1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * Copyright 2016-2022 HabanaLabs, Ltd.
4 * All Rights Reserved.
5 *
6 */
7
8 #ifndef HABANALABSP_H_
9 #define HABANALABSP_H_
10
11 #include "../include/common/cpucp_if.h"
12 #include "../include/common/qman_if.h"
13 #include "../include/hw_ip/mmu/mmu_general.h"
14 #include <uapi/misc/habanalabs.h>
15
16 #include <linux/cdev.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqreturn.h>
19 #include <linux/dma-direction.h>
20 #include <linux/scatterlist.h>
21 #include <linux/hashtable.h>
22 #include <linux/debugfs.h>
23 #include <linux/rwsem.h>
24 #include <linux/eventfd.h>
25 #include <linux/bitfield.h>
26 #include <linux/genalloc.h>
27 #include <linux/sched/signal.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/coresight.h>
30 #include <linux/dma-buf.h>
31
32 #define HL_NAME "habanalabs"
33
34 struct hl_device;
35 struct hl_fpriv;
36
37 /* Use upper bits of mmap offset to store habana driver specific information.
38 * bits[63:59] - Encode mmap type
39 * bits[45:0] - mmap offset value
40 *
41 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
42 * defines are w.r.t to PAGE_SIZE
43 */
44 #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT)
45 #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT)
46 #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT)
47 #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT)
48 #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT)
49
50 #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT)
51 #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK)
52
53 #define HL_PENDING_RESET_PER_SEC 10
54 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */
55 #define HL_PENDING_RESET_LONG_SEC 60
56
57 #define HL_HARD_RESET_MAX_TIMEOUT 120
58 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3)
59
60 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */
61
62 #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */
63
64 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
65
66 #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */
67 #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */
68 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */
69 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */
70
71 #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */
72 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */
73
74 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */
75
76 #define HL_SIM_MAX_TIMEOUT_US 100000000 /* 100s */
77
78 #define HL_INVALID_QUEUE UINT_MAX
79
80 #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF
81 #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE
82
83 #define HL_STATE_DUMP_HIST_LEN 5
84
85 /* Default value for device reset trigger , an invalid value */
86 #define HL_RESET_TRIGGER_DEFAULT 0xFF
87
88 #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
89 #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
90
91 /* Memory */
92 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
93
94 /* MMU */
95 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
96
97 /**
98 * enum hl_mmu_page_table_location - mmu page table location
99 * @MMU_DR_PGT: page-table is located on device DRAM.
100 * @MMU_HR_PGT: page-table is located on host memory.
101 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
102 */
103 enum hl_mmu_page_table_location {
104 MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */
105 MMU_HR_PGT, /* host resident MMU PGT */
106 MMU_NUM_PGT_LOCATIONS /* num of PGT locations */
107 };
108
109 /**
110 * enum hl_mmu_enablement - what mmu modules to enable
111 * @MMU_EN_NONE: mmu disabled.
112 * @MMU_EN_ALL: enable all.
113 * @MMU_EN_PMMU_ONLY: Enable only the PMMU leaving the DMMU disabled.
114 */
115 enum hl_mmu_enablement {
116 MMU_EN_NONE = 0,
117 MMU_EN_ALL = 1,
118 MMU_EN_PMMU_ONLY = 3, /* N/A for Goya/Gaudi */
119 };
120
121 /*
122 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
123 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
124 */
125 #define HL_RSVD_SOBS 2
126 #define HL_RSVD_MONS 1
127
128 /*
129 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
130 */
131 #define HL_COLLECTIVE_RSVD_MSTR_MONS 2
132
133 #define HL_MAX_SOB_VAL (1 << 15)
134
135 #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0))
136 #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1))
137
138 #define HL_PCI_NUM_BARS 6
139
140 /* Completion queue entry relates to completed job */
141 #define HL_COMPLETION_MODE_JOB 0
142 /* Completion queue entry relates to completed command submission */
143 #define HL_COMPLETION_MODE_CS 1
144
145 #define HL_MAX_DCORES 8
146
147 /* DMA alloc/free wrappers */
148 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
149 hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)
150
151 #define hl_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle) \
152 hl_cpu_accessible_dma_pool_alloc_caller(hdev, size, dma_handle, __func__)
153
154 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
155 hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)
156
157 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
158 hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)
159
160 #define hl_cpu_accessible_dma_pool_free(hdev, size, vaddr) \
161 hl_cpu_accessible_dma_pool_free_caller(hdev, size, vaddr, __func__)
162
163 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
164 hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)
165
166 /*
167 * Reset Flags
168 *
169 * - HL_DRV_RESET_HARD
170 * If set do hard reset to all engines. If not set reset just
171 * compute/DMA engines.
172 *
173 * - HL_DRV_RESET_FROM_RESET_THR
174 * Set if the caller is the hard-reset thread
175 *
176 * - HL_DRV_RESET_HEARTBEAT
177 * Set if reset is due to heartbeat
178 *
179 * - HL_DRV_RESET_TDR
180 * Set if reset is due to TDR
181 *
182 * - HL_DRV_RESET_DEV_RELEASE
183 * Set if reset is due to device release
184 *
185 * - HL_DRV_RESET_BYPASS_REQ_TO_FW
186 * F/W will perform the reset. No need to ask it to reset the device. This is relevant
187 * only when running with secured f/w
188 *
189 * - HL_DRV_RESET_FW_FATAL_ERR
190 * Set if reset is due to a fatal error from FW
191 *
192 * - HL_DRV_RESET_DELAY
193 * Set if a delay should be added before the reset
194 */
195
196 #define HL_DRV_RESET_HARD (1 << 0)
197 #define HL_DRV_RESET_FROM_RESET_THR (1 << 1)
198 #define HL_DRV_RESET_HEARTBEAT (1 << 2)
199 #define HL_DRV_RESET_TDR (1 << 3)
200 #define HL_DRV_RESET_DEV_RELEASE (1 << 4)
201 #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5)
202 #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6)
203 #define HL_DRV_RESET_DELAY (1 << 7)
204
205 /*
206 * Security
207 */
208
209 #define HL_PB_SHARED 1
210 #define HL_PB_NA 0
211 #define HL_PB_SINGLE_INSTANCE 1
212 #define HL_BLOCK_SIZE 0x1000
213 #define HL_BLOCK_GLBL_ERR_MASK 0xF40
214 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44
215 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48
216 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80
217 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
218 #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
219 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))
220
221 enum hl_protection_levels {
222 SECURED_LVL,
223 PRIVILEGED_LVL,
224 NON_SECURED_LVL
225 };
226
227 /**
228 * struct iterate_module_ctx - HW module iterator
229 * @fn: function to apply to each HW module instance
230 * @data: optional internal data to the function iterator
231 * @rc: return code for optional use of iterator/iterator-caller
232 */
233 struct iterate_module_ctx {
234 /*
235 * callback for the HW module iterator
236 * @hdev: pointer to the habanalabs device structure
237 * @block: block (ASIC specific definition can be dcore/hdcore)
238 * @inst: HW module instance within the block
239 * @offset: current HW module instance offset from the 1-st HW module instance
240 * in the 1-st block
241 * @ctx: the iterator context.
242 */
243 void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
244 struct iterate_module_ctx *ctx);
245 void *data;
246 int rc;
247 };
248
249 struct hl_block_glbl_sec {
250 u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
251 };
252
253 #define HL_MAX_SOBS_PER_MONITOR 8
254
255 /**
256 * struct hl_gen_wait_properties - properties for generating a wait CB
257 * @data: command buffer
258 * @q_idx: queue id is used to extract fence register address
259 * @size: offset in command buffer
260 * @sob_base: SOB base to use in this wait CB
261 * @sob_val: SOB value to wait for
262 * @mon_id: monitor to use in this wait CB
263 * @sob_mask: each bit represents a SOB offset from sob_base to be used
264 */
265 struct hl_gen_wait_properties {
266 void *data;
267 u32 q_idx;
268 u32 size;
269 u16 sob_base;
270 u16 sob_val;
271 u16 mon_id;
272 u8 sob_mask;
273 };
274
275 /**
276 * struct pgt_info - MMU hop page info.
277 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
278 * actual pgts for host resident MMU).
279 * @phys_addr: physical address of the pgt.
280 * @virt_addr: host virtual address of the pgt (see above device/host resident).
281 * @shadow_addr: shadow hop in the host for device resident MMU.
282 * @ctx: pointer to the owner ctx.
283 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
284 * allocated HOPs (all HOPs but HOP0)
285 *
286 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
287 * pgts will be stored on host memory) or on host memory (in which case no shadow is required).
288 *
289 * When a new level (hop) is needed during mapping this structure will be used to describe
290 * the newly allocated hop as well as to track number of PTEs in it.
291 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
292 * freed with its pgt_info structure.
293 */
294 struct pgt_info {
295 struct hlist_node node;
296 u64 phys_addr;
297 u64 virt_addr;
298 u64 shadow_addr;
299 struct hl_ctx *ctx;
300 int num_of_ptes;
301 };
302
303 /**
304 * enum hl_pci_match_mode - pci match mode per region
305 * @PCI_ADDRESS_MATCH_MODE: address match mode
306 * @PCI_BAR_MATCH_MODE: bar match mode
307 */
308 enum hl_pci_match_mode {
309 PCI_ADDRESS_MATCH_MODE,
310 PCI_BAR_MATCH_MODE
311 };
312
313 /**
314 * enum hl_fw_component - F/W components to read version through registers.
315 * @FW_COMP_BOOT_FIT: boot fit.
316 * @FW_COMP_PREBOOT: preboot.
317 * @FW_COMP_LINUX: linux.
318 */
319 enum hl_fw_component {
320 FW_COMP_BOOT_FIT,
321 FW_COMP_PREBOOT,
322 FW_COMP_LINUX,
323 };
324
325 /**
326 * enum hl_fw_types - F/W types present in the system
327 * @FW_TYPE_NONE: no FW component indication
328 * @FW_TYPE_LINUX: Linux image for device CPU
329 * @FW_TYPE_BOOT_CPU: Boot image for device CPU
330 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
331 * (preboot, ppboot etc...)
332 * @FW_TYPE_ALL_TYPES: Mask for all types
333 */
334 enum hl_fw_types {
335 FW_TYPE_NONE = 0x0,
336 FW_TYPE_LINUX = 0x1,
337 FW_TYPE_BOOT_CPU = 0x2,
338 FW_TYPE_PREBOOT_CPU = 0x4,
339 FW_TYPE_ALL_TYPES =
340 (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
341 };
342
343 /**
344 * enum hl_queue_type - Supported QUEUE types.
345 * @QUEUE_TYPE_NA: queue is not available.
346 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
347 * host.
348 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
349 * memories and/or operates the compute engines.
350 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
351 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
352 * notifications are sent by H/W.
353 */
354 enum hl_queue_type {
355 QUEUE_TYPE_NA,
356 QUEUE_TYPE_EXT,
357 QUEUE_TYPE_INT,
358 QUEUE_TYPE_CPU,
359 QUEUE_TYPE_HW
360 };
361
362 enum hl_cs_type {
363 CS_TYPE_DEFAULT,
364 CS_TYPE_SIGNAL,
365 CS_TYPE_WAIT,
366 CS_TYPE_COLLECTIVE_WAIT,
367 CS_RESERVE_SIGNALS,
368 CS_UNRESERVE_SIGNALS,
369 CS_TYPE_ENGINE_CORE
370 };
371
372 /*
373 * struct hl_inbound_pci_region - inbound region descriptor
374 * @mode: pci match mode for this region
375 * @addr: region target address
376 * @size: region size in bytes
377 * @offset_in_bar: offset within bar (address match mode)
378 * @bar: bar id
379 */
380 struct hl_inbound_pci_region {
381 enum hl_pci_match_mode mode;
382 u64 addr;
383 u64 size;
384 u64 offset_in_bar;
385 u8 bar;
386 };
387
388 /*
389 * struct hl_outbound_pci_region - outbound region descriptor
390 * @addr: region target address
391 * @size: region size in bytes
392 */
393 struct hl_outbound_pci_region {
394 u64 addr;
395 u64 size;
396 };
397
398 /*
399 * enum queue_cb_alloc_flags - Indicates queue support for CBs that
400 * allocated by Kernel or by User
401 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
402 * @CB_ALLOC_USER: support only CBs that allocated by User
403 */
404 enum queue_cb_alloc_flags {
405 CB_ALLOC_KERNEL = 0x1,
406 CB_ALLOC_USER = 0x2
407 };
408
409 /*
410 * struct hl_hw_sob - H/W SOB info.
411 * @hdev: habanalabs device structure.
412 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
413 * @sob_id: id of this SOB.
414 * @sob_addr: the sob offset from the base address.
415 * @q_idx: the H/W queue that uses this SOB.
416 * @need_reset: reset indication set when switching to the other sob.
417 */
418 struct hl_hw_sob {
419 struct hl_device *hdev;
420 struct kref kref;
421 u32 sob_id;
422 u32 sob_addr;
423 u32 q_idx;
424 bool need_reset;
425 };
426
427 enum hl_collective_mode {
428 HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
429 HL_COLLECTIVE_MASTER = 0x1,
430 HL_COLLECTIVE_SLAVE = 0x2
431 };
432
433 /**
434 * struct hw_queue_properties - queue information.
435 * @type: queue type.
436 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
437 * that allocated by the Kernel driver and therefore,
438 * a CB handle can be provided for jobs on this queue.
439 * Otherwise, a CB address must be provided.
440 * @collective_mode: collective mode of current queue
441 * @driver_only: true if only the driver is allowed to send a job to this queue,
442 * false otherwise.
443 * @binned: True if the queue is binned out and should not be used
444 * @supports_sync_stream: True if queue supports sync stream
445 */
446 struct hw_queue_properties {
447 enum hl_queue_type type;
448 enum queue_cb_alloc_flags cb_alloc_flags;
449 enum hl_collective_mode collective_mode;
450 u8 driver_only;
451 u8 binned;
452 u8 supports_sync_stream;
453 };
454
455 /**
456 * enum vm_type - virtual memory mapping request information.
457 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
458 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
459 */
460 enum vm_type {
461 VM_TYPE_USERPTR = 0x1,
462 VM_TYPE_PHYS_PACK = 0x2
463 };
464
465 /**
466 * enum mmu_op_flags - mmu operation relevant information.
467 * @MMU_OP_USERPTR: operation on user memory (host resident).
468 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
469 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
470 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
471 */
472 enum mmu_op_flags {
473 MMU_OP_USERPTR = 0x1,
474 MMU_OP_PHYS_PACK = 0x2,
475 MMU_OP_CLEAR_MEMCACHE = 0x4,
476 MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
477 };
478
479
480 /**
481 * enum hl_device_hw_state - H/W device state. use this to understand whether
482 * to do reset before hw_init or not
483 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
484 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
485 * hw_init
486 */
487 enum hl_device_hw_state {
488 HL_DEVICE_HW_STATE_CLEAN = 0,
489 HL_DEVICE_HW_STATE_DIRTY
490 };
491
492 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
493
494 /**
495 * struct hl_mmu_properties - ASIC specific MMU address translation properties.
496 * @start_addr: virtual start address of the memory region.
497 * @end_addr: virtual end address of the memory region.
498 * @hop_shifts: array holds HOPs shifts.
499 * @hop_masks: array holds HOPs masks.
500 * @last_mask: mask to get the bit indicating this is the last hop.
501 * @pgt_size: size for page tables.
502 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
503 * supporting multiple page size).
504 * @page_size: default page size used to allocate memory.
505 * @num_hops: The amount of hops supported by the translation table.
506 * @hop_table_size: HOP table size.
507 * @hop0_tables_total_size: total size for all HOP0 tables.
508 * @host_resident: Should the MMU page table reside in host memory or in the
509 * device DRAM.
510 */
511 struct hl_mmu_properties {
512 u64 start_addr;
513 u64 end_addr;
514 u64 hop_shifts[MMU_HOP_MAX];
515 u64 hop_masks[MMU_HOP_MAX];
516 u64 last_mask;
517 u64 pgt_size;
518 u64 supported_pages_mask;
519 u32 page_size;
520 u32 num_hops;
521 u32 hop_table_size;
522 u32 hop0_tables_total_size;
523 u8 host_resident;
524 };
525
526 /**
527 * struct hl_hints_range - hint addresses reserved va range.
528 * @start_addr: start address of the va range.
529 * @end_addr: end address of the va range.
530 */
531 struct hl_hints_range {
532 u64 start_addr;
533 u64 end_addr;
534 };
535
536 /**
537 * struct asic_fixed_properties - ASIC specific immutable properties.
538 * @hw_queues_props: H/W queues properties.
539 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
540 * available sensors.
541 * @uboot_ver: F/W U-boot version.
542 * @preboot_ver: F/W Preboot version.
543 * @dmmu: DRAM MMU address translation properties.
544 * @pmmu: PCI (host) MMU address translation properties.
545 * @pmmu_huge: PCI (host) MMU address translation properties for memory
546 * allocated with huge pages.
547 * @hints_dram_reserved_va_range: dram hint addresses reserved range.
548 * @hints_host_reserved_va_range: host hint addresses reserved range.
549 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
550 * range.
551 * @sram_base_address: SRAM physical start address.
552 * @sram_end_address: SRAM physical end address.
553 * @sram_user_base_address - SRAM physical start address for user access.
554 * @dram_base_address: DRAM physical start address.
555 * @dram_end_address: DRAM physical end address.
556 * @dram_user_base_address: DRAM physical start address for user access.
557 * @dram_size: DRAM total size.
558 * @dram_pci_bar_size: size of PCI bar towards DRAM.
559 * @max_power_default: max power of the device after reset.
560 * @dc_power_default: power consumed by the device in mode idle.
561 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
562 * fault.
563 * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
564 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
565 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
566 * @mmu_dram_default_page_addr: DRAM default page physical address.
567 * @tpc_enabled_mask: which TPCs are enabled.
568 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
569 * @dram_enabled_mask: which DRAMs are enabled.
570 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
571 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
572 * for hints validity check.
573 * @cfg_base_address: config space base address.
574 * @mmu_cache_mng_addr: address of the MMU cache.
575 * @mmu_cache_mng_size: size of the MMU cache.
576 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses
577 * to enable the device to access them.
578 * @host_base_address: host physical start address for host DMA from device
579 * @host_end_address: host physical end address for host DMA from device
580 * @max_freq_value: current max clk frequency.
581 * @clk_pll_index: clock PLL index that specify which PLL determines the clock
582 * we display to the user
583 * @mmu_pgt_size: MMU page tables total size.
584 * @mmu_pte_size: PTE size in MMU page tables.
585 * @mmu_hop_table_size: MMU hop table size.
586 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
587 * @dram_page_size: page size for MMU DRAM allocation.
588 * @cfg_size: configuration space size on SRAM.
589 * @sram_size: total size of SRAM.
590 * @max_asid: maximum number of open contexts (ASIDs).
591 * @num_of_events: number of possible internal H/W IRQs.
592 * @psoc_pci_pll_nr: PCI PLL NR value.
593 * @psoc_pci_pll_nf: PCI PLL NF value.
594 * @psoc_pci_pll_od: PCI PLL OD value.
595 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
596 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
597 * @high_pll: high PLL frequency used by the device.
598 * @cb_pool_cb_cnt: number of CBs in the CB pool.
599 * @cb_pool_cb_size: size of each CB in the CB pool.
600 * @decoder_enabled_mask: which decoders are enabled.
601 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1
602 * means binned (at most one binned decoder per dcore).
603 * @edma_enabled_mask: which EDMAs are enabled.
604 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
605 * binned (at most one binned DMA).
606 * @max_pending_cs: maximum of concurrent pending command submissions
607 * @max_queues: maximum amount of queues in the system
608 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
609 * capabilities reported by FW, bit description
610 * can be found in CPU_BOOT_DEV_STS0
611 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
612 * capabilities reported by FW, bit description
613 * can be found in CPU_BOOT_DEV_STS1
614 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
615 * status reported by FW, bit description can be
616 * found in CPU_BOOT_DEV_STS0
617 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
618 * status reported by FW, bit description can be
619 * found in CPU_BOOT_DEV_STS1
620 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
621 * status reported by FW, bit description can be
622 * found in CPU_BOOT_DEV_STS0
623 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
624 * status reported by FW, bit description can be
625 * found in CPU_BOOT_DEV_STS1
626 * @max_dec: maximum number of decoders
627 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
628 * 1- enabled, 0- isolated.
629 * @faulty_dram_cluster_map: mask of faulty DRAM cluster.
630 * 1- faulty cluster, 0- good cluster.
631 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
632 * 1- enabled, 0- isolated.
633 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
634 * which the property supports_user_set_page_size is true
635 * (i.e. the DRAM supports multiple page sizes), otherwise
636 * it will shall be equal to dram_page_size.
637 * @num_engine_cores: number of engine cpu cores
638 * @collective_first_sob: first sync object available for collective use
639 * @collective_first_mon: first monitor available for collective use
640 * @sync_stream_first_sob: first sync object available for sync stream use
641 * @sync_stream_first_mon: first monitor available for sync stream use
642 * @first_available_user_sob: first sob available for the user
643 * @first_available_user_mon: first monitor available for the user
644 * @first_available_user_interrupt: first available interrupt reserved for the user
645 * @first_available_cq: first available CQ for the user.
646 * @user_interrupt_count: number of user interrupts.
647 * @user_dec_intr_count: number of decoder interrupts exposed to user.
648 * @cache_line_size: device cache line size.
649 * @server_type: Server type that the ASIC is currently installed in.
650 * The value is according to enum hl_server_type in uapi file.
651 * @completion_queues_count: number of completion queues.
652 * @completion_mode: 0 - job based completion, 1 - cs based completion
653 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
654 * in Master/Slave mode
655 * @fw_security_enabled: true if security measures are enabled in firmware,
656 * false otherwise
657 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
658 * BOOT_DEV_STS0
659 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
660 * BOOT_DEV_STS1
661 * @dram_supports_virtual_memory: is there an MMU towards the DRAM
662 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
663 * @num_functional_hbms: number of functional HBMs in each DCORE.
664 * @hints_range_reservation: device support hint addresses range reservation.
665 * @iatu_done_by_fw: true if iATU configuration is being done by FW.
666 * @dynamic_fw_load: is dynamic FW load is supported.
667 * @gic_interrupts_enable: true if FW is not blocking GIC controller,
668 * false otherwise.
669 * @use_get_power_for_reset_history: To support backward compatibility for Goya
670 * and Gaudi
671 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
672 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is
673 * initiated by user or TDR. This is only true
674 * in inference ASICs, as there is no real-world
675 * use-case of doing soft-reset in training (due
676 * to the fact that training runs on multiple
677 * devices)
678 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
679 * @set_max_power_on_device_init: true if need to set max power in F/W on device init.
680 * @supports_user_set_page_size: true if user can set the allocation page size.
681 * @dma_mask: the dma mask to be set for this device
682 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
683 */
684 struct asic_fixed_properties {
685 struct hw_queue_properties *hw_queues_props;
686 struct cpucp_info cpucp_info;
687 char uboot_ver[VERSION_MAX_LEN];
688 char preboot_ver[VERSION_MAX_LEN];
689 struct hl_mmu_properties dmmu;
690 struct hl_mmu_properties pmmu;
691 struct hl_mmu_properties pmmu_huge;
692 struct hl_hints_range hints_dram_reserved_va_range;
693 struct hl_hints_range hints_host_reserved_va_range;
694 struct hl_hints_range hints_host_hpage_reserved_va_range;
695 u64 sram_base_address;
696 u64 sram_end_address;
697 u64 sram_user_base_address;
698 u64 dram_base_address;
699 u64 dram_end_address;
700 u64 dram_user_base_address;
701 u64 dram_size;
702 u64 dram_pci_bar_size;
703 u64 max_power_default;
704 u64 dc_power_default;
705 u64 dram_size_for_default_page_mapping;
706 u64 pcie_dbi_base_address;
707 u64 pcie_aux_dbi_reg_addr;
708 u64 mmu_pgt_addr;
709 u64 mmu_dram_default_page_addr;
710 u64 tpc_enabled_mask;
711 u64 tpc_binning_mask;
712 u64 dram_enabled_mask;
713 u64 dram_binning_mask;
714 u64 dram_hints_align_mask;
715 u64 cfg_base_address;
716 u64 mmu_cache_mng_addr;
717 u64 mmu_cache_mng_size;
718 u64 device_dma_offset_for_host_access;
719 u64 host_base_address;
720 u64 host_end_address;
721 u64 max_freq_value;
722 u32 clk_pll_index;
723 u32 mmu_pgt_size;
724 u32 mmu_pte_size;
725 u32 mmu_hop_table_size;
726 u32 mmu_hop0_tables_total_size;
727 u32 dram_page_size;
728 u32 cfg_size;
729 u32 sram_size;
730 u32 max_asid;
731 u32 num_of_events;
732 u32 psoc_pci_pll_nr;
733 u32 psoc_pci_pll_nf;
734 u32 psoc_pci_pll_od;
735 u32 psoc_pci_pll_div_factor;
736 u32 psoc_timestamp_frequency;
737 u32 high_pll;
738 u32 cb_pool_cb_cnt;
739 u32 cb_pool_cb_size;
740 u32 decoder_enabled_mask;
741 u32 decoder_binning_mask;
742 u32 edma_enabled_mask;
743 u32 edma_binning_mask;
744 u32 max_pending_cs;
745 u32 max_queues;
746 u32 fw_preboot_cpu_boot_dev_sts0;
747 u32 fw_preboot_cpu_boot_dev_sts1;
748 u32 fw_bootfit_cpu_boot_dev_sts0;
749 u32 fw_bootfit_cpu_boot_dev_sts1;
750 u32 fw_app_cpu_boot_dev_sts0;
751 u32 fw_app_cpu_boot_dev_sts1;
752 u32 max_dec;
753 u32 hmmu_hif_enabled_mask;
754 u32 faulty_dram_cluster_map;
755 u32 xbar_edge_enabled_mask;
756 u32 device_mem_alloc_default_page_size;
757 u32 num_engine_cores;
758 u16 collective_first_sob;
759 u16 collective_first_mon;
760 u16 sync_stream_first_sob;
761 u16 sync_stream_first_mon;
762 u16 first_available_user_sob[HL_MAX_DCORES];
763 u16 first_available_user_mon[HL_MAX_DCORES];
764 u16 first_available_user_interrupt;
765 u16 first_available_cq[HL_MAX_DCORES];
766 u16 user_interrupt_count;
767 u16 user_dec_intr_count;
768 u16 cache_line_size;
769 u16 server_type;
770 u8 completion_queues_count;
771 u8 completion_mode;
772 u8 mme_master_slave_mode;
773 u8 fw_security_enabled;
774 u8 fw_cpu_boot_dev_sts0_valid;
775 u8 fw_cpu_boot_dev_sts1_valid;
776 u8 dram_supports_virtual_memory;
777 u8 hard_reset_done_by_fw;
778 u8 num_functional_hbms;
779 u8 hints_range_reservation;
780 u8 iatu_done_by_fw;
781 u8 dynamic_fw_load;
782 u8 gic_interrupts_enable;
783 u8 use_get_power_for_reset_history;
784 u8 supports_compute_reset;
785 u8 allow_inference_soft_reset;
786 u8 configurable_stop_on_err;
787 u8 set_max_power_on_device_init;
788 u8 supports_user_set_page_size;
789 u8 dma_mask;
790 u8 supports_advanced_cpucp_rc;
791 };
792
793 /**
794 * struct hl_fence - software synchronization primitive
795 * @completion: fence is implemented using completion
796 * @refcount: refcount for this fence
797 * @cs_sequence: sequence of the corresponding command submission
798 * @stream_master_qid_map: streams masters QID bitmap to represent all streams
799 * masters QIDs that multi cs is waiting on
800 * @error: mark this fence with error
801 * @timestamp: timestamp upon completion
802 * @mcs_handling_done: indicates that corresponding command submission has
803 * finished msc handling, this does not mean it was part
804 * of the mcs
805 */
806 struct hl_fence {
807 struct completion completion;
808 struct kref refcount;
809 u64 cs_sequence;
810 u32 stream_master_qid_map;
811 int error;
812 ktime_t timestamp;
813 u8 mcs_handling_done;
814 };
815
816 /**
817 * struct hl_cs_compl - command submission completion object.
818 * @base_fence: hl fence object.
819 * @lock: spinlock to protect fence.
820 * @hdev: habanalabs device structure.
821 * @hw_sob: the H/W SOB used in this signal/wait CS.
822 * @encaps_sig_hdl: encaps signals handler.
823 * @cs_seq: command submission sequence number.
824 * @type: type of the CS - signal/wait.
825 * @sob_val: the SOB value that is used in this signal/wait CS.
826 * @sob_group: the SOB group that is used in this collective wait CS.
827 * @encaps_signals: indication whether it's a completion object of cs with
828 * encaps signals or not.
829 */
830 struct hl_cs_compl {
831 struct hl_fence base_fence;
832 spinlock_t lock;
833 struct hl_device *hdev;
834 struct hl_hw_sob *hw_sob;
835 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
836 u64 cs_seq;
837 enum hl_cs_type type;
838 u16 sob_val;
839 u16 sob_group;
840 bool encaps_signals;
841 };
842
843 /*
844 * Command Buffers
845 */
846
847 /**
848 * struct hl_ts_buff - describes a timestamp buffer.
849 * @kernel_buff_address: Holds the internal buffer's kernel virtual address.
850 * @user_buff_address: Holds the user buffer's kernel virtual address.
851 * @kernel_buff_size: Holds the internal kernel buffer size.
852 */
853 struct hl_ts_buff {
854 void *kernel_buff_address;
855 void *user_buff_address;
856 u32 kernel_buff_size;
857 };
858
859 struct hl_mmap_mem_buf;
860
861 /**
862 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
863 * @dev: back pointer to the owning device
864 * @lock: protects handles
865 * @handles: an idr holding all active handles to the memory buffers in the system.
866 */
867 struct hl_mem_mgr {
868 struct device *dev;
869 spinlock_t lock;
870 struct idr handles;
871 };
872
873 /**
874 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
875 * @topic: string identifier used for logging
876 * @mem_id: memory type identifier, embedded in the handle and used to identify
877 * the memory type by handle.
878 * @alloc: callback executed on buffer allocation, shall allocate the memory,
879 * set it under buffer private, and set mappable size.
880 * @mmap: callback executed on mmap, must map the buffer to vma
881 * @release: callback executed on release, must free the resources used by the buffer
882 */
883 struct hl_mmap_mem_buf_behavior {
884 const char *topic;
885 u64 mem_id;
886
887 int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
888 int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
889 void (*release)(struct hl_mmap_mem_buf *buf);
890 };
891
892 /**
893 * struct hl_mmap_mem_buf - describes a single unified memory buffer
894 * @behavior: buffer behavior
895 * @mmg: back pointer to the unified memory manager
896 * @refcount: reference counter for buffer users
897 * @private: pointer to buffer behavior private data
898 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now
899 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
900 * may change at runtime.
901 * @mappable_size: the original mappable size of the buffer, does not change after
902 * the allocation.
903 * @handle: the buffer id in mmg handles store
904 */
905 struct hl_mmap_mem_buf {
906 struct hl_mmap_mem_buf_behavior *behavior;
907 struct hl_mem_mgr *mmg;
908 struct kref refcount;
909 void *private;
910 atomic_t mmap;
911 u64 real_mapped_size;
912 u64 mappable_size;
913 u64 handle;
914 };
915
916 /**
917 * struct hl_cb - describes a Command Buffer.
918 * @hdev: pointer to device this CB belongs to.
919 * @ctx: pointer to the CB owner's context.
920 * @buf: back pointer to the parent mappable memory buffer
921 * @debugfs_list: node in debugfs list of command buffers.
922 * @pool_list: node in pool list of command buffers.
923 * @kernel_address: Holds the CB's kernel virtual address.
924 * @virtual_addr: Holds the CB's virtual address.
925 * @bus_address: Holds the CB's DMA address.
926 * @size: holds the CB's size.
927 * @roundup_size: holds the cb size after roundup to page size.
928 * @cs_cnt: holds number of CS that this CB participates in.
929 * @is_pool: true if CB was acquired from the pool, false otherwise.
930 * @is_internal: internally allocated
931 * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
932 */
933 struct hl_cb {
934 struct hl_device *hdev;
935 struct hl_ctx *ctx;
936 struct hl_mmap_mem_buf *buf;
937 struct list_head debugfs_list;
938 struct list_head pool_list;
939 void *kernel_address;
940 u64 virtual_addr;
941 dma_addr_t bus_address;
942 u32 size;
943 u32 roundup_size;
944 atomic_t cs_cnt;
945 u8 is_pool;
946 u8 is_internal;
947 u8 is_mmu_mapped;
948 };
949
950
951 /*
952 * QUEUES
953 */
954
955 struct hl_cs_job;
956
957 /* Queue length of external and HW queues */
958 #define HL_QUEUE_LENGTH 4096
959 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
960
961 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
962 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
963 #endif
964
965 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */
966 #define HL_CQ_LENGTH HL_QUEUE_LENGTH
967 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
968
969 /* Must be power of 2 */
970 #define HL_EQ_LENGTH 64
971 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
972
973 /* Host <-> CPU-CP shared memory size */
974 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M
975
976 /**
977 * struct hl_sync_stream_properties -
978 * describes a H/W queue sync stream properties
979 * @hw_sob: array of the used H/W SOBs by this H/W queue.
980 * @next_sob_val: the next value to use for the currently used SOB.
981 * @base_sob_id: the base SOB id of the SOBs used by this queue.
982 * @base_mon_id: the base MON id of the MONs used by this queue.
983 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
984 * in order to sync with all slave queues.
985 * @collective_slave_mon_id: the MON id used by this slave queue in order to
986 * sync with its master queue.
987 * @collective_sob_id: current SOB id used by this collective slave queue
988 * to signal its collective master queue upon completion.
989 * @curr_sob_offset: the id offset to the currently used SOB from the
990 * HL_RSVD_SOBS that are being used by this queue.
991 */
992 struct hl_sync_stream_properties {
993 struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
994 u16 next_sob_val;
995 u16 base_sob_id;
996 u16 base_mon_id;
997 u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
998 u16 collective_slave_mon_id;
999 u16 collective_sob_id;
1000 u8 curr_sob_offset;
1001 };
1002
1003 /**
1004 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
1005 * handlers manager
1006 * @lock: protects handles.
1007 * @handles: an idr to hold all encapsulated signals handles.
1008 */
1009 struct hl_encaps_signals_mgr {
1010 spinlock_t lock;
1011 struct idr handles;
1012 };
1013
1014 /**
1015 * struct hl_hw_queue - describes a H/W transport queue.
1016 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
1017 * @sync_stream_prop: sync stream queue properties
1018 * @queue_type: type of queue.
1019 * @collective_mode: collective mode of current queue
1020 * @kernel_address: holds the queue's kernel virtual address.
1021 * @bus_address: holds the queue's DMA address.
1022 * @pi: holds the queue's pi value.
1023 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
1024 * @hw_queue_id: the id of the H/W queue.
1025 * @cq_id: the id for the corresponding CQ for this H/W queue.
1026 * @msi_vec: the IRQ number of the H/W queue.
1027 * @int_queue_len: length of internal queue (number of entries).
1028 * @valid: is the queue valid (we have array of 32 queues, not all of them
1029 * exist).
1030 * @supports_sync_stream: True if queue supports sync stream
1031 */
1032 struct hl_hw_queue {
1033 struct hl_cs_job **shadow_queue;
1034 struct hl_sync_stream_properties sync_stream_prop;
1035 enum hl_queue_type queue_type;
1036 enum hl_collective_mode collective_mode;
1037 void *kernel_address;
1038 dma_addr_t bus_address;
1039 u32 pi;
1040 atomic_t ci;
1041 u32 hw_queue_id;
1042 u32 cq_id;
1043 u32 msi_vec;
1044 u16 int_queue_len;
1045 u8 valid;
1046 u8 supports_sync_stream;
1047 };
1048
1049 /**
1050 * struct hl_cq - describes a completion queue
1051 * @hdev: pointer to the device structure
1052 * @kernel_address: holds the queue's kernel virtual address
1053 * @bus_address: holds the queue's DMA address
1054 * @cq_idx: completion queue index in array
1055 * @hw_queue_id: the id of the matching H/W queue
1056 * @ci: ci inside the queue
1057 * @pi: pi inside the queue
1058 * @free_slots_cnt: counter of free slots in queue
1059 */
1060 struct hl_cq {
1061 struct hl_device *hdev;
1062 void *kernel_address;
1063 dma_addr_t bus_address;
1064 u32 cq_idx;
1065 u32 hw_queue_id;
1066 u32 ci;
1067 u32 pi;
1068 atomic_t free_slots_cnt;
1069 };
1070
1071 /**
1072 * struct hl_user_interrupt - holds user interrupt information
1073 * @hdev: pointer to the device structure
1074 * @wait_list_head: head to the list of user threads pending on this interrupt
1075 * @wait_list_lock: protects wait_list_head
1076 * @interrupt_id: msix interrupt id
1077 * @is_decoder: whether this entry represents a decoder interrupt
1078 */
1079 struct hl_user_interrupt {
1080 struct hl_device *hdev;
1081 struct list_head wait_list_head;
1082 spinlock_t wait_list_lock;
1083 u32 interrupt_id;
1084 bool is_decoder;
1085 };
1086
1087 /**
1088 * struct timestamp_reg_free_node - holds the timestamp registration free objects node
1089 * @free_objects_node: node in the list free_obj_jobs
1090 * @cq_cb: pointer to cq command buffer to be freed
1091 * @buf: pointer to timestamp buffer to be freed
1092 */
1093 struct timestamp_reg_free_node {
1094 struct list_head free_objects_node;
1095 struct hl_cb *cq_cb;
1096 struct hl_mmap_mem_buf *buf;
1097 };
1098
1099 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
1100 * the job will be to pass over the free_obj_jobs list and put refcount to objects
1101 * in each node of the list
1102 * @free_obj: workqueue object to free timestamp registration node objects
1103 * @hdev: pointer to the device structure
1104 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
1105 */
1106 struct timestamp_reg_work_obj {
1107 struct work_struct free_obj;
1108 struct hl_device *hdev;
1109 struct list_head *free_obj_head;
1110 };
1111
1112 /* struct timestamp_reg_info - holds the timestamp registration related data.
1113 * @buf: pointer to the timestamp buffer which include both user/kernel buffers.
1114 * relevant only when doing timestamps records registration.
1115 * @cq_cb: pointer to CQ counter CB.
1116 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp
1117 * relevant only when doing timestamps records
1118 * registration.
1119 * @in_use: indicates if the node already in use. relevant only when doing
1120 * timestamps records registration, since in this case the driver
1121 * will have it's own buffer which serve as a records pool instead of
1122 * allocating records dynamically.
1123 */
1124 struct timestamp_reg_info {
1125 struct hl_mmap_mem_buf *buf;
1126 struct hl_cb *cq_cb;
1127 u64 *timestamp_kernel_addr;
1128 u8 in_use;
1129 };
1130
1131 /**
1132 * struct hl_user_pending_interrupt - holds a context to a user thread
1133 * pending on an interrupt
1134 * @ts_reg_info: holds the timestamps registration nodes info
1135 * @wait_list_node: node in the list of user threads pending on an interrupt
1136 * @fence: hl fence object for interrupt completion
1137 * @cq_target_value: CQ target value
1138 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
1139 * handler for target value comparison
1140 */
1141 struct hl_user_pending_interrupt {
1142 struct timestamp_reg_info ts_reg_info;
1143 struct list_head wait_list_node;
1144 struct hl_fence fence;
1145 u64 cq_target_value;
1146 u64 *cq_kernel_addr;
1147 };
1148
1149 /**
1150 * struct hl_eq - describes the event queue (single one per device)
1151 * @hdev: pointer to the device structure
1152 * @kernel_address: holds the queue's kernel virtual address
1153 * @bus_address: holds the queue's DMA address
1154 * @ci: ci inside the queue
1155 * @prev_eqe_index: the index of the previous event queue entry. The index of
1156 * the current entry's index must be +1 of the previous one.
1157 * @check_eqe_index: do we need to check the index of the current entry vs. the
1158 * previous one. This is for backward compatibility with older
1159 * firmwares
1160 */
1161 struct hl_eq {
1162 struct hl_device *hdev;
1163 void *kernel_address;
1164 dma_addr_t bus_address;
1165 u32 ci;
1166 u32 prev_eqe_index;
1167 bool check_eqe_index;
1168 };
1169
1170 /**
1171 * struct hl_dec - describes a decoder sw instance.
1172 * @hdev: pointer to the device structure.
1173 * @completion_abnrm_work: workqueue object to run when decoder generates an error interrupt
1174 * @core_id: ID of the decoder.
1175 * @base_addr: base address of the decoder.
1176 */
1177 struct hl_dec {
1178 struct hl_device *hdev;
1179 struct work_struct completion_abnrm_work;
1180 u32 core_id;
1181 u32 base_addr;
1182 };
1183
1184 /**
1185 * enum hl_asic_type - supported ASIC types.
1186 * @ASIC_INVALID: Invalid ASIC type.
1187 * @ASIC_GOYA: Goya device (HL-1000).
1188 * @ASIC_GAUDI: Gaudi device (HL-2000).
1189 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
1190 * @ASIC_GAUDI2: Gaudi2 device.
1191 * @ASIC_GAUDI2_SEC: Gaudi2 secured device.
1192 */
1193 enum hl_asic_type {
1194 ASIC_INVALID,
1195 ASIC_GOYA,
1196 ASIC_GAUDI,
1197 ASIC_GAUDI_SEC,
1198 ASIC_GAUDI2,
1199 ASIC_GAUDI2_SEC,
1200 };
1201
1202 struct hl_cs_parser;
1203
1204 /**
1205 * enum hl_pm_mng_profile - power management profile.
1206 * @PM_AUTO: internal clock is set by the Linux driver.
1207 * @PM_MANUAL: internal clock is set by the user.
1208 * @PM_LAST: last power management type.
1209 */
1210 enum hl_pm_mng_profile {
1211 PM_AUTO = 1,
1212 PM_MANUAL,
1213 PM_LAST
1214 };
1215
1216 /**
1217 * enum hl_pll_frequency - PLL frequency.
1218 * @PLL_HIGH: high frequency.
1219 * @PLL_LOW: low frequency.
1220 * @PLL_LAST: last frequency values that were configured by the user.
1221 */
1222 enum hl_pll_frequency {
1223 PLL_HIGH = 1,
1224 PLL_LOW,
1225 PLL_LAST
1226 };
1227
1228 #define PLL_REF_CLK 50
1229
1230 enum div_select_defs {
1231 DIV_SEL_REF_CLK = 0,
1232 DIV_SEL_PLL_CLK = 1,
1233 DIV_SEL_DIVIDED_REF = 2,
1234 DIV_SEL_DIVIDED_PLL = 3,
1235 };
1236
1237 enum debugfs_access_type {
1238 DEBUGFS_READ8,
1239 DEBUGFS_WRITE8,
1240 DEBUGFS_READ32,
1241 DEBUGFS_WRITE32,
1242 DEBUGFS_READ64,
1243 DEBUGFS_WRITE64,
1244 };
1245
1246 enum pci_region {
1247 PCI_REGION_CFG,
1248 PCI_REGION_SRAM,
1249 PCI_REGION_DRAM,
1250 PCI_REGION_SP_SRAM,
1251 PCI_REGION_NUMBER,
1252 };
1253
1254 /**
1255 * struct pci_mem_region - describe memory region in a PCI bar
1256 * @region_base: region base address
1257 * @region_size: region size
1258 * @bar_size: size of the BAR
1259 * @offset_in_bar: region offset into the bar
1260 * @bar_id: bar ID of the region
1261 * @used: if used 1, otherwise 0
1262 */
1263 struct pci_mem_region {
1264 u64 region_base;
1265 u64 region_size;
1266 u64 bar_size;
1267 u64 offset_in_bar;
1268 u8 bar_id;
1269 u8 used;
1270 };
1271
1272 /**
1273 * struct static_fw_load_mgr - static FW load manager
1274 * @preboot_version_max_off: max offset to preboot version
1275 * @boot_fit_version_max_off: max offset to boot fit version
1276 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
1277 * @cpu_cmd_status_to_host_reg: register address for CPU command status response
1278 * @cpu_boot_status_reg: boot status register
1279 * @cpu_boot_dev_status0_reg: boot device status register 0
1280 * @cpu_boot_dev_status1_reg: boot device status register 1
1281 * @boot_err0_reg: boot error register 0
1282 * @boot_err1_reg: boot error register 1
1283 * @preboot_version_offset_reg: SRAM offset to preboot version register
1284 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
1285 * @sram_offset_mask: mask for getting offset into the SRAM
1286 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
1287 */
1288 struct static_fw_load_mgr {
1289 u64 preboot_version_max_off;
1290 u64 boot_fit_version_max_off;
1291 u32 kmd_msg_to_cpu_reg;
1292 u32 cpu_cmd_status_to_host_reg;
1293 u32 cpu_boot_status_reg;
1294 u32 cpu_boot_dev_status0_reg;
1295 u32 cpu_boot_dev_status1_reg;
1296 u32 boot_err0_reg;
1297 u32 boot_err1_reg;
1298 u32 preboot_version_offset_reg;
1299 u32 boot_fit_version_offset_reg;
1300 u32 sram_offset_mask;
1301 u32 cpu_reset_wait_msec;
1302 };
1303
1304 /**
1305 * struct fw_response - FW response to LKD command
1306 * @ram_offset: descriptor offset into the RAM
1307 * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
1308 * @status: command status
1309 */
1310 struct fw_response {
1311 u32 ram_offset;
1312 u8 ram_type;
1313 u8 status;
1314 };
1315
1316 /**
1317 * struct dynamic_fw_load_mgr - dynamic FW load manager
1318 * @response: FW to LKD response
1319 * @comm_desc: the communication descriptor with FW
1320 * @image_region: region to copy the FW image to
1321 * @fw_image_size: size of FW image to load
1322 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
1323 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
1324 */
1325 struct dynamic_fw_load_mgr {
1326 struct fw_response response;
1327 struct lkd_fw_comms_desc comm_desc;
1328 struct pci_mem_region *image_region;
1329 size_t fw_image_size;
1330 u32 wait_for_bl_timeout;
1331 bool fw_desc_valid;
1332 };
1333
1334 /**
1335 * struct pre_fw_load_props - needed properties for pre-FW load
1336 * @cpu_boot_status_reg: cpu_boot_status register address
1337 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
1338 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
1339 * @boot_err0_reg: boot_err0 register address
1340 * @boot_err1_reg: boot_err1 register address
1341 * @wait_for_preboot_timeout: timeout to poll for preboot ready
1342 */
1343 struct pre_fw_load_props {
1344 u32 cpu_boot_status_reg;
1345 u32 sts_boot_dev_sts0_reg;
1346 u32 sts_boot_dev_sts1_reg;
1347 u32 boot_err0_reg;
1348 u32 boot_err1_reg;
1349 u32 wait_for_preboot_timeout;
1350 };
1351
1352 /**
1353 * struct fw_image_props - properties of FW image
1354 * @image_name: name of the image
1355 * @src_off: offset in src FW to copy from
1356 * @copy_size: amount of bytes to copy (0 to copy the whole binary)
1357 */
1358 struct fw_image_props {
1359 char *image_name;
1360 u32 src_off;
1361 u32 copy_size;
1362 };
1363
1364 /**
1365 * struct fw_load_mgr - manager FW loading process
1366 * @dynamic_loader: specific structure for dynamic load
1367 * @static_loader: specific structure for static load
1368 * @pre_fw_load_props: parameter for pre FW load
1369 * @boot_fit_img: boot fit image properties
1370 * @linux_img: linux image properties
1371 * @cpu_timeout: CPU response timeout in usec
1372 * @boot_fit_timeout: Boot fit load timeout in usec
1373 * @skip_bmc: should BMC be skipped
1374 * @sram_bar_id: SRAM bar ID
1375 * @dram_bar_id: DRAM bar ID
1376 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
1377 * component. values are set according to enum hl_fw_types.
1378 */
1379 struct fw_load_mgr {
1380 union {
1381 struct dynamic_fw_load_mgr dynamic_loader;
1382 struct static_fw_load_mgr static_loader;
1383 };
1384 struct pre_fw_load_props pre_fw_load;
1385 struct fw_image_props boot_fit_img;
1386 struct fw_image_props linux_img;
1387 u32 cpu_timeout;
1388 u32 boot_fit_timeout;
1389 u8 skip_bmc;
1390 u8 sram_bar_id;
1391 u8 dram_bar_id;
1392 u8 fw_comp_loaded;
1393 };
1394
1395 struct hl_cs;
1396
1397 /**
1398 * struct engines_data - asic engines data
1399 * @buf: buffer for engines data in ascii
1400 * @actual_size: actual size of data that was written by the driver to the allocated buffer
1401 * @allocated_buf_size: total size of allocated buffer
1402 */
1403 struct engines_data {
1404 char *buf;
1405 int actual_size;
1406 u32 allocated_buf_size;
1407 };
1408
1409 /**
1410 * struct hl_asic_funcs - ASIC specific functions that are can be called from
1411 * common code.
1412 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1413 * @early_fini: tears down what was done in early_init.
1414 * @late_init: sets up late driver/hw state (post hw_init) - Optional.
1415 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1416 * @sw_init: sets up driver state, does not configure H/W.
1417 * @sw_fini: tears down driver state, does not configure H/W.
1418 * @hw_init: sets up the H/W state.
1419 * @hw_fini: tears down the H/W state.
1420 * @halt_engines: halt engines, needed for reset sequence. This also disables
1421 * interrupts from the device. Should be called before
1422 * hw_fini and before CS rollback.
1423 * @suspend: handles IP specific H/W or SW changes for suspend.
1424 * @resume: handles IP specific H/W or SW changes for resume.
1425 * @mmap: maps a memory.
1426 * @ring_doorbell: increment PI on a given QMAN.
1427 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1428 * function because the PQs are located in different memory areas
1429 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1430 * writing the PQE must match the destination memory area
1431 * properties.
1432 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1433 * dma_alloc_coherent(). This is ASIC function because
1434 * its implementation is not trivial when the driver
1435 * is loaded in simulation mode (not upstreamed).
1436 * @asic_dma_free_coherent: Free coherent DMA memory by calling
1437 * dma_free_coherent(). This is ASIC function because
1438 * its implementation is not trivial when the driver
1439 * is loaded in simulation mode (not upstreamed).
1440 * @scrub_device_mem: Scrub the entire SRAM and DRAM.
1441 * @scrub_device_dram: Scrub the dram memory of the device.
1442 * @get_int_queue_base: get the internal queue base address.
1443 * @test_queues: run simple test on all queues for sanity check.
1444 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1445 * size of allocation is HL_DMA_POOL_BLK_SIZE.
1446 * @asic_dma_pool_free: free small DMA allocation from pool.
1447 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1448 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1449 * @asic_dma_unmap_single: unmap a single DMA buffer
1450 * @asic_dma_map_single: map a single buffer to a DMA
1451 * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table.
1452 * @cs_parser: parse Command Submission.
1453 * @asic_dma_map_sgtable: DMA map scatter-gather table.
1454 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1455 * @update_eq_ci: update event queue CI.
1456 * @context_switch: called upon ASID context switch.
1457 * @restore_phase_topology: clear all SOBs amd MONs.
1458 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1459 * internal memory via DMA engine.
1460 * @add_device_attr: add ASIC specific device attributes.
1461 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1462 * @get_events_stat: retrieve event queue entries histogram.
1463 * @read_pte: read MMU page table entry from DRAM.
1464 * @write_pte: write MMU page table entry to DRAM.
1465 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1466 * (L1 only) or hard (L0 & L1) flush.
1467 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
1468 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
1469 * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1470 * @debug_coresight: perform certain actions on Coresight for debugging.
1471 * @is_device_idle: return true if device is idle, false otherwise.
1472 * @compute_reset_late_init: perform certain actions needed after a compute reset
1473 * @hw_queues_lock: acquire H/W queues lock.
1474 * @hw_queues_unlock: release H/W queues lock.
1475 * @get_pci_id: retrieve PCI ID.
1476 * @get_eeprom_data: retrieve EEPROM data from F/W.
1477 * @get_monitor_dump: retrieve monitor registers dump from F/W.
1478 * @send_cpu_message: send message to F/W. If the message is timedout, the
1479 * driver will eventually reset the device. The timeout can
1480 * be determined by the calling function or it can be 0 and
1481 * then the timeout is the default timeout for the specific
1482 * ASIC
1483 * @get_hw_state: retrieve the H/W state
1484 * @pci_bars_map: Map PCI BARs.
1485 * @init_iatu: Initialize the iATU unit inside the PCI controller.
1486 * @rreg: Read a register. Needed for simulator support.
1487 * @wreg: Write a register. Needed for simulator support.
1488 * @halt_coresight: stop the ETF and ETR traces.
1489 * @ctx_init: context dependent initialization.
1490 * @ctx_fini: context dependent cleanup.
1491 * @pre_schedule_cs: Perform pre-CS-scheduling operations.
1492 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1493 * @load_firmware_to_device: load the firmware to the device's memory
1494 * @load_boot_fit_to_device: load boot fit to device's memory
1495 * @get_signal_cb_size: Get signal CB size.
1496 * @get_wait_cb_size: Get wait CB size.
1497 * @gen_signal_cb: Generate a signal CB.
1498 * @gen_wait_cb: Generate a wait CB.
1499 * @reset_sob: Reset a SOB.
1500 * @reset_sob_group: Reset SOB group
1501 * @get_device_time: Get the device time.
1502 * @pb_print_security_errors: print security errors according block and cause
1503 * @collective_wait_init_cs: Generate collective master/slave packets
1504 * and place them in the relevant cs jobs
1505 * @collective_wait_create_jobs: allocate collective wait cs jobs
1506 * @get_dec_base_addr: get the base address of a given decoder.
1507 * @scramble_addr: Routine to scramble the address prior of mapping it
1508 * in the MMU.
1509 * @descramble_addr: Routine to de-scramble the address prior of
1510 * showing it to users.
1511 * @ack_protection_bits_errors: ack and dump all security violations
1512 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1513 * also returns the size of the block if caller supplies
1514 * a valid pointer for it
1515 * @hw_block_mmap: mmap a HW block with a given id.
1516 * @enable_events_from_fw: send interrupt to firmware to notify them the
1517 * driver is ready to receive asynchronous events. This
1518 * function should be called during the first init and
1519 * after every hard-reset of the device
1520 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
1521 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1522 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1523 * generic f/w compatible PLL Indexes
1524 * @init_firmware_preload_params: initialize pre FW-load parameters.
1525 * @init_firmware_loader: initialize data for FW loader.
1526 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1527 * @state_dump_init: initialize constants required for state dump
1528 * @get_sob_addr: get SOB base address offset.
1529 * @set_pci_memory_regions: setting properties of PCI memory regions
1530 * @get_stream_master_qid_arr: get pointer to stream masters QID array
1531 * @check_if_razwi_happened: check if there was a razwi due to RR violation.
1532 * @access_dev_mem: access device memory
1533 * @set_dram_bar_base: set the base of the DRAM BAR
1534 * @set_engine_cores: set a config command to enigne cores
1535 * @send_device_activity: indication to FW about device availability
1536 */
1537 struct hl_asic_funcs {
1538 int (*early_init)(struct hl_device *hdev);
1539 int (*early_fini)(struct hl_device *hdev);
1540 int (*late_init)(struct hl_device *hdev);
1541 void (*late_fini)(struct hl_device *hdev);
1542 int (*sw_init)(struct hl_device *hdev);
1543 int (*sw_fini)(struct hl_device *hdev);
1544 int (*hw_init)(struct hl_device *hdev);
1545 void (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1546 void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1547 int (*suspend)(struct hl_device *hdev);
1548 int (*resume)(struct hl_device *hdev);
1549 int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1550 void *cpu_addr, dma_addr_t dma_addr, size_t size);
1551 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1552 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1553 struct hl_bd *bd);
1554 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1555 dma_addr_t *dma_handle, gfp_t flag);
1556 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1557 void *cpu_addr, dma_addr_t dma_handle);
1558 int (*scrub_device_mem)(struct hl_device *hdev);
1559 int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
1560 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1561 dma_addr_t *dma_handle, u16 *queue_len);
1562 int (*test_queues)(struct hl_device *hdev);
1563 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1564 gfp_t mem_flags, dma_addr_t *dma_handle);
1565 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1566 dma_addr_t dma_addr);
1567 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1568 size_t size, dma_addr_t *dma_handle);
1569 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1570 size_t size, void *vaddr);
1571 void (*asic_dma_unmap_single)(struct hl_device *hdev,
1572 dma_addr_t dma_addr, int len,
1573 enum dma_data_direction dir);
1574 dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev,
1575 void *addr, int len,
1576 enum dma_data_direction dir);
1577 void (*hl_dma_unmap_sgtable)(struct hl_device *hdev,
1578 struct sg_table *sgt,
1579 enum dma_data_direction dir);
1580 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1581 int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1582 enum dma_data_direction dir);
1583 void (*add_end_of_cb_packets)(struct hl_device *hdev,
1584 void *kernel_address, u32 len,
1585 u32 original_len,
1586 u64 cq_addr, u32 cq_val, u32 msix_num,
1587 bool eb);
1588 void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1589 int (*context_switch)(struct hl_device *hdev, u32 asid);
1590 void (*restore_phase_topology)(struct hl_device *hdev);
1591 int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1592 void *blob_addr);
1593 void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
1594 struct attribute_group *dev_vrm_attr_grp);
1595 void (*handle_eqe)(struct hl_device *hdev,
1596 struct hl_eq_entry *eq_entry);
1597 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1598 u32 *size);
1599 u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1600 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1601 int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1602 u32 flags);
1603 int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1604 u32 flags, u32 asid, u64 va, u64 size);
1605 int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
1606 int (*send_heartbeat)(struct hl_device *hdev);
1607 int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
1608 bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
1609 struct engines_data *e);
1610 int (*compute_reset_late_init)(struct hl_device *hdev);
1611 void (*hw_queues_lock)(struct hl_device *hdev);
1612 void (*hw_queues_unlock)(struct hl_device *hdev);
1613 u32 (*get_pci_id)(struct hl_device *hdev);
1614 int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
1615 int (*get_monitor_dump)(struct hl_device *hdev, void *data);
1616 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1617 u16 len, u32 timeout, u64 *result);
1618 int (*pci_bars_map)(struct hl_device *hdev);
1619 int (*init_iatu)(struct hl_device *hdev);
1620 u32 (*rreg)(struct hl_device *hdev, u32 reg);
1621 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1622 void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
1623 int (*ctx_init)(struct hl_ctx *ctx);
1624 void (*ctx_fini)(struct hl_ctx *ctx);
1625 int (*pre_schedule_cs)(struct hl_cs *cs);
1626 u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1627 int (*load_firmware_to_device)(struct hl_device *hdev);
1628 int (*load_boot_fit_to_device)(struct hl_device *hdev);
1629 u32 (*get_signal_cb_size)(struct hl_device *hdev);
1630 u32 (*get_wait_cb_size)(struct hl_device *hdev);
1631 u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1632 u32 size, bool eb);
1633 u32 (*gen_wait_cb)(struct hl_device *hdev,
1634 struct hl_gen_wait_properties *prop);
1635 void (*reset_sob)(struct hl_device *hdev, void *data);
1636 void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1637 u64 (*get_device_time)(struct hl_device *hdev);
1638 void (*pb_print_security_errors)(struct hl_device *hdev,
1639 u32 block_addr, u32 cause, u32 offended_addr);
1640 int (*collective_wait_init_cs)(struct hl_cs *cs);
1641 int (*collective_wait_create_jobs)(struct hl_device *hdev,
1642 struct hl_ctx *ctx, struct hl_cs *cs,
1643 u32 wait_queue_id, u32 collective_engine_id,
1644 u32 encaps_signal_offset);
1645 u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
1646 u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1647 u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1648 void (*ack_protection_bits_errors)(struct hl_device *hdev);
1649 int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1650 u32 *block_size, u32 *block_id);
1651 int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1652 u32 block_id, u32 block_size);
1653 void (*enable_events_from_fw)(struct hl_device *hdev);
1654 int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
1655 void (*get_msi_info)(__le32 *table);
1656 int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1657 void (*init_firmware_preload_params)(struct hl_device *hdev);
1658 void (*init_firmware_loader)(struct hl_device *hdev);
1659 void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1660 void (*state_dump_init)(struct hl_device *hdev);
1661 u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1662 void (*set_pci_memory_regions)(struct hl_device *hdev);
1663 u32* (*get_stream_master_qid_arr)(void);
1664 void (*check_if_razwi_happened)(struct hl_device *hdev);
1665 int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
1666 u32 page_size, u32 *real_page_size, bool is_dram_addr);
1667 int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
1668 u64 addr, u64 *val, enum debugfs_access_type acc_type);
1669 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
1670 int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
1671 u32 num_cores, u32 core_command);
1672 int (*send_device_activity)(struct hl_device *hdev, bool open);
1673 };
1674
1675
1676 /*
1677 * CONTEXTS
1678 */
1679
1680 #define HL_KERNEL_ASID_ID 0
1681
1682 /**
1683 * enum hl_va_range_type - virtual address range type.
1684 * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1685 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1686 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1687 */
1688 enum hl_va_range_type {
1689 HL_VA_RANGE_TYPE_HOST,
1690 HL_VA_RANGE_TYPE_HOST_HUGE,
1691 HL_VA_RANGE_TYPE_DRAM,
1692 HL_VA_RANGE_TYPE_MAX
1693 };
1694
1695 /**
1696 * struct hl_va_range - virtual addresses range.
1697 * @lock: protects the virtual addresses list.
1698 * @list: list of virtual addresses blocks available for mappings.
1699 * @start_addr: range start address.
1700 * @end_addr: range end address.
1701 * @page_size: page size of this va range.
1702 */
1703 struct hl_va_range {
1704 struct mutex lock;
1705 struct list_head list;
1706 u64 start_addr;
1707 u64 end_addr;
1708 u32 page_size;
1709 };
1710
1711 /**
1712 * struct hl_cs_counters_atomic - command submission counters
1713 * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1714 * @parsing_drop_cnt: dropped due to error in packet parsing
1715 * @queue_full_drop_cnt: dropped due to queue full
1716 * @device_in_reset_drop_cnt: dropped due to device in reset
1717 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1718 * @validation_drop_cnt: dropped due to error in validation
1719 */
1720 struct hl_cs_counters_atomic {
1721 atomic64_t out_of_mem_drop_cnt;
1722 atomic64_t parsing_drop_cnt;
1723 atomic64_t queue_full_drop_cnt;
1724 atomic64_t device_in_reset_drop_cnt;
1725 atomic64_t max_cs_in_flight_drop_cnt;
1726 atomic64_t validation_drop_cnt;
1727 };
1728
1729 /**
1730 * struct hl_dmabuf_priv - a dma-buf private object.
1731 * @dmabuf: pointer to dma-buf object.
1732 * @ctx: pointer to the dma-buf owner's context.
1733 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported for
1734 * memory allocation handle.
1735 * @device_address: physical address of the device's memory. Relevant only
1736 * if phys_pg_pack is NULL (dma-buf was exported from address).
1737 * The total size can be taken from the dmabuf object.
1738 */
1739 struct hl_dmabuf_priv {
1740 struct dma_buf *dmabuf;
1741 struct hl_ctx *ctx;
1742 struct hl_vm_phys_pg_pack *phys_pg_pack;
1743 uint64_t device_address;
1744 };
1745
1746 #define HL_CS_OUTCOME_HISTORY_LEN 256
1747
1748 /**
1749 * struct hl_cs_outcome - represents a single completed CS outcome
1750 * @list_link: link to either container's used list or free list
1751 * @map_link: list to the container hash map
1752 * @ts: completion ts
1753 * @seq: the original cs sequence
1754 * @error: error code cs completed with, if any
1755 */
1756 struct hl_cs_outcome {
1757 struct list_head list_link;
1758 struct hlist_node map_link;
1759 ktime_t ts;
1760 u64 seq;
1761 int error;
1762 };
1763
1764 /**
1765 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
1766 * @outcome_map: index of completed CS searchable by sequence number
1767 * @used_list: list of outcome objects currently in use
1768 * @free_list: list of outcome objects currently not in use
1769 * @nodes_pool: a static pool of pre-allocated outcome objects
1770 * @db_lock: any operation on the store must take this lock
1771 */
1772 struct hl_cs_outcome_store {
1773 DECLARE_HASHTABLE(outcome_map, 8);
1774 struct list_head used_list;
1775 struct list_head free_list;
1776 struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
1777 spinlock_t db_lock;
1778 };
1779
1780 /**
1781 * struct hl_ctx - user/kernel context.
1782 * @mem_hash: holds mapping from virtual address to virtual memory area
1783 * descriptor (hl_vm_phys_pg_list or hl_userptr).
1784 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1785 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
1786 * MMU-hop-page physical address to its host-resident
1787 * pgt_info structure.
1788 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1789 * @hdev: pointer to the device structure.
1790 * @refcount: reference counter for the context. Context is released only when
1791 * this hits 0l. It is incremented on CS and CS_WAIT.
1792 * @cs_pending: array of hl fence objects representing pending CS.
1793 * @outcome_store: storage data structure used to remember outcomes of completed
1794 * command submissions for a long time after CS id wraparound.
1795 * @va_range: holds available virtual addresses for host and dram mappings.
1796 * @mem_hash_lock: protects the mem_hash.
1797 * @hw_block_list_lock: protects the HW block memory list.
1798 * @debugfs_list: node in debugfs list of contexts.
1799 * @hw_block_mem_list: list of HW block virtual mapped addresses.
1800 * @cs_counters: context command submission counters.
1801 * @cb_va_pool: device VA pool for command buffers which are mapped to the
1802 * device's MMU.
1803 * @sig_mgr: encaps signals handle manager.
1804 * @cb_va_pool_base: the base address for the device VA pool
1805 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1806 * to user so user could inquire about CS. It is used as
1807 * index to cs_pending array.
1808 * @dram_default_hops: array that holds all hops addresses needed for default
1809 * DRAM mapping.
1810 * @cs_lock: spinlock to protect cs_sequence.
1811 * @dram_phys_mem: amount of used physical DRAM memory by this context.
1812 * @thread_ctx_switch_token: token to prevent multiple threads of the same
1813 * context from running the context switch phase.
1814 * Only a single thread should run it.
1815 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1816 * the context switch phase from moving to their
1817 * execution phase before the context switch phase
1818 * has finished.
1819 * @asid: context's unique address space ID in the device's MMU.
1820 * @handle: context's opaque handle for user
1821 */
1822 struct hl_ctx {
1823 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1824 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1825 DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
1826 struct hl_fpriv *hpriv;
1827 struct hl_device *hdev;
1828 struct kref refcount;
1829 struct hl_fence **cs_pending;
1830 struct hl_cs_outcome_store outcome_store;
1831 struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX];
1832 struct mutex mem_hash_lock;
1833 struct mutex hw_block_list_lock;
1834 struct list_head debugfs_list;
1835 struct list_head hw_block_mem_list;
1836 struct hl_cs_counters_atomic cs_counters;
1837 struct gen_pool *cb_va_pool;
1838 struct hl_encaps_signals_mgr sig_mgr;
1839 u64 cb_va_pool_base;
1840 u64 cs_sequence;
1841 u64 *dram_default_hops;
1842 spinlock_t cs_lock;
1843 atomic64_t dram_phys_mem;
1844 atomic_t thread_ctx_switch_token;
1845 u32 thread_ctx_switch_wait_token;
1846 u32 asid;
1847 u32 handle;
1848 };
1849
1850 /**
1851 * struct hl_ctx_mgr - for handling multiple contexts.
1852 * @lock: protects ctx_handles.
1853 * @handles: idr to hold all ctx handles.
1854 */
1855 struct hl_ctx_mgr {
1856 struct mutex lock;
1857 struct idr handles;
1858 };
1859
1860
1861 /*
1862 * COMMAND SUBMISSIONS
1863 */
1864
1865 /**
1866 * struct hl_userptr - memory mapping chunk information
1867 * @vm_type: type of the VM.
1868 * @job_node: linked-list node for hanging the object on the Job's list.
1869 * @pages: pointer to struct page array
1870 * @npages: size of @pages array
1871 * @sgt: pointer to the scatter-gather table that holds the pages.
1872 * @dir: for DMA unmapping, the direction must be supplied, so save it.
1873 * @debugfs_list: node in debugfs list of command submissions.
1874 * @pid: the pid of the user process owning the memory
1875 * @addr: user-space virtual address of the start of the memory area.
1876 * @size: size of the memory area to pin & map.
1877 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1878 */
1879 struct hl_userptr {
1880 enum vm_type vm_type; /* must be first */
1881 struct list_head job_node;
1882 struct page **pages;
1883 unsigned int npages;
1884 struct sg_table *sgt;
1885 enum dma_data_direction dir;
1886 struct list_head debugfs_list;
1887 pid_t pid;
1888 u64 addr;
1889 u64 size;
1890 u8 dma_mapped;
1891 };
1892
1893 /**
1894 * struct hl_cs - command submission.
1895 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1896 * @ctx: the context this CS belongs to.
1897 * @job_list: list of the CS's jobs in the various queues.
1898 * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1899 * @refcount: reference counter for usage of the CS.
1900 * @fence: pointer to the fence object of this CS.
1901 * @signal_fence: pointer to the fence object of the signal CS (used by wait
1902 * CS only).
1903 * @finish_work: workqueue object to run when CS is completed by H/W.
1904 * @work_tdr: delayed work node for TDR.
1905 * @mirror_node : node in device mirror list of command submissions.
1906 * @staged_cs_node: node in the staged cs list.
1907 * @debugfs_list: node in debugfs list of command submissions.
1908 * @encaps_sig_hdl: holds the encaps signals handle.
1909 * @sequence: the sequence number of this CS.
1910 * @staged_sequence: the sequence of the staged submission this CS is part of,
1911 * relevant only if staged_cs is set.
1912 * @timeout_jiffies: cs timeout in jiffies.
1913 * @submission_time_jiffies: submission time of the cs
1914 * @type: CS_TYPE_*.
1915 * @jobs_cnt: counter of submitted jobs on all queues.
1916 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
1917 * @sob_addr_offset: sob offset from the configuration base address.
1918 * @initial_sob_count: count of completed signals in SOB before current submission of signal or
1919 * cs with encaps signals.
1920 * @submitted: true if CS was submitted to H/W.
1921 * @completed: true if CS was completed by device.
1922 * @timedout : true if CS was timedout.
1923 * @tdr_active: true if TDR was activated for this CS (to prevent
1924 * double TDR activation).
1925 * @aborted: true if CS was aborted due to some device error.
1926 * @timestamp: true if a timestamp must be captured upon completion.
1927 * @staged_last: true if this is the last staged CS and needs completion.
1928 * @staged_first: true if this is the first staged CS and we need to receive
1929 * timeout for this CS.
1930 * @staged_cs: true if this CS is part of a staged submission.
1931 * @skip_reset_on_timeout: true if we shall not reset the device in case
1932 * timeout occurs (debug scenario).
1933 * @encaps_signals: true if this CS has encaps reserved signals.
1934 */
1935 struct hl_cs {
1936 u16 *jobs_in_queue_cnt;
1937 struct hl_ctx *ctx;
1938 struct list_head job_list;
1939 spinlock_t job_lock;
1940 struct kref refcount;
1941 struct hl_fence *fence;
1942 struct hl_fence *signal_fence;
1943 struct work_struct finish_work;
1944 struct delayed_work work_tdr;
1945 struct list_head mirror_node;
1946 struct list_head staged_cs_node;
1947 struct list_head debugfs_list;
1948 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
1949 u64 sequence;
1950 u64 staged_sequence;
1951 u64 timeout_jiffies;
1952 u64 submission_time_jiffies;
1953 enum hl_cs_type type;
1954 u32 jobs_cnt;
1955 u32 encaps_sig_hdl_id;
1956 u32 sob_addr_offset;
1957 u16 initial_sob_count;
1958 u8 submitted;
1959 u8 completed;
1960 u8 timedout;
1961 u8 tdr_active;
1962 u8 aborted;
1963 u8 timestamp;
1964 u8 staged_last;
1965 u8 staged_first;
1966 u8 staged_cs;
1967 u8 skip_reset_on_timeout;
1968 u8 encaps_signals;
1969 };
1970
1971 /**
1972 * struct hl_cs_job - command submission job.
1973 * @cs_node: the node to hang on the CS jobs list.
1974 * @cs: the CS this job belongs to.
1975 * @user_cb: the CB we got from the user.
1976 * @patched_cb: in case of patching, this is internal CB which is submitted on
1977 * the queue instead of the CB we got from the IOCTL.
1978 * @finish_work: workqueue object to run when job is completed.
1979 * @userptr_list: linked-list of userptr mappings that belong to this job and
1980 * wait for completion.
1981 * @debugfs_list: node in debugfs list of command submission jobs.
1982 * @refcount: reference counter for usage of the CS job.
1983 * @queue_type: the type of the H/W queue this job is submitted to.
1984 * @id: the id of this job inside a CS.
1985 * @hw_queue_id: the id of the H/W queue this job is submitted to.
1986 * @user_cb_size: the actual size of the CB we got from the user.
1987 * @job_cb_size: the actual size of the CB that we put on the queue.
1988 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
1989 * to wait on part of the reserved signals.
1990 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1991 * handle to a kernel-allocated CB object, false
1992 * otherwise (SRAM/DRAM/host address).
1993 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1994 * info is needed later, when adding the 2xMSG_PROT at the
1995 * end of the JOB, to know which barriers to put in the
1996 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1997 * have streams so the engine can't be busy by another
1998 * stream.
1999 */
2000 struct hl_cs_job {
2001 struct list_head cs_node;
2002 struct hl_cs *cs;
2003 struct hl_cb *user_cb;
2004 struct hl_cb *patched_cb;
2005 struct work_struct finish_work;
2006 struct list_head userptr_list;
2007 struct list_head debugfs_list;
2008 struct kref refcount;
2009 enum hl_queue_type queue_type;
2010 u32 id;
2011 u32 hw_queue_id;
2012 u32 user_cb_size;
2013 u32 job_cb_size;
2014 u32 encaps_sig_wait_offset;
2015 u8 is_kernel_allocated_cb;
2016 u8 contains_dma_pkt;
2017 };
2018
2019 /**
2020 * struct hl_cs_parser - command submission parser properties.
2021 * @user_cb: the CB we got from the user.
2022 * @patched_cb: in case of patching, this is internal CB which is submitted on
2023 * the queue instead of the CB we got from the IOCTL.
2024 * @job_userptr_list: linked-list of userptr mappings that belong to the related
2025 * job and wait for completion.
2026 * @cs_sequence: the sequence number of the related CS.
2027 * @queue_type: the type of the H/W queue this job is submitted to.
2028 * @ctx_id: the ID of the context the related CS belongs to.
2029 * @hw_queue_id: the id of the H/W queue this job is submitted to.
2030 * @user_cb_size: the actual size of the CB we got from the user.
2031 * @patched_cb_size: the size of the CB after parsing.
2032 * @job_id: the id of the related job inside the related CS.
2033 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2034 * handle to a kernel-allocated CB object, false
2035 * otherwise (SRAM/DRAM/host address).
2036 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2037 * info is needed later, when adding the 2xMSG_PROT at the
2038 * end of the JOB, to know which barriers to put in the
2039 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2040 * have streams so the engine can't be busy by another
2041 * stream.
2042 * @completion: true if we need completion for this CS.
2043 */
2044 struct hl_cs_parser {
2045 struct hl_cb *user_cb;
2046 struct hl_cb *patched_cb;
2047 struct list_head *job_userptr_list;
2048 u64 cs_sequence;
2049 enum hl_queue_type queue_type;
2050 u32 ctx_id;
2051 u32 hw_queue_id;
2052 u32 user_cb_size;
2053 u32 patched_cb_size;
2054 u8 job_id;
2055 u8 is_kernel_allocated_cb;
2056 u8 contains_dma_pkt;
2057 u8 completion;
2058 };
2059
2060 /*
2061 * MEMORY STRUCTURE
2062 */
2063
2064 /**
2065 * struct hl_vm_hash_node - hash element from virtual address to virtual
2066 * memory area descriptor (hl_vm_phys_pg_list or
2067 * hl_userptr).
2068 * @node: node to hang on the hash table in context object.
2069 * @vaddr: key virtual address.
2070 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
2071 */
2072 struct hl_vm_hash_node {
2073 struct hlist_node node;
2074 u64 vaddr;
2075 void *ptr;
2076 };
2077
2078 /**
2079 * struct hl_vm_hw_block_list_node - list element from user virtual address to
2080 * HW block id.
2081 * @node: node to hang on the list in context object.
2082 * @ctx: the context this node belongs to.
2083 * @vaddr: virtual address of the HW block.
2084 * @block_size: size of the block.
2085 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
2086 * @id: HW block id (handle).
2087 */
2088 struct hl_vm_hw_block_list_node {
2089 struct list_head node;
2090 struct hl_ctx *ctx;
2091 unsigned long vaddr;
2092 u32 block_size;
2093 u32 mapped_size;
2094 u32 id;
2095 };
2096
2097 /**
2098 * struct hl_vm_phys_pg_pack - physical page pack.
2099 * @vm_type: describes the type of the virtual area descriptor.
2100 * @pages: the physical page array.
2101 * @npages: num physical pages in the pack.
2102 * @total_size: total size of all the pages in this list.
2103 * @node: used to attach to deletion list that is used when all the allocations are cleared
2104 * at the teardown of the context.
2105 * @mapping_cnt: number of shared mappings.
2106 * @exporting_cnt: number of dma-buf exporting.
2107 * @asid: the context related to this list.
2108 * @page_size: size of each page in the pack.
2109 * @flags: HL_MEM_* flags related to this list.
2110 * @handle: the provided handle related to this list.
2111 * @offset: offset from the first page.
2112 * @contiguous: is contiguous physical memory.
2113 * @created_from_userptr: is product of host virtual address.
2114 */
2115 struct hl_vm_phys_pg_pack {
2116 enum vm_type vm_type; /* must be first */
2117 u64 *pages;
2118 u64 npages;
2119 u64 total_size;
2120 struct list_head node;
2121 atomic_t mapping_cnt;
2122 u32 exporting_cnt;
2123 u32 asid;
2124 u32 page_size;
2125 u32 flags;
2126 u32 handle;
2127 u32 offset;
2128 u8 contiguous;
2129 u8 created_from_userptr;
2130 };
2131
2132 /**
2133 * struct hl_vm_va_block - virtual range block information.
2134 * @node: node to hang on the virtual range list in context object.
2135 * @start: virtual range start address.
2136 * @end: virtual range end address.
2137 * @size: virtual range size.
2138 */
2139 struct hl_vm_va_block {
2140 struct list_head node;
2141 u64 start;
2142 u64 end;
2143 u64 size;
2144 };
2145
2146 /**
2147 * struct hl_vm - virtual memory manager for MMU.
2148 * @dram_pg_pool: pool for DRAM physical pages of 2MB.
2149 * @dram_pg_pool_refcount: reference counter for the pool usage.
2150 * @idr_lock: protects the phys_pg_list_handles.
2151 * @phys_pg_pack_handles: idr to hold all device allocations handles.
2152 * @init_done: whether initialization was done. We need this because VM
2153 * initialization might be skipped during device initialization.
2154 */
2155 struct hl_vm {
2156 struct gen_pool *dram_pg_pool;
2157 struct kref dram_pg_pool_refcount;
2158 spinlock_t idr_lock;
2159 struct idr phys_pg_pack_handles;
2160 u8 init_done;
2161 };
2162
2163
2164 /*
2165 * DEBUG, PROFILING STRUCTURE
2166 */
2167
2168 /**
2169 * struct hl_debug_params - Coresight debug parameters.
2170 * @input: pointer to component specific input parameters.
2171 * @output: pointer to component specific output parameters.
2172 * @output_size: size of output buffer.
2173 * @reg_idx: relevant register ID.
2174 * @op: component operation to execute.
2175 * @enable: true if to enable component debugging, false otherwise.
2176 */
2177 struct hl_debug_params {
2178 void *input;
2179 void *output;
2180 u32 output_size;
2181 u32 reg_idx;
2182 u32 op;
2183 bool enable;
2184 };
2185
2186 /**
2187 * struct hl_notifier_event - holds the notifier data structure
2188 * @eventfd: the event file descriptor to raise the notifications
2189 * @lock: mutex lock to protect the notifier data flows
2190 * @events_mask: indicates the bitmap events
2191 */
2192 struct hl_notifier_event {
2193 struct eventfd_ctx *eventfd;
2194 struct mutex lock;
2195 u64 events_mask;
2196 };
2197
2198 /*
2199 * FILE PRIVATE STRUCTURE
2200 */
2201
2202 /**
2203 * struct hl_fpriv - process information stored in FD private data.
2204 * @hdev: habanalabs device structure.
2205 * @filp: pointer to the given file structure.
2206 * @taskpid: current process ID.
2207 * @ctx: current executing context. TODO: remove for multiple ctx per process
2208 * @ctx_mgr: context manager to handle multiple context for this FD.
2209 * @mem_mgr: manager descriptor for memory exportable via mmap
2210 * @notifier_event: notifier eventfd towards user process
2211 * @debugfs_list: list of relevant ASIC debugfs.
2212 * @dev_node: node in the device list of file private data
2213 * @refcount: number of related contexts.
2214 * @restore_phase_mutex: lock for context switch and restore phase.
2215 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
2216 * ctx per process.
2217 */
2218 struct hl_fpriv {
2219 struct hl_device *hdev;
2220 struct file *filp;
2221 struct pid *taskpid;
2222 struct hl_ctx *ctx;
2223 struct hl_ctx_mgr ctx_mgr;
2224 struct hl_mem_mgr mem_mgr;
2225 struct hl_notifier_event notifier_event;
2226 struct list_head debugfs_list;
2227 struct list_head dev_node;
2228 struct kref refcount;
2229 struct mutex restore_phase_mutex;
2230 struct mutex ctx_lock;
2231 };
2232
2233
2234 /*
2235 * DebugFS
2236 */
2237
2238 /**
2239 * struct hl_info_list - debugfs file ops.
2240 * @name: file name.
2241 * @show: function to output information.
2242 * @write: function to write to the file.
2243 */
2244 struct hl_info_list {
2245 const char *name;
2246 int (*show)(struct seq_file *s, void *data);
2247 ssize_t (*write)(struct file *file, const char __user *buf,
2248 size_t count, loff_t *f_pos);
2249 };
2250
2251 /**
2252 * struct hl_debugfs_entry - debugfs dentry wrapper.
2253 * @info_ent: dentry related ops.
2254 * @dev_entry: ASIC specific debugfs manager.
2255 */
2256 struct hl_debugfs_entry {
2257 const struct hl_info_list *info_ent;
2258 struct hl_dbg_device_entry *dev_entry;
2259 };
2260
2261 /**
2262 * struct hl_dbg_device_entry - ASIC specific debugfs manager.
2263 * @root: root dentry.
2264 * @hdev: habanalabs device structure.
2265 * @entry_arr: array of available hl_debugfs_entry.
2266 * @file_list: list of available debugfs files.
2267 * @file_mutex: protects file_list.
2268 * @cb_list: list of available CBs.
2269 * @cb_spinlock: protects cb_list.
2270 * @cs_list: list of available CSs.
2271 * @cs_spinlock: protects cs_list.
2272 * @cs_job_list: list of available CB jobs.
2273 * @cs_job_spinlock: protects cs_job_list.
2274 * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
2275 * @userptr_spinlock: protects userptr_list.
2276 * @ctx_mem_hash_list: list of available contexts with MMU mappings.
2277 * @ctx_mem_hash_spinlock: protects cb_list.
2278 * @data_dma_blob_desc: data DMA descriptor of blob.
2279 * @mon_dump_blob_desc: monitor dump descriptor of blob.
2280 * @state_dump: data of the system states in case of a bad cs.
2281 * @state_dump_sem: protects state_dump.
2282 * @addr: next address to read/write from/to in read/write32.
2283 * @mmu_addr: next virtual address to translate to physical address in mmu_show.
2284 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
2285 * @userptr_lookup: the target user ptr to look up for on demand.
2286 * @mmu_asid: ASID to use while translating in mmu_show.
2287 * @state_dump_head: index of the latest state dump
2288 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
2289 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
2290 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
2291 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
2292 */
2293 struct hl_dbg_device_entry {
2294 struct dentry *root;
2295 struct hl_device *hdev;
2296 struct hl_debugfs_entry *entry_arr;
2297 struct list_head file_list;
2298 struct mutex file_mutex;
2299 struct list_head cb_list;
2300 spinlock_t cb_spinlock;
2301 struct list_head cs_list;
2302 spinlock_t cs_spinlock;
2303 struct list_head cs_job_list;
2304 spinlock_t cs_job_spinlock;
2305 struct list_head userptr_list;
2306 spinlock_t userptr_spinlock;
2307 struct list_head ctx_mem_hash_list;
2308 spinlock_t ctx_mem_hash_spinlock;
2309 struct debugfs_blob_wrapper data_dma_blob_desc;
2310 struct debugfs_blob_wrapper mon_dump_blob_desc;
2311 char *state_dump[HL_STATE_DUMP_HIST_LEN];
2312 struct rw_semaphore state_dump_sem;
2313 u64 addr;
2314 u64 mmu_addr;
2315 u64 mmu_cap_mask;
2316 u64 userptr_lookup;
2317 u32 mmu_asid;
2318 u32 state_dump_head;
2319 u8 i2c_bus;
2320 u8 i2c_addr;
2321 u8 i2c_reg;
2322 u8 i2c_len;
2323 };
2324
2325 /**
2326 * struct hl_hw_obj_name_entry - single hw object name, member of
2327 * hl_state_dump_specs
2328 * @node: link to the containing hash table
2329 * @name: hw object name
2330 * @id: object identifier
2331 */
2332 struct hl_hw_obj_name_entry {
2333 struct hlist_node node;
2334 const char *name;
2335 u32 id;
2336 };
2337
2338 enum hl_state_dump_specs_props {
2339 SP_SYNC_OBJ_BASE_ADDR,
2340 SP_NEXT_SYNC_OBJ_ADDR,
2341 SP_SYNC_OBJ_AMOUNT,
2342 SP_MON_OBJ_WR_ADDR_LOW,
2343 SP_MON_OBJ_WR_ADDR_HIGH,
2344 SP_MON_OBJ_WR_DATA,
2345 SP_MON_OBJ_ARM_DATA,
2346 SP_MON_OBJ_STATUS,
2347 SP_MONITORS_AMOUNT,
2348 SP_TPC0_CMDQ,
2349 SP_TPC0_CFG_SO,
2350 SP_NEXT_TPC,
2351 SP_MME_CMDQ,
2352 SP_MME_CFG_SO,
2353 SP_NEXT_MME,
2354 SP_DMA_CMDQ,
2355 SP_DMA_CFG_SO,
2356 SP_DMA_QUEUES_OFFSET,
2357 SP_NUM_OF_MME_ENGINES,
2358 SP_SUB_MME_ENG_NUM,
2359 SP_NUM_OF_DMA_ENGINES,
2360 SP_NUM_OF_TPC_ENGINES,
2361 SP_ENGINE_NUM_OF_QUEUES,
2362 SP_ENGINE_NUM_OF_STREAMS,
2363 SP_ENGINE_NUM_OF_FENCES,
2364 SP_FENCE0_CNT_OFFSET,
2365 SP_FENCE0_RDATA_OFFSET,
2366 SP_CP_STS_OFFSET,
2367 SP_NUM_CORES,
2368
2369 SP_MAX
2370 };
2371
2372 enum hl_sync_engine_type {
2373 ENGINE_TPC,
2374 ENGINE_DMA,
2375 ENGINE_MME,
2376 };
2377
2378 /**
2379 * struct hl_mon_state_dump - represents a state dump of a single monitor
2380 * @id: monitor id
2381 * @wr_addr_low: address monitor will write to, low bits
2382 * @wr_addr_high: address monitor will write to, high bits
2383 * @wr_data: data monitor will write
2384 * @arm_data: register value containing monitor configuration
2385 * @status: monitor status
2386 */
2387 struct hl_mon_state_dump {
2388 u32 id;
2389 u32 wr_addr_low;
2390 u32 wr_addr_high;
2391 u32 wr_data;
2392 u32 arm_data;
2393 u32 status;
2394 };
2395
2396 /**
2397 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
2398 * @engine_type: type of the engine
2399 * @engine_id: id of the engine
2400 * @sync_id: id of the sync object
2401 */
2402 struct hl_sync_to_engine_map_entry {
2403 struct hlist_node node;
2404 enum hl_sync_engine_type engine_type;
2405 u32 engine_id;
2406 u32 sync_id;
2407 };
2408
2409 /**
2410 * struct hl_sync_to_engine_map - maps sync object id to associated engine id
2411 * @tb: hash table containing the mapping, each element is of type
2412 * struct hl_sync_to_engine_map_entry
2413 */
2414 struct hl_sync_to_engine_map {
2415 DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
2416 };
2417
2418 /**
2419 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
2420 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
2421 * @print_single_monitor: format monitor data as string
2422 * @monitor_valid: return true if given monitor dump is valid
2423 * @print_fences_single_engine: format fences data as string
2424 */
2425 struct hl_state_dump_specs_funcs {
2426 int (*gen_sync_to_engine_map)(struct hl_device *hdev,
2427 struct hl_sync_to_engine_map *map);
2428 int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
2429 struct hl_device *hdev,
2430 struct hl_mon_state_dump *mon);
2431 int (*monitor_valid)(struct hl_mon_state_dump *mon);
2432 int (*print_fences_single_engine)(struct hl_device *hdev,
2433 u64 base_offset,
2434 u64 status_base_offset,
2435 enum hl_sync_engine_type engine_type,
2436 u32 engine_id, char **buf,
2437 size_t *size, size_t *offset);
2438 };
2439
2440 /**
2441 * struct hl_state_dump_specs - defines ASIC known hw objects names
2442 * @so_id_to_str_tb: sync objects names index table
2443 * @monitor_id_to_str_tb: monitors names index table
2444 * @funcs: virtual functions used for state dump
2445 * @sync_namager_names: readable names for sync manager if available (ex: N_E)
2446 * @props: pointer to a per asic const props array required for state dump
2447 */
2448 struct hl_state_dump_specs {
2449 DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2450 DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2451 struct hl_state_dump_specs_funcs funcs;
2452 const char * const *sync_namager_names;
2453 s64 *props;
2454 };
2455
2456
2457 /*
2458 * DEVICES
2459 */
2460
2461 #define HL_STR_MAX 32
2462
2463 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2464
2465 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2466 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2467 */
2468 #define HL_MAX_MINORS 256
2469
2470 /*
2471 * Registers read & write functions.
2472 */
2473
2474 u32 hl_rreg(struct hl_device *hdev, u32 reg);
2475 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2476
2477 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2478 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2479 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
2480 hdev->asic_funcs->rreg(hdev, (reg)))
2481
2482 #define WREG32_P(reg, val, mask) \
2483 do { \
2484 u32 tmp_ = RREG32(reg); \
2485 tmp_ &= (mask); \
2486 tmp_ |= ((val) & ~(mask)); \
2487 WREG32(reg, tmp_); \
2488 } while (0)
2489 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2490 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2491
2492 #define RMWREG32(reg, val, mask) \
2493 do { \
2494 u32 tmp_ = RREG32(reg); \
2495 tmp_ &= ~(mask); \
2496 tmp_ |= ((val) << __ffs(mask)); \
2497 WREG32(reg, tmp_); \
2498 } while (0)
2499
2500 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2501
2502 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2503 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2504 #define WREG32_FIELD(reg, offset, field, val) \
2505 WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2506 ~REG_FIELD_MASK(reg, field)) | \
2507 (val) << REG_FIELD_SHIFT(reg, field))
2508
2509 /* Timeout should be longer when working with simulator but cap the
2510 * increased timeout to some maximum
2511 */
2512 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
2513 ({ \
2514 ktime_t __timeout; \
2515 u32 __elbi_read; \
2516 int __rc = 0; \
2517 if (hdev->pdev) \
2518 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2519 else \
2520 __timeout = ktime_add_us(ktime_get(),\
2521 min((u64)(timeout_us * 10), \
2522 (u64) HL_SIM_MAX_TIMEOUT_US)); \
2523 might_sleep_if(sleep_us); \
2524 for (;;) { \
2525 if (elbi) { \
2526 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2527 if (__rc) \
2528 break; \
2529 (val) = __elbi_read; \
2530 } else {\
2531 (val) = RREG32((u32)(addr)); \
2532 } \
2533 if (cond) \
2534 break; \
2535 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2536 if (elbi) { \
2537 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2538 if (__rc) \
2539 break; \
2540 (val) = __elbi_read; \
2541 } else {\
2542 (val) = RREG32((u32)(addr)); \
2543 } \
2544 break; \
2545 } \
2546 if (sleep_us) \
2547 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2548 } \
2549 __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
2550 })
2551
2552 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2553 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)
2554
2555 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
2556 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)
2557
2558 /*
2559 * poll array of register addresses.
2560 * condition is satisfied if all registers values match the expected value.
2561 * once some register in the array satisfies the condition it will not be polled again,
2562 * this is done both for efficiency and due to some registers are "clear on read".
2563 * TODO: use read from PCI bar in other places in the code (SW-91406)
2564 */
2565 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2566 timeout_us, elbi) \
2567 ({ \
2568 ktime_t __timeout; \
2569 u64 __elem_bitmask; \
2570 u32 __read_val; \
2571 u8 __arr_idx; \
2572 int __rc = 0; \
2573 \
2574 if (hdev->pdev) \
2575 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2576 else \
2577 __timeout = ktime_add_us(ktime_get(),\
2578 min(((u64)timeout_us * 10), \
2579 (u64) HL_SIM_MAX_TIMEOUT_US)); \
2580 \
2581 might_sleep_if(sleep_us); \
2582 if (arr_size >= 64) \
2583 __rc = -EINVAL; \
2584 else \
2585 __elem_bitmask = BIT_ULL(arr_size) - 1; \
2586 for (;;) { \
2587 if (__rc) \
2588 break; \
2589 for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \
2590 if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \
2591 continue; \
2592 if (elbi) { \
2593 __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
2594 if (__rc) \
2595 break; \
2596 } else { \
2597 __read_val = RREG32((u32)(addr_arr)[__arr_idx]); \
2598 } \
2599 if (__read_val == (expected_val)) \
2600 __elem_bitmask &= ~BIT_ULL(__arr_idx); \
2601 } \
2602 if (__rc || (__elem_bitmask == 0)) \
2603 break; \
2604 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
2605 break; \
2606 if (sleep_us) \
2607 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2608 } \
2609 __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
2610 })
2611
2612 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2613 timeout_us) \
2614 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2615 timeout_us, false)
2616
2617 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2618 timeout_us) \
2619 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2620 timeout_us, true)
2621
2622 /*
2623 * address in this macro points always to a memory location in the
2624 * host's (server's) memory. That location is updated asynchronously
2625 * either by the direct access of the device or by another core.
2626 *
2627 * To work both in LE and BE architectures, we need to distinguish between the
2628 * two states (device or another core updates the memory location). Therefore,
2629 * if mem_written_by_device is true, the host memory being polled will be
2630 * updated directly by the device. If false, the host memory being polled will
2631 * be updated by host CPU. Required so host knows whether or not the memory
2632 * might need to be byte-swapped before returning value to caller.
2633 */
2634 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2635 mem_written_by_device) \
2636 ({ \
2637 ktime_t __timeout; \
2638 if (hdev->pdev) \
2639 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2640 else \
2641 __timeout = ktime_add_us(ktime_get(),\
2642 min((u64)(timeout_us * 100), \
2643 (u64) HL_SIM_MAX_TIMEOUT_US)); \
2644 might_sleep_if(sleep_us); \
2645 for (;;) { \
2646 /* Verify we read updates done by other cores or by device */ \
2647 mb(); \
2648 (val) = *((u32 *)(addr)); \
2649 if (mem_written_by_device) \
2650 (val) = le32_to_cpu(*(__le32 *) &(val)); \
2651 if (cond) \
2652 break; \
2653 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2654 (val) = *((u32 *)(addr)); \
2655 if (mem_written_by_device) \
2656 (val) = le32_to_cpu(*(__le32 *) &(val)); \
2657 break; \
2658 } \
2659 if (sleep_us) \
2660 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2661 } \
2662 (cond) ? 0 : -ETIMEDOUT; \
2663 })
2664
2665 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
2666 ({ \
2667 struct user_mapped_block *p = blk; \
2668 \
2669 p->address = base; \
2670 p->size = sz; \
2671 })
2672
2673 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, decoder) \
2674 ({ \
2675 usr_intr.hdev = hdev; \
2676 usr_intr.interrupt_id = intr_id; \
2677 usr_intr.is_decoder = decoder; \
2678 INIT_LIST_HEAD(&usr_intr.wait_list_head); \
2679 spin_lock_init(&usr_intr.wait_list_lock); \
2680 })
2681
2682 struct hwmon_chip_info;
2683
2684 /**
2685 * struct hl_device_reset_work - reset workqueue task wrapper.
2686 * @wq: work queue for device reset procedure.
2687 * @reset_work: reset work to be done.
2688 * @hdev: habanalabs device structure.
2689 * @flags: reset flags.
2690 */
2691 struct hl_device_reset_work {
2692 struct workqueue_struct *wq;
2693 struct delayed_work reset_work;
2694 struct hl_device *hdev;
2695 u32 flags;
2696 };
2697
2698 /**
2699 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2700 * page-table internal information.
2701 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
2702 * allocating hops.
2703 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
2704 */
2705 struct hl_mmu_hr_priv {
2706 struct gen_pool *mmu_pgt_pool;
2707 struct pgt_info *mmu_asid_hop0;
2708 };
2709
2710 /**
2711 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2712 * page-table internal information.
2713 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2714 * @mmu_shadow_hop0: shadow array of hop0 tables.
2715 */
2716 struct hl_mmu_dr_priv {
2717 struct gen_pool *mmu_pgt_pool;
2718 void *mmu_shadow_hop0;
2719 };
2720
2721 /**
2722 * struct hl_mmu_priv - used for holding per-device mmu internal information.
2723 * @dr: information on the device-resident MMU, when exists.
2724 * @hr: information on the host-resident MMU, when exists.
2725 */
2726 struct hl_mmu_priv {
2727 struct hl_mmu_dr_priv dr;
2728 struct hl_mmu_hr_priv hr;
2729 };
2730
2731 /**
2732 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2733 * that was created in order to translate a virtual address to a
2734 * physical one.
2735 * @hop_addr: The address of the hop.
2736 * @hop_pte_addr: The address of the hop entry.
2737 * @hop_pte_val: The value in the hop entry.
2738 */
2739 struct hl_mmu_per_hop_info {
2740 u64 hop_addr;
2741 u64 hop_pte_addr;
2742 u64 hop_pte_val;
2743 };
2744
2745 /**
2746 * struct hl_mmu_hop_info - A structure describing the TLB hops and their
2747 * hop-entries that were created in order to translate a virtual address to a
2748 * physical one.
2749 * @scrambled_vaddr: The value of the virtual address after scrambling. This
2750 * address replaces the original virtual-address when mapped
2751 * in the MMU tables.
2752 * @unscrambled_paddr: The un-scrambled physical address.
2753 * @hop_info: Array holding the per-hop information used for the translation.
2754 * @used_hops: The number of hops used for the translation.
2755 * @range_type: virtual address range type.
2756 */
2757 struct hl_mmu_hop_info {
2758 u64 scrambled_vaddr;
2759 u64 unscrambled_paddr;
2760 struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
2761 u32 used_hops;
2762 enum hl_va_range_type range_type;
2763 };
2764
2765 /**
2766 * struct hl_hr_mmu_funcs - Device related host resident MMU functions.
2767 * @get_hop0_pgt_info: get page table info structure for HOP0.
2768 * @get_pgt_info: get page table info structure for HOP other than HOP0.
2769 * @add_pgt_info: add page table info structure to hash.
2770 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
2771 */
2772 struct hl_hr_mmu_funcs {
2773 struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
2774 struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
2775 void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
2776 int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
2777 struct hl_mmu_hop_info *hops,
2778 u64 virt_addr, bool *is_huge);
2779 };
2780
2781 /**
2782 * struct hl_mmu_funcs - Device related MMU functions.
2783 * @init: initialize the MMU module.
2784 * @fini: release the MMU module.
2785 * @ctx_init: Initialize a context for using the MMU module.
2786 * @ctx_fini: disable a ctx from using the mmu module.
2787 * @map: maps a virtual address to physical address for a context.
2788 * @unmap: unmap a virtual address of a context.
2789 * @flush: flush all writes from all cores to reach device MMU.
2790 * @swap_out: marks all mapping of the given context as swapped out.
2791 * @swap_in: marks all mapping of the given context as swapped in.
2792 * @get_tlb_info: returns the list of hops and hop-entries used that were
2793 * created in order to translate the giver virtual address to a
2794 * physical one.
2795 * @hr_funcs: functions specific to host resident MMU.
2796 */
2797 struct hl_mmu_funcs {
2798 int (*init)(struct hl_device *hdev);
2799 void (*fini)(struct hl_device *hdev);
2800 int (*ctx_init)(struct hl_ctx *ctx);
2801 void (*ctx_fini)(struct hl_ctx *ctx);
2802 int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
2803 bool is_dram_addr);
2804 int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
2805 void (*flush)(struct hl_ctx *ctx);
2806 void (*swap_out)(struct hl_ctx *ctx);
2807 void (*swap_in)(struct hl_ctx *ctx);
2808 int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
2809 struct hl_hr_mmu_funcs hr_funcs;
2810 };
2811
2812 /**
2813 * struct hl_prefetch_work - prefetch work structure handler
2814 * @pf_work: actual work struct.
2815 * @ctx: compute context.
2816 * @va: virtual address to pre-fetch.
2817 * @size: pre-fetch size.
2818 * @flags: operation flags.
2819 * @asid: ASID for maintenance operation.
2820 */
2821 struct hl_prefetch_work {
2822 struct work_struct pf_work;
2823 struct hl_ctx *ctx;
2824 u64 va;
2825 u64 size;
2826 u32 flags;
2827 u32 asid;
2828 };
2829
2830 /*
2831 * number of user contexts allowed to call wait_for_multi_cs ioctl in
2832 * parallel
2833 */
2834 #define MULTI_CS_MAX_USER_CTX 2
2835
2836 /**
2837 * struct multi_cs_completion - multi CS wait completion.
2838 * @completion: completion of any of the CS in the list
2839 * @lock: spinlock for the completion structure
2840 * @timestamp: timestamp for the multi-CS completion
2841 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2842 * is waiting
2843 * @used: 1 if in use, otherwise 0
2844 */
2845 struct multi_cs_completion {
2846 struct completion completion;
2847 spinlock_t lock;
2848 s64 timestamp;
2849 u32 stream_master_qid_map;
2850 u8 used;
2851 };
2852
2853 /**
2854 * struct multi_cs_data - internal data for multi CS call
2855 * @ctx: pointer to the context structure
2856 * @fence_arr: array of fences of all CSs
2857 * @seq_arr: array of CS sequence numbers
2858 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete
2859 * @timestamp: timestamp of first completed CS
2860 * @wait_status: wait for CS status
2861 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2862 * @arr_len: fence_arr and seq_arr array length
2863 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2864 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2865 */
2866 struct multi_cs_data {
2867 struct hl_ctx *ctx;
2868 struct hl_fence **fence_arr;
2869 u64 *seq_arr;
2870 s64 timeout_jiffies;
2871 s64 timestamp;
2872 long wait_status;
2873 u32 completion_bitmap;
2874 u8 arr_len;
2875 u8 gone_cs;
2876 u8 update_ts;
2877 };
2878
2879 /**
2880 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
2881 * @start: timestamp taken when 'start' event is received in driver
2882 * @end: timestamp taken when 'end' event is received in driver
2883 */
2884 struct hl_clk_throttle_timestamp {
2885 ktime_t start;
2886 ktime_t end;
2887 };
2888
2889 /**
2890 * struct hl_clk_throttle - keeps current/last clock throttling timestamps
2891 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
2892 * index 1 refers to THERMAL
2893 * @lock: protects this structure as it can be accessed from both event queue
2894 * context and info_ioctl context
2895 * @current_reason: bitmask represents the current clk throttling reasons
2896 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
2897 */
2898 struct hl_clk_throttle {
2899 struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
2900 struct mutex lock;
2901 u32 current_reason;
2902 u32 aggregated_reason;
2903 };
2904
2905 /**
2906 * struct user_mapped_block - describes a hw block allowed to be mmapped by user
2907 * @address: physical HW block address
2908 * @size: allowed size for mmap
2909 */
2910 struct user_mapped_block {
2911 u32 address;
2912 u32 size;
2913 };
2914
2915 /**
2916 * struct cs_timeout_info - info of last CS timeout occurred.
2917 * @timestamp: CS timeout timestamp.
2918 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
2919 * so the first (root cause) CS timeout will not be overwritten.
2920 * @seq: CS timeout sequence number.
2921 */
2922 struct cs_timeout_info {
2923 ktime_t timestamp;
2924 atomic_t write_enable;
2925 u64 seq;
2926 };
2927
2928 /**
2929 * struct razwi_info - info about last razwi error occurred.
2930 * @timestamp: razwi timestamp.
2931 * @write_enable: if set writing to razwi parameters in the structure is enabled.
2932 * otherwise - disabled, so the first (root cause) razwi will not be overwritten.
2933 * @addr: address that caused razwi.
2934 * @engine_id_1: engine id of the razwi initiator, if it was initiated by engine that does
2935 * not have engine id it will be set to U16_MAX.
2936 * @engine_id_2: second engine id of razwi initiator. Might happen that razwi have 2 possible
2937 * engines which one them caused the razwi. In that case, it will contain the
2938 * second possible engine id, otherwise it will be set to U16_MAX.
2939 * @non_engine_initiator: in case the initiator of the razwi does not have engine id.
2940 * @type: cause of razwi, page fault or access error, otherwise it will be set to U8_MAX.
2941 */
2942 struct razwi_info {
2943 ktime_t timestamp;
2944 atomic_t write_enable;
2945 u64 addr;
2946 u16 engine_id_1;
2947 u16 engine_id_2;
2948 u8 non_engine_initiator;
2949 u8 type;
2950 };
2951
2952 #define MAX_QMAN_STREAMS_INFO 4
2953 #define OPCODE_INFO_MAX_ADDR_SIZE 8
2954 /**
2955 * struct undefined_opcode_info - info about last undefined opcode error
2956 * @timestamp: timestamp of the undefined opcode error
2957 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
2958 * entries. In case all streams array entries are
2959 * filled with values, it means the execution was in Lower-CP.
2960 * @cq_addr: the address of the current handled command buffer
2961 * @cq_size: the size of the current handled command buffer
2962 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
2963 * should be equal to 1 incase of undefined opcode
2964 * in Upper-CP (specific stream) and equal to 4 incase
2965 * of undefined opcode in Lower-CP.
2966 * @engine_id: engine-id that the error occurred on
2967 * @stream_id: the stream id the error occurred on. In case the stream equals to
2968 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
2969 * @write_enable: if set, writing to undefined opcode parameters in the structure
2970 * is enable so the first (root cause) undefined opcode will not be
2971 * overwritten.
2972 */
2973 struct undefined_opcode_info {
2974 ktime_t timestamp;
2975 u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
2976 u64 cq_addr;
2977 u32 cq_size;
2978 u32 cb_addr_streams_len;
2979 u32 engine_id;
2980 u32 stream_id;
2981 bool write_enable;
2982 };
2983
2984 /**
2985 * struct hl_error_info - holds information collected during an error.
2986 * @cs_timeout: CS timeout error information.
2987 * @razwi: razwi information.
2988 * @undef_opcode: undefined opcode information
2989 */
2990 struct hl_error_info {
2991 struct cs_timeout_info cs_timeout;
2992 struct razwi_info razwi;
2993 struct undefined_opcode_info undef_opcode;
2994 };
2995
2996 /**
2997 * struct hl_reset_info - holds current device reset information.
2998 * @lock: lock to protect critical reset flows.
2999 * @compute_reset_cnt: number of compute resets since the driver was loaded.
3000 * @hard_reset_cnt: number of hard resets since the driver was loaded.
3001 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
3002 * here we hold the hard reset flags.
3003 * @in_reset: is device in reset flow.
3004 * @in_compute_reset: Device is currently in reset but not in hard-reset.
3005 * @needs_reset: true if reset_on_lockup is false and device should be reset
3006 * due to lockup.
3007 * @hard_reset_pending: is there a hard reset work pending.
3008 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
3009 * triggered, and cleared after it is shared with preboot.
3010 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
3011 * with a new value on next reset
3012 * @reset_trigger_repeated: set if device reset is triggered more than once with
3013 * same cause.
3014 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
3015 * complete instead.
3016 */
3017 struct hl_reset_info {
3018 spinlock_t lock;
3019 u32 compute_reset_cnt;
3020 u32 hard_reset_cnt;
3021 u32 hard_reset_schedule_flags;
3022 u8 in_reset;
3023 u8 in_compute_reset;
3024 u8 needs_reset;
3025 u8 hard_reset_pending;
3026
3027 u8 curr_reset_cause;
3028 u8 prev_reset_trigger;
3029 u8 reset_trigger_repeated;
3030
3031 u8 skip_reset_on_timeout;
3032 };
3033
3034 /**
3035 * struct hl_device - habanalabs device structure.
3036 * @pdev: pointer to PCI device, can be NULL in case of simulator device.
3037 * @pcie_bar_phys: array of available PCIe bars physical addresses.
3038 * (required only for PCI address match mode)
3039 * @pcie_bar: array of available PCIe bars virtual addresses.
3040 * @rmmio: configuration area address on SRAM.
3041 * @cdev: related char device.
3042 * @cdev_ctrl: char device for control operations only (INFO IOCTL)
3043 * @dev: related kernel basic device structure.
3044 * @dev_ctrl: related kernel device structure for the control device
3045 * @work_heartbeat: delayed work for CPU-CP is-alive check.
3046 * @device_reset_work: delayed work which performs hard reset
3047 * @asic_name: ASIC specific name.
3048 * @asic_type: ASIC specific type.
3049 * @completion_queue: array of hl_cq.
3050 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
3051 * interrupt, driver will monitor the list of fences
3052 * registered to this interrupt.
3053 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
3054 * upon any user CQ interrupt, driver will monitor the
3055 * list of fences registered to this common structure.
3056 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
3057 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to
3058 * outstanding command submissions.
3059 * @cq_wq: work queues of completion queues for executing work in process
3060 * context.
3061 * @eq_wq: work queue of event queue for executing work in process context.
3062 * @cs_cmplt_wq: work queue of CS completions for executing work in process
3063 * context.
3064 * @ts_free_obj_wq: work queue for timestamp registration objects release.
3065 * @pf_wq: work queue for MMU pre-fetch operations.
3066 * @kernel_ctx: Kernel driver context structure.
3067 * @kernel_queues: array of hl_hw_queue.
3068 * @cs_mirror_list: CS mirror list for TDR.
3069 * @cs_mirror_lock: protects cs_mirror_list.
3070 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
3071 * @event_queue: event queue for IRQ from CPU-CP.
3072 * @dma_pool: DMA pool for small allocations.
3073 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
3074 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
3075 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
3076 * @asid_bitmap: holds used/available ASIDs.
3077 * @asid_mutex: protects asid_bitmap.
3078 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
3079 * @debug_lock: protects critical section of setting debug mode for device
3080 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
3081 * page tables are per context, the invalidation h/w is per MMU.
3082 * Therefore, we can't allow multiple contexts (we only have two,
3083 * user and kernel) to access the invalidation h/w at the same time.
3084 * In addition, any change to the PGT, modifying the MMU hash or
3085 * walking the PGT requires talking this lock.
3086 * @asic_prop: ASIC specific immutable properties.
3087 * @asic_funcs: ASIC specific functions.
3088 * @asic_specific: ASIC specific information to use only from ASIC files.
3089 * @vm: virtual memory manager for MMU.
3090 * @hwmon_dev: H/W monitor device.
3091 * @hl_chip_info: ASIC's sensors information.
3092 * @device_status_description: device status description.
3093 * @hl_debugfs: device's debugfs manager.
3094 * @cb_pool: list of pre allocated CBs.
3095 * @cb_pool_lock: protects the CB pool.
3096 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
3097 * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
3098 * @internal_cb_pool: internal command buffer memory pool.
3099 * @internal_cb_va_base: internal cb pool mmu virtual address base
3100 * @fpriv_list: list of file private data structures. Each structure is created
3101 * when a user opens the device
3102 * @fpriv_ctrl_list: list of file private data structures. Each structure is created
3103 * when a user opens the control device
3104 * @fpriv_list_lock: protects the fpriv_list
3105 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
3106 * @aggregated_cs_counters: aggregated cs counters among all contexts
3107 * @mmu_priv: device-specific MMU data.
3108 * @mmu_func: device-related MMU functions.
3109 * @dec: list of decoder sw instance
3110 * @fw_loader: FW loader manager.
3111 * @pci_mem_region: array of memory regions in the PCI
3112 * @state_dump_specs: constants and dictionaries needed to dump system state.
3113 * @multi_cs_completion: array of multi-CS completion.
3114 * @clk_throttling: holds information about current/previous clock throttling events
3115 * @captured_err_info: holds information about errors.
3116 * @reset_info: holds current device reset information.
3117 * @stream_master_qid_arr: pointer to array with QIDs of master streams.
3118 * @fw_major_version: major version of current loaded preboot.
3119 * @fw_minor_version: minor version of current loaded preboot.
3120 * @dram_used_mem: current DRAM memory consumption.
3121 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
3122 * @timeout_jiffies: device CS timeout value.
3123 * @max_power: the max power of the device, as configured by the sysadmin. This
3124 * value is saved so in case of hard-reset, the driver will restore
3125 * this value and update the F/W after the re-initialization
3126 * @boot_error_status_mask: contains a mask of the device boot error status.
3127 * Each bit represents a different error, according to
3128 * the defines in hl_boot_if.h. If the bit is cleared,
3129 * the error will be ignored by the driver during
3130 * device initialization. Mainly used to debug and
3131 * workaround firmware bugs
3132 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
3133 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
3134 * @last_successful_open_jif: timestamp (jiffies) of the last successful
3135 * device open.
3136 * @last_open_session_duration_jif: duration (jiffies) of the last device open
3137 * session.
3138 * @open_counter: number of successful device open operations.
3139 * @fw_poll_interval_usec: FW status poll interval in usec.
3140 * used for CPU boot status
3141 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
3142 * used for COMMs protocols cmds(COMMS_STS_*)
3143 * @dram_binning: contains mask of drams that is received from the f/w which indicates which
3144 * drams are binned-out
3145 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
3146 * tpc engines are binned-out
3147 * @card_type: Various ASICs have several card types. This indicates the card
3148 * type of the current device.
3149 * @major: habanalabs kernel driver major.
3150 * @high_pll: high PLL profile frequency.
3151 * @decoder_binning: contains mask of decoder engines that is received from the f/w which
3152 * indicates which decoder engines are binned-out
3153 * @edma_binning: contains mask of edma engines that is received from the f/w which
3154 * indicates which edma engines are binned-out
3155 * @id: device minor.
3156 * @id_control: minor of the control device.
3157 * @cdev_idx: char device index. Used for setting its name.
3158 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
3159 * addresses.
3160 * @is_in_dram_scrub: true if dram scrub operation is on going.
3161 * @disabled: is device disabled.
3162 * @late_init_done: is late init stage was done during initialization.
3163 * @hwmon_initialized: is H/W monitor sensors was initialized.
3164 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
3165 * otherwise.
3166 * @dram_default_page_mapping: is DRAM default page mapping enabled.
3167 * @memory_scrub: true to perform device memory scrub in various locations,
3168 * such as context-switch, context close, page free, etc.
3169 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
3170 * huge pages.
3171 * @init_done: is the initialization of the device done.
3172 * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
3173 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure
3174 * can be used. This indication is needed because in some ASICs we need to do
3175 * specific operations to enable that infrastructure.
3176 * @cdev_sysfs_created: were char devices and sysfs nodes created.
3177 * @stop_on_err: true if engines should stop on error.
3178 * @supports_sync_stream: is sync stream supported.
3179 * @sync_stream_queue_idx: helper index for sync stream queues initialization.
3180 * @collective_mon_idx: helper index for collective initialization
3181 * @supports_coresight: is CoreSight supported.
3182 * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
3183 * @process_kill_trial_cnt: number of trials reset thread tried killing
3184 * user processes
3185 * @device_fini_pending: true if device_fini was called and might be
3186 * waiting for the reset thread to finish
3187 * @supports_staged_submission: true if staged submissions are supported
3188 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
3189 * halted. We can't halt it again because the COMMS
3190 * protocol will throw an error. Relevant only for
3191 * cases where Linux was not loaded to device CPU
3192 * @supports_wait_for_multi_cs: true if wait for multi CS is supported
3193 * @is_compute_ctx_active: Whether there is an active compute context executing.
3194 * @compute_ctx_in_release: true if the current compute context is being released.
3195 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
3196 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the
3197 * device.
3198 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
3199 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w
3200 * stages and sometimes we want to stop at a certain stage. Used only for testing.
3201 * @mmu_enable: Whether to enable or disable the device MMU(s). Used only for testing.
3202 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
3203 * @pldm: Whether we are running in Palladium environment. Used only for testing.
3204 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
3205 * the f/w. Used only for testing.
3206 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
3207 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
3208 * Used only for testing.
3209 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
3210 * that the f/w is always alive. Used only for testing.
3211 * @supports_ctx_switch: true if a ctx switch is required upon first submission.
3212 */
3213 struct hl_device {
3214 struct pci_dev *pdev;
3215 u64 pcie_bar_phys[HL_PCI_NUM_BARS];
3216 void __iomem *pcie_bar[HL_PCI_NUM_BARS];
3217 void __iomem *rmmio;
3218 struct cdev cdev;
3219 struct cdev cdev_ctrl;
3220 struct device *dev;
3221 struct device *dev_ctrl;
3222 struct delayed_work work_heartbeat;
3223 struct hl_device_reset_work device_reset_work;
3224 char asic_name[HL_STR_MAX];
3225 char status[HL_DEV_STS_MAX][HL_STR_MAX];
3226 enum hl_asic_type asic_type;
3227 struct hl_cq *completion_queue;
3228 struct hl_user_interrupt *user_interrupt;
3229 struct hl_user_interrupt common_user_cq_interrupt;
3230 struct hl_user_interrupt common_decoder_interrupt;
3231 struct hl_cs **shadow_cs_queue;
3232 struct workqueue_struct **cq_wq;
3233 struct workqueue_struct *eq_wq;
3234 struct workqueue_struct *cs_cmplt_wq;
3235 struct workqueue_struct *ts_free_obj_wq;
3236 struct workqueue_struct *pf_wq;
3237 struct hl_ctx *kernel_ctx;
3238 struct hl_hw_queue *kernel_queues;
3239 struct list_head cs_mirror_list;
3240 spinlock_t cs_mirror_lock;
3241 struct hl_mem_mgr kernel_mem_mgr;
3242 struct hl_eq event_queue;
3243 struct dma_pool *dma_pool;
3244 void *cpu_accessible_dma_mem;
3245 dma_addr_t cpu_accessible_dma_address;
3246 struct gen_pool *cpu_accessible_dma_pool;
3247 unsigned long *asid_bitmap;
3248 struct mutex asid_mutex;
3249 struct mutex send_cpu_message_lock;
3250 struct mutex debug_lock;
3251 struct mutex mmu_lock;
3252 struct asic_fixed_properties asic_prop;
3253 const struct hl_asic_funcs *asic_funcs;
3254 void *asic_specific;
3255 struct hl_vm vm;
3256 struct device *hwmon_dev;
3257 struct hwmon_chip_info *hl_chip_info;
3258
3259 struct hl_dbg_device_entry hl_debugfs;
3260
3261 struct list_head cb_pool;
3262 spinlock_t cb_pool_lock;
3263
3264 void *internal_cb_pool_virt_addr;
3265 dma_addr_t internal_cb_pool_dma_addr;
3266 struct gen_pool *internal_cb_pool;
3267 u64 internal_cb_va_base;
3268
3269 struct list_head fpriv_list;
3270 struct list_head fpriv_ctrl_list;
3271 struct mutex fpriv_list_lock;
3272 struct mutex fpriv_ctrl_list_lock;
3273
3274 struct hl_cs_counters_atomic aggregated_cs_counters;
3275
3276 struct hl_mmu_priv mmu_priv;
3277 struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS];
3278
3279 struct hl_dec *dec;
3280
3281 struct fw_load_mgr fw_loader;
3282
3283 struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER];
3284
3285 struct hl_state_dump_specs state_dump_specs;
3286
3287 struct multi_cs_completion multi_cs_completion[
3288 MULTI_CS_MAX_USER_CTX];
3289 struct hl_clk_throttle clk_throttling;
3290 struct hl_error_info captured_err_info;
3291
3292 struct hl_reset_info reset_info;
3293
3294 u32 *stream_master_qid_arr;
3295 u32 fw_major_version;
3296 u32 fw_minor_version;
3297 atomic64_t dram_used_mem;
3298 u64 memory_scrub_val;
3299 u64 timeout_jiffies;
3300 u64 max_power;
3301 u64 boot_error_status_mask;
3302 u64 dram_pci_bar_start;
3303 u64 last_successful_open_jif;
3304 u64 last_open_session_duration_jif;
3305 u64 open_counter;
3306 u64 fw_poll_interval_usec;
3307 ktime_t last_successful_open_ktime;
3308 u64 fw_comms_poll_interval_usec;
3309 u64 dram_binning;
3310 u64 tpc_binning;
3311
3312 enum cpucp_card_types card_type;
3313 u32 major;
3314 u32 high_pll;
3315 u32 decoder_binning;
3316 u32 edma_binning;
3317 u16 id;
3318 u16 id_control;
3319 u16 cdev_idx;
3320 u16 cpu_pci_msb_addr;
3321 u8 is_in_dram_scrub;
3322 u8 disabled;
3323 u8 late_init_done;
3324 u8 hwmon_initialized;
3325 u8 reset_on_lockup;
3326 u8 dram_default_page_mapping;
3327 u8 memory_scrub;
3328 u8 pmmu_huge_range;
3329 u8 init_done;
3330 u8 device_cpu_disabled;
3331 u8 in_debug;
3332 u8 cdev_sysfs_created;
3333 u8 stop_on_err;
3334 u8 supports_sync_stream;
3335 u8 sync_stream_queue_idx;
3336 u8 collective_mon_idx;
3337 u8 supports_coresight;
3338 u8 supports_cb_mapping;
3339 u8 process_kill_trial_cnt;
3340 u8 device_fini_pending;
3341 u8 supports_staged_submission;
3342 u8 device_cpu_is_halted;
3343 u8 supports_wait_for_multi_cs;
3344 u8 stream_master_qid_arr_size;
3345 u8 is_compute_ctx_active;
3346 u8 compute_ctx_in_release;
3347 u8 supports_mmu_prefetch;
3348 u8 reset_upon_device_release;
3349 u8 supports_ctx_switch;
3350
3351 /* Parameters for bring-up */
3352 u64 nic_ports_mask;
3353 u64 fw_components;
3354 u8 mmu_enable;
3355 u8 cpu_queues_enable;
3356 u8 pldm;
3357 u8 hard_reset_on_fw_events;
3358 u8 bmc_enable;
3359 u8 reset_on_preboot_fail;
3360 u8 heartbeat;
3361 };
3362
3363
3364 /**
3365 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
3366 * @refcount: refcount used to protect removing this id when several
3367 * wait cs are used to wait of the reserved encaps signals.
3368 * @hdev: pointer to habanalabs device structure.
3369 * @hw_sob: pointer to H/W SOB used in the reservation.
3370 * @ctx: pointer to the user's context data structure
3371 * @cs_seq: staged cs sequence which contains encapsulated signals
3372 * @id: idr handler id to be used to fetch the handler info
3373 * @q_idx: stream queue index
3374 * @pre_sob_val: current SOB value before reservation
3375 * @count: signals number
3376 */
3377 struct hl_cs_encaps_sig_handle {
3378 struct kref refcount;
3379 struct hl_device *hdev;
3380 struct hl_hw_sob *hw_sob;
3381 struct hl_ctx *ctx;
3382 u64 cs_seq;
3383 u32 id;
3384 u32 q_idx;
3385 u32 pre_sob_val;
3386 u32 count;
3387 };
3388
3389 /*
3390 * IOCTLs
3391 */
3392
3393 /**
3394 * typedef hl_ioctl_t - typedef for ioctl function in the driver
3395 * @hpriv: pointer to the FD's private data, which contains state of
3396 * user process
3397 * @data: pointer to the input/output arguments structure of the IOCTL
3398 *
3399 * Return: 0 for success, negative value for error
3400 */
3401 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
3402
3403 /**
3404 * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
3405 * @cmd: the IOCTL code as created by the kernel macros.
3406 * @func: pointer to the driver's function that should be called for this IOCTL.
3407 */
3408 struct hl_ioctl_desc {
3409 unsigned int cmd;
3410 hl_ioctl_t *func;
3411 };
3412
3413
3414 /*
3415 * Kernel module functions that can be accessed by entire module
3416 */
3417
3418 /**
3419 * hl_get_sg_info() - get number of pages and the DMA address from SG list.
3420 * @sg: the SG list.
3421 * @dma_addr: pointer to DMA address to return.
3422 *
3423 * Calculate the number of consecutive pages described by the SG list. Take the
3424 * offset of the address in the first page, add to it the length and round it up
3425 * to the number of needed pages.
3426 */
hl_get_sg_info(struct scatterlist * sg,dma_addr_t * dma_addr)3427 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
3428 {
3429 *dma_addr = sg_dma_address(sg);
3430
3431 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
3432 (PAGE_SIZE - 1)) >> PAGE_SHIFT;
3433 }
3434
3435 /**
3436 * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
3437 * @address: The start address of the area we want to validate.
3438 * @size: The size in bytes of the area we want to validate.
3439 * @range_start_address: The start address of the valid range.
3440 * @range_end_address: The end address of the valid range.
3441 *
3442 * Return: true if the area is inside the valid range, false otherwise.
3443 */
hl_mem_area_inside_range(u64 address,u64 size,u64 range_start_address,u64 range_end_address)3444 static inline bool hl_mem_area_inside_range(u64 address, u64 size,
3445 u64 range_start_address, u64 range_end_address)
3446 {
3447 u64 end_address = address + size;
3448
3449 if ((address >= range_start_address) &&
3450 (end_address <= range_end_address) &&
3451 (end_address > address))
3452 return true;
3453
3454 return false;
3455 }
3456
3457 /**
3458 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
3459 * @address: The start address of the area we want to validate.
3460 * @size: The size in bytes of the area we want to validate.
3461 * @range_start_address: The start address of the valid range.
3462 * @range_end_address: The end address of the valid range.
3463 *
3464 * Return: true if the area overlaps part or all of the valid range,
3465 * false otherwise.
3466 */
hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)3467 static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
3468 u64 range_start_address, u64 range_end_address)
3469 {
3470 u64 end_address = address + size - 1;
3471
3472 return ((address <= range_end_address) && (range_start_address <= end_address));
3473 }
3474
3475 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
3476 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
3477 gfp_t flag, const char *caller);
3478 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
3479 dma_addr_t dma_handle, const char *caller);
3480 void *hl_cpu_accessible_dma_pool_alloc_caller(struct hl_device *hdev, size_t size,
3481 dma_addr_t *dma_handle, const char *caller);
3482 void hl_cpu_accessible_dma_pool_free_caller(struct hl_device *hdev, size_t size, void *vaddr,
3483 const char *caller);
3484 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
3485 dma_addr_t *dma_handle, const char *caller);
3486 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
3487 const char *caller);
3488 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir);
3489 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3490 enum dma_data_direction dir);
3491 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
3492 enum debugfs_access_type acc_type);
3493 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
3494 u64 addr, u64 *val, enum debugfs_access_type acc_type);
3495 int hl_device_open(struct inode *inode, struct file *filp);
3496 int hl_device_open_ctrl(struct inode *inode, struct file *filp);
3497 bool hl_device_operational(struct hl_device *hdev,
3498 enum hl_device_status *status);
3499 enum hl_device_status hl_device_status(struct hl_device *hdev);
3500 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
3501 int hl_hw_queues_create(struct hl_device *hdev);
3502 void hl_hw_queues_destroy(struct hl_device *hdev);
3503 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
3504 u32 cb_size, u64 cb_ptr);
3505 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
3506 u32 ctl, u32 len, u64 ptr);
3507 int hl_hw_queue_schedule_cs(struct hl_cs *cs);
3508 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
3509 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
3510 void hl_hw_queue_update_ci(struct hl_cs *cs);
3511 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
3512
3513 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
3514 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
3515
3516 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
3517 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
3518 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
3519 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
3520 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
3521 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
3522 irqreturn_t hl_irq_handler_cq(int irq, void *arg);
3523 irqreturn_t hl_irq_handler_eq(int irq, void *arg);
3524 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
3525 irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg);
3526 irqreturn_t hl_irq_handler_default(int irq, void *arg);
3527 u32 hl_cq_inc_ptr(u32 ptr);
3528
3529 int hl_asid_init(struct hl_device *hdev);
3530 void hl_asid_fini(struct hl_device *hdev);
3531 unsigned long hl_asid_alloc(struct hl_device *hdev);
3532 void hl_asid_free(struct hl_device *hdev, unsigned long asid);
3533
3534 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
3535 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
3536 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
3537 void hl_ctx_do_release(struct kref *ref);
3538 void hl_ctx_get(struct hl_ctx *ctx);
3539 int hl_ctx_put(struct hl_ctx *ctx);
3540 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
3541 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
3542 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
3543 struct hl_fence **fence, u32 arr_len);
3544 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
3545 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
3546
3547 int hl_device_init(struct hl_device *hdev, struct class *hclass);
3548 void hl_device_fini(struct hl_device *hdev);
3549 int hl_device_suspend(struct hl_device *hdev);
3550 int hl_device_resume(struct hl_device *hdev);
3551 int hl_device_reset(struct hl_device *hdev, u32 flags);
3552 void hl_hpriv_get(struct hl_fpriv *hpriv);
3553 int hl_hpriv_put(struct hl_fpriv *hpriv);
3554 int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
3555
3556 int hl_build_hwmon_channel_info(struct hl_device *hdev,
3557 struct cpucp_sensor *sensors_arr);
3558
3559 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);
3560
3561 int hl_sysfs_init(struct hl_device *hdev);
3562 void hl_sysfs_fini(struct hl_device *hdev);
3563
3564 int hl_hwmon_init(struct hl_device *hdev);
3565 void hl_hwmon_fini(struct hl_device *hdev);
3566 void hl_hwmon_release_resources(struct hl_device *hdev);
3567
3568 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
3569 struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
3570 bool map_cb, u64 *handle);
3571 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
3572 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
3573 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
3574 void hl_cb_put(struct hl_cb *cb);
3575 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
3576 bool internal_cb);
3577 int hl_cb_pool_init(struct hl_device *hdev);
3578 int hl_cb_pool_fini(struct hl_device *hdev);
3579 int hl_cb_va_pool_init(struct hl_ctx *ctx);
3580 void hl_cb_va_pool_fini(struct hl_ctx *ctx);
3581
3582 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
3583 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
3584 enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
3585 void hl_sob_reset_error(struct kref *ref);
3586 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
3587 void hl_fence_put(struct hl_fence *fence);
3588 void hl_fences_put(struct hl_fence **fence, int len);
3589 void hl_fence_get(struct hl_fence *fence);
3590 void cs_get(struct hl_cs *cs);
3591 bool cs_needs_completion(struct hl_cs *cs);
3592 bool cs_needs_timeout(struct hl_cs *cs);
3593 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
3594 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
3595 void hl_multi_cs_completion_init(struct hl_device *hdev);
3596
3597 void goya_set_asic_funcs(struct hl_device *hdev);
3598 void gaudi_set_asic_funcs(struct hl_device *hdev);
3599 void gaudi2_set_asic_funcs(struct hl_device *hdev);
3600
3601 int hl_vm_ctx_init(struct hl_ctx *ctx);
3602 void hl_vm_ctx_fini(struct hl_ctx *ctx);
3603
3604 int hl_vm_init(struct hl_device *hdev);
3605 void hl_vm_fini(struct hl_device *hdev);
3606
3607 void hl_hw_block_mem_init(struct hl_ctx *ctx);
3608 void hl_hw_block_mem_fini(struct hl_ctx *ctx);
3609
3610 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3611 enum hl_va_range_type type, u64 size, u32 alignment);
3612 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3613 u64 start_addr, u64 size);
3614 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
3615 struct hl_userptr *userptr);
3616 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
3617 void hl_userptr_delete_list(struct hl_device *hdev,
3618 struct list_head *userptr_list);
3619 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
3620 struct list_head *userptr_list,
3621 struct hl_userptr **userptr);
3622
3623 int hl_mmu_init(struct hl_device *hdev);
3624 void hl_mmu_fini(struct hl_device *hdev);
3625 int hl_mmu_ctx_init(struct hl_ctx *ctx);
3626 void hl_mmu_ctx_fini(struct hl_ctx *ctx);
3627 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
3628 u32 page_size, bool flush_pte);
3629 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
3630 u32 page_size, u32 *real_page_size, bool is_dram_addr);
3631 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
3632 bool flush_pte);
3633 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
3634 u64 phys_addr, u32 size);
3635 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
3636 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
3637 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
3638 u32 flags, u32 asid, u64 va, u64 size);
3639 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
3640 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
3641 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
3642 u8 hop_idx, u64 hop_addr, u64 virt_addr);
3643 void hl_mmu_hr_flush(struct hl_ctx *ctx);
3644 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
3645 u64 pgt_size);
3646 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
3647 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3648 u32 hop_table_size);
3649 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
3650 u32 hop_table_size);
3651 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3652 u64 val, u32 hop_table_size);
3653 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3654 u32 hop_table_size);
3655 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3656 u32 hop_table_size);
3657 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
3658 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
3659 struct hl_hr_mmu_funcs *hr_func,
3660 u64 curr_pte);
3661 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
3662 struct hl_hr_mmu_funcs *hr_func,
3663 struct hl_mmu_properties *mmu_prop);
3664 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
3665 struct hl_mmu_hr_priv *hr_priv,
3666 struct hl_hr_mmu_funcs *hr_func,
3667 struct hl_mmu_properties *mmu_prop,
3668 u64 curr_pte, bool *is_new_hop);
3669 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
3670 struct hl_hr_mmu_funcs *hr_func);
3671 void hl_mmu_swap_out(struct hl_ctx *ctx);
3672 void hl_mmu_swap_in(struct hl_ctx *ctx);
3673 int hl_mmu_if_set_funcs(struct hl_device *hdev);
3674 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3675 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3676 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
3677 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
3678 struct hl_mmu_hop_info *hops);
3679 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
3680 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
3681 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
3682
3683 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
3684 void __iomem *dst, u32 src_offset, u32 size);
3685 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
3686 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
3687 u16 len, u32 timeout, u64 *result);
3688 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
3689 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
3690 size_t irq_arr_size);
3691 int hl_fw_test_cpu_queue(struct hl_device *hdev);
3692 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
3693 dma_addr_t *dma_handle);
3694 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
3695 void *vaddr);
3696 int hl_fw_send_heartbeat(struct hl_device *hdev);
3697 int hl_fw_cpucp_info_get(struct hl_device *hdev,
3698 u32 sts_boot_dev_sts0_reg,
3699 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3700 u32 boot_err1_reg);
3701 int hl_fw_cpucp_handshake(struct hl_device *hdev,
3702 u32 sts_boot_dev_sts0_reg,
3703 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3704 u32 boot_err1_reg);
3705 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
3706 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
3707 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
3708 struct hl_info_pci_counters *counters);
3709 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
3710 u64 *total_energy);
3711 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
3712 enum pll_index *pll_index);
3713 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
3714 u16 *pll_freq_arr);
3715 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
3716 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
3717 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
3718 int hl_fw_init_cpu(struct hl_device *hdev);
3719 int hl_fw_read_preboot_status(struct hl_device *hdev);
3720 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
3721 struct fw_load_mgr *fw_loader,
3722 enum comms_cmd cmd, unsigned int size,
3723 bool wait_ok, u32 timeout);
3724 int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
3725 struct cpucp_hbm_row_info *info);
3726 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
3727 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
3728 int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
3729 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
3730 bool is_wc[3]);
3731 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
3732 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
3733 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
3734 struct hl_inbound_pci_region *pci_region);
3735 int hl_pci_set_outbound_region(struct hl_device *hdev,
3736 struct hl_outbound_pci_region *pci_region);
3737 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
3738 int hl_pci_init(struct hl_device *hdev);
3739 void hl_pci_fini(struct hl_device *hdev);
3740
3741 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
3742 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
3743 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3744 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3745 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3746 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3747 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3748 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3749 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3750 long hl_fw_get_max_power(struct hl_device *hdev);
3751 void hl_fw_set_max_power(struct hl_device *hdev);
3752 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
3753 u32 nonce);
3754 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3755 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3756 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3757 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3758 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
3759 void hl_fw_set_pll_profile(struct hl_device *hdev);
3760 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
3761 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
3762
3763 void hw_sob_get(struct hl_hw_sob *hw_sob);
3764 void hw_sob_put(struct hl_hw_sob *hw_sob);
3765 void hl_encaps_handle_do_release(struct kref *ref);
3766 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
3767 struct hl_cs *cs, struct hl_cs_job *job,
3768 struct hl_cs_compl *cs_cmpl);
3769
3770 int hl_dec_init(struct hl_device *hdev);
3771 void hl_dec_fini(struct hl_device *hdev);
3772 void hl_dec_ctx_fini(struct hl_ctx *ctx);
3773
3774 void hl_release_pending_user_interrupts(struct hl_device *hdev);
3775 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
3776 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
3777
3778 int hl_state_dump(struct hl_device *hdev);
3779 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
3780 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
3781 struct hl_mon_state_dump *mon);
3782 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
3783 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
3784 const char *format, ...);
3785 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
3786 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
3787
3788 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
3789 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg);
3790 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
3791 void *args);
3792 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
3793 u64 handle);
3794 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
3795 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
3796 struct hl_mmap_mem_buf *
3797 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
3798 struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
3799 void *args);
3800 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
3801
3802 #ifdef CONFIG_DEBUG_FS
3803
3804 void hl_debugfs_init(void);
3805 void hl_debugfs_fini(void);
3806 void hl_debugfs_add_device(struct hl_device *hdev);
3807 void hl_debugfs_remove_device(struct hl_device *hdev);
3808 void hl_debugfs_add_file(struct hl_fpriv *hpriv);
3809 void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
3810 void hl_debugfs_add_cb(struct hl_cb *cb);
3811 void hl_debugfs_remove_cb(struct hl_cb *cb);
3812 void hl_debugfs_add_cs(struct hl_cs *cs);
3813 void hl_debugfs_remove_cs(struct hl_cs *cs);
3814 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
3815 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
3816 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
3817 void hl_debugfs_remove_userptr(struct hl_device *hdev,
3818 struct hl_userptr *userptr);
3819 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3820 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3821 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
3822 unsigned long length);
3823
3824 #else
3825
hl_debugfs_init(void)3826 static inline void __init hl_debugfs_init(void)
3827 {
3828 }
3829
hl_debugfs_fini(void)3830 static inline void hl_debugfs_fini(void)
3831 {
3832 }
3833
hl_debugfs_add_device(struct hl_device * hdev)3834 static inline void hl_debugfs_add_device(struct hl_device *hdev)
3835 {
3836 }
3837
hl_debugfs_remove_device(struct hl_device * hdev)3838 static inline void hl_debugfs_remove_device(struct hl_device *hdev)
3839 {
3840 }
3841
hl_debugfs_add_file(struct hl_fpriv * hpriv)3842 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
3843 {
3844 }
3845
hl_debugfs_remove_file(struct hl_fpriv * hpriv)3846 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
3847 {
3848 }
3849
hl_debugfs_add_cb(struct hl_cb * cb)3850 static inline void hl_debugfs_add_cb(struct hl_cb *cb)
3851 {
3852 }
3853
hl_debugfs_remove_cb(struct hl_cb * cb)3854 static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
3855 {
3856 }
3857
hl_debugfs_add_cs(struct hl_cs * cs)3858 static inline void hl_debugfs_add_cs(struct hl_cs *cs)
3859 {
3860 }
3861
hl_debugfs_remove_cs(struct hl_cs * cs)3862 static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
3863 {
3864 }
3865
hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)3866 static inline void hl_debugfs_add_job(struct hl_device *hdev,
3867 struct hl_cs_job *job)
3868 {
3869 }
3870
hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)3871 static inline void hl_debugfs_remove_job(struct hl_device *hdev,
3872 struct hl_cs_job *job)
3873 {
3874 }
3875
hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3876 static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
3877 struct hl_userptr *userptr)
3878 {
3879 }
3880
hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3881 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
3882 struct hl_userptr *userptr)
3883 {
3884 }
3885
hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3886 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
3887 struct hl_ctx *ctx)
3888 {
3889 }
3890
hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3891 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
3892 struct hl_ctx *ctx)
3893 {
3894 }
3895
hl_debugfs_set_state_dump(struct hl_device * hdev,char * data,unsigned long length)3896 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
3897 char *data, unsigned long length)
3898 {
3899 }
3900
3901 #endif
3902
3903 /* Security */
3904 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
3905 const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
3906 int array_size);
3907 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
3908 int mm_array_size, int offset, const u32 pb_blocks[],
3909 struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
3910 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
3911 struct hl_block_glbl_sec sgs_array[], u32 block_offset,
3912 int array_size);
3913 void hl_secure_block(struct hl_device *hdev,
3914 struct hl_block_glbl_sec sgs_array[], int array_size);
3915 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
3916 u32 dcore_offset, u32 num_instances, u32 instance_offset,
3917 const u32 pb_blocks[], u32 blocks_array_size,
3918 const u32 *regs_array, u32 regs_array_size, u64 mask);
3919 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
3920 u32 num_instances, u32 instance_offset,
3921 const u32 pb_blocks[], u32 blocks_array_size,
3922 const u32 *regs_array, u32 regs_array_size);
3923 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
3924 u32 dcore_offset, u32 num_instances, u32 instance_offset,
3925 const u32 pb_blocks[], u32 blocks_array_size,
3926 const struct range *regs_range_array, u32 regs_range_array_size,
3927 u64 mask);
3928 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
3929 u32 dcore_offset, u32 num_instances, u32 instance_offset,
3930 const u32 pb_blocks[], u32 blocks_array_size,
3931 const struct range *regs_range_array,
3932 u32 regs_range_array_size);
3933 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
3934 u32 num_instances, u32 instance_offset,
3935 const u32 pb_blocks[], u32 blocks_array_size,
3936 const u32 *regs_array, u32 regs_array_size);
3937 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
3938 u32 num_instances, u32 instance_offset,
3939 const u32 pb_blocks[], u32 blocks_array_size,
3940 const struct range *regs_range_array,
3941 u32 regs_range_array_size);
3942 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
3943 u32 num_instances, u32 instance_offset,
3944 const u32 pb_blocks[], u32 blocks_array_size);
3945 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
3946 u32 dcore_offset, u32 num_instances, u32 instance_offset,
3947 const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
3948 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
3949 u32 num_instances, u32 instance_offset,
3950 const u32 pb_blocks[], u32 blocks_array_size);
3951
3952 /* IOCTLs */
3953 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
3954 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
3955 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
3956 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
3957 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
3958 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
3959
3960 #endif /* HABANALABSP_H_ */
3961