1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include "internal.h"
39 
40 /*
41  * Usage:
42  * dcache->d_inode->i_lock protects:
43  *   - i_dentry, d_alias, d_inode of aliases
44  * dcache_hash_bucket lock protects:
45  *   - the dcache hash table
46  * s_anon bl list spinlock protects:
47  *   - the s_anon list (see __d_drop)
48  * dcache_lru_lock protects:
49  *   - the dcache lru lists and counters
50  * d_lock protects:
51  *   - d_flags
52  *   - d_name
53  *   - d_lru
54  *   - d_count
55  *   - d_unhashed()
56  *   - d_parent and d_subdirs
57  *   - childrens' d_child and d_parent
58  *   - d_alias, d_inode
59  *
60  * Ordering:
61  * dentry->d_inode->i_lock
62  *   dentry->d_lock
63  *     dcache_lru_lock
64  *     dcache_hash_bucket lock
65  *     s_anon lock
66  *
67  * If there is an ancestor relationship:
68  * dentry->d_parent->...->d_parent->d_lock
69  *   ...
70  *     dentry->d_parent->d_lock
71  *       dentry->d_lock
72  *
73  * If no ancestor relationship:
74  * if (dentry1 < dentry2)
75  *   dentry1->d_lock
76  *     dentry2->d_lock
77  */
78 int sysctl_vfs_cache_pressure __read_mostly = 100;
79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
80 
81 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
83 
84 EXPORT_SYMBOL(rename_lock);
85 
86 static struct kmem_cache *dentry_cache __read_mostly;
87 
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96 #define D_HASHBITS     d_hash_shift
97 #define D_HASHMASK     d_hash_mask
98 
99 static unsigned int d_hash_mask __read_mostly;
100 static unsigned int d_hash_shift __read_mostly;
101 
102 static struct hlist_bl_head *dentry_hashtable __read_mostly;
103 
d_hash(struct dentry * parent,unsigned long hash)104 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
105 					unsigned long hash)
106 {
107 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
108 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
109 	return dentry_hashtable + (hash & D_HASHMASK);
110 }
111 
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 	.age_limit = 45,
115 };
116 
117 static DEFINE_PER_CPU(unsigned int, nr_dentry);
118 
119 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
get_nr_dentry(void)120 static int get_nr_dentry(void)
121 {
122 	int i;
123 	int sum = 0;
124 	for_each_possible_cpu(i)
125 		sum += per_cpu(nr_dentry, i);
126 	return sum < 0 ? 0 : sum;
127 }
128 
proc_nr_dentry(ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)129 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
130 		   size_t *lenp, loff_t *ppos)
131 {
132 	dentry_stat.nr_dentry = get_nr_dentry();
133 	return proc_dointvec(table, write, buffer, lenp, ppos);
134 }
135 #endif
136 
__d_free(struct rcu_head * head)137 static void __d_free(struct rcu_head *head)
138 {
139 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
140 
141 	WARN_ON(!list_empty(&dentry->d_alias));
142 	if (dname_external(dentry))
143 		kfree(dentry->d_name.name);
144 	kmem_cache_free(dentry_cache, dentry);
145 }
146 
147 /*
148  * no locks, please.
149  */
d_free(struct dentry * dentry)150 static void d_free(struct dentry *dentry)
151 {
152 	BUG_ON(dentry->d_count);
153 	this_cpu_dec(nr_dentry);
154 	if (dentry->d_op && dentry->d_op->d_release)
155 		dentry->d_op->d_release(dentry);
156 
157 	/* if dentry was never visible to RCU, immediate free is OK */
158 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
159 		__d_free(&dentry->d_u.d_rcu);
160 	else
161 		call_rcu(&dentry->d_u.d_rcu, __d_free);
162 }
163 
164 /**
165  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
166  * @dentry: the target dentry
167  * After this call, in-progress rcu-walk path lookup will fail. This
168  * should be called after unhashing, and after changing d_inode (if
169  * the dentry has not already been unhashed).
170  */
dentry_rcuwalk_barrier(struct dentry * dentry)171 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
172 {
173 	assert_spin_locked(&dentry->d_lock);
174 	/* Go through a barrier */
175 	write_seqcount_barrier(&dentry->d_seq);
176 }
177 
178 /*
179  * Release the dentry's inode, using the filesystem
180  * d_iput() operation if defined. Dentry has no refcount
181  * and is unhashed.
182  */
dentry_iput(struct dentry * dentry)183 static void dentry_iput(struct dentry * dentry)
184 	__releases(dentry->d_lock)
185 	__releases(dentry->d_inode->i_lock)
186 {
187 	struct inode *inode = dentry->d_inode;
188 	if (inode) {
189 		dentry->d_inode = NULL;
190 		list_del_init(&dentry->d_alias);
191 		spin_unlock(&dentry->d_lock);
192 		spin_unlock(&inode->i_lock);
193 		if (!inode->i_nlink)
194 			fsnotify_inoderemove(inode);
195 		if (dentry->d_op && dentry->d_op->d_iput)
196 			dentry->d_op->d_iput(dentry, inode);
197 		else
198 			iput(inode);
199 	} else {
200 		spin_unlock(&dentry->d_lock);
201 	}
202 }
203 
204 /*
205  * Release the dentry's inode, using the filesystem
206  * d_iput() operation if defined. dentry remains in-use.
207  */
dentry_unlink_inode(struct dentry * dentry)208 static void dentry_unlink_inode(struct dentry * dentry)
209 	__releases(dentry->d_lock)
210 	__releases(dentry->d_inode->i_lock)
211 {
212 	struct inode *inode = dentry->d_inode;
213 	dentry->d_inode = NULL;
214 	list_del_init(&dentry->d_alias);
215 	dentry_rcuwalk_barrier(dentry);
216 	spin_unlock(&dentry->d_lock);
217 	spin_unlock(&inode->i_lock);
218 	if (!inode->i_nlink)
219 		fsnotify_inoderemove(inode);
220 	if (dentry->d_op && dentry->d_op->d_iput)
221 		dentry->d_op->d_iput(dentry, inode);
222 	else
223 		iput(inode);
224 }
225 
226 /*
227  * dentry_lru_(add|del|move_tail) must be called with d_lock held.
228  */
dentry_lru_add(struct dentry * dentry)229 static void dentry_lru_add(struct dentry *dentry)
230 {
231 	if (list_empty(&dentry->d_lru)) {
232 		spin_lock(&dcache_lru_lock);
233 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
234 		dentry->d_sb->s_nr_dentry_unused++;
235 		dentry_stat.nr_unused++;
236 		spin_unlock(&dcache_lru_lock);
237 	}
238 }
239 
__dentry_lru_del(struct dentry * dentry)240 static void __dentry_lru_del(struct dentry *dentry)
241 {
242 	list_del_init(&dentry->d_lru);
243 	dentry->d_sb->s_nr_dentry_unused--;
244 	dentry_stat.nr_unused--;
245 }
246 
dentry_lru_del(struct dentry * dentry)247 static void dentry_lru_del(struct dentry *dentry)
248 {
249 	if (!list_empty(&dentry->d_lru)) {
250 		spin_lock(&dcache_lru_lock);
251 		__dentry_lru_del(dentry);
252 		spin_unlock(&dcache_lru_lock);
253 	}
254 }
255 
dentry_lru_move_tail(struct dentry * dentry)256 static void dentry_lru_move_tail(struct dentry *dentry)
257 {
258 	spin_lock(&dcache_lru_lock);
259 	if (list_empty(&dentry->d_lru)) {
260 		list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
261 		dentry->d_sb->s_nr_dentry_unused++;
262 		dentry_stat.nr_unused++;
263 	} else {
264 		list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
265 	}
266 	spin_unlock(&dcache_lru_lock);
267 }
268 
269 /**
270  * d_kill - kill dentry and return parent
271  * @dentry: dentry to kill
272  * @parent: parent dentry
273  *
274  * The dentry must already be unhashed and removed from the LRU.
275  *
276  * If this is the root of the dentry tree, return NULL.
277  *
278  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
279  * d_kill.
280  */
d_kill(struct dentry * dentry,struct dentry * parent)281 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
282 	__releases(dentry->d_lock)
283 	__releases(parent->d_lock)
284 	__releases(dentry->d_inode->i_lock)
285 {
286 	list_del(&dentry->d_u.d_child);
287 	/*
288 	 * Inform try_to_ascend() that we are no longer attached to the
289 	 * dentry tree
290 	 */
291 	dentry->d_flags |= DCACHE_DISCONNECTED;
292 	if (parent)
293 		spin_unlock(&parent->d_lock);
294 	dentry_iput(dentry);
295 	/*
296 	 * dentry_iput drops the locks, at which point nobody (except
297 	 * transient RCU lookups) can reach this dentry.
298 	 */
299 	d_free(dentry);
300 	return parent;
301 }
302 
303 /**
304  * d_drop - drop a dentry
305  * @dentry: dentry to drop
306  *
307  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
308  * be found through a VFS lookup any more. Note that this is different from
309  * deleting the dentry - d_delete will try to mark the dentry negative if
310  * possible, giving a successful _negative_ lookup, while d_drop will
311  * just make the cache lookup fail.
312  *
313  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
314  * reason (NFS timeouts or autofs deletes).
315  *
316  * __d_drop requires dentry->d_lock.
317  */
__d_drop(struct dentry * dentry)318 void __d_drop(struct dentry *dentry)
319 {
320 	if (!d_unhashed(dentry)) {
321 		struct hlist_bl_head *b;
322 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
323 			b = &dentry->d_sb->s_anon;
324 		else
325 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
326 
327 		hlist_bl_lock(b);
328 		__hlist_bl_del(&dentry->d_hash);
329 		dentry->d_hash.pprev = NULL;
330 		hlist_bl_unlock(b);
331 
332 		dentry_rcuwalk_barrier(dentry);
333 	}
334 }
335 EXPORT_SYMBOL(__d_drop);
336 
d_drop(struct dentry * dentry)337 void d_drop(struct dentry *dentry)
338 {
339 	spin_lock(&dentry->d_lock);
340 	__d_drop(dentry);
341 	spin_unlock(&dentry->d_lock);
342 }
343 EXPORT_SYMBOL(d_drop);
344 
345 /*
346  * Finish off a dentry we've decided to kill.
347  * dentry->d_lock must be held, returns with it unlocked.
348  * If ref is non-zero, then decrement the refcount too.
349  * Returns dentry requiring refcount drop, or NULL if we're done.
350  */
dentry_kill(struct dentry * dentry,int ref)351 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
352 	__releases(dentry->d_lock)
353 {
354 	struct inode *inode;
355 	struct dentry *parent;
356 
357 	inode = dentry->d_inode;
358 	if (inode && !spin_trylock(&inode->i_lock)) {
359 relock:
360 		spin_unlock(&dentry->d_lock);
361 		cpu_relax();
362 		return dentry; /* try again with same dentry */
363 	}
364 	if (IS_ROOT(dentry))
365 		parent = NULL;
366 	else
367 		parent = dentry->d_parent;
368 	if (parent && !spin_trylock(&parent->d_lock)) {
369 		if (inode)
370 			spin_unlock(&inode->i_lock);
371 		goto relock;
372 	}
373 
374 	if (ref)
375 		dentry->d_count--;
376 	/* if dentry was on the d_lru list delete it from there */
377 	dentry_lru_del(dentry);
378 	/* if it was on the hash then remove it */
379 	__d_drop(dentry);
380 	return d_kill(dentry, parent);
381 }
382 
383 /*
384  * This is dput
385  *
386  * This is complicated by the fact that we do not want to put
387  * dentries that are no longer on any hash chain on the unused
388  * list: we'd much rather just get rid of them immediately.
389  *
390  * However, that implies that we have to traverse the dentry
391  * tree upwards to the parents which might _also_ now be
392  * scheduled for deletion (it may have been only waiting for
393  * its last child to go away).
394  *
395  * This tail recursion is done by hand as we don't want to depend
396  * on the compiler to always get this right (gcc generally doesn't).
397  * Real recursion would eat up our stack space.
398  */
399 
400 /*
401  * dput - release a dentry
402  * @dentry: dentry to release
403  *
404  * Release a dentry. This will drop the usage count and if appropriate
405  * call the dentry unlink method as well as removing it from the queues and
406  * releasing its resources. If the parent dentries were scheduled for release
407  * they too may now get deleted.
408  */
dput(struct dentry * dentry)409 void dput(struct dentry *dentry)
410 {
411 	if (!dentry)
412 		return;
413 
414 repeat:
415 	if (dentry->d_count == 1)
416 		might_sleep();
417 	spin_lock(&dentry->d_lock);
418 	BUG_ON(!dentry->d_count);
419 	if (dentry->d_count > 1) {
420 		dentry->d_count--;
421 		spin_unlock(&dentry->d_lock);
422 		return;
423 	}
424 
425 	if (dentry->d_flags & DCACHE_OP_DELETE) {
426 		if (dentry->d_op->d_delete(dentry))
427 			goto kill_it;
428 	}
429 
430 	/* Unreachable? Get rid of it */
431  	if (d_unhashed(dentry))
432 		goto kill_it;
433 
434 	/* Otherwise leave it cached and ensure it's on the LRU */
435 	dentry->d_flags |= DCACHE_REFERENCED;
436 	dentry_lru_add(dentry);
437 
438 	dentry->d_count--;
439 	spin_unlock(&dentry->d_lock);
440 	return;
441 
442 kill_it:
443 	dentry = dentry_kill(dentry, 1);
444 	if (dentry)
445 		goto repeat;
446 }
447 EXPORT_SYMBOL(dput);
448 
449 /**
450  * d_invalidate - invalidate a dentry
451  * @dentry: dentry to invalidate
452  *
453  * Try to invalidate the dentry if it turns out to be
454  * possible. If there are other dentries that can be
455  * reached through this one we can't delete it and we
456  * return -EBUSY. On success we return 0.
457  *
458  * no dcache lock.
459  */
460 
d_invalidate(struct dentry * dentry)461 int d_invalidate(struct dentry * dentry)
462 {
463 	/*
464 	 * If it's already been dropped, return OK.
465 	 */
466 	spin_lock(&dentry->d_lock);
467 	if (d_unhashed(dentry)) {
468 		spin_unlock(&dentry->d_lock);
469 		return 0;
470 	}
471 	/*
472 	 * Check whether to do a partial shrink_dcache
473 	 * to get rid of unused child entries.
474 	 */
475 	if (!list_empty(&dentry->d_subdirs)) {
476 		spin_unlock(&dentry->d_lock);
477 		shrink_dcache_parent(dentry);
478 		spin_lock(&dentry->d_lock);
479 	}
480 
481 	/*
482 	 * Somebody else still using it?
483 	 *
484 	 * If it's a directory, we can't drop it
485 	 * for fear of somebody re-populating it
486 	 * with children (even though dropping it
487 	 * would make it unreachable from the root,
488 	 * we might still populate it if it was a
489 	 * working directory or similar).
490 	 */
491 	if (dentry->d_count > 1) {
492 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
493 			spin_unlock(&dentry->d_lock);
494 			return -EBUSY;
495 		}
496 	}
497 
498 	__d_drop(dentry);
499 	spin_unlock(&dentry->d_lock);
500 	return 0;
501 }
502 EXPORT_SYMBOL(d_invalidate);
503 
504 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)505 static inline void __dget_dlock(struct dentry *dentry)
506 {
507 	dentry->d_count++;
508 }
509 
__dget(struct dentry * dentry)510 static inline void __dget(struct dentry *dentry)
511 {
512 	spin_lock(&dentry->d_lock);
513 	__dget_dlock(dentry);
514 	spin_unlock(&dentry->d_lock);
515 }
516 
dget_parent(struct dentry * dentry)517 struct dentry *dget_parent(struct dentry *dentry)
518 {
519 	struct dentry *ret;
520 
521 repeat:
522 	/*
523 	 * Don't need rcu_dereference because we re-check it was correct under
524 	 * the lock.
525 	 */
526 	rcu_read_lock();
527 	ret = dentry->d_parent;
528 	if (!ret) {
529 		rcu_read_unlock();
530 		goto out;
531 	}
532 	spin_lock(&ret->d_lock);
533 	if (unlikely(ret != dentry->d_parent)) {
534 		spin_unlock(&ret->d_lock);
535 		rcu_read_unlock();
536 		goto repeat;
537 	}
538 	rcu_read_unlock();
539 	BUG_ON(!ret->d_count);
540 	ret->d_count++;
541 	spin_unlock(&ret->d_lock);
542 out:
543 	return ret;
544 }
545 EXPORT_SYMBOL(dget_parent);
546 
547 /**
548  * d_find_alias - grab a hashed alias of inode
549  * @inode: inode in question
550  * @want_discon:  flag, used by d_splice_alias, to request
551  *          that only a DISCONNECTED alias be returned.
552  *
553  * If inode has a hashed alias, or is a directory and has any alias,
554  * acquire the reference to alias and return it. Otherwise return NULL.
555  * Notice that if inode is a directory there can be only one alias and
556  * it can be unhashed only if it has no children, or if it is the root
557  * of a filesystem.
558  *
559  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
560  * any other hashed alias over that one unless @want_discon is set,
561  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
562  */
__d_find_alias(struct inode * inode,int want_discon)563 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
564 {
565 	struct dentry *alias, *discon_alias;
566 
567 again:
568 	discon_alias = NULL;
569 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
570 		spin_lock(&alias->d_lock);
571  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
572 			if (IS_ROOT(alias) &&
573 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
574 				discon_alias = alias;
575 			} else if (!want_discon) {
576 				__dget_dlock(alias);
577 				spin_unlock(&alias->d_lock);
578 				return alias;
579 			}
580 		}
581 		spin_unlock(&alias->d_lock);
582 	}
583 	if (discon_alias) {
584 		alias = discon_alias;
585 		spin_lock(&alias->d_lock);
586 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
587 			if (IS_ROOT(alias) &&
588 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
589 				__dget_dlock(alias);
590 				spin_unlock(&alias->d_lock);
591 				return alias;
592 			}
593 		}
594 		spin_unlock(&alias->d_lock);
595 		goto again;
596 	}
597 	return NULL;
598 }
599 
d_find_alias(struct inode * inode)600 struct dentry *d_find_alias(struct inode *inode)
601 {
602 	struct dentry *de = NULL;
603 
604 	if (!list_empty(&inode->i_dentry)) {
605 		spin_lock(&inode->i_lock);
606 		de = __d_find_alias(inode, 0);
607 		spin_unlock(&inode->i_lock);
608 	}
609 	return de;
610 }
611 EXPORT_SYMBOL(d_find_alias);
612 
613 /*
614  *	Try to kill dentries associated with this inode.
615  * WARNING: you must own a reference to inode.
616  */
d_prune_aliases(struct inode * inode)617 void d_prune_aliases(struct inode *inode)
618 {
619 	struct dentry *dentry;
620 restart:
621 	spin_lock(&inode->i_lock);
622 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
623 		spin_lock(&dentry->d_lock);
624 		if (!dentry->d_count) {
625 			__dget_dlock(dentry);
626 			__d_drop(dentry);
627 			spin_unlock(&dentry->d_lock);
628 			spin_unlock(&inode->i_lock);
629 			dput(dentry);
630 			goto restart;
631 		}
632 		spin_unlock(&dentry->d_lock);
633 	}
634 	spin_unlock(&inode->i_lock);
635 }
636 EXPORT_SYMBOL(d_prune_aliases);
637 
638 /*
639  * Try to throw away a dentry - free the inode, dput the parent.
640  * Requires dentry->d_lock is held, and dentry->d_count == 0.
641  * Releases dentry->d_lock.
642  *
643  * This may fail if locks cannot be acquired no problem, just try again.
644  */
try_prune_one_dentry(struct dentry * dentry)645 static void try_prune_one_dentry(struct dentry *dentry)
646 	__releases(dentry->d_lock)
647 {
648 	struct dentry *parent;
649 
650 	parent = dentry_kill(dentry, 0);
651 	/*
652 	 * If dentry_kill returns NULL, we have nothing more to do.
653 	 * if it returns the same dentry, trylocks failed. In either
654 	 * case, just loop again.
655 	 *
656 	 * Otherwise, we need to prune ancestors too. This is necessary
657 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
658 	 * is also expected to be beneficial in reducing dentry cache
659 	 * fragmentation.
660 	 */
661 	if (!parent)
662 		return;
663 	if (parent == dentry)
664 		return;
665 
666 	/* Prune ancestors. */
667 	dentry = parent;
668 	while (dentry) {
669 		spin_lock(&dentry->d_lock);
670 		if (dentry->d_count > 1) {
671 			dentry->d_count--;
672 			spin_unlock(&dentry->d_lock);
673 			return;
674 		}
675 		dentry = dentry_kill(dentry, 1);
676 	}
677 }
678 
shrink_dentry_list(struct list_head * list)679 static void shrink_dentry_list(struct list_head *list)
680 {
681 	struct dentry *dentry;
682 
683 	rcu_read_lock();
684 	for (;;) {
685 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
686 		if (&dentry->d_lru == list)
687 			break; /* empty */
688 		spin_lock(&dentry->d_lock);
689 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
690 			spin_unlock(&dentry->d_lock);
691 			continue;
692 		}
693 
694 		/*
695 		 * We found an inuse dentry which was not removed from
696 		 * the LRU because of laziness during lookup.  Do not free
697 		 * it - just keep it off the LRU list.
698 		 */
699 		if (dentry->d_count) {
700 			dentry_lru_del(dentry);
701 			spin_unlock(&dentry->d_lock);
702 			continue;
703 		}
704 
705 		rcu_read_unlock();
706 
707 		try_prune_one_dentry(dentry);
708 
709 		rcu_read_lock();
710 	}
711 	rcu_read_unlock();
712 }
713 
714 /**
715  * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
716  * @sb:		superblock to shrink dentry LRU.
717  * @count:	number of entries to prune
718  * @flags:	flags to control the dentry processing
719  *
720  * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
721  */
__shrink_dcache_sb(struct super_block * sb,int * count,int flags)722 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
723 {
724 	/* called from prune_dcache() and shrink_dcache_parent() */
725 	struct dentry *dentry;
726 	LIST_HEAD(referenced);
727 	LIST_HEAD(tmp);
728 	int cnt = *count;
729 
730 relock:
731 	spin_lock(&dcache_lru_lock);
732 	while (!list_empty(&sb->s_dentry_lru)) {
733 		dentry = list_entry(sb->s_dentry_lru.prev,
734 				struct dentry, d_lru);
735 		BUG_ON(dentry->d_sb != sb);
736 
737 		if (!spin_trylock(&dentry->d_lock)) {
738 			spin_unlock(&dcache_lru_lock);
739 			cpu_relax();
740 			goto relock;
741 		}
742 
743 		/*
744 		 * If we are honouring the DCACHE_REFERENCED flag and the
745 		 * dentry has this flag set, don't free it.  Clear the flag
746 		 * and put it back on the LRU.
747 		 */
748 		if (flags & DCACHE_REFERENCED &&
749 				dentry->d_flags & DCACHE_REFERENCED) {
750 			dentry->d_flags &= ~DCACHE_REFERENCED;
751 			list_move(&dentry->d_lru, &referenced);
752 			spin_unlock(&dentry->d_lock);
753 		} else {
754 			list_move_tail(&dentry->d_lru, &tmp);
755 			spin_unlock(&dentry->d_lock);
756 			if (!--cnt)
757 				break;
758 		}
759 		cond_resched_lock(&dcache_lru_lock);
760 	}
761 	if (!list_empty(&referenced))
762 		list_splice(&referenced, &sb->s_dentry_lru);
763 	spin_unlock(&dcache_lru_lock);
764 
765 	shrink_dentry_list(&tmp);
766 
767 	*count = cnt;
768 }
769 
770 /**
771  * prune_dcache - shrink the dcache
772  * @count: number of entries to try to free
773  *
774  * Shrink the dcache. This is done when we need more memory, or simply when we
775  * need to unmount something (at which point we need to unuse all dentries).
776  *
777  * This function may fail to free any resources if all the dentries are in use.
778  */
prune_dcache(int count)779 static void prune_dcache(int count)
780 {
781 	struct super_block *sb, *p = NULL;
782 	int w_count;
783 	int unused = dentry_stat.nr_unused;
784 	int prune_ratio;
785 	int pruned;
786 
787 	if (unused == 0 || count == 0)
788 		return;
789 	if (count >= unused)
790 		prune_ratio = 1;
791 	else
792 		prune_ratio = unused / count;
793 	spin_lock(&sb_lock);
794 	list_for_each_entry(sb, &super_blocks, s_list) {
795 		if (list_empty(&sb->s_instances))
796 			continue;
797 		if (sb->s_nr_dentry_unused == 0)
798 			continue;
799 		sb->s_count++;
800 		/* Now, we reclaim unused dentrins with fairness.
801 		 * We reclaim them same percentage from each superblock.
802 		 * We calculate number of dentries to scan on this sb
803 		 * as follows, but the implementation is arranged to avoid
804 		 * overflows:
805 		 * number of dentries to scan on this sb =
806 		 * count * (number of dentries on this sb /
807 		 * number of dentries in the machine)
808 		 */
809 		spin_unlock(&sb_lock);
810 		if (prune_ratio != 1)
811 			w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
812 		else
813 			w_count = sb->s_nr_dentry_unused;
814 		pruned = w_count;
815 		/*
816 		 * We need to be sure this filesystem isn't being unmounted,
817 		 * otherwise we could race with generic_shutdown_super(), and
818 		 * end up holding a reference to an inode while the filesystem
819 		 * is unmounted.  So we try to get s_umount, and make sure
820 		 * s_root isn't NULL.
821 		 */
822 		if (down_read_trylock(&sb->s_umount)) {
823 			if ((sb->s_root != NULL) &&
824 			    (!list_empty(&sb->s_dentry_lru))) {
825 				__shrink_dcache_sb(sb, &w_count,
826 						DCACHE_REFERENCED);
827 				pruned -= w_count;
828 			}
829 			up_read(&sb->s_umount);
830 		}
831 		spin_lock(&sb_lock);
832 		if (p)
833 			__put_super(p);
834 		count -= pruned;
835 		p = sb;
836 		/* more work left to do? */
837 		if (count <= 0)
838 			break;
839 	}
840 	if (p)
841 		__put_super(p);
842 	spin_unlock(&sb_lock);
843 }
844 
845 /**
846  * shrink_dcache_sb - shrink dcache for a superblock
847  * @sb: superblock
848  *
849  * Shrink the dcache for the specified super block. This is used to free
850  * the dcache before unmounting a file system.
851  */
shrink_dcache_sb(struct super_block * sb)852 void shrink_dcache_sb(struct super_block *sb)
853 {
854 	LIST_HEAD(tmp);
855 
856 	spin_lock(&dcache_lru_lock);
857 	while (!list_empty(&sb->s_dentry_lru)) {
858 		list_splice_init(&sb->s_dentry_lru, &tmp);
859 		spin_unlock(&dcache_lru_lock);
860 		shrink_dentry_list(&tmp);
861 		spin_lock(&dcache_lru_lock);
862 	}
863 	spin_unlock(&dcache_lru_lock);
864 }
865 EXPORT_SYMBOL(shrink_dcache_sb);
866 
867 /*
868  * destroy a single subtree of dentries for unmount
869  * - see the comments on shrink_dcache_for_umount() for a description of the
870  *   locking
871  */
shrink_dcache_for_umount_subtree(struct dentry * dentry)872 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
873 {
874 	struct dentry *parent;
875 	unsigned detached = 0;
876 
877 	BUG_ON(!IS_ROOT(dentry));
878 
879 	/* detach this root from the system */
880 	spin_lock(&dentry->d_lock);
881 	dentry_lru_del(dentry);
882 	__d_drop(dentry);
883 	spin_unlock(&dentry->d_lock);
884 
885 	for (;;) {
886 		/* descend to the first leaf in the current subtree */
887 		while (!list_empty(&dentry->d_subdirs)) {
888 			struct dentry *loop;
889 
890 			/* this is a branch with children - detach all of them
891 			 * from the system in one go */
892 			spin_lock(&dentry->d_lock);
893 			list_for_each_entry(loop, &dentry->d_subdirs,
894 					    d_u.d_child) {
895 				spin_lock_nested(&loop->d_lock,
896 						DENTRY_D_LOCK_NESTED);
897 				dentry_lru_del(loop);
898 				__d_drop(loop);
899 				spin_unlock(&loop->d_lock);
900 			}
901 			spin_unlock(&dentry->d_lock);
902 
903 			/* move to the first child */
904 			dentry = list_entry(dentry->d_subdirs.next,
905 					    struct dentry, d_u.d_child);
906 		}
907 
908 		/* consume the dentries from this leaf up through its parents
909 		 * until we find one with children or run out altogether */
910 		do {
911 			struct inode *inode;
912 
913 			if (dentry->d_count != 0) {
914 				printk(KERN_ERR
915 				       "BUG: Dentry %p{i=%lx,n=%s}"
916 				       " still in use (%d)"
917 				       " [unmount of %s %s]\n",
918 				       dentry,
919 				       dentry->d_inode ?
920 				       dentry->d_inode->i_ino : 0UL,
921 				       dentry->d_name.name,
922 				       dentry->d_count,
923 				       dentry->d_sb->s_type->name,
924 				       dentry->d_sb->s_id);
925 				BUG();
926 			}
927 
928 			if (IS_ROOT(dentry)) {
929 				parent = NULL;
930 				list_del(&dentry->d_u.d_child);
931 			} else {
932 				parent = dentry->d_parent;
933 				spin_lock(&parent->d_lock);
934 				parent->d_count--;
935 				list_del(&dentry->d_u.d_child);
936 				spin_unlock(&parent->d_lock);
937 			}
938 
939 			detached++;
940 
941 			inode = dentry->d_inode;
942 			if (inode) {
943 				dentry->d_inode = NULL;
944 				list_del_init(&dentry->d_alias);
945 				if (dentry->d_op && dentry->d_op->d_iput)
946 					dentry->d_op->d_iput(dentry, inode);
947 				else
948 					iput(inode);
949 			}
950 
951 			d_free(dentry);
952 
953 			/* finished when we fall off the top of the tree,
954 			 * otherwise we ascend to the parent and move to the
955 			 * next sibling if there is one */
956 			if (!parent)
957 				return;
958 			dentry = parent;
959 		} while (list_empty(&dentry->d_subdirs));
960 
961 		dentry = list_entry(dentry->d_subdirs.next,
962 				    struct dentry, d_u.d_child);
963 	}
964 }
965 
966 /*
967  * destroy the dentries attached to a superblock on unmounting
968  * - we don't need to use dentry->d_lock because:
969  *   - the superblock is detached from all mountings and open files, so the
970  *     dentry trees will not be rearranged by the VFS
971  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
972  *     any dentries belonging to this superblock that it comes across
973  *   - the filesystem itself is no longer permitted to rearrange the dentries
974  *     in this superblock
975  */
shrink_dcache_for_umount(struct super_block * sb)976 void shrink_dcache_for_umount(struct super_block *sb)
977 {
978 	struct dentry *dentry;
979 
980 	if (down_read_trylock(&sb->s_umount))
981 		BUG();
982 
983 	dentry = sb->s_root;
984 	sb->s_root = NULL;
985 	spin_lock(&dentry->d_lock);
986 	dentry->d_count--;
987 	spin_unlock(&dentry->d_lock);
988 	shrink_dcache_for_umount_subtree(dentry);
989 
990 	while (!hlist_bl_empty(&sb->s_anon)) {
991 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
992 		shrink_dcache_for_umount_subtree(dentry);
993 	}
994 }
995 
996 /*
997  * This tries to ascend one level of parenthood, but
998  * we can race with renaming, so we need to re-check
999  * the parenthood after dropping the lock and check
1000  * that the sequence number still matches.
1001  */
try_to_ascend(struct dentry * old,int locked,unsigned seq)1002 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1003 {
1004 	struct dentry *new = old->d_parent;
1005 
1006 	rcu_read_lock();
1007 	spin_unlock(&old->d_lock);
1008 	spin_lock(&new->d_lock);
1009 
1010 	/*
1011 	 * might go back up the wrong parent if we have had a rename
1012 	 * or deletion
1013 	 */
1014 	if (new != old->d_parent ||
1015 		 (old->d_flags & DCACHE_DISCONNECTED) ||
1016 		 (!locked && read_seqretry(&rename_lock, seq))) {
1017 		spin_unlock(&new->d_lock);
1018 		new = NULL;
1019 	}
1020 	rcu_read_unlock();
1021 	return new;
1022 }
1023 
1024 
1025 /*
1026  * Search for at least 1 mount point in the dentry's subdirs.
1027  * We descend to the next level whenever the d_subdirs
1028  * list is non-empty and continue searching.
1029  */
1030 
1031 /**
1032  * have_submounts - check for mounts over a dentry
1033  * @parent: dentry to check.
1034  *
1035  * Return true if the parent or its subdirectories contain
1036  * a mount point
1037  */
have_submounts(struct dentry * parent)1038 int have_submounts(struct dentry *parent)
1039 {
1040 	struct dentry *this_parent;
1041 	struct list_head *next;
1042 	unsigned seq;
1043 	int locked = 0;
1044 
1045 	seq = read_seqbegin(&rename_lock);
1046 again:
1047 	this_parent = parent;
1048 
1049 	if (d_mountpoint(parent))
1050 		goto positive;
1051 	spin_lock(&this_parent->d_lock);
1052 repeat:
1053 	next = this_parent->d_subdirs.next;
1054 resume:
1055 	while (next != &this_parent->d_subdirs) {
1056 		struct list_head *tmp = next;
1057 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1058 		next = tmp->next;
1059 
1060 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1061 		/* Have we found a mount point ? */
1062 		if (d_mountpoint(dentry)) {
1063 			spin_unlock(&dentry->d_lock);
1064 			spin_unlock(&this_parent->d_lock);
1065 			goto positive;
1066 		}
1067 		if (!list_empty(&dentry->d_subdirs)) {
1068 			spin_unlock(&this_parent->d_lock);
1069 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1070 			this_parent = dentry;
1071 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1072 			goto repeat;
1073 		}
1074 		spin_unlock(&dentry->d_lock);
1075 	}
1076 	/*
1077 	 * All done at this level ... ascend and resume the search.
1078 	 */
1079 	if (this_parent != parent) {
1080 		struct dentry *child = this_parent;
1081 		this_parent = try_to_ascend(this_parent, locked, seq);
1082 		if (!this_parent)
1083 			goto rename_retry;
1084 		next = child->d_u.d_child.next;
1085 		goto resume;
1086 	}
1087 	spin_unlock(&this_parent->d_lock);
1088 	if (!locked && read_seqretry(&rename_lock, seq))
1089 		goto rename_retry;
1090 	if (locked)
1091 		write_sequnlock(&rename_lock);
1092 	return 0; /* No mount points found in tree */
1093 positive:
1094 	if (!locked && read_seqretry(&rename_lock, seq))
1095 		goto rename_retry;
1096 	if (locked)
1097 		write_sequnlock(&rename_lock);
1098 	return 1;
1099 
1100 rename_retry:
1101 	locked = 1;
1102 	write_seqlock(&rename_lock);
1103 	goto again;
1104 }
1105 EXPORT_SYMBOL(have_submounts);
1106 
1107 /*
1108  * Search the dentry child list for the specified parent,
1109  * and move any unused dentries to the end of the unused
1110  * list for prune_dcache(). We descend to the next level
1111  * whenever the d_subdirs list is non-empty and continue
1112  * searching.
1113  *
1114  * It returns zero iff there are no unused children,
1115  * otherwise  it returns the number of children moved to
1116  * the end of the unused list. This may not be the total
1117  * number of unused children, because select_parent can
1118  * drop the lock and return early due to latency
1119  * constraints.
1120  */
select_parent(struct dentry * parent)1121 static int select_parent(struct dentry * parent)
1122 {
1123 	struct dentry *this_parent;
1124 	struct list_head *next;
1125 	unsigned seq;
1126 	int found = 0;
1127 	int locked = 0;
1128 
1129 	seq = read_seqbegin(&rename_lock);
1130 again:
1131 	this_parent = parent;
1132 	spin_lock(&this_parent->d_lock);
1133 repeat:
1134 	next = this_parent->d_subdirs.next;
1135 resume:
1136 	while (next != &this_parent->d_subdirs) {
1137 		struct list_head *tmp = next;
1138 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1139 		next = tmp->next;
1140 
1141 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1142 
1143 		/*
1144 		 * move only zero ref count dentries to the end
1145 		 * of the unused list for prune_dcache
1146 		 */
1147 		if (!dentry->d_count) {
1148 			dentry_lru_move_tail(dentry);
1149 			found++;
1150 		} else {
1151 			dentry_lru_del(dentry);
1152 		}
1153 
1154 		/*
1155 		 * We can return to the caller if we have found some (this
1156 		 * ensures forward progress). We'll be coming back to find
1157 		 * the rest.
1158 		 */
1159 		if (found && need_resched()) {
1160 			spin_unlock(&dentry->d_lock);
1161 			goto out;
1162 		}
1163 
1164 		/*
1165 		 * Descend a level if the d_subdirs list is non-empty.
1166 		 */
1167 		if (!list_empty(&dentry->d_subdirs)) {
1168 			spin_unlock(&this_parent->d_lock);
1169 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1170 			this_parent = dentry;
1171 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1172 			goto repeat;
1173 		}
1174 
1175 		spin_unlock(&dentry->d_lock);
1176 	}
1177 	/*
1178 	 * All done at this level ... ascend and resume the search.
1179 	 */
1180 	if (this_parent != parent) {
1181 		struct dentry *child = this_parent;
1182 		this_parent = try_to_ascend(this_parent, locked, seq);
1183 		if (!this_parent)
1184 			goto rename_retry;
1185 		next = child->d_u.d_child.next;
1186 		goto resume;
1187 	}
1188 out:
1189 	spin_unlock(&this_parent->d_lock);
1190 	if (!locked && read_seqretry(&rename_lock, seq))
1191 		goto rename_retry;
1192 	if (locked)
1193 		write_sequnlock(&rename_lock);
1194 	return found;
1195 
1196 rename_retry:
1197 	if (found)
1198 		return found;
1199 	locked = 1;
1200 	write_seqlock(&rename_lock);
1201 	goto again;
1202 }
1203 
1204 /**
1205  * shrink_dcache_parent - prune dcache
1206  * @parent: parent of entries to prune
1207  *
1208  * Prune the dcache to remove unused children of the parent dentry.
1209  */
1210 
shrink_dcache_parent(struct dentry * parent)1211 void shrink_dcache_parent(struct dentry * parent)
1212 {
1213 	struct super_block *sb = parent->d_sb;
1214 	int found;
1215 
1216 	while ((found = select_parent(parent)) != 0)
1217 		__shrink_dcache_sb(sb, &found, 0);
1218 }
1219 EXPORT_SYMBOL(shrink_dcache_parent);
1220 
1221 /*
1222  * Scan `nr' dentries and return the number which remain.
1223  *
1224  * We need to avoid reentering the filesystem if the caller is performing a
1225  * GFP_NOFS allocation attempt.  One example deadlock is:
1226  *
1227  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1228  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1229  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1230  *
1231  * In this case we return -1 to tell the caller that we baled.
1232  */
shrink_dcache_memory(struct shrinker * shrink,int nr,gfp_t gfp_mask)1233 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1234 {
1235 	if (nr) {
1236 		if (!(gfp_mask & __GFP_FS))
1237 			return -1;
1238 		prune_dcache(nr);
1239 	}
1240 
1241 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1242 }
1243 
1244 static struct shrinker dcache_shrinker = {
1245 	.shrink = shrink_dcache_memory,
1246 	.seeks = DEFAULT_SEEKS,
1247 };
1248 
1249 /**
1250  * d_alloc	-	allocate a dcache entry
1251  * @parent: parent of entry to allocate
1252  * @name: qstr of the name
1253  *
1254  * Allocates a dentry. It returns %NULL if there is insufficient memory
1255  * available. On a success the dentry is returned. The name passed in is
1256  * copied and the copy passed in may be reused after this call.
1257  */
1258 
d_alloc(struct dentry * parent,const struct qstr * name)1259 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1260 {
1261 	struct dentry *dentry;
1262 	char *dname;
1263 
1264 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1265 	if (!dentry)
1266 		return NULL;
1267 
1268 	if (name->len > DNAME_INLINE_LEN-1) {
1269 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1270 		if (!dname) {
1271 			kmem_cache_free(dentry_cache, dentry);
1272 			return NULL;
1273 		}
1274 	} else  {
1275 		dname = dentry->d_iname;
1276 	}
1277 	dentry->d_name.name = dname;
1278 
1279 	dentry->d_name.len = name->len;
1280 	dentry->d_name.hash = name->hash;
1281 	memcpy(dname, name->name, name->len);
1282 	dname[name->len] = 0;
1283 
1284 	dentry->d_count = 1;
1285 	dentry->d_flags = 0;
1286 	spin_lock_init(&dentry->d_lock);
1287 	seqcount_init(&dentry->d_seq);
1288 	dentry->d_inode = NULL;
1289 	dentry->d_parent = NULL;
1290 	dentry->d_sb = NULL;
1291 	dentry->d_op = NULL;
1292 	dentry->d_fsdata = NULL;
1293 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1294 	INIT_LIST_HEAD(&dentry->d_lru);
1295 	INIT_LIST_HEAD(&dentry->d_subdirs);
1296 	INIT_LIST_HEAD(&dentry->d_alias);
1297 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1298 
1299 	if (parent) {
1300 		spin_lock(&parent->d_lock);
1301 		/*
1302 		 * don't need child lock because it is not subject
1303 		 * to concurrency here
1304 		 */
1305 		__dget_dlock(parent);
1306 		dentry->d_parent = parent;
1307 		dentry->d_sb = parent->d_sb;
1308 		d_set_d_op(dentry, dentry->d_sb->s_d_op);
1309 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1310 		spin_unlock(&parent->d_lock);
1311 	}
1312 
1313 	this_cpu_inc(nr_dentry);
1314 
1315 	return dentry;
1316 }
1317 EXPORT_SYMBOL(d_alloc);
1318 
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1319 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1320 {
1321 	struct dentry *dentry = d_alloc(NULL, name);
1322 	if (dentry) {
1323 		dentry->d_sb = sb;
1324 		d_set_d_op(dentry, dentry->d_sb->s_d_op);
1325 		dentry->d_parent = dentry;
1326 		dentry->d_flags |= DCACHE_DISCONNECTED;
1327 	}
1328 	return dentry;
1329 }
1330 EXPORT_SYMBOL(d_alloc_pseudo);
1331 
d_alloc_name(struct dentry * parent,const char * name)1332 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1333 {
1334 	struct qstr q;
1335 
1336 	q.name = name;
1337 	q.len = strlen(name);
1338 	q.hash = full_name_hash(q.name, q.len);
1339 	return d_alloc(parent, &q);
1340 }
1341 EXPORT_SYMBOL(d_alloc_name);
1342 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1343 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1344 {
1345 	WARN_ON_ONCE(dentry->d_op);
1346 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1347 				DCACHE_OP_COMPARE	|
1348 				DCACHE_OP_REVALIDATE	|
1349 				DCACHE_OP_DELETE ));
1350 	dentry->d_op = op;
1351 	if (!op)
1352 		return;
1353 	if (op->d_hash)
1354 		dentry->d_flags |= DCACHE_OP_HASH;
1355 	if (op->d_compare)
1356 		dentry->d_flags |= DCACHE_OP_COMPARE;
1357 	if (op->d_revalidate)
1358 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1359 	if (op->d_delete)
1360 		dentry->d_flags |= DCACHE_OP_DELETE;
1361 
1362 }
1363 EXPORT_SYMBOL(d_set_d_op);
1364 
__d_instantiate(struct dentry * dentry,struct inode * inode)1365 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1366 {
1367 	spin_lock(&dentry->d_lock);
1368 	if (inode) {
1369 		if (unlikely(IS_AUTOMOUNT(inode)))
1370 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1371 		list_add(&dentry->d_alias, &inode->i_dentry);
1372 	}
1373 	dentry->d_inode = inode;
1374 	dentry_rcuwalk_barrier(dentry);
1375 	spin_unlock(&dentry->d_lock);
1376 	fsnotify_d_instantiate(dentry, inode);
1377 }
1378 
1379 /**
1380  * d_instantiate - fill in inode information for a dentry
1381  * @entry: dentry to complete
1382  * @inode: inode to attach to this dentry
1383  *
1384  * Fill in inode information in the entry.
1385  *
1386  * This turns negative dentries into productive full members
1387  * of society.
1388  *
1389  * NOTE! This assumes that the inode count has been incremented
1390  * (or otherwise set) by the caller to indicate that it is now
1391  * in use by the dcache.
1392  */
1393 
d_instantiate(struct dentry * entry,struct inode * inode)1394 void d_instantiate(struct dentry *entry, struct inode * inode)
1395 {
1396 	BUG_ON(!list_empty(&entry->d_alias));
1397 	if (inode)
1398 		spin_lock(&inode->i_lock);
1399 	__d_instantiate(entry, inode);
1400 	if (inode)
1401 		spin_unlock(&inode->i_lock);
1402 	security_d_instantiate(entry, inode);
1403 }
1404 EXPORT_SYMBOL(d_instantiate);
1405 
1406 /**
1407  * d_instantiate_unique - instantiate a non-aliased dentry
1408  * @entry: dentry to instantiate
1409  * @inode: inode to attach to this dentry
1410  *
1411  * Fill in inode information in the entry. On success, it returns NULL.
1412  * If an unhashed alias of "entry" already exists, then we return the
1413  * aliased dentry instead and drop one reference to inode.
1414  *
1415  * Note that in order to avoid conflicts with rename() etc, the caller
1416  * had better be holding the parent directory semaphore.
1417  *
1418  * This also assumes that the inode count has been incremented
1419  * (or otherwise set) by the caller to indicate that it is now
1420  * in use by the dcache.
1421  */
__d_instantiate_unique(struct dentry * entry,struct inode * inode)1422 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1423 					     struct inode *inode)
1424 {
1425 	struct dentry *alias;
1426 	int len = entry->d_name.len;
1427 	const char *name = entry->d_name.name;
1428 	unsigned int hash = entry->d_name.hash;
1429 
1430 	if (!inode) {
1431 		__d_instantiate(entry, NULL);
1432 		return NULL;
1433 	}
1434 
1435 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1436 		struct qstr *qstr = &alias->d_name;
1437 
1438 		/*
1439 		 * Don't need alias->d_lock here, because aliases with
1440 		 * d_parent == entry->d_parent are not subject to name or
1441 		 * parent changes, because the parent inode i_mutex is held.
1442 		 */
1443 		if (qstr->hash != hash)
1444 			continue;
1445 		if (alias->d_parent != entry->d_parent)
1446 			continue;
1447 		if (dentry_cmp(qstr->name, qstr->len, name, len))
1448 			continue;
1449 		__dget(alias);
1450 		return alias;
1451 	}
1452 
1453 	__d_instantiate(entry, inode);
1454 	return NULL;
1455 }
1456 
d_instantiate_unique(struct dentry * entry,struct inode * inode)1457 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1458 {
1459 	struct dentry *result;
1460 
1461 	BUG_ON(!list_empty(&entry->d_alias));
1462 
1463 	if (inode)
1464 		spin_lock(&inode->i_lock);
1465 	result = __d_instantiate_unique(entry, inode);
1466 	if (inode)
1467 		spin_unlock(&inode->i_lock);
1468 
1469 	if (!result) {
1470 		security_d_instantiate(entry, inode);
1471 		return NULL;
1472 	}
1473 
1474 	BUG_ON(!d_unhashed(result));
1475 	iput(inode);
1476 	return result;
1477 }
1478 
1479 EXPORT_SYMBOL(d_instantiate_unique);
1480 
1481 /**
1482  * d_alloc_root - allocate root dentry
1483  * @root_inode: inode to allocate the root for
1484  *
1485  * Allocate a root ("/") dentry for the inode given. The inode is
1486  * instantiated and returned. %NULL is returned if there is insufficient
1487  * memory or the inode passed is %NULL.
1488  */
1489 
d_alloc_root(struct inode * root_inode)1490 struct dentry * d_alloc_root(struct inode * root_inode)
1491 {
1492 	struct dentry *res = NULL;
1493 
1494 	if (root_inode) {
1495 		static const struct qstr name = { .name = "/", .len = 1 };
1496 
1497 		res = d_alloc(NULL, &name);
1498 		if (res) {
1499 			res->d_sb = root_inode->i_sb;
1500 			d_set_d_op(res, res->d_sb->s_d_op);
1501 			res->d_parent = res;
1502 			d_instantiate(res, root_inode);
1503 		}
1504 	}
1505 	return res;
1506 }
1507 EXPORT_SYMBOL(d_alloc_root);
1508 
__d_find_any_alias(struct inode * inode)1509 static struct dentry * __d_find_any_alias(struct inode *inode)
1510 {
1511 	struct dentry *alias;
1512 
1513 	if (list_empty(&inode->i_dentry))
1514 		return NULL;
1515 	alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1516 	__dget(alias);
1517 	return alias;
1518 }
1519 
d_find_any_alias(struct inode * inode)1520 static struct dentry * d_find_any_alias(struct inode *inode)
1521 {
1522 	struct dentry *de;
1523 
1524 	spin_lock(&inode->i_lock);
1525 	de = __d_find_any_alias(inode);
1526 	spin_unlock(&inode->i_lock);
1527 	return de;
1528 }
1529 
1530 
1531 /**
1532  * d_obtain_alias - find or allocate a dentry for a given inode
1533  * @inode: inode to allocate the dentry for
1534  *
1535  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1536  * similar open by handle operations.  The returned dentry may be anonymous,
1537  * or may have a full name (if the inode was already in the cache).
1538  *
1539  * When called on a directory inode, we must ensure that the inode only ever
1540  * has one dentry.  If a dentry is found, that is returned instead of
1541  * allocating a new one.
1542  *
1543  * On successful return, the reference to the inode has been transferred
1544  * to the dentry.  In case of an error the reference on the inode is released.
1545  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1546  * be passed in and will be the error will be propagate to the return value,
1547  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1548  */
d_obtain_alias(struct inode * inode)1549 struct dentry *d_obtain_alias(struct inode *inode)
1550 {
1551 	static const struct qstr anonstring = { .name = "" };
1552 	struct dentry *tmp;
1553 	struct dentry *res;
1554 
1555 	if (!inode)
1556 		return ERR_PTR(-ESTALE);
1557 	if (IS_ERR(inode))
1558 		return ERR_CAST(inode);
1559 
1560 	res = d_find_any_alias(inode);
1561 	if (res)
1562 		goto out_iput;
1563 
1564 	tmp = d_alloc(NULL, &anonstring);
1565 	if (!tmp) {
1566 		res = ERR_PTR(-ENOMEM);
1567 		goto out_iput;
1568 	}
1569 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1570 
1571 
1572 	spin_lock(&inode->i_lock);
1573 	res = __d_find_any_alias(inode);
1574 	if (res) {
1575 		spin_unlock(&inode->i_lock);
1576 		dput(tmp);
1577 		goto out_iput;
1578 	}
1579 
1580 	/* attach a disconnected dentry */
1581 	spin_lock(&tmp->d_lock);
1582 	tmp->d_sb = inode->i_sb;
1583 	d_set_d_op(tmp, tmp->d_sb->s_d_op);
1584 	tmp->d_inode = inode;
1585 	tmp->d_flags |= DCACHE_DISCONNECTED;
1586 	list_add(&tmp->d_alias, &inode->i_dentry);
1587 	hlist_bl_lock(&tmp->d_sb->s_anon);
1588 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1589 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1590 	spin_unlock(&tmp->d_lock);
1591 	spin_unlock(&inode->i_lock);
1592 	security_d_instantiate(tmp, inode);
1593 
1594 	return tmp;
1595 
1596  out_iput:
1597 	if (res && !IS_ERR(res))
1598 		security_d_instantiate(res, inode);
1599 	iput(inode);
1600 	return res;
1601 }
1602 EXPORT_SYMBOL(d_obtain_alias);
1603 
1604 /**
1605  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1606  * @inode:  the inode which may have a disconnected dentry
1607  * @dentry: a negative dentry which we want to point to the inode.
1608  *
1609  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1610  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1611  * and return it, else simply d_add the inode to the dentry and return NULL.
1612  *
1613  * This is needed in the lookup routine of any filesystem that is exportable
1614  * (via knfsd) so that we can build dcache paths to directories effectively.
1615  *
1616  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1617  * is returned.  This matches the expected return value of ->lookup.
1618  *
1619  */
d_splice_alias(struct inode * inode,struct dentry * dentry)1620 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1621 {
1622 	struct dentry *new = NULL;
1623 
1624 	if (inode && S_ISDIR(inode->i_mode)) {
1625 		spin_lock(&inode->i_lock);
1626 		new = __d_find_alias(inode, 1);
1627 		if (new) {
1628 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1629 			spin_unlock(&inode->i_lock);
1630 			security_d_instantiate(new, inode);
1631 			d_move(new, dentry);
1632 			iput(inode);
1633 		} else {
1634 			/* already taking inode->i_lock, so d_add() by hand */
1635 			__d_instantiate(dentry, inode);
1636 			spin_unlock(&inode->i_lock);
1637 			security_d_instantiate(dentry, inode);
1638 			d_rehash(dentry);
1639 		}
1640 	} else
1641 		d_add(dentry, inode);
1642 	return new;
1643 }
1644 EXPORT_SYMBOL(d_splice_alias);
1645 
1646 /**
1647  * d_add_ci - lookup or allocate new dentry with case-exact name
1648  * @inode:  the inode case-insensitive lookup has found
1649  * @dentry: the negative dentry that was passed to the parent's lookup func
1650  * @name:   the case-exact name to be associated with the returned dentry
1651  *
1652  * This is to avoid filling the dcache with case-insensitive names to the
1653  * same inode, only the actual correct case is stored in the dcache for
1654  * case-insensitive filesystems.
1655  *
1656  * For a case-insensitive lookup match and if the the case-exact dentry
1657  * already exists in in the dcache, use it and return it.
1658  *
1659  * If no entry exists with the exact case name, allocate new dentry with
1660  * the exact case, and return the spliced entry.
1661  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)1662 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1663 			struct qstr *name)
1664 {
1665 	int error;
1666 	struct dentry *found;
1667 	struct dentry *new;
1668 
1669 	/*
1670 	 * First check if a dentry matching the name already exists,
1671 	 * if not go ahead and create it now.
1672 	 */
1673 	found = d_hash_and_lookup(dentry->d_parent, name);
1674 	if (!found) {
1675 		new = d_alloc(dentry->d_parent, name);
1676 		if (!new) {
1677 			error = -ENOMEM;
1678 			goto err_out;
1679 		}
1680 
1681 		found = d_splice_alias(inode, new);
1682 		if (found) {
1683 			dput(new);
1684 			return found;
1685 		}
1686 		return new;
1687 	}
1688 
1689 	/*
1690 	 * If a matching dentry exists, and it's not negative use it.
1691 	 *
1692 	 * Decrement the reference count to balance the iget() done
1693 	 * earlier on.
1694 	 */
1695 	if (found->d_inode) {
1696 		if (unlikely(found->d_inode != inode)) {
1697 			/* This can't happen because bad inodes are unhashed. */
1698 			BUG_ON(!is_bad_inode(inode));
1699 			BUG_ON(!is_bad_inode(found->d_inode));
1700 		}
1701 		iput(inode);
1702 		return found;
1703 	}
1704 
1705 	/*
1706 	 * Negative dentry: instantiate it unless the inode is a directory and
1707 	 * already has a dentry.
1708 	 */
1709 	spin_lock(&inode->i_lock);
1710 	if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1711 		__d_instantiate(found, inode);
1712 		spin_unlock(&inode->i_lock);
1713 		security_d_instantiate(found, inode);
1714 		return found;
1715 	}
1716 
1717 	/*
1718 	 * In case a directory already has a (disconnected) entry grab a
1719 	 * reference to it, move it in place and use it.
1720 	 */
1721 	new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1722 	__dget(new);
1723 	spin_unlock(&inode->i_lock);
1724 	security_d_instantiate(found, inode);
1725 	d_move(new, found);
1726 	iput(inode);
1727 	dput(found);
1728 	return new;
1729 
1730 err_out:
1731 	iput(inode);
1732 	return ERR_PTR(error);
1733 }
1734 EXPORT_SYMBOL(d_add_ci);
1735 
1736 /**
1737  * __d_lookup_rcu - search for a dentry (racy, store-free)
1738  * @parent: parent dentry
1739  * @name: qstr of name we wish to find
1740  * @seq: returns d_seq value at the point where the dentry was found
1741  * @inode: returns dentry->d_inode when the inode was found valid.
1742  * Returns: dentry, or NULL
1743  *
1744  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1745  * resolution (store-free path walking) design described in
1746  * Documentation/filesystems/path-lookup.txt.
1747  *
1748  * This is not to be used outside core vfs.
1749  *
1750  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1751  * held, and rcu_read_lock held. The returned dentry must not be stored into
1752  * without taking d_lock and checking d_seq sequence count against @seq
1753  * returned here.
1754  *
1755  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1756  * function.
1757  *
1758  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1759  * the returned dentry, so long as its parent's seqlock is checked after the
1760  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1761  * is formed, giving integrity down the path walk.
1762  */
__d_lookup_rcu(struct dentry * parent,struct qstr * name,unsigned * seq,struct inode ** inode)1763 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1764 				unsigned *seq, struct inode **inode)
1765 {
1766 	unsigned int len = name->len;
1767 	unsigned int hash = name->hash;
1768 	const unsigned char *str = name->name;
1769 	struct hlist_bl_head *b = d_hash(parent, hash);
1770 	struct hlist_bl_node *node;
1771 	struct dentry *dentry;
1772 
1773 	/*
1774 	 * Note: There is significant duplication with __d_lookup_rcu which is
1775 	 * required to prevent single threaded performance regressions
1776 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1777 	 * Keep the two functions in sync.
1778 	 */
1779 
1780 	/*
1781 	 * The hash list is protected using RCU.
1782 	 *
1783 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1784 	 * races with d_move().
1785 	 *
1786 	 * It is possible that concurrent renames can mess up our list
1787 	 * walk here and result in missing our dentry, resulting in the
1788 	 * false-negative result. d_lookup() protects against concurrent
1789 	 * renames using rename_lock seqlock.
1790 	 *
1791 	 * See Documentation/filesystems/path-lookup.txt for more details.
1792 	 */
1793 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1794 		struct inode *i;
1795 		const char *tname;
1796 		int tlen;
1797 
1798 		if (dentry->d_name.hash != hash)
1799 			continue;
1800 
1801 seqretry:
1802 		*seq = read_seqcount_begin(&dentry->d_seq);
1803 		if (dentry->d_parent != parent)
1804 			continue;
1805 		if (d_unhashed(dentry))
1806 			continue;
1807 		tlen = dentry->d_name.len;
1808 		tname = dentry->d_name.name;
1809 		i = dentry->d_inode;
1810 		prefetch(tname);
1811 		if (i)
1812 			prefetch(i);
1813 		/*
1814 		 * This seqcount check is required to ensure name and
1815 		 * len are loaded atomically, so as not to walk off the
1816 		 * edge of memory when walking. If we could load this
1817 		 * atomically some other way, we could drop this check.
1818 		 */
1819 		if (read_seqcount_retry(&dentry->d_seq, *seq))
1820 			goto seqretry;
1821 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1822 			if (parent->d_op->d_compare(parent, *inode,
1823 						dentry, i,
1824 						tlen, tname, name))
1825 				continue;
1826 		} else {
1827 			if (dentry_cmp(tname, tlen, str, len))
1828 				continue;
1829 		}
1830 		/*
1831 		 * No extra seqcount check is required after the name
1832 		 * compare. The caller must perform a seqcount check in
1833 		 * order to do anything useful with the returned dentry
1834 		 * anyway.
1835 		 */
1836 		*inode = i;
1837 		return dentry;
1838 	}
1839 	return NULL;
1840 }
1841 
1842 /**
1843  * d_lookup - search for a dentry
1844  * @parent: parent dentry
1845  * @name: qstr of name we wish to find
1846  * Returns: dentry, or NULL
1847  *
1848  * d_lookup searches the children of the parent dentry for the name in
1849  * question. If the dentry is found its reference count is incremented and the
1850  * dentry is returned. The caller must use dput to free the entry when it has
1851  * finished using it. %NULL is returned if the dentry does not exist.
1852  */
d_lookup(struct dentry * parent,struct qstr * name)1853 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1854 {
1855 	struct dentry *dentry;
1856 	unsigned seq;
1857 
1858         do {
1859                 seq = read_seqbegin(&rename_lock);
1860                 dentry = __d_lookup(parent, name);
1861                 if (dentry)
1862 			break;
1863 	} while (read_seqretry(&rename_lock, seq));
1864 	return dentry;
1865 }
1866 EXPORT_SYMBOL(d_lookup);
1867 
1868 /**
1869  * __d_lookup - search for a dentry (racy)
1870  * @parent: parent dentry
1871  * @name: qstr of name we wish to find
1872  * Returns: dentry, or NULL
1873  *
1874  * __d_lookup is like d_lookup, however it may (rarely) return a
1875  * false-negative result due to unrelated rename activity.
1876  *
1877  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1878  * however it must be used carefully, eg. with a following d_lookup in
1879  * the case of failure.
1880  *
1881  * __d_lookup callers must be commented.
1882  */
__d_lookup(struct dentry * parent,struct qstr * name)1883 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1884 {
1885 	unsigned int len = name->len;
1886 	unsigned int hash = name->hash;
1887 	const unsigned char *str = name->name;
1888 	struct hlist_bl_head *b = d_hash(parent, hash);
1889 	struct hlist_bl_node *node;
1890 	struct dentry *found = NULL;
1891 	struct dentry *dentry;
1892 
1893 	/*
1894 	 * Note: There is significant duplication with __d_lookup_rcu which is
1895 	 * required to prevent single threaded performance regressions
1896 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1897 	 * Keep the two functions in sync.
1898 	 */
1899 
1900 	/*
1901 	 * The hash list is protected using RCU.
1902 	 *
1903 	 * Take d_lock when comparing a candidate dentry, to avoid races
1904 	 * with d_move().
1905 	 *
1906 	 * It is possible that concurrent renames can mess up our list
1907 	 * walk here and result in missing our dentry, resulting in the
1908 	 * false-negative result. d_lookup() protects against concurrent
1909 	 * renames using rename_lock seqlock.
1910 	 *
1911 	 * See Documentation/filesystems/path-lookup.txt for more details.
1912 	 */
1913 	rcu_read_lock();
1914 
1915 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1916 		const char *tname;
1917 		int tlen;
1918 
1919 		if (dentry->d_name.hash != hash)
1920 			continue;
1921 
1922 		spin_lock(&dentry->d_lock);
1923 		if (dentry->d_parent != parent)
1924 			goto next;
1925 		if (d_unhashed(dentry))
1926 			goto next;
1927 
1928 		/*
1929 		 * It is safe to compare names since d_move() cannot
1930 		 * change the qstr (protected by d_lock).
1931 		 */
1932 		tlen = dentry->d_name.len;
1933 		tname = dentry->d_name.name;
1934 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1935 			if (parent->d_op->d_compare(parent, parent->d_inode,
1936 						dentry, dentry->d_inode,
1937 						tlen, tname, name))
1938 				goto next;
1939 		} else {
1940 			if (dentry_cmp(tname, tlen, str, len))
1941 				goto next;
1942 		}
1943 
1944 		dentry->d_count++;
1945 		found = dentry;
1946 		spin_unlock(&dentry->d_lock);
1947 		break;
1948 next:
1949 		spin_unlock(&dentry->d_lock);
1950  	}
1951  	rcu_read_unlock();
1952 
1953  	return found;
1954 }
1955 
1956 /**
1957  * d_hash_and_lookup - hash the qstr then search for a dentry
1958  * @dir: Directory to search in
1959  * @name: qstr of name we wish to find
1960  *
1961  * On hash failure or on lookup failure NULL is returned.
1962  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)1963 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1964 {
1965 	struct dentry *dentry = NULL;
1966 
1967 	/*
1968 	 * Check for a fs-specific hash function. Note that we must
1969 	 * calculate the standard hash first, as the d_op->d_hash()
1970 	 * routine may choose to leave the hash value unchanged.
1971 	 */
1972 	name->hash = full_name_hash(name->name, name->len);
1973 	if (dir->d_flags & DCACHE_OP_HASH) {
1974 		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1975 			goto out;
1976 	}
1977 	dentry = d_lookup(dir, name);
1978 out:
1979 	return dentry;
1980 }
1981 
1982 /**
1983  * d_validate - verify dentry provided from insecure source (deprecated)
1984  * @dentry: The dentry alleged to be valid child of @dparent
1985  * @dparent: The parent dentry (known to be valid)
1986  *
1987  * An insecure source has sent us a dentry, here we verify it and dget() it.
1988  * This is used by ncpfs in its readdir implementation.
1989  * Zero is returned in the dentry is invalid.
1990  *
1991  * This function is slow for big directories, and deprecated, do not use it.
1992  */
d_validate(struct dentry * dentry,struct dentry * dparent)1993 int d_validate(struct dentry *dentry, struct dentry *dparent)
1994 {
1995 	struct dentry *child;
1996 
1997 	spin_lock(&dparent->d_lock);
1998 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1999 		if (dentry == child) {
2000 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2001 			__dget_dlock(dentry);
2002 			spin_unlock(&dentry->d_lock);
2003 			spin_unlock(&dparent->d_lock);
2004 			return 1;
2005 		}
2006 	}
2007 	spin_unlock(&dparent->d_lock);
2008 
2009 	return 0;
2010 }
2011 EXPORT_SYMBOL(d_validate);
2012 
2013 /*
2014  * When a file is deleted, we have two options:
2015  * - turn this dentry into a negative dentry
2016  * - unhash this dentry and free it.
2017  *
2018  * Usually, we want to just turn this into
2019  * a negative dentry, but if anybody else is
2020  * currently using the dentry or the inode
2021  * we can't do that and we fall back on removing
2022  * it from the hash queues and waiting for
2023  * it to be deleted later when it has no users
2024  */
2025 
2026 /**
2027  * d_delete - delete a dentry
2028  * @dentry: The dentry to delete
2029  *
2030  * Turn the dentry into a negative dentry if possible, otherwise
2031  * remove it from the hash queues so it can be deleted later
2032  */
2033 
d_delete(struct dentry * dentry)2034 void d_delete(struct dentry * dentry)
2035 {
2036 	struct inode *inode;
2037 	int isdir = 0;
2038 	/*
2039 	 * Are we the only user?
2040 	 */
2041 again:
2042 	spin_lock(&dentry->d_lock);
2043 	inode = dentry->d_inode;
2044 	isdir = S_ISDIR(inode->i_mode);
2045 	if (dentry->d_count == 1) {
2046 		if (inode && !spin_trylock(&inode->i_lock)) {
2047 			spin_unlock(&dentry->d_lock);
2048 			cpu_relax();
2049 			goto again;
2050 		}
2051 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2052 		dentry_unlink_inode(dentry);
2053 		fsnotify_nameremove(dentry, isdir);
2054 		return;
2055 	}
2056 
2057 	if (!d_unhashed(dentry))
2058 		__d_drop(dentry);
2059 
2060 	spin_unlock(&dentry->d_lock);
2061 
2062 	fsnotify_nameremove(dentry, isdir);
2063 }
2064 EXPORT_SYMBOL(d_delete);
2065 
__d_rehash(struct dentry * entry,struct hlist_bl_head * b)2066 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2067 {
2068 	BUG_ON(!d_unhashed(entry));
2069 	hlist_bl_lock(b);
2070 	entry->d_flags |= DCACHE_RCUACCESS;
2071 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2072 	hlist_bl_unlock(b);
2073 }
2074 
_d_rehash(struct dentry * entry)2075 static void _d_rehash(struct dentry * entry)
2076 {
2077 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2078 }
2079 
2080 /**
2081  * d_rehash	- add an entry back to the hash
2082  * @entry: dentry to add to the hash
2083  *
2084  * Adds a dentry to the hash according to its name.
2085  */
2086 
d_rehash(struct dentry * entry)2087 void d_rehash(struct dentry * entry)
2088 {
2089 	spin_lock(&entry->d_lock);
2090 	_d_rehash(entry);
2091 	spin_unlock(&entry->d_lock);
2092 }
2093 EXPORT_SYMBOL(d_rehash);
2094 
2095 /**
2096  * dentry_update_name_case - update case insensitive dentry with a new name
2097  * @dentry: dentry to be updated
2098  * @name: new name
2099  *
2100  * Update a case insensitive dentry with new case of name.
2101  *
2102  * dentry must have been returned by d_lookup with name @name. Old and new
2103  * name lengths must match (ie. no d_compare which allows mismatched name
2104  * lengths).
2105  *
2106  * Parent inode i_mutex must be held over d_lookup and into this call (to
2107  * keep renames and concurrent inserts, and readdir(2) away).
2108  */
dentry_update_name_case(struct dentry * dentry,struct qstr * name)2109 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2110 {
2111 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2112 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2113 
2114 	spin_lock(&dentry->d_lock);
2115 	write_seqcount_begin(&dentry->d_seq);
2116 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2117 	write_seqcount_end(&dentry->d_seq);
2118 	spin_unlock(&dentry->d_lock);
2119 }
2120 EXPORT_SYMBOL(dentry_update_name_case);
2121 
switch_names(struct dentry * dentry,struct dentry * target)2122 static void switch_names(struct dentry *dentry, struct dentry *target)
2123 {
2124 	if (dname_external(target)) {
2125 		if (dname_external(dentry)) {
2126 			/*
2127 			 * Both external: swap the pointers
2128 			 */
2129 			swap(target->d_name.name, dentry->d_name.name);
2130 		} else {
2131 			/*
2132 			 * dentry:internal, target:external.  Steal target's
2133 			 * storage and make target internal.
2134 			 */
2135 			memcpy(target->d_iname, dentry->d_name.name,
2136 					dentry->d_name.len + 1);
2137 			dentry->d_name.name = target->d_name.name;
2138 			target->d_name.name = target->d_iname;
2139 		}
2140 	} else {
2141 		if (dname_external(dentry)) {
2142 			/*
2143 			 * dentry:external, target:internal.  Give dentry's
2144 			 * storage to target and make dentry internal
2145 			 */
2146 			memcpy(dentry->d_iname, target->d_name.name,
2147 					target->d_name.len + 1);
2148 			target->d_name.name = dentry->d_name.name;
2149 			dentry->d_name.name = dentry->d_iname;
2150 		} else {
2151 			/*
2152 			 * Both are internal.  Just copy target to dentry
2153 			 */
2154 			memcpy(dentry->d_iname, target->d_name.name,
2155 					target->d_name.len + 1);
2156 			dentry->d_name.len = target->d_name.len;
2157 			return;
2158 		}
2159 	}
2160 	swap(dentry->d_name.len, target->d_name.len);
2161 }
2162 
dentry_lock_for_move(struct dentry * dentry,struct dentry * target)2163 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2164 {
2165 	/*
2166 	 * XXXX: do we really need to take target->d_lock?
2167 	 */
2168 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2169 		spin_lock(&target->d_parent->d_lock);
2170 	else {
2171 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2172 			spin_lock(&dentry->d_parent->d_lock);
2173 			spin_lock_nested(&target->d_parent->d_lock,
2174 						DENTRY_D_LOCK_NESTED);
2175 		} else {
2176 			spin_lock(&target->d_parent->d_lock);
2177 			spin_lock_nested(&dentry->d_parent->d_lock,
2178 						DENTRY_D_LOCK_NESTED);
2179 		}
2180 	}
2181 	if (target < dentry) {
2182 		spin_lock_nested(&target->d_lock, 2);
2183 		spin_lock_nested(&dentry->d_lock, 3);
2184 	} else {
2185 		spin_lock_nested(&dentry->d_lock, 2);
2186 		spin_lock_nested(&target->d_lock, 3);
2187 	}
2188 }
2189 
dentry_unlock_parents_for_move(struct dentry * dentry,struct dentry * target)2190 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2191 					struct dentry *target)
2192 {
2193 	if (target->d_parent != dentry->d_parent)
2194 		spin_unlock(&dentry->d_parent->d_lock);
2195 	if (target->d_parent != target)
2196 		spin_unlock(&target->d_parent->d_lock);
2197 }
2198 
2199 /*
2200  * When switching names, the actual string doesn't strictly have to
2201  * be preserved in the target - because we're dropping the target
2202  * anyway. As such, we can just do a simple memcpy() to copy over
2203  * the new name before we switch.
2204  *
2205  * Note that we have to be a lot more careful about getting the hash
2206  * switched - we have to switch the hash value properly even if it
2207  * then no longer matches the actual (corrupted) string of the target.
2208  * The hash value has to match the hash queue that the dentry is on..
2209  */
2210 /*
2211  * d_move - move a dentry
2212  * @dentry: entry to move
2213  * @target: new dentry
2214  *
2215  * Update the dcache to reflect the move of a file name. Negative
2216  * dcache entries should not be moved in this way.
2217  */
d_move(struct dentry * dentry,struct dentry * target)2218 void d_move(struct dentry * dentry, struct dentry * target)
2219 {
2220 	if (!dentry->d_inode)
2221 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2222 
2223 	BUG_ON(d_ancestor(dentry, target));
2224 	BUG_ON(d_ancestor(target, dentry));
2225 
2226 	write_seqlock(&rename_lock);
2227 
2228 	dentry_lock_for_move(dentry, target);
2229 
2230 	write_seqcount_begin(&dentry->d_seq);
2231 	write_seqcount_begin(&target->d_seq);
2232 
2233 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2234 
2235 	/*
2236 	 * Move the dentry to the target hash queue. Don't bother checking
2237 	 * for the same hash queue because of how unlikely it is.
2238 	 */
2239 	__d_drop(dentry);
2240 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2241 
2242 	/* Unhash the target: dput() will then get rid of it */
2243 	__d_drop(target);
2244 
2245 	list_del(&dentry->d_u.d_child);
2246 	list_del(&target->d_u.d_child);
2247 
2248 	/* Switch the names.. */
2249 	switch_names(dentry, target);
2250 	swap(dentry->d_name.hash, target->d_name.hash);
2251 
2252 	/* ... and switch the parents */
2253 	if (IS_ROOT(dentry)) {
2254 		dentry->d_parent = target->d_parent;
2255 		target->d_parent = target;
2256 		INIT_LIST_HEAD(&target->d_u.d_child);
2257 	} else {
2258 		swap(dentry->d_parent, target->d_parent);
2259 
2260 		/* And add them back to the (new) parent lists */
2261 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2262 	}
2263 
2264 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2265 
2266 	write_seqcount_end(&target->d_seq);
2267 	write_seqcount_end(&dentry->d_seq);
2268 
2269 	dentry_unlock_parents_for_move(dentry, target);
2270 	spin_unlock(&target->d_lock);
2271 	fsnotify_d_move(dentry);
2272 	spin_unlock(&dentry->d_lock);
2273 	write_sequnlock(&rename_lock);
2274 }
2275 EXPORT_SYMBOL(d_move);
2276 
2277 /**
2278  * d_ancestor - search for an ancestor
2279  * @p1: ancestor dentry
2280  * @p2: child dentry
2281  *
2282  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2283  * an ancestor of p2, else NULL.
2284  */
d_ancestor(struct dentry * p1,struct dentry * p2)2285 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2286 {
2287 	struct dentry *p;
2288 
2289 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2290 		if (p->d_parent == p1)
2291 			return p;
2292 	}
2293 	return NULL;
2294 }
2295 
2296 /*
2297  * This helper attempts to cope with remotely renamed directories
2298  *
2299  * It assumes that the caller is already holding
2300  * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2301  *
2302  * Note: If ever the locking in lock_rename() changes, then please
2303  * remember to update this too...
2304  */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2305 static struct dentry *__d_unalias(struct inode *inode,
2306 		struct dentry *dentry, struct dentry *alias)
2307 {
2308 	struct mutex *m1 = NULL, *m2 = NULL;
2309 	struct dentry *ret;
2310 
2311 	/* If alias and dentry share a parent, then no extra locks required */
2312 	if (alias->d_parent == dentry->d_parent)
2313 		goto out_unalias;
2314 
2315 	/* Check for loops */
2316 	ret = ERR_PTR(-ELOOP);
2317 	if (d_ancestor(alias, dentry))
2318 		goto out_err;
2319 
2320 	/* See lock_rename() */
2321 	ret = ERR_PTR(-EBUSY);
2322 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2323 		goto out_err;
2324 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2325 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2326 		goto out_err;
2327 	m2 = &alias->d_parent->d_inode->i_mutex;
2328 out_unalias:
2329 	d_move(alias, dentry);
2330 	ret = alias;
2331 out_err:
2332 	spin_unlock(&inode->i_lock);
2333 	if (m2)
2334 		mutex_unlock(m2);
2335 	if (m1)
2336 		mutex_unlock(m1);
2337 	return ret;
2338 }
2339 
2340 /*
2341  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2342  * named dentry in place of the dentry to be replaced.
2343  * returns with anon->d_lock held!
2344  */
__d_materialise_dentry(struct dentry * dentry,struct dentry * anon)2345 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2346 {
2347 	struct dentry *dparent, *aparent;
2348 
2349 	dentry_lock_for_move(anon, dentry);
2350 
2351 	write_seqcount_begin(&dentry->d_seq);
2352 	write_seqcount_begin(&anon->d_seq);
2353 
2354 	dparent = dentry->d_parent;
2355 	aparent = anon->d_parent;
2356 
2357 	switch_names(dentry, anon);
2358 	swap(dentry->d_name.hash, anon->d_name.hash);
2359 
2360 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2361 	list_del(&dentry->d_u.d_child);
2362 	if (!IS_ROOT(dentry))
2363 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2364 	else
2365 		INIT_LIST_HEAD(&dentry->d_u.d_child);
2366 
2367 	anon->d_parent = (dparent == dentry) ? anon : dparent;
2368 	list_del(&anon->d_u.d_child);
2369 	if (!IS_ROOT(anon))
2370 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2371 	else
2372 		INIT_LIST_HEAD(&anon->d_u.d_child);
2373 
2374 	write_seqcount_end(&dentry->d_seq);
2375 	write_seqcount_end(&anon->d_seq);
2376 
2377 	dentry_unlock_parents_for_move(anon, dentry);
2378 	spin_unlock(&dentry->d_lock);
2379 
2380 	/* anon->d_lock still locked, returns locked */
2381 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2382 }
2383 
2384 /**
2385  * d_materialise_unique - introduce an inode into the tree
2386  * @dentry: candidate dentry
2387  * @inode: inode to bind to the dentry, to which aliases may be attached
2388  *
2389  * Introduces an dentry into the tree, substituting an extant disconnected
2390  * root directory alias in its place if there is one
2391  */
d_materialise_unique(struct dentry * dentry,struct inode * inode)2392 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2393 {
2394 	struct dentry *actual;
2395 
2396 	BUG_ON(!d_unhashed(dentry));
2397 
2398 	if (!inode) {
2399 		actual = dentry;
2400 		__d_instantiate(dentry, NULL);
2401 		d_rehash(actual);
2402 		goto out_nolock;
2403 	}
2404 
2405 	spin_lock(&inode->i_lock);
2406 
2407 	if (S_ISDIR(inode->i_mode)) {
2408 		struct dentry *alias;
2409 
2410 		/* Does an aliased dentry already exist? */
2411 		alias = __d_find_alias(inode, 0);
2412 		if (alias) {
2413 			actual = alias;
2414 			/* Is this an anonymous mountpoint that we could splice
2415 			 * into our tree? */
2416 			if (IS_ROOT(alias)) {
2417 				__d_materialise_dentry(dentry, alias);
2418 				__d_drop(alias);
2419 				goto found;
2420 			}
2421 			/* Nope, but we must(!) avoid directory aliasing */
2422 			actual = __d_unalias(inode, dentry, alias);
2423 			if (IS_ERR(actual))
2424 				dput(alias);
2425 			goto out_nolock;
2426 		}
2427 	}
2428 
2429 	/* Add a unique reference */
2430 	actual = __d_instantiate_unique(dentry, inode);
2431 	if (!actual)
2432 		actual = dentry;
2433 	else
2434 		BUG_ON(!d_unhashed(actual));
2435 
2436 	spin_lock(&actual->d_lock);
2437 found:
2438 	_d_rehash(actual);
2439 	spin_unlock(&actual->d_lock);
2440 	spin_unlock(&inode->i_lock);
2441 out_nolock:
2442 	if (actual == dentry) {
2443 		security_d_instantiate(dentry, inode);
2444 		return NULL;
2445 	}
2446 
2447 	iput(inode);
2448 	return actual;
2449 }
2450 EXPORT_SYMBOL_GPL(d_materialise_unique);
2451 
prepend(char ** buffer,int * buflen,const char * str,int namelen)2452 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2453 {
2454 	*buflen -= namelen;
2455 	if (*buflen < 0)
2456 		return -ENAMETOOLONG;
2457 	*buffer -= namelen;
2458 	memcpy(*buffer, str, namelen);
2459 	return 0;
2460 }
2461 
prepend_name(char ** buffer,int * buflen,struct qstr * name)2462 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2463 {
2464 	return prepend(buffer, buflen, name->name, name->len);
2465 }
2466 
2467 /**
2468  * prepend_path - Prepend path string to a buffer
2469  * @path: the dentry/vfsmount to report
2470  * @root: root vfsmnt/dentry (may be modified by this function)
2471  * @buffer: pointer to the end of the buffer
2472  * @buflen: pointer to buffer length
2473  *
2474  * Caller holds the rename_lock.
2475  *
2476  * If path is not reachable from the supplied root, then the value of
2477  * root is changed (without modifying refcounts).
2478  */
prepend_path(const struct path * path,struct path * root,char ** buffer,int * buflen)2479 static int prepend_path(const struct path *path, struct path *root,
2480 			char **buffer, int *buflen)
2481 {
2482 	struct dentry *dentry = path->dentry;
2483 	struct vfsmount *vfsmnt = path->mnt;
2484 	bool slash = false;
2485 	int error = 0;
2486 
2487 	br_read_lock(vfsmount_lock);
2488 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2489 		struct dentry * parent;
2490 
2491 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2492 			/* Global root? */
2493 			if (vfsmnt->mnt_parent == vfsmnt) {
2494 				goto global_root;
2495 			}
2496 			dentry = vfsmnt->mnt_mountpoint;
2497 			vfsmnt = vfsmnt->mnt_parent;
2498 			continue;
2499 		}
2500 		parent = dentry->d_parent;
2501 		prefetch(parent);
2502 		spin_lock(&dentry->d_lock);
2503 		error = prepend_name(buffer, buflen, &dentry->d_name);
2504 		spin_unlock(&dentry->d_lock);
2505 		if (!error)
2506 			error = prepend(buffer, buflen, "/", 1);
2507 		if (error)
2508 			break;
2509 
2510 		slash = true;
2511 		dentry = parent;
2512 	}
2513 
2514 out:
2515 	if (!error && !slash)
2516 		error = prepend(buffer, buflen, "/", 1);
2517 
2518 	br_read_unlock(vfsmount_lock);
2519 	return error;
2520 
2521 global_root:
2522 	/*
2523 	 * Filesystems needing to implement special "root names"
2524 	 * should do so with ->d_dname()
2525 	 */
2526 	if (IS_ROOT(dentry) &&
2527 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2528 		WARN(1, "Root dentry has weird name <%.*s>\n",
2529 		     (int) dentry->d_name.len, dentry->d_name.name);
2530 	}
2531 	root->mnt = vfsmnt;
2532 	root->dentry = dentry;
2533 	goto out;
2534 }
2535 
2536 /**
2537  * __d_path - return the path of a dentry
2538  * @path: the dentry/vfsmount to report
2539  * @root: root vfsmnt/dentry (may be modified by this function)
2540  * @buf: buffer to return value in
2541  * @buflen: buffer length
2542  *
2543  * Convert a dentry into an ASCII path name.
2544  *
2545  * Returns a pointer into the buffer or an error code if the
2546  * path was too long.
2547  *
2548  * "buflen" should be positive.
2549  *
2550  * If path is not reachable from the supplied root, then the value of
2551  * root is changed (without modifying refcounts).
2552  */
__d_path(const struct path * path,struct path * root,char * buf,int buflen)2553 char *__d_path(const struct path *path, struct path *root,
2554 	       char *buf, int buflen)
2555 {
2556 	char *res = buf + buflen;
2557 	int error;
2558 
2559 	prepend(&res, &buflen, "\0", 1);
2560 	write_seqlock(&rename_lock);
2561 	error = prepend_path(path, root, &res, &buflen);
2562 	write_sequnlock(&rename_lock);
2563 
2564 	if (error)
2565 		return ERR_PTR(error);
2566 	return res;
2567 }
2568 
2569 /*
2570  * same as __d_path but appends "(deleted)" for unlinked files.
2571  */
path_with_deleted(const struct path * path,struct path * root,char ** buf,int * buflen)2572 static int path_with_deleted(const struct path *path, struct path *root,
2573 				 char **buf, int *buflen)
2574 {
2575 	prepend(buf, buflen, "\0", 1);
2576 	if (d_unlinked(path->dentry)) {
2577 		int error = prepend(buf, buflen, " (deleted)", 10);
2578 		if (error)
2579 			return error;
2580 	}
2581 
2582 	return prepend_path(path, root, buf, buflen);
2583 }
2584 
prepend_unreachable(char ** buffer,int * buflen)2585 static int prepend_unreachable(char **buffer, int *buflen)
2586 {
2587 	return prepend(buffer, buflen, "(unreachable)", 13);
2588 }
2589 
2590 /**
2591  * d_path - return the path of a dentry
2592  * @path: path to report
2593  * @buf: buffer to return value in
2594  * @buflen: buffer length
2595  *
2596  * Convert a dentry into an ASCII path name. If the entry has been deleted
2597  * the string " (deleted)" is appended. Note that this is ambiguous.
2598  *
2599  * Returns a pointer into the buffer or an error code if the path was
2600  * too long. Note: Callers should use the returned pointer, not the passed
2601  * in buffer, to use the name! The implementation often starts at an offset
2602  * into the buffer, and may leave 0 bytes at the start.
2603  *
2604  * "buflen" should be positive.
2605  */
d_path(const struct path * path,char * buf,int buflen)2606 char *d_path(const struct path *path, char *buf, int buflen)
2607 {
2608 	char *res = buf + buflen;
2609 	struct path root;
2610 	struct path tmp;
2611 	int error;
2612 
2613 	/*
2614 	 * We have various synthetic filesystems that never get mounted.  On
2615 	 * these filesystems dentries are never used for lookup purposes, and
2616 	 * thus don't need to be hashed.  They also don't need a name until a
2617 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2618 	 * below allows us to generate a name for these objects on demand:
2619 	 */
2620 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2621 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2622 
2623 	get_fs_root(current->fs, &root);
2624 	write_seqlock(&rename_lock);
2625 	tmp = root;
2626 	error = path_with_deleted(path, &tmp, &res, &buflen);
2627 	if (error)
2628 		res = ERR_PTR(error);
2629 	write_sequnlock(&rename_lock);
2630 	path_put(&root);
2631 	return res;
2632 }
2633 EXPORT_SYMBOL(d_path);
2634 
2635 /**
2636  * d_path_with_unreachable - return the path of a dentry
2637  * @path: path to report
2638  * @buf: buffer to return value in
2639  * @buflen: buffer length
2640  *
2641  * The difference from d_path() is that this prepends "(unreachable)"
2642  * to paths which are unreachable from the current process' root.
2643  */
d_path_with_unreachable(const struct path * path,char * buf,int buflen)2644 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2645 {
2646 	char *res = buf + buflen;
2647 	struct path root;
2648 	struct path tmp;
2649 	int error;
2650 
2651 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2652 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2653 
2654 	get_fs_root(current->fs, &root);
2655 	write_seqlock(&rename_lock);
2656 	tmp = root;
2657 	error = path_with_deleted(path, &tmp, &res, &buflen);
2658 	if (!error && !path_equal(&tmp, &root))
2659 		error = prepend_unreachable(&res, &buflen);
2660 	write_sequnlock(&rename_lock);
2661 	path_put(&root);
2662 	if (error)
2663 		res =  ERR_PTR(error);
2664 
2665 	return res;
2666 }
2667 
2668 /*
2669  * Helper function for dentry_operations.d_dname() members
2670  */
dynamic_dname(struct dentry * dentry,char * buffer,int buflen,const char * fmt,...)2671 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2672 			const char *fmt, ...)
2673 {
2674 	va_list args;
2675 	char temp[64];
2676 	int sz;
2677 
2678 	va_start(args, fmt);
2679 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2680 	va_end(args);
2681 
2682 	if (sz > sizeof(temp) || sz > buflen)
2683 		return ERR_PTR(-ENAMETOOLONG);
2684 
2685 	buffer += buflen - sz;
2686 	return memcpy(buffer, temp, sz);
2687 }
2688 
2689 /*
2690  * Write full pathname from the root of the filesystem into the buffer.
2691  */
__dentry_path(struct dentry * dentry,char * buf,int buflen)2692 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2693 {
2694 	char *end = buf + buflen;
2695 	char *retval;
2696 
2697 	prepend(&end, &buflen, "\0", 1);
2698 	if (buflen < 1)
2699 		goto Elong;
2700 	/* Get '/' right */
2701 	retval = end-1;
2702 	*retval = '/';
2703 
2704 	while (!IS_ROOT(dentry)) {
2705 		struct dentry *parent = dentry->d_parent;
2706 		int error;
2707 
2708 		prefetch(parent);
2709 		spin_lock(&dentry->d_lock);
2710 		error = prepend_name(&end, &buflen, &dentry->d_name);
2711 		spin_unlock(&dentry->d_lock);
2712 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2713 			goto Elong;
2714 
2715 		retval = end;
2716 		dentry = parent;
2717 	}
2718 	return retval;
2719 Elong:
2720 	return ERR_PTR(-ENAMETOOLONG);
2721 }
2722 
dentry_path_raw(struct dentry * dentry,char * buf,int buflen)2723 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2724 {
2725 	char *retval;
2726 
2727 	write_seqlock(&rename_lock);
2728 	retval = __dentry_path(dentry, buf, buflen);
2729 	write_sequnlock(&rename_lock);
2730 
2731 	return retval;
2732 }
2733 EXPORT_SYMBOL(dentry_path_raw);
2734 
dentry_path(struct dentry * dentry,char * buf,int buflen)2735 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2736 {
2737 	char *p = NULL;
2738 	char *retval;
2739 
2740 	write_seqlock(&rename_lock);
2741 	if (d_unlinked(dentry)) {
2742 		p = buf + buflen;
2743 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2744 			goto Elong;
2745 		buflen++;
2746 	}
2747 	retval = __dentry_path(dentry, buf, buflen);
2748 	write_sequnlock(&rename_lock);
2749 	if (!IS_ERR(retval) && p)
2750 		*p = '/';	/* restore '/' overriden with '\0' */
2751 	return retval;
2752 Elong:
2753 	return ERR_PTR(-ENAMETOOLONG);
2754 }
2755 
2756 /*
2757  * NOTE! The user-level library version returns a
2758  * character pointer. The kernel system call just
2759  * returns the length of the buffer filled (which
2760  * includes the ending '\0' character), or a negative
2761  * error value. So libc would do something like
2762  *
2763  *	char *getcwd(char * buf, size_t size)
2764  *	{
2765  *		int retval;
2766  *
2767  *		retval = sys_getcwd(buf, size);
2768  *		if (retval >= 0)
2769  *			return buf;
2770  *		errno = -retval;
2771  *		return NULL;
2772  *	}
2773  */
SYSCALL_DEFINE2(getcwd,char __user *,buf,unsigned long,size)2774 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2775 {
2776 	int error;
2777 	struct path pwd, root;
2778 	char *page = (char *) __get_free_page(GFP_USER);
2779 
2780 	if (!page)
2781 		return -ENOMEM;
2782 
2783 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2784 
2785 	error = -ENOENT;
2786 	write_seqlock(&rename_lock);
2787 	if (!d_unlinked(pwd.dentry)) {
2788 		unsigned long len;
2789 		struct path tmp = root;
2790 		char *cwd = page + PAGE_SIZE;
2791 		int buflen = PAGE_SIZE;
2792 
2793 		prepend(&cwd, &buflen, "\0", 1);
2794 		error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2795 		write_sequnlock(&rename_lock);
2796 
2797 		if (error)
2798 			goto out;
2799 
2800 		/* Unreachable from current root */
2801 		if (!path_equal(&tmp, &root)) {
2802 			error = prepend_unreachable(&cwd, &buflen);
2803 			if (error)
2804 				goto out;
2805 		}
2806 
2807 		error = -ERANGE;
2808 		len = PAGE_SIZE + page - cwd;
2809 		if (len <= size) {
2810 			error = len;
2811 			if (copy_to_user(buf, cwd, len))
2812 				error = -EFAULT;
2813 		}
2814 	} else {
2815 		write_sequnlock(&rename_lock);
2816 	}
2817 
2818 out:
2819 	path_put(&pwd);
2820 	path_put(&root);
2821 	free_page((unsigned long) page);
2822 	return error;
2823 }
2824 
2825 /*
2826  * Test whether new_dentry is a subdirectory of old_dentry.
2827  *
2828  * Trivially implemented using the dcache structure
2829  */
2830 
2831 /**
2832  * is_subdir - is new dentry a subdirectory of old_dentry
2833  * @new_dentry: new dentry
2834  * @old_dentry: old dentry
2835  *
2836  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2837  * Returns 0 otherwise.
2838  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2839  */
2840 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)2841 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2842 {
2843 	int result;
2844 	unsigned seq;
2845 
2846 	if (new_dentry == old_dentry)
2847 		return 1;
2848 
2849 	do {
2850 		/* for restarting inner loop in case of seq retry */
2851 		seq = read_seqbegin(&rename_lock);
2852 		/*
2853 		 * Need rcu_readlock to protect against the d_parent trashing
2854 		 * due to d_move
2855 		 */
2856 		rcu_read_lock();
2857 		if (d_ancestor(old_dentry, new_dentry))
2858 			result = 1;
2859 		else
2860 			result = 0;
2861 		rcu_read_unlock();
2862 	} while (read_seqretry(&rename_lock, seq));
2863 
2864 	return result;
2865 }
2866 
path_is_under(struct path * path1,struct path * path2)2867 int path_is_under(struct path *path1, struct path *path2)
2868 {
2869 	struct vfsmount *mnt = path1->mnt;
2870 	struct dentry *dentry = path1->dentry;
2871 	int res;
2872 
2873 	br_read_lock(vfsmount_lock);
2874 	if (mnt != path2->mnt) {
2875 		for (;;) {
2876 			if (mnt->mnt_parent == mnt) {
2877 				br_read_unlock(vfsmount_lock);
2878 				return 0;
2879 			}
2880 			if (mnt->mnt_parent == path2->mnt)
2881 				break;
2882 			mnt = mnt->mnt_parent;
2883 		}
2884 		dentry = mnt->mnt_mountpoint;
2885 	}
2886 	res = is_subdir(dentry, path2->dentry);
2887 	br_read_unlock(vfsmount_lock);
2888 	return res;
2889 }
2890 EXPORT_SYMBOL(path_is_under);
2891 
d_genocide(struct dentry * root)2892 void d_genocide(struct dentry *root)
2893 {
2894 	struct dentry *this_parent;
2895 	struct list_head *next;
2896 	unsigned seq;
2897 	int locked = 0;
2898 
2899 	seq = read_seqbegin(&rename_lock);
2900 again:
2901 	this_parent = root;
2902 	spin_lock(&this_parent->d_lock);
2903 repeat:
2904 	next = this_parent->d_subdirs.next;
2905 resume:
2906 	while (next != &this_parent->d_subdirs) {
2907 		struct list_head *tmp = next;
2908 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2909 		next = tmp->next;
2910 
2911 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2912 		if (d_unhashed(dentry) || !dentry->d_inode) {
2913 			spin_unlock(&dentry->d_lock);
2914 			continue;
2915 		}
2916 		if (!list_empty(&dentry->d_subdirs)) {
2917 			spin_unlock(&this_parent->d_lock);
2918 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2919 			this_parent = dentry;
2920 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2921 			goto repeat;
2922 		}
2923 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2924 			dentry->d_flags |= DCACHE_GENOCIDE;
2925 			dentry->d_count--;
2926 		}
2927 		spin_unlock(&dentry->d_lock);
2928 	}
2929 	if (this_parent != root) {
2930 		struct dentry *child = this_parent;
2931 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2932 			this_parent->d_flags |= DCACHE_GENOCIDE;
2933 			this_parent->d_count--;
2934 		}
2935 		this_parent = try_to_ascend(this_parent, locked, seq);
2936 		if (!this_parent)
2937 			goto rename_retry;
2938 		next = child->d_u.d_child.next;
2939 		goto resume;
2940 	}
2941 	spin_unlock(&this_parent->d_lock);
2942 	if (!locked && read_seqretry(&rename_lock, seq))
2943 		goto rename_retry;
2944 	if (locked)
2945 		write_sequnlock(&rename_lock);
2946 	return;
2947 
2948 rename_retry:
2949 	locked = 1;
2950 	write_seqlock(&rename_lock);
2951 	goto again;
2952 }
2953 
2954 /**
2955  * find_inode_number - check for dentry with name
2956  * @dir: directory to check
2957  * @name: Name to find.
2958  *
2959  * Check whether a dentry already exists for the given name,
2960  * and return the inode number if it has an inode. Otherwise
2961  * 0 is returned.
2962  *
2963  * This routine is used to post-process directory listings for
2964  * filesystems using synthetic inode numbers, and is necessary
2965  * to keep getcwd() working.
2966  */
2967 
find_inode_number(struct dentry * dir,struct qstr * name)2968 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2969 {
2970 	struct dentry * dentry;
2971 	ino_t ino = 0;
2972 
2973 	dentry = d_hash_and_lookup(dir, name);
2974 	if (dentry) {
2975 		if (dentry->d_inode)
2976 			ino = dentry->d_inode->i_ino;
2977 		dput(dentry);
2978 	}
2979 	return ino;
2980 }
2981 EXPORT_SYMBOL(find_inode_number);
2982 
2983 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)2984 static int __init set_dhash_entries(char *str)
2985 {
2986 	if (!str)
2987 		return 0;
2988 	dhash_entries = simple_strtoul(str, &str, 0);
2989 	return 1;
2990 }
2991 __setup("dhash_entries=", set_dhash_entries);
2992 
dcache_init_early(void)2993 static void __init dcache_init_early(void)
2994 {
2995 	int loop;
2996 
2997 	/* If hashes are distributed across NUMA nodes, defer
2998 	 * hash allocation until vmalloc space is available.
2999 	 */
3000 	if (hashdist)
3001 		return;
3002 
3003 	dentry_hashtable =
3004 		alloc_large_system_hash("Dentry cache",
3005 					sizeof(struct hlist_bl_head),
3006 					dhash_entries,
3007 					13,
3008 					HASH_EARLY,
3009 					&d_hash_shift,
3010 					&d_hash_mask,
3011 					0);
3012 
3013 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
3014 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3015 }
3016 
dcache_init(void)3017 static void __init dcache_init(void)
3018 {
3019 	int loop;
3020 
3021 	/*
3022 	 * A constructor could be added for stable state like the lists,
3023 	 * but it is probably not worth it because of the cache nature
3024 	 * of the dcache.
3025 	 */
3026 	dentry_cache = KMEM_CACHE(dentry,
3027 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3028 
3029 	register_shrinker(&dcache_shrinker);
3030 
3031 	/* Hash may have been set up in dcache_init_early */
3032 	if (!hashdist)
3033 		return;
3034 
3035 	dentry_hashtable =
3036 		alloc_large_system_hash("Dentry cache",
3037 					sizeof(struct hlist_bl_head),
3038 					dhash_entries,
3039 					13,
3040 					0,
3041 					&d_hash_shift,
3042 					&d_hash_mask,
3043 					0);
3044 
3045 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
3046 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3047 }
3048 
3049 /* SLAB cache for __getname() consumers */
3050 struct kmem_cache *names_cachep __read_mostly;
3051 EXPORT_SYMBOL(names_cachep);
3052 
3053 EXPORT_SYMBOL(d_genocide);
3054 
vfs_caches_init_early(void)3055 void __init vfs_caches_init_early(void)
3056 {
3057 	dcache_init_early();
3058 	inode_init_early();
3059 }
3060 
vfs_caches_init(unsigned long mempages)3061 void __init vfs_caches_init(unsigned long mempages)
3062 {
3063 	unsigned long reserve;
3064 
3065 	/* Base hash sizes on available memory, with a reserve equal to
3066            150% of current kernel size */
3067 
3068 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3069 	mempages -= reserve;
3070 
3071 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3072 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3073 
3074 	dcache_init();
3075 	inode_init();
3076 	files_init(mempages);
3077 	mnt_init();
3078 	bdev_cache_init();
3079 	chrdev_init();
3080 }
3081