t len, unsigned long flags);
558 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
559 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
560 unsigned int src_cnt, size_t len, unsigned long flags);
561 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
562 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
563 size_t len, enum sum_check_flags *result, unsigned long flags);
564 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
565 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
566 unsigned int src_cnt, const unsigned char *scf,
567 size_t len, unsigned long flags);
568 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
569 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
570 unsigned int src_cnt, const unsigned char *scf, size_t len,
571 enum sum_check_flags *pqres, unsigned long flags);
572 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
573 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
574 unsigned long flags);
575 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
576 struct dma_chan *chan, unsigned long flags);
577 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
578 struct dma_chan *chan,
579 struct scatterlist *dst_sg, unsigned int dst_nents,
580 struct scatterlist *src_sg, unsigned int src_nents,
581 unsigned long flags);
582
583 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
584 struct dma_chan *chan, struct scatterlist *sgl,
585 unsigned int sg_len, enum dma_transfer_direction direction,
586 unsigned long flags, void *context);
587 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
588 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
589 size_t period_len, enum dma_transfer_direction direction,
590 void *context);
591 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
592 struct dma_chan *chan, struct dma_interleaved_template *xt,
593 unsigned long flags);
594 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
595 unsigned long arg);
596
597 enum dma_status (*device_tx_status)(struct dma_chan *chan,
598 dma_cookie_t cookie,
599 struct dma_tx_state *txstate);
600 void (*device_issue_pending)(struct dma_chan *chan);
601 };
602
dmaengine_device_control(struct dma_chan * chan,enum dma_ctrl_cmd cmd,unsigned long arg)603 static inline int dmaengine_device_control(struct dma_chan *chan,
604 enum dma_ctrl_cmd cmd,
605 unsigned long arg)
606 {
607 return chan->device->device_control(chan, cmd, arg);
608 }
609
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)610 static inline int dmaengine_slave_config(struct dma_chan *chan,
611 struct dma_slave_config *config)
612 {
613 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
614 (unsigned long)config);
615 }
616
dmaengine_prep_slave_single(struct dma_chan * chan,void * buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)617 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
618 struct dma_chan *chan, void *buf, size_t len,
619 enum dma_transfer_direction dir, unsigned long flags)
620 {
621 struct scatterlist sg;
622 sg_init_one(&sg, buf, len);
623
624 return chan->device->device_prep_slave_sg(chan, &sg, 1,
625 dir, flags, NULL);
626 }
627
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)628 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
629 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
630 enum dma_transfer_direction dir, unsigned long flags)
631 {
632 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
633 dir, flags, NULL);
634 }
635
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir)636 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
637 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
638 size_t period_len, enum dma_transfer_direction dir)
639 {
640 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
641 period_len, dir, NULL);
642 }
643
dmaengine_terminate_all(struct dma_chan * chan)644 static inline int dmaengine_terminate_all(struct dma_chan *chan)
645 {
646 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
647 }
648
dmaengine_pause(struct dma_chan * chan)649 static inline int dmaengine_pause(struct dma_chan *chan)
650 {
651 return dmaengine_device_control(chan, DMA_PAUSE, 0);
652 }
653
dmaengine_resume(struct dma_chan * chan)654 static inline int dmaengine_resume(struct dma_chan *chan)
655 {
656 return dmaengine_device_control(chan, DMA_RESUME, 0);
657 }
658
dmaengine_submit(struct dma_async_tx_descriptor * desc)659 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
660 {
661 return desc->tx_submit(desc);
662 }
663
dmaengine_check_align(u8 align,size_t off1,size_t off2,size_t len)664 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
665 {
666 size_t mask;
667
668 if (!align)
669 return true;
670 mask = (1 << align) - 1;
671 if (mask & (off1 | off2 | len))
672 return false;
673 return true;
674 }
675
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)676 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
677 size_t off2, size_t len)
678 {
679 return dmaengine_check_align(dev->copy_align, off1, off2, len);
680 }
681
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)682 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
683 size_t off2, size_t len)
684 {
685 return dmaengine_check_align(dev->xor_align, off1, off2, len);
686 }
687
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)688 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
689 size_t off2, size_t len)
690 {
691 return dmaengine_check_align(dev->pq_align, off1, off2, len);
692 }
693
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)694 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
695 size_t off2, size_t len)
696 {
697 return dmaengine_check_align(dev->fill_align, off1, off2, len);
698 }
699
700 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)701 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
702 {
703 dma->max_pq = maxpq;
704 if (has_pq_continue)
705 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
706 }
707
dmaf_continue(enum dma_ctrl_flags flags)708 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
709 {
710 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
711 }
712
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)713 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
714 {
715 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
716
717 return (flags & mask) == mask;
718 }
719
dma_dev_has_pq_continue(struct dma_device * dma)720 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
721 {
722 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
723 }
724
dma_dev_to_maxpq(struct dma_device * dma)725 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
726 {
727 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
728 }
729
730 /* dma_maxpq - reduce maxpq in the face of continued operations
731 * @dma - dma device with PQ capability
732 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
733 *
734 * When an engine does not support native continuation we need 3 extra
735 * source slots to reuse P and Q with the following coefficients:
736 * 1/ {00} * P : remove P from Q', but use it as a source for P'
737 * 2/ {01} * Q : use Q to continue Q' calculation
738 * 3/ {00} * Q : subtract Q from P' to cancel (2)
739 *
740 * In the case where P is disabled we only need 1 extra source:
741 * 1/ {01} * Q : use Q to continue Q' calculation
742 */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)743 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
744 {
745 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
746 return dma_dev_to_maxpq(dma);
747 else if (dmaf_p_disabled_continue(flags))
748 return dma_dev_to_maxpq(dma) - 1;
749 else if (dmaf_continue(flags))
750 return dma_dev_to_maxpq(dma) - 3;
751 BUG();
752 }
753
754 /* --- public DMA engine API --- */
755
756 #ifdef CONFIG_DMA_ENGINE
757 void dmaengine_get(void);
758 void dmaengine_put(void);
759 #else
dmaengine_get(void)760 static inline void dmaengine_get(void)
761 {
762 }
dmaengine_put(void)763 static inline void dmaengine_put(void)
764 {
765 }
766 #endif
767
768 #ifdef CONFIG_NET_DMA
769 #define net_dmaengine_get() dmaengine_get()
770 #define net_dmaengine_put() dmaengine_put()
771 #else
net_dmaengine_get(void)772 static inline void net_dmaengine_get(void)
773 {
774 }
net_dmaengine_put(void)775 static inline void net_dmaengine_put(void)
776 {
777 }
778 #endif
779
780 #ifdef CONFIG_ASYNC_TX_DMA
781 #define async_dmaengine_get() dmaengine_get()
782 #define async_dmaengine_put() dmaengine_put()
783 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
784 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
785 #else
786 #define async_dma_find_channel(type) dma_find_channel(type)
787 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
788 #else
async_dmaengine_get(void)789 static inline void async_dmaengine_get(void)
790 {
791 }
async_dmaengine_put(void)792 static inline void async_dmaengine_put(void)
793 {
794 }
795 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)796 async_dma_find_channel(enum dma_transaction_type type)
797 {
798 return NULL;
799 }
800 #endif /* CONFIG_ASYNC_TX_DMA */
801
802 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
803 void *dest, void *src, size_t len);
804 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
805 struct page *page, unsigned int offset, void *kdata, size_t len);
806 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
807 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
808 unsigned int src_off, size_t len);
809 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
810 struct dma_chan *chan);
811
async_tx_ack(struct dma_async_tx_descriptor * tx)812 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
813 {
814 tx->flags |= DMA_CTRL_ACK;
815 }
816
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)817 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
818 {
819 tx->flags &= ~DMA_CTRL_ACK;
820 }
821
async_tx_test_ack(struct dma_async_tx_descriptor * tx)822 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
823 {
824 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
825 }
826
827 #define first_dma_cap(mask) __first_dma_cap(&(mask))
__first_dma_cap(const dma_cap_mask_t * srcp)828 static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
829 {
830 return min_t(int, DMA_TX_TYPE_END,
831 find_first_bit(srcp->bits, DMA_TX_TYPE_END));
832 }
833
834 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
__next_dma_cap(int n,const dma_cap_mask_t * srcp)835 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
836 {
837 return min_t(int, DMA_TX_TYPE_END,
838 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
839 }
840
841 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
842 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)843 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
844 {
845 set_bit(tx_type, dstp->bits);
846 }
847
848 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
849 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)850 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
851 {
852 clear_bit(tx_type, dstp->bits);
853 }
854
855 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)856 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
857 {
858 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
859 }
860
861 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
862 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)863 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
864 {
865 return test_bit(tx_type, srcp->bits);
866 }
867
868 #define for_each_dma_cap_mask(cap, mask) \
869 for ((cap) = first_dma_cap(mask); \
870 (cap) < DMA_TX_TYPE_END; \
871 (cap) = next_dma_cap((cap), (mask)))
872
873 /**
874 * dma_async_issue_pending - flush pending transactions to HW
875 * @chan: target DMA channel
876 *
877 * This allows drivers to push copies to HW in batches,
878 * reducing MMIO writes where possible.
879 */
dma_async_issue_pending(struct dma_chan * chan)880 static inline void dma_async_issue_pending(struct dma_chan *chan)
881 {
882 chan->device->device_issue_pending(chan);
883 }
884
885 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
886
887 /**
888 * dma_async_is_tx_complete - poll for transaction completion
889 * @chan: DMA channel
890 * @cookie: transaction identifier to check status of
891 * @last: returns last completed cookie, can be NULL
892 * @used: returns last issued cookie, can be NULL
893 *
894 * If @last and @used are passed in, upon return they reflect the driver
895 * internal state and can be used with dma_async_is_complete() to check
896 * the status of multiple cookies without re-checking hardware state.
897 */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)898 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
899 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
900 {
901 struct dma_tx_state state;
902 enum dma_status status;
903
904 status = chan->device->device_tx_status(chan, cookie, &state);
905 if (last)
906 *last = state.last;
907 if (used)
908 *used = state.used;
909 return status;
910 }
911
912 #define dma_async_memcpy_complete(chan, cookie, last, used)\
913 dma_async_is_tx_complete(chan, cookie, last, used)
914
915 /**
916 * dma_async_is_complete - test a cookie against chan state
917 * @cookie: transaction identifier to test status of
918 * @last_complete: last know completed transaction
919 * @last_used: last cookie value handed out
920 *
921 * dma_async_is_complete() is used in dma_async_memcpy_complete()
922 * the test logic is separated for lightweight testing of multiple cookies
923 */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)924 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
925 dma_cookie_t last_complete, dma_cookie_t last_used)
926 {
927 if (last_complete <= last_used) {
928 if ((cookie <= last_complete) || (cookie > last_used))
929 return DMA_SUCCESS;
930 } else {
931 if ((cookie <= last_complete) && (cookie > last_used))
932 return DMA_SUCCESS;
933 }
934 return DMA_IN_PROGRESS;
935 }
936
937 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)938 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
939 {
940 if (st) {
941 st->last = last;
942 st->used = used;
943 st->residue = residue;
944 }
945 }
946
947 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
948 #ifdef CONFIG_DMA_ENGINE
949 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
950 void dma_issue_pending_all(void);
951 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
952 void dma_release_channel(struct dma_chan *chan);
953 #else
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)954 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
955 {
956 return DMA_SUCCESS;
957 }
dma_issue_pending_all(void)958 static inline void dma_issue_pending_all(void)
959 {
960 }
__dma_request_channel(dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param)961 static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
962 dma_filter_fn fn, void *fn_param)
963 {
964 return NULL;
965 }
dma_release_channel(struct dma_chan * chan)966 static inline void dma_release_channel(struct dma_chan *chan)
967 {
968 }
969 #endif
970
971 /* --- DMA device --- */
972
973 int dma_async_device_register(struct dma_device *device);
974 void dma_async_device_unregister(struct dma_device *device);
975 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
976 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
977 struct dma_chan *net_dma_find_channel(void);
978 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
979
980 /* --- Helper iov-locking functions --- */
981
982 struct dma_page_list {
983 char __user *base_address;
984 int nr_pages;
985 struct page **pages;
986 };
987
988 struct dma_pinned_list {
989 int nr_iovecs;
990 struct dma_page_list page_list[0];
991 };
992
993 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
994 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
995
996 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
997 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
998 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
999 struct dma_pinned_list *pinned_list, struct page *page,
1000 unsigned int offset, size_t len);
1001
1002 #endif /* DMAENGINE_H */
1003