1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "dm_services.h"
28 #include "dc.h"
29 
30 #include "dcn30_init.h"
31 
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn20/dcn20_resource.h"
35 
36 #include "dcn30_resource.h"
37 
38 #include "dcn10/dcn10_ipp.h"
39 #include "dcn30/dcn30_hubbub.h"
40 #include "dcn30/dcn30_mpc.h"
41 #include "dcn30/dcn30_hubp.h"
42 #include "irq/dcn30/irq_service_dcn30.h"
43 #include "dcn30/dcn30_dpp.h"
44 #include "dcn30/dcn30_optc.h"
45 #include "dcn20/dcn20_hwseq.h"
46 #include "dcn30/dcn30_hwseq.h"
47 #include "dce110/dce110_hw_sequencer.h"
48 #include "dcn30/dcn30_opp.h"
49 #include "dcn20/dcn20_dsc.h"
50 #include "dcn30/dcn30_vpg.h"
51 #include "dcn30/dcn30_afmt.h"
52 #include "dcn30/dcn30_dio_stream_encoder.h"
53 #include "dcn30/dcn30_dio_link_encoder.h"
54 #include "dce/dce_clock_source.h"
55 #include "dce/dce_audio.h"
56 #include "dce/dce_hwseq.h"
57 #include "clk_mgr.h"
58 #include "virtual/virtual_stream_encoder.h"
59 #include "dce110/dce110_resource.h"
60 #include "dml/display_mode_vba.h"
61 #include "dcn30/dcn30_dccg.h"
62 #include "dcn10/dcn10_resource.h"
63 #include "dc_link_ddc.h"
64 #include "dce/dce_panel_cntl.h"
65 
66 #include "dcn30/dcn30_dwb.h"
67 #include "dcn30/dcn30_mmhubbub.h"
68 
69 #include "sienna_cichlid_ip_offset.h"
70 #include "dcn/dcn_3_0_0_offset.h"
71 #include "dcn/dcn_3_0_0_sh_mask.h"
72 
73 #include "nbio/nbio_7_4_offset.h"
74 
75 #include "dpcs/dpcs_3_0_0_offset.h"
76 #include "dpcs/dpcs_3_0_0_sh_mask.h"
77 
78 #include "mmhub/mmhub_2_0_0_offset.h"
79 #include "mmhub/mmhub_2_0_0_sh_mask.h"
80 
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86 
87 #include "dml/dcn30/dcn30_fpu.h"
88 #include "dml/dcn30/display_mode_vba_30.h"
89 #include "vm_helper.h"
90 #include "dcn20/dcn20_vmid.h"
91 #include "amdgpu_socbb.h"
92 #include "dc_dmub_srv.h"
93 
94 #define DC_LOGGER_INIT(logger)
95 
96 enum dcn30_clk_src_array_id {
97 	DCN30_CLK_SRC_PLL0,
98 	DCN30_CLK_SRC_PLL1,
99 	DCN30_CLK_SRC_PLL2,
100 	DCN30_CLK_SRC_PLL3,
101 	DCN30_CLK_SRC_PLL4,
102 	DCN30_CLK_SRC_PLL5,
103 	DCN30_CLK_SRC_TOTAL
104 };
105 
106 /* begin *********************
107  * macros to expend register list macro defined in HW object header file
108  */
109 
110 /* DCN */
111 /* TODO awful hack. fixup dcn20_dwb.h */
112 #undef BASE_INNER
113 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
114 
115 #define BASE(seg) BASE_INNER(seg)
116 
117 #define SR(reg_name)\
118 		.reg_name = BASE(mm ## reg_name ## _BASE_IDX) +  \
119 					mm ## reg_name
120 
121 #define SRI(reg_name, block, id)\
122 	.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
123 					mm ## block ## id ## _ ## reg_name
124 
125 #define SRI2(reg_name, block, id)\
126 	.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
127 					mm ## reg_name
128 
129 #define SRIR(var_name, reg_name, block, id)\
130 	.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
131 					mm ## block ## id ## _ ## reg_name
132 
133 #define SRII(reg_name, block, id)\
134 	.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
135 					mm ## block ## id ## _ ## reg_name
136 
137 #define SRII_MPC_RMU(reg_name, block, id)\
138 	.RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
139 					mm ## block ## id ## _ ## reg_name
140 
141 #define SRII_DWB(reg_name, temp_name, block, id)\
142 	.reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
143 					mm ## block ## id ## _ ## temp_name
144 
145 #define DCCG_SRII(reg_name, block, id)\
146 	.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
147 					mm ## block ## id ## _ ## reg_name
148 
149 #define VUPDATE_SRII(reg_name, block, id)\
150 	.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
151 					mm ## reg_name ## _ ## block ## id
152 
153 /* NBIO */
154 #define NBIO_BASE_INNER(seg) \
155 	NBIO_BASE__INST0_SEG ## seg
156 
157 #define NBIO_BASE(seg) \
158 	NBIO_BASE_INNER(seg)
159 
160 #define NBIO_SR(reg_name)\
161 		.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
162 					mm ## reg_name
163 
164 /* MMHUB */
165 #define MMHUB_BASE_INNER(seg) \
166 	MMHUB_BASE__INST0_SEG ## seg
167 
168 #define MMHUB_BASE(seg) \
169 	MMHUB_BASE_INNER(seg)
170 
171 #define MMHUB_SR(reg_name)\
172 		.reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
173 					mmMM ## reg_name
174 
175 /* CLOCK */
176 #define CLK_BASE_INNER(seg) \
177 	CLK_BASE__INST0_SEG ## seg
178 
179 #define CLK_BASE(seg) \
180 	CLK_BASE_INNER(seg)
181 
182 #define CLK_SRI(reg_name, block, inst)\
183 	.reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \
184 					mm ## block ## _ ## inst ## _ ## reg_name
185 
186 
187 static const struct bios_registers bios_regs = {
188 		NBIO_SR(BIOS_SCRATCH_3),
189 		NBIO_SR(BIOS_SCRATCH_6)
190 };
191 
192 #define clk_src_regs(index, pllid)\
193 [index] = {\
194 	CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
195 }
196 
197 static const struct dce110_clk_src_regs clk_src_regs[] = {
198 	clk_src_regs(0, A),
199 	clk_src_regs(1, B),
200 	clk_src_regs(2, C),
201 	clk_src_regs(3, D),
202 	clk_src_regs(4, E),
203 	clk_src_regs(5, F)
204 };
205 
206 static const struct dce110_clk_src_shift cs_shift = {
207 		CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
208 };
209 
210 static const struct dce110_clk_src_mask cs_mask = {
211 		CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
212 };
213 
214 #define abm_regs(id)\
215 [id] = {\
216 		ABM_DCN30_REG_LIST(id)\
217 }
218 
219 static const struct dce_abm_registers abm_regs[] = {
220 		abm_regs(0),
221 		abm_regs(1),
222 		abm_regs(2),
223 		abm_regs(3),
224 		abm_regs(4),
225 		abm_regs(5),
226 };
227 
228 static const struct dce_abm_shift abm_shift = {
229 		ABM_MASK_SH_LIST_DCN30(__SHIFT)
230 };
231 
232 static const struct dce_abm_mask abm_mask = {
233 		ABM_MASK_SH_LIST_DCN30(_MASK)
234 };
235 
236 
237 
238 #define audio_regs(id)\
239 [id] = {\
240 		AUD_COMMON_REG_LIST(id)\
241 }
242 
243 static const struct dce_audio_registers audio_regs[] = {
244 	audio_regs(0),
245 	audio_regs(1),
246 	audio_regs(2),
247 	audio_regs(3),
248 	audio_regs(4),
249 	audio_regs(5),
250 	audio_regs(6)
251 };
252 
253 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
254 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
255 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
256 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
257 
258 static const struct dce_audio_shift audio_shift = {
259 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
260 };
261 
262 static const struct dce_audio_mask audio_mask = {
263 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
264 };
265 
266 #define vpg_regs(id)\
267 [id] = {\
268 	VPG_DCN3_REG_LIST(id)\
269 }
270 
271 static const struct dcn30_vpg_registers vpg_regs[] = {
272 	vpg_regs(0),
273 	vpg_regs(1),
274 	vpg_regs(2),
275 	vpg_regs(3),
276 	vpg_regs(4),
277 	vpg_regs(5),
278 	vpg_regs(6),
279 };
280 
281 static const struct dcn30_vpg_shift vpg_shift = {
282 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
283 };
284 
285 static const struct dcn30_vpg_mask vpg_mask = {
286 	DCN3_VPG_MASK_SH_LIST(_MASK)
287 };
288 
289 #define afmt_regs(id)\
290 [id] = {\
291 	AFMT_DCN3_REG_LIST(id)\
292 }
293 
294 static const struct dcn30_afmt_registers afmt_regs[] = {
295 	afmt_regs(0),
296 	afmt_regs(1),
297 	afmt_regs(2),
298 	afmt_regs(3),
299 	afmt_regs(4),
300 	afmt_regs(5),
301 	afmt_regs(6),
302 };
303 
304 static const struct dcn30_afmt_shift afmt_shift = {
305 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
306 };
307 
308 static const struct dcn30_afmt_mask afmt_mask = {
309 	DCN3_AFMT_MASK_SH_LIST(_MASK)
310 };
311 
312 #define stream_enc_regs(id)\
313 [id] = {\
314 	SE_DCN3_REG_LIST(id)\
315 }
316 
317 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
318 	stream_enc_regs(0),
319 	stream_enc_regs(1),
320 	stream_enc_regs(2),
321 	stream_enc_regs(3),
322 	stream_enc_regs(4),
323 	stream_enc_regs(5)
324 };
325 
326 static const struct dcn10_stream_encoder_shift se_shift = {
327 		SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
328 };
329 
330 static const struct dcn10_stream_encoder_mask se_mask = {
331 		SE_COMMON_MASK_SH_LIST_DCN30(_MASK)
332 };
333 
334 
335 #define aux_regs(id)\
336 [id] = {\
337 	DCN2_AUX_REG_LIST(id)\
338 }
339 
340 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
341 		aux_regs(0),
342 		aux_regs(1),
343 		aux_regs(2),
344 		aux_regs(3),
345 		aux_regs(4),
346 		aux_regs(5)
347 };
348 
349 #define hpd_regs(id)\
350 [id] = {\
351 	HPD_REG_LIST(id)\
352 }
353 
354 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
355 		hpd_regs(0),
356 		hpd_regs(1),
357 		hpd_regs(2),
358 		hpd_regs(3),
359 		hpd_regs(4),
360 		hpd_regs(5)
361 };
362 
363 #define link_regs(id, phyid)\
364 [id] = {\
365 	LE_DCN3_REG_LIST(id), \
366 	UNIPHY_DCN2_REG_LIST(phyid), \
367 	DPCS_DCN2_REG_LIST(id), \
368 	SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
369 }
370 
371 static const struct dce110_aux_registers_shift aux_shift = {
372 	DCN_AUX_MASK_SH_LIST(__SHIFT)
373 };
374 
375 static const struct dce110_aux_registers_mask aux_mask = {
376 	DCN_AUX_MASK_SH_LIST(_MASK)
377 };
378 
379 static const struct dcn10_link_enc_registers link_enc_regs[] = {
380 	link_regs(0, A),
381 	link_regs(1, B),
382 	link_regs(2, C),
383 	link_regs(3, D),
384 	link_regs(4, E),
385 	link_regs(5, F)
386 };
387 
388 static const struct dcn10_link_enc_shift le_shift = {
389 	LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\
390 	DPCS_DCN2_MASK_SH_LIST(__SHIFT)
391 };
392 
393 static const struct dcn10_link_enc_mask le_mask = {
394 	LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\
395 	DPCS_DCN2_MASK_SH_LIST(_MASK)
396 };
397 
398 
399 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
400 	{ DCN_PANEL_CNTL_REG_LIST() }
401 };
402 
403 static const struct dce_panel_cntl_shift panel_cntl_shift = {
404 	DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
405 };
406 
407 static const struct dce_panel_cntl_mask panel_cntl_mask = {
408 	DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
409 };
410 
411 #define dpp_regs(id)\
412 [id] = {\
413 	DPP_REG_LIST_DCN30(id),\
414 }
415 
416 static const struct dcn3_dpp_registers dpp_regs[] = {
417 	dpp_regs(0),
418 	dpp_regs(1),
419 	dpp_regs(2),
420 	dpp_regs(3),
421 	dpp_regs(4),
422 	dpp_regs(5),
423 };
424 
425 static const struct dcn3_dpp_shift tf_shift = {
426 		DPP_REG_LIST_SH_MASK_DCN30(__SHIFT)
427 };
428 
429 static const struct dcn3_dpp_mask tf_mask = {
430 		DPP_REG_LIST_SH_MASK_DCN30(_MASK)
431 };
432 
433 #define opp_regs(id)\
434 [id] = {\
435 	OPP_REG_LIST_DCN30(id),\
436 }
437 
438 static const struct dcn20_opp_registers opp_regs[] = {
439 	opp_regs(0),
440 	opp_regs(1),
441 	opp_regs(2),
442 	opp_regs(3),
443 	opp_regs(4),
444 	opp_regs(5)
445 };
446 
447 static const struct dcn20_opp_shift opp_shift = {
448 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
449 };
450 
451 static const struct dcn20_opp_mask opp_mask = {
452 	OPP_MASK_SH_LIST_DCN20(_MASK)
453 };
454 
455 #define aux_engine_regs(id)\
456 [id] = {\
457 	AUX_COMMON_REG_LIST0(id), \
458 	.AUXN_IMPCAL = 0, \
459 	.AUXP_IMPCAL = 0, \
460 	.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
461 }
462 
463 static const struct dce110_aux_registers aux_engine_regs[] = {
464 		aux_engine_regs(0),
465 		aux_engine_regs(1),
466 		aux_engine_regs(2),
467 		aux_engine_regs(3),
468 		aux_engine_regs(4),
469 		aux_engine_regs(5)
470 };
471 
472 #define dwbc_regs_dcn3(id)\
473 [id] = {\
474 	DWBC_COMMON_REG_LIST_DCN30(id),\
475 }
476 
477 static const struct dcn30_dwbc_registers dwbc30_regs[] = {
478 	dwbc_regs_dcn3(0),
479 };
480 
481 static const struct dcn30_dwbc_shift dwbc30_shift = {
482 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
483 };
484 
485 static const struct dcn30_dwbc_mask dwbc30_mask = {
486 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
487 };
488 
489 #define mcif_wb_regs_dcn3(id)\
490 [id] = {\
491 	MCIF_WB_COMMON_REG_LIST_DCN30(id),\
492 }
493 
494 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
495 	mcif_wb_regs_dcn3(0)
496 };
497 
498 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
499 	MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
500 };
501 
502 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
503 	MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK)
504 };
505 
506 #define dsc_regsDCN20(id)\
507 [id] = {\
508 	DSC_REG_LIST_DCN20(id)\
509 }
510 
511 static const struct dcn20_dsc_registers dsc_regs[] = {
512 	dsc_regsDCN20(0),
513 	dsc_regsDCN20(1),
514 	dsc_regsDCN20(2),
515 	dsc_regsDCN20(3),
516 	dsc_regsDCN20(4),
517 	dsc_regsDCN20(5)
518 };
519 
520 static const struct dcn20_dsc_shift dsc_shift = {
521 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
522 };
523 
524 static const struct dcn20_dsc_mask dsc_mask = {
525 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
526 };
527 
528 static const struct dcn30_mpc_registers mpc_regs = {
529 		MPC_REG_LIST_DCN3_0(0),
530 		MPC_REG_LIST_DCN3_0(1),
531 		MPC_REG_LIST_DCN3_0(2),
532 		MPC_REG_LIST_DCN3_0(3),
533 		MPC_REG_LIST_DCN3_0(4),
534 		MPC_REG_LIST_DCN3_0(5),
535 		MPC_OUT_MUX_REG_LIST_DCN3_0(0),
536 		MPC_OUT_MUX_REG_LIST_DCN3_0(1),
537 		MPC_OUT_MUX_REG_LIST_DCN3_0(2),
538 		MPC_OUT_MUX_REG_LIST_DCN3_0(3),
539 		MPC_OUT_MUX_REG_LIST_DCN3_0(4),
540 		MPC_OUT_MUX_REG_LIST_DCN3_0(5),
541 		MPC_RMU_GLOBAL_REG_LIST_DCN3AG,
542 		MPC_RMU_REG_LIST_DCN3AG(0),
543 		MPC_RMU_REG_LIST_DCN3AG(1),
544 		MPC_RMU_REG_LIST_DCN3AG(2),
545 		MPC_DWB_MUX_REG_LIST_DCN3_0(0),
546 };
547 
548 static const struct dcn30_mpc_shift mpc_shift = {
549 	MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
550 };
551 
552 static const struct dcn30_mpc_mask mpc_mask = {
553 	MPC_COMMON_MASK_SH_LIST_DCN30(_MASK)
554 };
555 
556 #define optc_regs(id)\
557 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)}
558 
559 
560 static const struct dcn_optc_registers optc_regs[] = {
561 	optc_regs(0),
562 	optc_regs(1),
563 	optc_regs(2),
564 	optc_regs(3),
565 	optc_regs(4),
566 	optc_regs(5)
567 };
568 
569 static const struct dcn_optc_shift optc_shift = {
570 	OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
571 };
572 
573 static const struct dcn_optc_mask optc_mask = {
574 	OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK)
575 };
576 
577 #define hubp_regs(id)\
578 [id] = {\
579 	HUBP_REG_LIST_DCN30(id)\
580 }
581 
582 static const struct dcn_hubp2_registers hubp_regs[] = {
583 		hubp_regs(0),
584 		hubp_regs(1),
585 		hubp_regs(2),
586 		hubp_regs(3),
587 		hubp_regs(4),
588 		hubp_regs(5)
589 };
590 
591 static const struct dcn_hubp2_shift hubp_shift = {
592 		HUBP_MASK_SH_LIST_DCN30(__SHIFT)
593 };
594 
595 static const struct dcn_hubp2_mask hubp_mask = {
596 		HUBP_MASK_SH_LIST_DCN30(_MASK)
597 };
598 
599 static const struct dcn_hubbub_registers hubbub_reg = {
600 		HUBBUB_REG_LIST_DCN30(0)
601 };
602 
603 static const struct dcn_hubbub_shift hubbub_shift = {
604 		HUBBUB_MASK_SH_LIST_DCN30(__SHIFT)
605 };
606 
607 static const struct dcn_hubbub_mask hubbub_mask = {
608 		HUBBUB_MASK_SH_LIST_DCN30(_MASK)
609 };
610 
611 static const struct dccg_registers dccg_regs = {
612 		DCCG_REG_LIST_DCN30()
613 };
614 
615 static const struct dccg_shift dccg_shift = {
616 		DCCG_MASK_SH_LIST_DCN3(__SHIFT)
617 };
618 
619 static const struct dccg_mask dccg_mask = {
620 		DCCG_MASK_SH_LIST_DCN3(_MASK)
621 };
622 
623 static const struct dce_hwseq_registers hwseq_reg = {
624 		HWSEQ_DCN30_REG_LIST()
625 };
626 
627 static const struct dce_hwseq_shift hwseq_shift = {
628 		HWSEQ_DCN30_MASK_SH_LIST(__SHIFT)
629 };
630 
631 static const struct dce_hwseq_mask hwseq_mask = {
632 		HWSEQ_DCN30_MASK_SH_LIST(_MASK)
633 };
634 #define vmid_regs(id)\
635 [id] = {\
636 		DCN20_VMID_REG_LIST(id)\
637 }
638 
639 static const struct dcn_vmid_registers vmid_regs[] = {
640 	vmid_regs(0),
641 	vmid_regs(1),
642 	vmid_regs(2),
643 	vmid_regs(3),
644 	vmid_regs(4),
645 	vmid_regs(5),
646 	vmid_regs(6),
647 	vmid_regs(7),
648 	vmid_regs(8),
649 	vmid_regs(9),
650 	vmid_regs(10),
651 	vmid_regs(11),
652 	vmid_regs(12),
653 	vmid_regs(13),
654 	vmid_regs(14),
655 	vmid_regs(15)
656 };
657 
658 static const struct dcn20_vmid_shift vmid_shifts = {
659 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
660 };
661 
662 static const struct dcn20_vmid_mask vmid_masks = {
663 		DCN20_VMID_MASK_SH_LIST(_MASK)
664 };
665 
666 static const struct resource_caps res_cap_dcn3 = {
667 	.num_timing_generator = 6,
668 	.num_opp = 6,
669 	.num_video_plane = 6,
670 	.num_audio = 6,
671 	.num_stream_encoder = 6,
672 	.num_pll = 6,
673 	.num_dwb = 1,
674 	.num_ddc = 6,
675 	.num_vmid = 16,
676 	.num_mpc_3dlut = 3,
677 	.num_dsc = 6,
678 };
679 
680 static const struct dc_plane_cap plane_cap = {
681 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
682 	.blends_with_above = true,
683 	.blends_with_below = true,
684 	.per_pixel_alpha = true,
685 
686 	.pixel_format_support = {
687 			.argb8888 = true,
688 			.nv12 = true,
689 			.fp16 = true,
690 			.p010 = true,
691 			.ayuv = false,
692 	},
693 
694 	.max_upscale_factor = {
695 			.argb8888 = 16000,
696 			.nv12 = 16000,
697 			.fp16 = 16000
698 	},
699 
700 	/* 6:1 downscaling ratio: 1000/6 = 166.666 */
701 	.max_downscale_factor = {
702 			.argb8888 = 167,
703 			.nv12 = 167,
704 			.fp16 = 167
705 	}
706 };
707 
708 static const struct dc_debug_options debug_defaults_drv = {
709 	.disable_dmcu = true, //No DMCU on DCN30
710 	.force_abm_enable = false,
711 	.timing_trace = false,
712 	.clock_trace = true,
713 	.disable_pplib_clock_request = true,
714 	.pipe_split_policy = MPC_SPLIT_DYNAMIC,
715 	.force_single_disp_pipe_split = false,
716 	.disable_dcc = DCC_ENABLE,
717 	.vsr_support = true,
718 	.performance_trace = false,
719 	.max_downscale_src_width = 7680,/*upto 8K*/
720 	.disable_pplib_wm_range = false,
721 	.scl_reset_length10 = true,
722 	.sanity_checks = false,
723 	.underflow_assert_delay_us = 0xFFFFFFFF,
724 	.dwb_fi_phase = -1, // -1 = disable,
725 	.dmub_command_table = true,
726 	.disable_psr = false,
727 	.use_max_lb = true,
728 	.exit_idle_opt_for_cursor_updates = true
729 };
730 
731 static const struct dc_debug_options debug_defaults_diags = {
732 	.disable_dmcu = true, //No dmcu on DCN30
733 	.force_abm_enable = false,
734 	.timing_trace = true,
735 	.clock_trace = true,
736 	.disable_dpp_power_gate = true,
737 	.disable_hubp_power_gate = true,
738 	.disable_clock_gate = true,
739 	.disable_pplib_clock_request = true,
740 	.disable_pplib_wm_range = true,
741 	.disable_stutter = false,
742 	.scl_reset_length10 = true,
743 	.dwb_fi_phase = -1, // -1 = disable
744 	.dmub_command_table = true,
745 	.disable_psr = true,
746 	.enable_tri_buf = true,
747 	.use_max_lb = true
748 };
749 
dcn30_dpp_destroy(struct dpp ** dpp)750 static void dcn30_dpp_destroy(struct dpp **dpp)
751 {
752 	kfree(TO_DCN20_DPP(*dpp));
753 	*dpp = NULL;
754 }
755 
dcn30_dpp_create(struct dc_context * ctx,uint32_t inst)756 static struct dpp *dcn30_dpp_create(
757 	struct dc_context *ctx,
758 	uint32_t inst)
759 {
760 	struct dcn3_dpp *dpp =
761 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
762 
763 	if (!dpp)
764 		return NULL;
765 
766 	if (dpp3_construct(dpp, ctx, inst,
767 			&dpp_regs[inst], &tf_shift, &tf_mask))
768 		return &dpp->base;
769 
770 	BREAK_TO_DEBUGGER();
771 	kfree(dpp);
772 	return NULL;
773 }
774 
dcn30_opp_create(struct dc_context * ctx,uint32_t inst)775 static struct output_pixel_processor *dcn30_opp_create(
776 	struct dc_context *ctx, uint32_t inst)
777 {
778 	struct dcn20_opp *opp =
779 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
780 
781 	if (!opp) {
782 		BREAK_TO_DEBUGGER();
783 		return NULL;
784 	}
785 
786 	dcn20_opp_construct(opp, ctx, inst,
787 			&opp_regs[inst], &opp_shift, &opp_mask);
788 	return &opp->base;
789 }
790 
dcn30_aux_engine_create(struct dc_context * ctx,uint32_t inst)791 static struct dce_aux *dcn30_aux_engine_create(
792 	struct dc_context *ctx,
793 	uint32_t inst)
794 {
795 	struct aux_engine_dce110 *aux_engine =
796 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
797 
798 	if (!aux_engine)
799 		return NULL;
800 
801 	dce110_aux_engine_construct(aux_engine, ctx, inst,
802 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
803 				    &aux_engine_regs[inst],
804 					&aux_mask,
805 					&aux_shift,
806 					ctx->dc->caps.extended_aux_timeout_support);
807 
808 	return &aux_engine->base;
809 }
810 
811 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) }
812 
813 static const struct dce_i2c_registers i2c_hw_regs[] = {
814 		i2c_inst_regs(1),
815 		i2c_inst_regs(2),
816 		i2c_inst_regs(3),
817 		i2c_inst_regs(4),
818 		i2c_inst_regs(5),
819 		i2c_inst_regs(6),
820 };
821 
822 static const struct dce_i2c_shift i2c_shifts = {
823 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
824 };
825 
826 static const struct dce_i2c_mask i2c_masks = {
827 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
828 };
829 
dcn30_i2c_hw_create(struct dc_context * ctx,uint32_t inst)830 static struct dce_i2c_hw *dcn30_i2c_hw_create(
831 	struct dc_context *ctx,
832 	uint32_t inst)
833 {
834 	struct dce_i2c_hw *dce_i2c_hw =
835 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
836 
837 	if (!dce_i2c_hw)
838 		return NULL;
839 
840 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
841 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
842 
843 	return dce_i2c_hw;
844 }
845 
dcn30_mpc_create(struct dc_context * ctx,int num_mpcc,int num_rmu)846 static struct mpc *dcn30_mpc_create(
847 		struct dc_context *ctx,
848 		int num_mpcc,
849 		int num_rmu)
850 {
851 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
852 					  GFP_KERNEL);
853 
854 	if (!mpc30)
855 		return NULL;
856 
857 	dcn30_mpc_construct(mpc30, ctx,
858 			&mpc_regs,
859 			&mpc_shift,
860 			&mpc_mask,
861 			num_mpcc,
862 			num_rmu);
863 
864 	return &mpc30->base;
865 }
866 
dcn30_hubbub_create(struct dc_context * ctx)867 static struct hubbub *dcn30_hubbub_create(struct dc_context *ctx)
868 {
869 	int i;
870 
871 	struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub),
872 					  GFP_KERNEL);
873 
874 	if (!hubbub3)
875 		return NULL;
876 
877 	hubbub3_construct(hubbub3, ctx,
878 			&hubbub_reg,
879 			&hubbub_shift,
880 			&hubbub_mask);
881 
882 
883 	for (i = 0; i < res_cap_dcn3.num_vmid; i++) {
884 		struct dcn20_vmid *vmid = &hubbub3->vmid[i];
885 
886 		vmid->ctx = ctx;
887 
888 		vmid->regs = &vmid_regs[i];
889 		vmid->shifts = &vmid_shifts;
890 		vmid->masks = &vmid_masks;
891 	}
892 
893 	return &hubbub3->base;
894 }
895 
dcn30_timing_generator_create(struct dc_context * ctx,uint32_t instance)896 static struct timing_generator *dcn30_timing_generator_create(
897 		struct dc_context *ctx,
898 		uint32_t instance)
899 {
900 	struct optc *tgn10 =
901 		kzalloc(sizeof(struct optc), GFP_KERNEL);
902 
903 	if (!tgn10)
904 		return NULL;
905 
906 	tgn10->base.inst = instance;
907 	tgn10->base.ctx = ctx;
908 
909 	tgn10->tg_regs = &optc_regs[instance];
910 	tgn10->tg_shift = &optc_shift;
911 	tgn10->tg_mask = &optc_mask;
912 
913 	dcn30_timing_generator_init(tgn10);
914 
915 	return &tgn10->base;
916 }
917 
918 static const struct encoder_feature_support link_enc_feature = {
919 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
920 		.max_hdmi_pixel_clock = 600000,
921 		.hdmi_ycbcr420_supported = true,
922 		.dp_ycbcr420_supported = true,
923 		.fec_supported = true,
924 		.flags.bits.IS_HBR2_CAPABLE = true,
925 		.flags.bits.IS_HBR3_CAPABLE = true,
926 		.flags.bits.IS_TPS3_CAPABLE = true,
927 		.flags.bits.IS_TPS4_CAPABLE = true
928 };
929 
dcn30_link_encoder_create(struct dc_context * ctx,const struct encoder_init_data * enc_init_data)930 static struct link_encoder *dcn30_link_encoder_create(
931 	struct dc_context *ctx,
932 	const struct encoder_init_data *enc_init_data)
933 {
934 	struct dcn20_link_encoder *enc20 =
935 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
936 
937 	if (!enc20)
938 		return NULL;
939 
940 	dcn30_link_encoder_construct(enc20,
941 			enc_init_data,
942 			&link_enc_feature,
943 			&link_enc_regs[enc_init_data->transmitter],
944 			&link_enc_aux_regs[enc_init_data->channel - 1],
945 			&link_enc_hpd_regs[enc_init_data->hpd_source],
946 			&le_shift,
947 			&le_mask);
948 
949 	return &enc20->enc10.base;
950 }
951 
dcn30_panel_cntl_create(const struct panel_cntl_init_data * init_data)952 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data)
953 {
954 	struct dce_panel_cntl *panel_cntl =
955 		kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
956 
957 	if (!panel_cntl)
958 		return NULL;
959 
960 	dce_panel_cntl_construct(panel_cntl,
961 			init_data,
962 			&panel_cntl_regs[init_data->inst],
963 			&panel_cntl_shift,
964 			&panel_cntl_mask);
965 
966 	return &panel_cntl->base;
967 }
968 
read_dce_straps(struct dc_context * ctx,struct resource_straps * straps)969 static void read_dce_straps(
970 	struct dc_context *ctx,
971 	struct resource_straps *straps)
972 {
973 	generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
974 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
975 
976 }
977 
dcn30_create_audio(struct dc_context * ctx,unsigned int inst)978 static struct audio *dcn30_create_audio(
979 		struct dc_context *ctx, unsigned int inst)
980 {
981 	return dce_audio_create(ctx, inst,
982 			&audio_regs[inst], &audio_shift, &audio_mask);
983 }
984 
dcn30_vpg_create(struct dc_context * ctx,uint32_t inst)985 static struct vpg *dcn30_vpg_create(
986 	struct dc_context *ctx,
987 	uint32_t inst)
988 {
989 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
990 
991 	if (!vpg3)
992 		return NULL;
993 
994 	vpg3_construct(vpg3, ctx, inst,
995 			&vpg_regs[inst],
996 			&vpg_shift,
997 			&vpg_mask);
998 
999 	return &vpg3->base;
1000 }
1001 
dcn30_afmt_create(struct dc_context * ctx,uint32_t inst)1002 static struct afmt *dcn30_afmt_create(
1003 	struct dc_context *ctx,
1004 	uint32_t inst)
1005 {
1006 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1007 
1008 	if (!afmt3)
1009 		return NULL;
1010 
1011 	afmt3_construct(afmt3, ctx, inst,
1012 			&afmt_regs[inst],
1013 			&afmt_shift,
1014 			&afmt_mask);
1015 
1016 	return &afmt3->base;
1017 }
1018 
dcn30_stream_encoder_create(enum engine_id eng_id,struct dc_context * ctx)1019 static struct stream_encoder *dcn30_stream_encoder_create(enum engine_id eng_id,
1020 							  struct dc_context *ctx)
1021 {
1022 	struct dcn10_stream_encoder *enc1;
1023 	struct vpg *vpg;
1024 	struct afmt *afmt;
1025 	int vpg_inst;
1026 	int afmt_inst;
1027 
1028 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1029 	if (eng_id <= ENGINE_ID_DIGF) {
1030 		vpg_inst = eng_id;
1031 		afmt_inst = eng_id;
1032 	} else
1033 		return NULL;
1034 
1035 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1036 	vpg = dcn30_vpg_create(ctx, vpg_inst);
1037 	afmt = dcn30_afmt_create(ctx, afmt_inst);
1038 
1039 	if (!enc1 || !vpg || !afmt) {
1040 		kfree(enc1);
1041 		kfree(vpg);
1042 		kfree(afmt);
1043 		return NULL;
1044 	}
1045 
1046 	dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1047 					eng_id, vpg, afmt,
1048 					&stream_enc_regs[eng_id],
1049 					&se_shift, &se_mask);
1050 
1051 	return &enc1->base;
1052 }
1053 
dcn30_hwseq_create(struct dc_context * ctx)1054 static struct dce_hwseq *dcn30_hwseq_create(struct dc_context *ctx)
1055 {
1056 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1057 
1058 	if (hws) {
1059 		hws->ctx = ctx;
1060 		hws->regs = &hwseq_reg;
1061 		hws->shifts = &hwseq_shift;
1062 		hws->masks = &hwseq_mask;
1063 	}
1064 	return hws;
1065 }
1066 static const struct resource_create_funcs res_create_funcs = {
1067 	.read_dce_straps = read_dce_straps,
1068 	.create_audio = dcn30_create_audio,
1069 	.create_stream_encoder = dcn30_stream_encoder_create,
1070 	.create_hwseq = dcn30_hwseq_create,
1071 };
1072 
1073 static const struct resource_create_funcs res_create_maximus_funcs = {
1074 	.read_dce_straps = NULL,
1075 	.create_audio = NULL,
1076 	.create_stream_encoder = NULL,
1077 	.create_hwseq = dcn30_hwseq_create,
1078 };
1079 
dcn30_resource_destruct(struct dcn30_resource_pool * pool)1080 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool)
1081 {
1082 	unsigned int i;
1083 
1084 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1085 		if (pool->base.stream_enc[i] != NULL) {
1086 			if (pool->base.stream_enc[i]->vpg != NULL) {
1087 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1088 				pool->base.stream_enc[i]->vpg = NULL;
1089 			}
1090 			if (pool->base.stream_enc[i]->afmt != NULL) {
1091 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1092 				pool->base.stream_enc[i]->afmt = NULL;
1093 			}
1094 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1095 			pool->base.stream_enc[i] = NULL;
1096 		}
1097 	}
1098 
1099 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1100 		if (pool->base.dscs[i] != NULL)
1101 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1102 	}
1103 
1104 	if (pool->base.mpc != NULL) {
1105 		kfree(TO_DCN20_MPC(pool->base.mpc));
1106 		pool->base.mpc = NULL;
1107 	}
1108 	if (pool->base.hubbub != NULL) {
1109 		kfree(pool->base.hubbub);
1110 		pool->base.hubbub = NULL;
1111 	}
1112 	for (i = 0; i < pool->base.pipe_count; i++) {
1113 		if (pool->base.dpps[i] != NULL)
1114 			dcn30_dpp_destroy(&pool->base.dpps[i]);
1115 
1116 		if (pool->base.ipps[i] != NULL)
1117 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1118 
1119 		if (pool->base.hubps[i] != NULL) {
1120 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1121 			pool->base.hubps[i] = NULL;
1122 		}
1123 
1124 		if (pool->base.irqs != NULL) {
1125 			dal_irq_service_destroy(&pool->base.irqs);
1126 		}
1127 	}
1128 
1129 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1130 		if (pool->base.engines[i] != NULL)
1131 			dce110_engine_destroy(&pool->base.engines[i]);
1132 		if (pool->base.hw_i2cs[i] != NULL) {
1133 			kfree(pool->base.hw_i2cs[i]);
1134 			pool->base.hw_i2cs[i] = NULL;
1135 		}
1136 		if (pool->base.sw_i2cs[i] != NULL) {
1137 			kfree(pool->base.sw_i2cs[i]);
1138 			pool->base.sw_i2cs[i] = NULL;
1139 		}
1140 	}
1141 
1142 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1143 		if (pool->base.opps[i] != NULL)
1144 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1145 	}
1146 
1147 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1148 		if (pool->base.timing_generators[i] != NULL)	{
1149 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1150 			pool->base.timing_generators[i] = NULL;
1151 		}
1152 	}
1153 
1154 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1155 		if (pool->base.dwbc[i] != NULL) {
1156 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1157 			pool->base.dwbc[i] = NULL;
1158 		}
1159 		if (pool->base.mcif_wb[i] != NULL) {
1160 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1161 			pool->base.mcif_wb[i] = NULL;
1162 		}
1163 	}
1164 
1165 	for (i = 0; i < pool->base.audio_count; i++) {
1166 		if (pool->base.audios[i])
1167 			dce_aud_destroy(&pool->base.audios[i]);
1168 	}
1169 
1170 	for (i = 0; i < pool->base.clk_src_count; i++) {
1171 		if (pool->base.clock_sources[i] != NULL) {
1172 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1173 			pool->base.clock_sources[i] = NULL;
1174 		}
1175 	}
1176 
1177 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1178 		if (pool->base.mpc_lut[i] != NULL) {
1179 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1180 			pool->base.mpc_lut[i] = NULL;
1181 		}
1182 		if (pool->base.mpc_shaper[i] != NULL) {
1183 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1184 			pool->base.mpc_shaper[i] = NULL;
1185 		}
1186 	}
1187 
1188 	if (pool->base.dp_clock_source != NULL) {
1189 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1190 		pool->base.dp_clock_source = NULL;
1191 	}
1192 
1193 	for (i = 0; i < pool->base.pipe_count; i++) {
1194 		if (pool->base.multiple_abms[i] != NULL)
1195 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1196 	}
1197 
1198 	if (pool->base.psr != NULL)
1199 		dmub_psr_destroy(&pool->base.psr);
1200 
1201 	if (pool->base.dccg != NULL)
1202 		dcn_dccg_destroy(&pool->base.dccg);
1203 
1204 	if (pool->base.oem_device != NULL)
1205 		dal_ddc_service_destroy(&pool->base.oem_device);
1206 }
1207 
dcn30_hubp_create(struct dc_context * ctx,uint32_t inst)1208 static struct hubp *dcn30_hubp_create(
1209 	struct dc_context *ctx,
1210 	uint32_t inst)
1211 {
1212 	struct dcn20_hubp *hubp2 =
1213 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
1214 
1215 	if (!hubp2)
1216 		return NULL;
1217 
1218 	if (hubp3_construct(hubp2, ctx, inst,
1219 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
1220 		return &hubp2->base;
1221 
1222 	BREAK_TO_DEBUGGER();
1223 	kfree(hubp2);
1224 	return NULL;
1225 }
1226 
dcn30_dwbc_create(struct dc_context * ctx,struct resource_pool * pool)1227 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1228 {
1229 	int i;
1230 	uint32_t pipe_count = pool->res_cap->num_dwb;
1231 
1232 	for (i = 0; i < pipe_count; i++) {
1233 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1234 						    GFP_KERNEL);
1235 
1236 		if (!dwbc30) {
1237 			dm_error("DC: failed to create dwbc30!\n");
1238 			return false;
1239 		}
1240 
1241 		dcn30_dwbc_construct(dwbc30, ctx,
1242 				&dwbc30_regs[i],
1243 				&dwbc30_shift,
1244 				&dwbc30_mask,
1245 				i);
1246 
1247 		pool->dwbc[i] = &dwbc30->base;
1248 	}
1249 	return true;
1250 }
1251 
dcn30_mmhubbub_create(struct dc_context * ctx,struct resource_pool * pool)1252 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1253 {
1254 	int i;
1255 	uint32_t pipe_count = pool->res_cap->num_dwb;
1256 
1257 	for (i = 0; i < pipe_count; i++) {
1258 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1259 						    GFP_KERNEL);
1260 
1261 		if (!mcif_wb30) {
1262 			dm_error("DC: failed to create mcif_wb30!\n");
1263 			return false;
1264 		}
1265 
1266 		dcn30_mmhubbub_construct(mcif_wb30, ctx,
1267 				&mcif_wb30_regs[i],
1268 				&mcif_wb30_shift,
1269 				&mcif_wb30_mask,
1270 				i);
1271 
1272 		pool->mcif_wb[i] = &mcif_wb30->base;
1273 	}
1274 	return true;
1275 }
1276 
dcn30_dsc_create(struct dc_context * ctx,uint32_t inst)1277 static struct display_stream_compressor *dcn30_dsc_create(
1278 	struct dc_context *ctx, uint32_t inst)
1279 {
1280 	struct dcn20_dsc *dsc =
1281 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1282 
1283 	if (!dsc) {
1284 		BREAK_TO_DEBUGGER();
1285 		return NULL;
1286 	}
1287 
1288 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1289 	return &dsc->base;
1290 }
1291 
dcn30_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1292 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1293 {
1294 
1295 	return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream);
1296 }
1297 
dcn30_destroy_resource_pool(struct resource_pool ** pool)1298 static void dcn30_destroy_resource_pool(struct resource_pool **pool)
1299 {
1300 	struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool);
1301 
1302 	dcn30_resource_destruct(dcn30_pool);
1303 	kfree(dcn30_pool);
1304 	*pool = NULL;
1305 }
1306 
dcn30_clock_source_create(struct dc_context * ctx,struct dc_bios * bios,enum clock_source_id id,const struct dce110_clk_src_regs * regs,bool dp_clk_src)1307 static struct clock_source *dcn30_clock_source_create(
1308 		struct dc_context *ctx,
1309 		struct dc_bios *bios,
1310 		enum clock_source_id id,
1311 		const struct dce110_clk_src_regs *regs,
1312 		bool dp_clk_src)
1313 {
1314 	struct dce110_clk_src *clk_src =
1315 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
1316 
1317 	if (!clk_src)
1318 		return NULL;
1319 
1320 	if (dcn3_clk_src_construct(clk_src, ctx, bios, id,
1321 			regs, &cs_shift, &cs_mask)) {
1322 		clk_src->base.dp_clk_src = dp_clk_src;
1323 		return &clk_src->base;
1324 	}
1325 
1326 	BREAK_TO_DEBUGGER();
1327 	return NULL;
1328 }
1329 
dcn30_populate_dml_pipes_from_context(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,bool fast_validate)1330 int dcn30_populate_dml_pipes_from_context(
1331 	struct dc *dc, struct dc_state *context,
1332 	display_e2e_pipe_params_st *pipes,
1333 	bool fast_validate)
1334 {
1335 	int i, pipe_cnt;
1336 	struct resource_context *res_ctx = &context->res_ctx;
1337 
1338 	DC_FP_START();
1339 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1340 	DC_FP_END();
1341 
1342 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1343 		if (!res_ctx->pipe_ctx[i].stream)
1344 			continue;
1345 
1346 		pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth =
1347 			dm_lb_16;
1348 	}
1349 
1350 	return pipe_cnt;
1351 }
1352 
dcn30_populate_dml_writeback_from_context(struct dc * dc,struct resource_context * res_ctx,display_e2e_pipe_params_st * pipes)1353 void dcn30_populate_dml_writeback_from_context(
1354 	struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes)
1355 {
1356 	DC_FP_START();
1357 	dcn30_fpu_populate_dml_writeback_from_context(dc, res_ctx, pipes);
1358 	DC_FP_END();
1359 }
1360 
dcn30_calc_max_scaled_time(unsigned int time_per_pixel,enum mmhubbub_wbif_mode mode,unsigned int urgent_watermark)1361 unsigned int dcn30_calc_max_scaled_time(
1362 		unsigned int time_per_pixel,
1363 		enum mmhubbub_wbif_mode mode,
1364 		unsigned int urgent_watermark)
1365 {
1366 	unsigned int time_per_byte = 0;
1367 	unsigned int total_free_entry = 0xb40;
1368 	unsigned int buf_lh_capability;
1369 	unsigned int max_scaled_time;
1370 
1371 	if (mode == PACKED_444) /* packed mode 32 bpp */
1372 		time_per_byte = time_per_pixel/4;
1373 	else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */
1374 		time_per_byte = time_per_pixel/8;
1375 
1376 	if (time_per_byte == 0)
1377 		time_per_byte = 1;
1378 
1379 	buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/
1380 	max_scaled_time   = buf_lh_capability - urgent_watermark;
1381 	return max_scaled_time;
1382 }
1383 
dcn30_set_mcif_arb_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)1384 void dcn30_set_mcif_arb_params(
1385 		struct dc *dc,
1386 		struct dc_state *context,
1387 		display_e2e_pipe_params_st *pipes,
1388 		int pipe_cnt)
1389 {
1390 	enum mmhubbub_wbif_mode wbif_mode;
1391 	struct display_mode_lib *dml = &context->bw_ctx.dml;
1392 	struct mcif_arb_params *wb_arb_params;
1393 	int i, j, dwb_pipe;
1394 
1395 	/* Writeback MCIF_WB arbitration parameters */
1396 	dwb_pipe = 0;
1397 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1398 
1399 		if (!context->res_ctx.pipe_ctx[i].stream)
1400 			continue;
1401 
1402 		for (j = 0; j < MAX_DWB_PIPES; j++) {
1403 			struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j];
1404 
1405 			if (writeback_info->wb_enabled == false)
1406 				continue;
1407 
1408 			//wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1409 			wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1410 
1411 			if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB ||
1412 				writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA)
1413 				wbif_mode = PACKED_444_FP16;
1414 			else
1415 				wbif_mode = PACKED_444;
1416 
1417 			DC_FP_START();
1418 			dcn30_fpu_set_mcif_arb_params(wb_arb_params, dml, pipes, pipe_cnt, j);
1419 			DC_FP_END();
1420 			wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */
1421 			wb_arb_params->slice_lines = 32;
1422 			wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */
1423 			wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1424 					wbif_mode,
1425 					wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1426 
1427 			dwb_pipe++;
1428 
1429 			if (dwb_pipe >= MAX_DWB_PIPES)
1430 				return;
1431 		}
1432 		if (dwb_pipe >= MAX_DWB_PIPES)
1433 			return;
1434 	}
1435 
1436 }
1437 
1438 static struct dc_cap_funcs cap_funcs = {
1439 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
1440 };
1441 
dcn30_acquire_post_bldn_3dlut(struct resource_context * res_ctx,const struct resource_pool * pool,int mpcc_id,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1442 bool dcn30_acquire_post_bldn_3dlut(
1443 		struct resource_context *res_ctx,
1444 		const struct resource_pool *pool,
1445 		int mpcc_id,
1446 		struct dc_3dlut **lut,
1447 		struct dc_transfer_func **shaper)
1448 {
1449 	int i;
1450 	bool ret = false;
1451 	union dc_3dlut_state *state;
1452 
1453 	ASSERT(*lut == NULL && *shaper == NULL);
1454 	*lut = NULL;
1455 	*shaper = NULL;
1456 
1457 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1458 		if (!res_ctx->is_mpc_3dlut_acquired[i]) {
1459 			*lut = pool->mpc_lut[i];
1460 			*shaper = pool->mpc_shaper[i];
1461 			state = &pool->mpc_lut[i]->state;
1462 			res_ctx->is_mpc_3dlut_acquired[i] = true;
1463 			state->bits.rmu_idx_valid = 1;
1464 			state->bits.rmu_mux_num = i;
1465 			if (state->bits.rmu_mux_num == 0)
1466 				state->bits.mpc_rmu0_mux = mpcc_id;
1467 			else if (state->bits.rmu_mux_num == 1)
1468 				state->bits.mpc_rmu1_mux = mpcc_id;
1469 			else if (state->bits.rmu_mux_num == 2)
1470 				state->bits.mpc_rmu2_mux = mpcc_id;
1471 			ret = true;
1472 			break;
1473 			}
1474 		}
1475 	return ret;
1476 }
1477 
dcn30_release_post_bldn_3dlut(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1478 bool dcn30_release_post_bldn_3dlut(
1479 		struct resource_context *res_ctx,
1480 		const struct resource_pool *pool,
1481 		struct dc_3dlut **lut,
1482 		struct dc_transfer_func **shaper)
1483 {
1484 	int i;
1485 	bool ret = false;
1486 
1487 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1488 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1489 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1490 			pool->mpc_lut[i]->state.raw = 0;
1491 			*lut = NULL;
1492 			*shaper = NULL;
1493 			ret = true;
1494 			break;
1495 		}
1496 	}
1497 	return ret;
1498 }
1499 
is_soc_bounding_box_valid(struct dc * dc)1500 static bool is_soc_bounding_box_valid(struct dc *dc)
1501 {
1502 	uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
1503 
1504 	if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev))
1505 		return true;
1506 
1507 	return false;
1508 }
1509 
init_soc_bounding_box(struct dc * dc,struct dcn30_resource_pool * pool)1510 static bool init_soc_bounding_box(struct dc *dc,
1511 				  struct dcn30_resource_pool *pool)
1512 {
1513 	struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc;
1514 	struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip;
1515 
1516 	DC_LOGGER_INIT(dc->ctx->logger);
1517 
1518 	if (!is_soc_bounding_box_valid(dc)) {
1519 		DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__);
1520 		return false;
1521 	}
1522 
1523 	loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
1524 	loaded_ip->max_num_dpp = pool->base.pipe_count;
1525 	loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
1526 	dcn20_patch_bounding_box(dc, loaded_bb);
1527 	DC_FP_START();
1528 	patch_dcn30_soc_bounding_box(dc, &dcn3_0_soc);
1529 	DC_FP_END();
1530 
1531 	return true;
1532 }
1533 
dcn30_split_stream_for_mpc_or_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)1534 static bool dcn30_split_stream_for_mpc_or_odm(
1535 		const struct dc *dc,
1536 		struct resource_context *res_ctx,
1537 		struct pipe_ctx *pri_pipe,
1538 		struct pipe_ctx *sec_pipe,
1539 		bool odm)
1540 {
1541 	int pipe_idx = sec_pipe->pipe_idx;
1542 	const struct resource_pool *pool = dc->res_pool;
1543 
1544 	*sec_pipe = *pri_pipe;
1545 
1546 	sec_pipe->pipe_idx = pipe_idx;
1547 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1548 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1549 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1550 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1551 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1552 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1553 	sec_pipe->stream_res.dsc = NULL;
1554 	if (odm) {
1555 		if (pri_pipe->next_odm_pipe) {
1556 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1557 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1558 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1559 		}
1560 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1561 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1562 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1563 		}
1564 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1565 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1566 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1567 		}
1568 		pri_pipe->next_odm_pipe = sec_pipe;
1569 		sec_pipe->prev_odm_pipe = pri_pipe;
1570 
1571 		if (!sec_pipe->top_pipe)
1572 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1573 		else
1574 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1575 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1576 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1577 			ASSERT(sec_pipe->stream_res.dsc);
1578 			if (sec_pipe->stream_res.dsc == NULL)
1579 				return false;
1580 		}
1581 	} else {
1582 		if (pri_pipe->bottom_pipe) {
1583 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1584 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1585 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1586 		}
1587 		pri_pipe->bottom_pipe = sec_pipe;
1588 		sec_pipe->top_pipe = pri_pipe;
1589 
1590 		ASSERT(pri_pipe->plane_state);
1591 	}
1592 
1593 	return true;
1594 }
1595 
dcn30_find_split_pipe(struct dc * dc,struct dc_state * context,int old_index)1596 static struct pipe_ctx *dcn30_find_split_pipe(
1597 		struct dc *dc,
1598 		struct dc_state *context,
1599 		int old_index)
1600 {
1601 	struct pipe_ctx *pipe = NULL;
1602 	int i;
1603 
1604 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1605 		pipe = &context->res_ctx.pipe_ctx[old_index];
1606 		pipe->pipe_idx = old_index;
1607 	}
1608 
1609 	if (!pipe)
1610 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1611 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1612 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1613 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1614 					pipe = &context->res_ctx.pipe_ctx[i];
1615 					pipe->pipe_idx = i;
1616 					break;
1617 				}
1618 			}
1619 		}
1620 
1621 	/*
1622 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1623 	 * Add for debugging transient underflow during topology updates:
1624 	 * ASSERT(pipe);
1625 	 */
1626 	if (!pipe)
1627 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1628 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1629 				pipe = &context->res_ctx.pipe_ctx[i];
1630 				pipe->pipe_idx = i;
1631 				break;
1632 			}
1633 		}
1634 
1635 	return pipe;
1636 }
1637 
dcn30_internal_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * vlevel_out,bool fast_validate)1638 noinline bool dcn30_internal_validate_bw(
1639 		struct dc *dc,
1640 		struct dc_state *context,
1641 		display_e2e_pipe_params_st *pipes,
1642 		int *pipe_cnt_out,
1643 		int *vlevel_out,
1644 		bool fast_validate)
1645 {
1646 	bool out = false;
1647 	bool repopulate_pipes = false;
1648 	int split[MAX_PIPES] = { 0 };
1649 	bool merge[MAX_PIPES] = { false };
1650 	bool newly_split[MAX_PIPES] = { false };
1651 	int pipe_cnt, i, pipe_idx, vlevel;
1652 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1653 
1654 	ASSERT(pipes);
1655 	if (!pipes)
1656 		return false;
1657 
1658 	context->bw_ctx.dml.vba.maxMpcComb = 0;
1659 	context->bw_ctx.dml.vba.VoltageLevel = 0;
1660 	context->bw_ctx.dml.vba.DRAMClockChangeSupport[0][0] = dm_dram_clock_change_vactive;
1661 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1662 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1663 
1664 	if (!pipe_cnt) {
1665 		out = true;
1666 		goto validate_out;
1667 	}
1668 
1669 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1670 
1671 	if (!fast_validate) {
1672 		/*
1673 		 * DML favors voltage over p-state, but we're more interested in
1674 		 * supporting p-state over voltage. We can't support p-state in
1675 		 * prefetch mode > 0 so try capping the prefetch mode to start.
1676 		 */
1677 		context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1678 			dm_allow_self_refresh_and_mclk_switch;
1679 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1680 		/* This may adjust vlevel and maxMpcComb */
1681 		if (vlevel < context->bw_ctx.dml.soc.num_states)
1682 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1683 	}
1684 	if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states ||
1685 			vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
1686 		/*
1687 		 * If mode is unsupported or there's still no p-state support then
1688 		 * fall back to favoring voltage.
1689 		 *
1690 		 * We don't actually support prefetch mode 2, so require that we
1691 		 * at least support prefetch mode 1.
1692 		 */
1693 		context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1694 			dm_allow_self_refresh;
1695 
1696 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1697 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1698 			memset(split, 0, sizeof(split));
1699 			memset(merge, 0, sizeof(merge));
1700 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1701 		}
1702 	}
1703 
1704 	dml_log_mode_support_params(&context->bw_ctx.dml);
1705 
1706 	if (vlevel == context->bw_ctx.dml.soc.num_states)
1707 		goto validate_fail;
1708 
1709 	if (!dc->config.enable_windowed_mpo_odm) {
1710 		for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1711 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1712 			struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1713 
1714 			if (!pipe->stream)
1715 				continue;
1716 
1717 			/* We only support full screen mpo with ODM */
1718 			if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1719 					&& pipe->plane_state && mpo_pipe
1720 					&& memcmp(&mpo_pipe->plane_res.scl_data.recout,
1721 							&pipe->plane_res.scl_data.recout,
1722 							sizeof(struct rect)) != 0) {
1723 				ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1724 				goto validate_fail;
1725 			}
1726 			pipe_idx++;
1727 		}
1728 	}
1729 
1730 	/* merge pipes if necessary */
1731 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1732 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1733 
1734 		/*skip pipes that don't need merging*/
1735 		if (!merge[i])
1736 			continue;
1737 
1738 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1739 		if (pipe->prev_odm_pipe) {
1740 			/*split off odm pipe*/
1741 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1742 			if (pipe->next_odm_pipe)
1743 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1744 
1745 			pipe->bottom_pipe = NULL;
1746 			pipe->next_odm_pipe = NULL;
1747 			pipe->plane_state = NULL;
1748 			pipe->stream = NULL;
1749 			pipe->top_pipe = NULL;
1750 			pipe->prev_odm_pipe = NULL;
1751 			if (pipe->stream_res.dsc)
1752 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1753 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1754 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1755 			repopulate_pipes = true;
1756 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1757 			struct pipe_ctx *top_pipe = pipe->top_pipe;
1758 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1759 
1760 			top_pipe->bottom_pipe = bottom_pipe;
1761 			if (bottom_pipe)
1762 				bottom_pipe->top_pipe = top_pipe;
1763 
1764 			pipe->top_pipe = NULL;
1765 			pipe->bottom_pipe = NULL;
1766 			pipe->plane_state = NULL;
1767 			pipe->stream = NULL;
1768 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1769 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1770 			repopulate_pipes = true;
1771 		} else
1772 			ASSERT(0); /* Should never try to merge master pipe */
1773 
1774 	}
1775 
1776 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1777 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1778 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1779 		struct pipe_ctx *hsplit_pipe = NULL;
1780 		bool odm;
1781 		int old_index = -1;
1782 
1783 		if (!pipe->stream || newly_split[i])
1784 			continue;
1785 
1786 		pipe_idx++;
1787 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1788 
1789 		if (!pipe->plane_state && !odm)
1790 			continue;
1791 
1792 		if (split[i]) {
1793 			if (odm) {
1794 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1795 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1796 				else if (old_pipe->next_odm_pipe)
1797 					old_index = old_pipe->next_odm_pipe->pipe_idx;
1798 			} else {
1799 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1800 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1801 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1802 				else if (old_pipe->bottom_pipe &&
1803 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1804 					old_index = old_pipe->bottom_pipe->pipe_idx;
1805 			}
1806 			hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index);
1807 			ASSERT(hsplit_pipe);
1808 			if (!hsplit_pipe)
1809 				goto validate_fail;
1810 
1811 			if (!dcn30_split_stream_for_mpc_or_odm(
1812 					dc, &context->res_ctx,
1813 					pipe, hsplit_pipe, odm))
1814 				goto validate_fail;
1815 
1816 			newly_split[hsplit_pipe->pipe_idx] = true;
1817 			repopulate_pipes = true;
1818 		}
1819 		if (split[i] == 4) {
1820 			struct pipe_ctx *pipe_4to1;
1821 
1822 			if (odm && old_pipe->next_odm_pipe)
1823 				old_index = old_pipe->next_odm_pipe->pipe_idx;
1824 			else if (!odm && old_pipe->bottom_pipe &&
1825 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1826 				old_index = old_pipe->bottom_pipe->pipe_idx;
1827 			else
1828 				old_index = -1;
1829 			pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
1830 			ASSERT(pipe_4to1);
1831 			if (!pipe_4to1)
1832 				goto validate_fail;
1833 			if (!dcn30_split_stream_for_mpc_or_odm(
1834 					dc, &context->res_ctx,
1835 					pipe, pipe_4to1, odm))
1836 				goto validate_fail;
1837 			newly_split[pipe_4to1->pipe_idx] = true;
1838 
1839 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1840 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1841 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1842 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1843 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1844 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1845 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1846 			else
1847 				old_index = -1;
1848 			pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
1849 			ASSERT(pipe_4to1);
1850 			if (!pipe_4to1)
1851 				goto validate_fail;
1852 			if (!dcn30_split_stream_for_mpc_or_odm(
1853 					dc, &context->res_ctx,
1854 					hsplit_pipe, pipe_4to1, odm))
1855 				goto validate_fail;
1856 			newly_split[pipe_4to1->pipe_idx] = true;
1857 		}
1858 		if (odm)
1859 			dcn20_build_mapped_resource(dc, context, pipe->stream);
1860 	}
1861 
1862 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1863 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1864 
1865 		if (pipe->plane_state) {
1866 			if (!resource_build_scaling_params(pipe))
1867 				goto validate_fail;
1868 		}
1869 	}
1870 
1871 	/* Actual dsc count per stream dsc validation*/
1872 	if (!dcn20_validate_dsc(dc, context)) {
1873 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1874 		goto validate_fail;
1875 	}
1876 
1877 	if (repopulate_pipes)
1878 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1879 	context->bw_ctx.dml.vba.VoltageLevel = vlevel;
1880 	*vlevel_out = vlevel;
1881 	*pipe_cnt_out = pipe_cnt;
1882 
1883 	out = true;
1884 	goto validate_out;
1885 
1886 validate_fail:
1887 	out = false;
1888 
1889 validate_out:
1890 	return out;
1891 }
1892 
get_refresh_rate(struct dc_state * context)1893 static int get_refresh_rate(struct dc_state *context)
1894 {
1895 	int refresh_rate = 0;
1896 	int h_v_total = 0;
1897 	struct dc_crtc_timing *timing = NULL;
1898 
1899 	if (context == NULL || context->streams[0] == NULL)
1900 		return 0;
1901 
1902 	/* check if refresh rate at least 120hz */
1903 	timing = &context->streams[0]->timing;
1904 	if (timing == NULL)
1905 		return 0;
1906 
1907 	h_v_total = timing->h_total * timing->v_total;
1908 	if (h_v_total == 0)
1909 		return 0;
1910 
1911 	refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1;
1912 	return refresh_rate;
1913 }
1914 
1915 #define MAX_STRETCHED_V_BLANK 500 // in micro-seconds
1916 /*
1917  * Scaling factor for v_blank stretch calculations considering timing in
1918  * micro-seconds and pixel clock in 100hz.
1919  * Note: the parenthesis are necessary to ensure the correct order of
1920  * operation where V_SCALE is used.
1921  */
1922 #define V_SCALE (10000 / MAX_STRETCHED_V_BLANK)
1923 
get_frame_rate_at_max_stretch_100hz(struct dc_state * context)1924 static int get_frame_rate_at_max_stretch_100hz(struct dc_state *context)
1925 {
1926 	struct dc_crtc_timing *timing = NULL;
1927 	uint32_t sec_per_100_lines;
1928 	uint32_t max_v_blank;
1929 	uint32_t curr_v_blank;
1930 	uint32_t v_stretch_max;
1931 	uint32_t stretched_frame_pix_cnt;
1932 	uint32_t scaled_stretched_frame_pix_cnt;
1933 	uint32_t scaled_refresh_rate;
1934 
1935 	if (context == NULL || context->streams[0] == NULL)
1936 		return 0;
1937 
1938 	/* check if refresh rate at least 120hz */
1939 	timing = &context->streams[0]->timing;
1940 	if (timing == NULL)
1941 		return 0;
1942 
1943 	sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1;
1944 	max_v_blank = sec_per_100_lines / V_SCALE + 1;
1945 	curr_v_blank = timing->v_total - timing->v_addressable;
1946 	v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0);
1947 	stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total;
1948 	scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000;
1949 	scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1;
1950 
1951 	return scaled_refresh_rate;
1952 }
1953 
is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(struct dc_state * context)1954 static bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(struct dc_state *context)
1955 {
1956 	int refresh_rate_max_stretch_100hz;
1957 	int min_refresh_100hz;
1958 
1959 	if (context == NULL || context->streams[0] == NULL)
1960 		return false;
1961 
1962 	refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(context);
1963 	min_refresh_100hz = context->streams[0]->timing.min_refresh_in_uhz / 10000;
1964 
1965 	if (refresh_rate_max_stretch_100hz < min_refresh_100hz)
1966 		return false;
1967 
1968 	return true;
1969 }
1970 
dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc * dc,struct dc_state * context)1971 bool dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context)
1972 {
1973 	int refresh_rate = 0;
1974 	const int minimum_refreshrate_supported = 120;
1975 
1976 	if (context == NULL || context->streams[0] == NULL)
1977 		return false;
1978 
1979 	if (context->streams[0]->sink->edid_caps.panel_patch.disable_fams)
1980 		return false;
1981 
1982 	if (dc->debug.disable_fams)
1983 		return false;
1984 
1985 	if (!dc->caps.dmub_caps.mclk_sw)
1986 		return false;
1987 
1988 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down)
1989 		return false;
1990 
1991 	/* more then 1 monitor connected */
1992 	if (context->stream_count != 1)
1993 		return false;
1994 
1995 	refresh_rate = get_refresh_rate(context);
1996 	if (refresh_rate < minimum_refreshrate_supported)
1997 		return false;
1998 
1999 	if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(context))
2000 		return false;
2001 
2002 	// check if freesync enabled
2003 	if (!context->streams[0]->allow_freesync)
2004 		return false;
2005 
2006 	if (context->streams[0]->vrr_active_variable)
2007 		return false;
2008 
2009 	return true;
2010 }
2011 
2012 /*
2013  * set up FPO watermarks, pstate, dram latency
2014  */
dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(struct dc * dc,struct dc_state * context)2015 void dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context)
2016 {
2017 	ASSERT(dc != NULL && context != NULL);
2018 	if (dc == NULL || context == NULL)
2019 		return;
2020 
2021 	/* Set wm_a.pstate so high natural MCLK switches are impossible: 4 seconds */
2022 	context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U;
2023 }
2024 
dcn30_update_soc_for_wm_a(struct dc * dc,struct dc_state * context)2025 void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context)
2026 {
2027 	DC_FP_START();
2028 	dcn30_fpu_update_soc_for_wm_a(dc, context);
2029 	DC_FP_END();
2030 }
2031 
dcn30_calculate_wm_and_dlg(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)2032 void dcn30_calculate_wm_and_dlg(
2033 		struct dc *dc, struct dc_state *context,
2034 		display_e2e_pipe_params_st *pipes,
2035 		int pipe_cnt,
2036 		int vlevel)
2037 {
2038 	DC_FP_START();
2039 	dcn30_fpu_calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2040 	DC_FP_END();
2041 }
2042 
dcn30_validate_bandwidth(struct dc * dc,struct dc_state * context,bool fast_validate)2043 bool dcn30_validate_bandwidth(struct dc *dc,
2044 		struct dc_state *context,
2045 		bool fast_validate)
2046 {
2047 	bool out = false;
2048 
2049 	BW_VAL_TRACE_SETUP();
2050 
2051 	int vlevel = 0;
2052 	int pipe_cnt = 0;
2053 	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
2054 	DC_LOGGER_INIT(dc->ctx->logger);
2055 
2056 	BW_VAL_TRACE_COUNT();
2057 
2058 	DC_FP_START();
2059 	out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
2060 	DC_FP_END();
2061 
2062 	if (pipe_cnt == 0)
2063 		goto validate_out;
2064 
2065 	if (!out)
2066 		goto validate_fail;
2067 
2068 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
2069 
2070 	if (fast_validate) {
2071 		BW_VAL_TRACE_SKIP(fast);
2072 		goto validate_out;
2073 	}
2074 
2075 	DC_FP_START();
2076 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2077 	DC_FP_END();
2078 
2079 	BW_VAL_TRACE_END_WATERMARKS();
2080 
2081 	goto validate_out;
2082 
2083 validate_fail:
2084 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
2085 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
2086 
2087 	BW_VAL_TRACE_SKIP(fail);
2088 	out = false;
2089 
2090 validate_out:
2091 	kfree(pipes);
2092 
2093 	BW_VAL_TRACE_FINISH();
2094 
2095 	return out;
2096 }
2097 
dcn30_update_bw_bounding_box(struct dc * dc,struct clk_bw_params * bw_params)2098 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2099 {
2100 	unsigned int i, j;
2101 	unsigned int num_states = 0;
2102 
2103 	unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2104 	unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2105 	unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2106 	unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2107 
2108 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200};
2109 	unsigned int num_dcfclk_sta_targets = 4;
2110 	unsigned int num_uclk_states;
2111 
2112 	struct dc_bounding_box_max_clk dcn30_bb_max_clk;
2113 
2114 	memset(&dcn30_bb_max_clk, 0, sizeof(dcn30_bb_max_clk));
2115 
2116 	if (dc->ctx->dc_bios->vram_info.num_chans)
2117 		dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2118 
2119 	DC_FP_START();
2120 	dcn30_fpu_update_dram_channel_width_bytes(dc);
2121 	DC_FP_END();
2122 
2123 	if (bw_params->clk_table.entries[0].memclk_mhz) {
2124 
2125 		for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2126 			if (bw_params->clk_table.entries[i].dcfclk_mhz > dcn30_bb_max_clk.max_dcfclk_mhz)
2127 				dcn30_bb_max_clk.max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2128 			if (bw_params->clk_table.entries[i].dispclk_mhz > dcn30_bb_max_clk.max_dispclk_mhz)
2129 				dcn30_bb_max_clk.max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2130 			if (bw_params->clk_table.entries[i].dppclk_mhz > dcn30_bb_max_clk.max_dppclk_mhz)
2131 				dcn30_bb_max_clk.max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2132 			if (bw_params->clk_table.entries[i].phyclk_mhz > dcn30_bb_max_clk.max_phyclk_mhz)
2133 				dcn30_bb_max_clk.max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2134 		}
2135 
2136 		DC_FP_START();
2137 		dcn30_fpu_update_max_clk(&dcn30_bb_max_clk);
2138 		DC_FP_END();
2139 
2140 		if (dcn30_bb_max_clk.max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2141 			// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2142 			dcfclk_sta_targets[num_dcfclk_sta_targets] = dcn30_bb_max_clk.max_dcfclk_mhz;
2143 			num_dcfclk_sta_targets++;
2144 		} else if (dcn30_bb_max_clk.max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2145 			// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2146 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
2147 				if (dcfclk_sta_targets[i] > dcn30_bb_max_clk.max_dcfclk_mhz) {
2148 					dcfclk_sta_targets[i] = dcn30_bb_max_clk.max_dcfclk_mhz;
2149 					break;
2150 				}
2151 			}
2152 			// Update size of array since we "removed" duplicates
2153 			num_dcfclk_sta_targets = i + 1;
2154 		}
2155 
2156 		num_uclk_states = bw_params->clk_table.num_entries;
2157 
2158 		// Calculate optimal dcfclk for each uclk
2159 		for (i = 0; i < num_uclk_states; i++) {
2160 			DC_FP_START();
2161 			dcn30_fpu_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2162 					&optimal_dcfclk_for_uclk[i], NULL);
2163 			DC_FP_END();
2164 			if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2165 				optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2166 			}
2167 		}
2168 
2169 		// Calculate optimal uclk for each dcfclk sta target
2170 		for (i = 0; i < num_dcfclk_sta_targets; i++) {
2171 			for (j = 0; j < num_uclk_states; j++) {
2172 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2173 					optimal_uclk_for_dcfclk_sta_targets[i] =
2174 							bw_params->clk_table.entries[j].memclk_mhz * 16;
2175 					break;
2176 				}
2177 			}
2178 		}
2179 
2180 		i = 0;
2181 		j = 0;
2182 		// create the final dcfclk and uclk table
2183 		while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2184 			if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2185 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2186 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2187 			} else {
2188 				if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) {
2189 					dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2190 					dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2191 				} else {
2192 					j = num_uclk_states;
2193 				}
2194 			}
2195 		}
2196 
2197 		while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2198 			dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2199 			dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2200 		}
2201 
2202 		while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2203 				optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) {
2204 			dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2205 			dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2206 		}
2207 
2208 		dcn3_0_soc.num_states = num_states;
2209 		DC_FP_START();
2210 		dcn30_fpu_update_bw_bounding_box(dc, bw_params, &dcn30_bb_max_clk, dcfclk_mhz, dram_speed_mts);
2211 		DC_FP_END();
2212 	}
2213 }
2214 
2215 static const struct resource_funcs dcn30_res_pool_funcs = {
2216 	.destroy = dcn30_destroy_resource_pool,
2217 	.link_enc_create = dcn30_link_encoder_create,
2218 	.panel_cntl_create = dcn30_panel_cntl_create,
2219 	.validate_bandwidth = dcn30_validate_bandwidth,
2220 	.calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg,
2221 	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2222 	.populate_dml_pipes = dcn30_populate_dml_pipes_from_context,
2223 	.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
2224 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
2225 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2226 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2227 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2228 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
2229 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2230 	.acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut,
2231 	.release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut,
2232 	.update_bw_bounding_box = dcn30_update_bw_bounding_box,
2233 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2234 };
2235 
2236 #define CTX ctx
2237 
2238 #define REG(reg_name) \
2239 	(DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
2240 
read_pipe_fuses(struct dc_context * ctx)2241 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2242 {
2243 	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2244 	/* Support for max 6 pipes */
2245 	value = value & 0x3f;
2246 	return value;
2247 }
2248 
dcn30_resource_construct(uint8_t num_virtual_links,struct dc * dc,struct dcn30_resource_pool * pool)2249 static bool dcn30_resource_construct(
2250 	uint8_t num_virtual_links,
2251 	struct dc *dc,
2252 	struct dcn30_resource_pool *pool)
2253 {
2254 	int i;
2255 	struct dc_context *ctx = dc->ctx;
2256 	struct irq_service_init_data init_data;
2257 	struct ddc_service_init_data ddc_init_data = {0};
2258 	uint32_t pipe_fuses = read_pipe_fuses(ctx);
2259 	uint32_t num_pipes = 0;
2260 
2261 	if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) {
2262 		BREAK_TO_DEBUGGER();
2263 		dm_error("DC: Unexpected fuse recipe for navi2x !\n");
2264 		/* fault to single pipe */
2265 		pipe_fuses = 0x3e;
2266 	}
2267 
2268 	DC_FP_START();
2269 
2270 	ctx->dc_bios->regs = &bios_regs;
2271 
2272 	pool->base.res_cap = &res_cap_dcn3;
2273 
2274 	pool->base.funcs = &dcn30_res_pool_funcs;
2275 
2276 	/*************************************************
2277 	 *  Resource + asic cap harcoding                *
2278 	 *************************************************/
2279 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2280 	pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
2281 	pool->base.mpcc_count = pool->base.res_cap->num_timing_generator;
2282 	dc->caps.max_downscale_ratio = 600;
2283 	dc->caps.i2c_speed_in_khz = 100;
2284 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2285 	dc->caps.max_cursor_size = 256;
2286 	dc->caps.min_horizontal_blanking_period = 80;
2287 	dc->caps.dmdata_alloc_size = 2048;
2288 	dc->caps.mall_size_per_mem_channel = 8;
2289 	/* total size = mall per channel * num channels * 1024 * 1024 */
2290 	dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576;
2291 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2292 
2293 	dc->caps.max_slave_planes = 2;
2294 	dc->caps.max_slave_yuv_planes = 2;
2295 	dc->caps.max_slave_rgb_planes = 2;
2296 	dc->caps.post_blend_color_processing = true;
2297 	dc->caps.force_dp_tps4_for_cp2520 = true;
2298 	dc->caps.extended_aux_timeout_support = true;
2299 	dc->caps.dmcub_support = true;
2300 
2301 	/* Color pipeline capabilities */
2302 	dc->caps.color.dpp.dcn_arch = 1;
2303 	dc->caps.color.dpp.input_lut_shared = 0;
2304 	dc->caps.color.dpp.icsc = 1;
2305 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2306 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2307 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2308 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2309 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2310 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2311 	dc->caps.color.dpp.post_csc = 1;
2312 	dc->caps.color.dpp.gamma_corr = 1;
2313 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2314 
2315 	dc->caps.color.dpp.hw_3d_lut = 1;
2316 	dc->caps.color.dpp.ogam_ram = 1;
2317 	// no OGAM ROM on DCN3
2318 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2319 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2320 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2321 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2322 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2323 	dc->caps.color.dpp.ocsc = 0;
2324 
2325 	dc->caps.color.mpc.gamut_remap = 1;
2326 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3
2327 	dc->caps.color.mpc.ogam_ram = 1;
2328 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2329 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2330 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2331 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2332 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2333 	dc->caps.color.mpc.ocsc = 1;
2334 
2335 	dc->caps.dp_hdmi21_pcon_support = true;
2336 
2337 	/* read VBIOS LTTPR caps */
2338 	{
2339 		if (ctx->dc_bios->funcs->get_lttpr_caps) {
2340 			enum bp_result bp_query_result;
2341 			uint8_t is_vbios_lttpr_enable = 0;
2342 
2343 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2344 			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2345 		}
2346 
2347 		if (ctx->dc_bios->funcs->get_lttpr_interop) {
2348 			enum bp_result bp_query_result;
2349 			uint8_t is_vbios_interop_enabled = 0;
2350 
2351 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios,
2352 					&is_vbios_interop_enabled);
2353 			dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled;
2354 		}
2355 	}
2356 
2357 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2358 		dc->debug = debug_defaults_drv;
2359 	else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
2360 		dc->debug = debug_defaults_diags;
2361 	} else
2362 		dc->debug = debug_defaults_diags;
2363 	// Init the vm_helper
2364 	if (dc->vm_helper)
2365 		vm_helper_init(dc->vm_helper, 16);
2366 
2367 	/*************************************************
2368 	 *  Create resources                             *
2369 	 *************************************************/
2370 
2371 	/* Clock Sources for Pixel Clock*/
2372 	pool->base.clock_sources[DCN30_CLK_SRC_PLL0] =
2373 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2374 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2375 				&clk_src_regs[0], false);
2376 	pool->base.clock_sources[DCN30_CLK_SRC_PLL1] =
2377 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2378 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2379 				&clk_src_regs[1], false);
2380 	pool->base.clock_sources[DCN30_CLK_SRC_PLL2] =
2381 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2382 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2383 				&clk_src_regs[2], false);
2384 	pool->base.clock_sources[DCN30_CLK_SRC_PLL3] =
2385 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2386 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2387 				&clk_src_regs[3], false);
2388 	pool->base.clock_sources[DCN30_CLK_SRC_PLL4] =
2389 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2390 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2391 				&clk_src_regs[4], false);
2392 	pool->base.clock_sources[DCN30_CLK_SRC_PLL5] =
2393 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2394 				CLOCK_SOURCE_COMBO_PHY_PLL5,
2395 				&clk_src_regs[5], false);
2396 
2397 	pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL;
2398 
2399 	/* todo: not reuse phy_pll registers */
2400 	pool->base.dp_clock_source =
2401 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2402 				CLOCK_SOURCE_ID_DP_DTO,
2403 				&clk_src_regs[0], true);
2404 
2405 	for (i = 0; i < pool->base.clk_src_count; i++) {
2406 		if (pool->base.clock_sources[i] == NULL) {
2407 			dm_error("DC: failed to create clock sources!\n");
2408 			BREAK_TO_DEBUGGER();
2409 			goto create_fail;
2410 		}
2411 	}
2412 
2413 	/* DCCG */
2414 	pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2415 	if (pool->base.dccg == NULL) {
2416 		dm_error("DC: failed to create dccg!\n");
2417 		BREAK_TO_DEBUGGER();
2418 		goto create_fail;
2419 	}
2420 
2421 	/* PP Lib and SMU interfaces */
2422 	init_soc_bounding_box(dc, pool);
2423 
2424 	num_pipes = dcn3_0_ip.max_num_dpp;
2425 
2426 	for (i = 0; i < dcn3_0_ip.max_num_dpp; i++)
2427 		if (pipe_fuses & 1 << i)
2428 			num_pipes--;
2429 
2430 	dcn3_0_ip.max_num_dpp = num_pipes;
2431 	dcn3_0_ip.max_num_otg = num_pipes;
2432 
2433 	dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2434 
2435 	/* IRQ */
2436 	init_data.ctx = dc->ctx;
2437 	pool->base.irqs = dal_irq_service_dcn30_create(&init_data);
2438 	if (!pool->base.irqs)
2439 		goto create_fail;
2440 
2441 	/* HUBBUB */
2442 	pool->base.hubbub = dcn30_hubbub_create(ctx);
2443 	if (pool->base.hubbub == NULL) {
2444 		BREAK_TO_DEBUGGER();
2445 		dm_error("DC: failed to create hubbub!\n");
2446 		goto create_fail;
2447 	}
2448 
2449 	/* HUBPs, DPPs, OPPs and TGs */
2450 	for (i = 0; i < pool->base.pipe_count; i++) {
2451 		pool->base.hubps[i] = dcn30_hubp_create(ctx, i);
2452 		if (pool->base.hubps[i] == NULL) {
2453 			BREAK_TO_DEBUGGER();
2454 			dm_error(
2455 				"DC: failed to create hubps!\n");
2456 			goto create_fail;
2457 		}
2458 
2459 		pool->base.dpps[i] = dcn30_dpp_create(ctx, i);
2460 		if (pool->base.dpps[i] == NULL) {
2461 			BREAK_TO_DEBUGGER();
2462 			dm_error(
2463 				"DC: failed to create dpps!\n");
2464 			goto create_fail;
2465 		}
2466 	}
2467 
2468 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2469 		pool->base.opps[i] = dcn30_opp_create(ctx, i);
2470 		if (pool->base.opps[i] == NULL) {
2471 			BREAK_TO_DEBUGGER();
2472 			dm_error(
2473 				"DC: failed to create output pixel processor!\n");
2474 			goto create_fail;
2475 		}
2476 	}
2477 
2478 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2479 		pool->base.timing_generators[i] = dcn30_timing_generator_create(
2480 				ctx, i);
2481 		if (pool->base.timing_generators[i] == NULL) {
2482 			BREAK_TO_DEBUGGER();
2483 			dm_error("DC: failed to create tg!\n");
2484 			goto create_fail;
2485 		}
2486 	}
2487 	pool->base.timing_generator_count = i;
2488 	/* PSR */
2489 	pool->base.psr = dmub_psr_create(ctx);
2490 
2491 	if (pool->base.psr == NULL) {
2492 		dm_error("DC: failed to create PSR obj!\n");
2493 		BREAK_TO_DEBUGGER();
2494 		goto create_fail;
2495 	}
2496 
2497 	/* ABM */
2498 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2499 		pool->base.multiple_abms[i] = dmub_abm_create(ctx,
2500 				&abm_regs[i],
2501 				&abm_shift,
2502 				&abm_mask);
2503 		if (pool->base.multiple_abms[i] == NULL) {
2504 			dm_error("DC: failed to create abm for pipe %d!\n", i);
2505 			BREAK_TO_DEBUGGER();
2506 			goto create_fail;
2507 		}
2508 	}
2509 	/* MPC and DSC */
2510 	pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut);
2511 	if (pool->base.mpc == NULL) {
2512 		BREAK_TO_DEBUGGER();
2513 		dm_error("DC: failed to create mpc!\n");
2514 		goto create_fail;
2515 	}
2516 
2517 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2518 		pool->base.dscs[i] = dcn30_dsc_create(ctx, i);
2519 		if (pool->base.dscs[i] == NULL) {
2520 			BREAK_TO_DEBUGGER();
2521 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2522 			goto create_fail;
2523 		}
2524 	}
2525 
2526 	/* DWB and MMHUBBUB */
2527 	if (!dcn30_dwbc_create(ctx, &pool->base)) {
2528 		BREAK_TO_DEBUGGER();
2529 		dm_error("DC: failed to create dwbc!\n");
2530 		goto create_fail;
2531 	}
2532 
2533 	if (!dcn30_mmhubbub_create(ctx, &pool->base)) {
2534 		BREAK_TO_DEBUGGER();
2535 		dm_error("DC: failed to create mcif_wb!\n");
2536 		goto create_fail;
2537 	}
2538 
2539 	/* AUX and I2C */
2540 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2541 		pool->base.engines[i] = dcn30_aux_engine_create(ctx, i);
2542 		if (pool->base.engines[i] == NULL) {
2543 			BREAK_TO_DEBUGGER();
2544 			dm_error(
2545 				"DC:failed to create aux engine!!\n");
2546 			goto create_fail;
2547 		}
2548 		pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i);
2549 		if (pool->base.hw_i2cs[i] == NULL) {
2550 			BREAK_TO_DEBUGGER();
2551 			dm_error(
2552 				"DC:failed to create hw i2c!!\n");
2553 			goto create_fail;
2554 		}
2555 		pool->base.sw_i2cs[i] = NULL;
2556 	}
2557 
2558 	/* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */
2559 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2560 			(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
2561 			&res_create_funcs : &res_create_maximus_funcs)))
2562 		goto create_fail;
2563 
2564 	/* HW Sequencer and Plane caps */
2565 	dcn30_hw_sequencer_construct(dc);
2566 
2567 	dc->caps.max_planes =  pool->base.pipe_count;
2568 
2569 	for (i = 0; i < dc->caps.max_planes; ++i)
2570 		dc->caps.planes[i] = plane_cap;
2571 
2572 	dc->cap_funcs = cap_funcs;
2573 
2574 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2575 		ddc_init_data.ctx = dc->ctx;
2576 		ddc_init_data.link = NULL;
2577 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2578 		ddc_init_data.id.enum_id = 0;
2579 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2580 		pool->base.oem_device = dal_ddc_service_create(&ddc_init_data);
2581 	} else {
2582 		pool->base.oem_device = NULL;
2583 	}
2584 
2585 	DC_FP_END();
2586 
2587 	return true;
2588 
2589 create_fail:
2590 
2591 	DC_FP_END();
2592 	dcn30_resource_destruct(pool);
2593 
2594 	return false;
2595 }
2596 
dcn30_create_resource_pool(const struct dc_init_data * init_data,struct dc * dc)2597 struct resource_pool *dcn30_create_resource_pool(
2598 		const struct dc_init_data *init_data,
2599 		struct dc *dc)
2600 {
2601 	struct dcn30_resource_pool *pool =
2602 		kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL);
2603 
2604 	if (!pool)
2605 		return NULL;
2606 
2607 	if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool))
2608 		return &pool->base;
2609 
2610 	BREAK_TO_DEBUGGER();
2611 	kfree(pool);
2612 	return NULL;
2613 }
2614