1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 * Copyright 2019 Raptor Engineering, LLC
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26
27 #include <linux/slab.h>
28
29 #include "dm_services.h"
30 #include "dc.h"
31
32 #include "dcn20_init.h"
33
34 #include "resource.h"
35 #include "include/irq_service_interface.h"
36 #include "dcn20/dcn20_resource.h"
37
38 #include "dml/dcn20/dcn20_fpu.h"
39
40 #include "dcn10/dcn10_hubp.h"
41 #include "dcn10/dcn10_ipp.h"
42 #include "dcn20_hubbub.h"
43 #include "dcn20_mpc.h"
44 #include "dcn20_hubp.h"
45 #include "irq/dcn20/irq_service_dcn20.h"
46 #include "dcn20_dpp.h"
47 #include "dcn20_optc.h"
48 #include "dcn20_hwseq.h"
49 #include "dce110/dce110_hw_sequencer.h"
50 #include "dcn10/dcn10_resource.h"
51 #include "dcn20_opp.h"
52
53 #include "dcn20_dsc.h"
54
55 #include "dcn20_link_encoder.h"
56 #include "dcn20_stream_encoder.h"
57 #include "dce/dce_clock_source.h"
58 #include "dce/dce_audio.h"
59 #include "dce/dce_hwseq.h"
60 #include "virtual/virtual_stream_encoder.h"
61 #include "dce110/dce110_resource.h"
62 #include "dml/display_mode_vba.h"
63 #include "dcn20_dccg.h"
64 #include "dcn20_vmid.h"
65 #include "dce/dce_panel_cntl.h"
66
67 #include "navi10_ip_offset.h"
68
69 #include "dcn/dcn_2_0_0_offset.h"
70 #include "dcn/dcn_2_0_0_sh_mask.h"
71 #include "dpcs/dpcs_2_0_0_offset.h"
72 #include "dpcs/dpcs_2_0_0_sh_mask.h"
73
74 #include "nbio/nbio_2_3_offset.h"
75
76 #include "dcn20/dcn20_dwb.h"
77 #include "dcn20/dcn20_mmhubbub.h"
78
79 #include "mmhub/mmhub_2_0_0_offset.h"
80 #include "mmhub/mmhub_2_0_0_sh_mask.h"
81
82 #include "reg_helper.h"
83 #include "dce/dce_abm.h"
84 #include "dce/dce_dmcu.h"
85 #include "dce/dce_aux.h"
86 #include "dce/dce_i2c.h"
87 #include "vm_helper.h"
88 #include "link_enc_cfg.h"
89
90 #include "amdgpu_socbb.h"
91
92 #include "link.h"
93 #define DC_LOGGER_INIT(logger)
94
95 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
96 #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f
97 #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
98 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f
99 #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
100 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f
101 #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
102 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f
103 #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
104 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f
105 #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
106 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f
107 #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
108 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f
109 #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
110 #endif
111
112
113 enum dcn20_clk_src_array_id {
114 DCN20_CLK_SRC_PLL0,
115 DCN20_CLK_SRC_PLL1,
116 DCN20_CLK_SRC_PLL2,
117 DCN20_CLK_SRC_PLL3,
118 DCN20_CLK_SRC_PLL4,
119 DCN20_CLK_SRC_PLL5,
120 DCN20_CLK_SRC_TOTAL
121 };
122
123 /* begin *********************
124 * macros to expend register list macro defined in HW object header file */
125
126 /* DCN */
127 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
128
129 #define BASE(seg) BASE_INNER(seg)
130
131 #define SR(reg_name)\
132 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
133 mm ## reg_name
134
135 #define SRI(reg_name, block, id)\
136 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
137 mm ## block ## id ## _ ## reg_name
138
139 #define SRI2_DWB(reg_name, block, id)\
140 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
141 mm ## reg_name
142 #define SF_DWB(reg_name, field_name, post_fix)\
143 .field_name = reg_name ## __ ## field_name ## post_fix
144
145 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \
146 .field_name = reg_name ## __ ## field_name ## post_fix
147
148 #define SRIR(var_name, reg_name, block, id)\
149 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
150 mm ## block ## id ## _ ## reg_name
151
152 #define SRII(reg_name, block, id)\
153 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
154 mm ## block ## id ## _ ## reg_name
155
156 #define DCCG_SRII(reg_name, block, id)\
157 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
158 mm ## block ## id ## _ ## reg_name
159
160 #define VUPDATE_SRII(reg_name, block, id)\
161 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
162 mm ## reg_name ## _ ## block ## id
163
164 /* NBIO */
165 #define NBIO_BASE_INNER(seg) \
166 NBIO_BASE__INST0_SEG ## seg
167
168 #define NBIO_BASE(seg) \
169 NBIO_BASE_INNER(seg)
170
171 #define NBIO_SR(reg_name)\
172 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
173 mm ## reg_name
174
175 /* MMHUB */
176 #define MMHUB_BASE_INNER(seg) \
177 MMHUB_BASE__INST0_SEG ## seg
178
179 #define MMHUB_BASE(seg) \
180 MMHUB_BASE_INNER(seg)
181
182 #define MMHUB_SR(reg_name)\
183 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
184 mmMM ## reg_name
185
186 static const struct bios_registers bios_regs = {
187 NBIO_SR(BIOS_SCRATCH_3),
188 NBIO_SR(BIOS_SCRATCH_6)
189 };
190
191 #define clk_src_regs(index, pllid)\
192 [index] = {\
193 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
194 }
195
196 static const struct dce110_clk_src_regs clk_src_regs[] = {
197 clk_src_regs(0, A),
198 clk_src_regs(1, B),
199 clk_src_regs(2, C),
200 clk_src_regs(3, D),
201 clk_src_regs(4, E),
202 clk_src_regs(5, F)
203 };
204
205 static const struct dce110_clk_src_shift cs_shift = {
206 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
207 };
208
209 static const struct dce110_clk_src_mask cs_mask = {
210 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
211 };
212
213 static const struct dce_dmcu_registers dmcu_regs = {
214 DMCU_DCN10_REG_LIST()
215 };
216
217 static const struct dce_dmcu_shift dmcu_shift = {
218 DMCU_MASK_SH_LIST_DCN10(__SHIFT)
219 };
220
221 static const struct dce_dmcu_mask dmcu_mask = {
222 DMCU_MASK_SH_LIST_DCN10(_MASK)
223 };
224
225 static const struct dce_abm_registers abm_regs = {
226 ABM_DCN20_REG_LIST()
227 };
228
229 static const struct dce_abm_shift abm_shift = {
230 ABM_MASK_SH_LIST_DCN20(__SHIFT)
231 };
232
233 static const struct dce_abm_mask abm_mask = {
234 ABM_MASK_SH_LIST_DCN20(_MASK)
235 };
236
237 #define audio_regs(id)\
238 [id] = {\
239 AUD_COMMON_REG_LIST(id)\
240 }
241
242 static const struct dce_audio_registers audio_regs[] = {
243 audio_regs(0),
244 audio_regs(1),
245 audio_regs(2),
246 audio_regs(3),
247 audio_regs(4),
248 audio_regs(5),
249 audio_regs(6),
250 };
251
252 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
253 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
254 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
255 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
256
257 static const struct dce_audio_shift audio_shift = {
258 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
259 };
260
261 static const struct dce_audio_mask audio_mask = {
262 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
263 };
264
265 #define stream_enc_regs(id)\
266 [id] = {\
267 SE_DCN2_REG_LIST(id)\
268 }
269
270 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
271 stream_enc_regs(0),
272 stream_enc_regs(1),
273 stream_enc_regs(2),
274 stream_enc_regs(3),
275 stream_enc_regs(4),
276 stream_enc_regs(5),
277 };
278
279 static const struct dcn10_stream_encoder_shift se_shift = {
280 SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT)
281 };
282
283 static const struct dcn10_stream_encoder_mask se_mask = {
284 SE_COMMON_MASK_SH_LIST_DCN20(_MASK)
285 };
286
287
288 #define aux_regs(id)\
289 [id] = {\
290 DCN2_AUX_REG_LIST(id)\
291 }
292
293 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
294 aux_regs(0),
295 aux_regs(1),
296 aux_regs(2),
297 aux_regs(3),
298 aux_regs(4),
299 aux_regs(5)
300 };
301
302 #define hpd_regs(id)\
303 [id] = {\
304 HPD_REG_LIST(id)\
305 }
306
307 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
308 hpd_regs(0),
309 hpd_regs(1),
310 hpd_regs(2),
311 hpd_regs(3),
312 hpd_regs(4),
313 hpd_regs(5)
314 };
315
316 #define link_regs(id, phyid)\
317 [id] = {\
318 LE_DCN10_REG_LIST(id), \
319 UNIPHY_DCN2_REG_LIST(phyid), \
320 DPCS_DCN2_REG_LIST(id), \
321 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
322 }
323
324 static const struct dcn10_link_enc_registers link_enc_regs[] = {
325 link_regs(0, A),
326 link_regs(1, B),
327 link_regs(2, C),
328 link_regs(3, D),
329 link_regs(4, E),
330 link_regs(5, F)
331 };
332
333 static const struct dcn10_link_enc_shift le_shift = {
334 LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\
335 DPCS_DCN2_MASK_SH_LIST(__SHIFT)
336 };
337
338 static const struct dcn10_link_enc_mask le_mask = {
339 LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\
340 DPCS_DCN2_MASK_SH_LIST(_MASK)
341 };
342
343 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
344 { DCN_PANEL_CNTL_REG_LIST() }
345 };
346
347 static const struct dce_panel_cntl_shift panel_cntl_shift = {
348 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
349 };
350
351 static const struct dce_panel_cntl_mask panel_cntl_mask = {
352 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
353 };
354
355 #define ipp_regs(id)\
356 [id] = {\
357 IPP_REG_LIST_DCN20(id),\
358 }
359
360 static const struct dcn10_ipp_registers ipp_regs[] = {
361 ipp_regs(0),
362 ipp_regs(1),
363 ipp_regs(2),
364 ipp_regs(3),
365 ipp_regs(4),
366 ipp_regs(5),
367 };
368
369 static const struct dcn10_ipp_shift ipp_shift = {
370 IPP_MASK_SH_LIST_DCN20(__SHIFT)
371 };
372
373 static const struct dcn10_ipp_mask ipp_mask = {
374 IPP_MASK_SH_LIST_DCN20(_MASK),
375 };
376
377 #define opp_regs(id)\
378 [id] = {\
379 OPP_REG_LIST_DCN20(id),\
380 }
381
382 static const struct dcn20_opp_registers opp_regs[] = {
383 opp_regs(0),
384 opp_regs(1),
385 opp_regs(2),
386 opp_regs(3),
387 opp_regs(4),
388 opp_regs(5),
389 };
390
391 static const struct dcn20_opp_shift opp_shift = {
392 OPP_MASK_SH_LIST_DCN20(__SHIFT)
393 };
394
395 static const struct dcn20_opp_mask opp_mask = {
396 OPP_MASK_SH_LIST_DCN20(_MASK)
397 };
398
399 #define aux_engine_regs(id)\
400 [id] = {\
401 AUX_COMMON_REG_LIST0(id), \
402 .AUXN_IMPCAL = 0, \
403 .AUXP_IMPCAL = 0, \
404 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
405 }
406
407 static const struct dce110_aux_registers aux_engine_regs[] = {
408 aux_engine_regs(0),
409 aux_engine_regs(1),
410 aux_engine_regs(2),
411 aux_engine_regs(3),
412 aux_engine_regs(4),
413 aux_engine_regs(5)
414 };
415
416 #define tf_regs(id)\
417 [id] = {\
418 TF_REG_LIST_DCN20(id),\
419 TF_REG_LIST_DCN20_COMMON_APPEND(id),\
420 }
421
422 static const struct dcn2_dpp_registers tf_regs[] = {
423 tf_regs(0),
424 tf_regs(1),
425 tf_regs(2),
426 tf_regs(3),
427 tf_regs(4),
428 tf_regs(5),
429 };
430
431 static const struct dcn2_dpp_shift tf_shift = {
432 TF_REG_LIST_SH_MASK_DCN20(__SHIFT),
433 TF_DEBUG_REG_LIST_SH_DCN20
434 };
435
436 static const struct dcn2_dpp_mask tf_mask = {
437 TF_REG_LIST_SH_MASK_DCN20(_MASK),
438 TF_DEBUG_REG_LIST_MASK_DCN20
439 };
440
441 #define dwbc_regs_dcn2(id)\
442 [id] = {\
443 DWBC_COMMON_REG_LIST_DCN2_0(id),\
444 }
445
446 static const struct dcn20_dwbc_registers dwbc20_regs[] = {
447 dwbc_regs_dcn2(0),
448 };
449
450 static const struct dcn20_dwbc_shift dwbc20_shift = {
451 DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
452 };
453
454 static const struct dcn20_dwbc_mask dwbc20_mask = {
455 DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
456 };
457
458 #define mcif_wb_regs_dcn2(id)\
459 [id] = {\
460 MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\
461 }
462
463 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = {
464 mcif_wb_regs_dcn2(0),
465 };
466
467 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = {
468 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
469 };
470
471 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = {
472 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
473 };
474
475 static const struct dcn20_mpc_registers mpc_regs = {
476 MPC_REG_LIST_DCN2_0(0),
477 MPC_REG_LIST_DCN2_0(1),
478 MPC_REG_LIST_DCN2_0(2),
479 MPC_REG_LIST_DCN2_0(3),
480 MPC_REG_LIST_DCN2_0(4),
481 MPC_REG_LIST_DCN2_0(5),
482 MPC_OUT_MUX_REG_LIST_DCN2_0(0),
483 MPC_OUT_MUX_REG_LIST_DCN2_0(1),
484 MPC_OUT_MUX_REG_LIST_DCN2_0(2),
485 MPC_OUT_MUX_REG_LIST_DCN2_0(3),
486 MPC_OUT_MUX_REG_LIST_DCN2_0(4),
487 MPC_OUT_MUX_REG_LIST_DCN2_0(5),
488 MPC_DBG_REG_LIST_DCN2_0()
489 };
490
491 static const struct dcn20_mpc_shift mpc_shift = {
492 MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT),
493 MPC_DEBUG_REG_LIST_SH_DCN20
494 };
495
496 static const struct dcn20_mpc_mask mpc_mask = {
497 MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK),
498 MPC_DEBUG_REG_LIST_MASK_DCN20
499 };
500
501 #define tg_regs(id)\
502 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)}
503
504
505 static const struct dcn_optc_registers tg_regs[] = {
506 tg_regs(0),
507 tg_regs(1),
508 tg_regs(2),
509 tg_regs(3),
510 tg_regs(4),
511 tg_regs(5)
512 };
513
514 static const struct dcn_optc_shift tg_shift = {
515 TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
516 };
517
518 static const struct dcn_optc_mask tg_mask = {
519 TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
520 };
521
522 #define hubp_regs(id)\
523 [id] = {\
524 HUBP_REG_LIST_DCN20(id)\
525 }
526
527 static const struct dcn_hubp2_registers hubp_regs[] = {
528 hubp_regs(0),
529 hubp_regs(1),
530 hubp_regs(2),
531 hubp_regs(3),
532 hubp_regs(4),
533 hubp_regs(5)
534 };
535
536 static const struct dcn_hubp2_shift hubp_shift = {
537 HUBP_MASK_SH_LIST_DCN20(__SHIFT)
538 };
539
540 static const struct dcn_hubp2_mask hubp_mask = {
541 HUBP_MASK_SH_LIST_DCN20(_MASK)
542 };
543
544 static const struct dcn_hubbub_registers hubbub_reg = {
545 HUBBUB_REG_LIST_DCN20(0)
546 };
547
548 static const struct dcn_hubbub_shift hubbub_shift = {
549 HUBBUB_MASK_SH_LIST_DCN20(__SHIFT)
550 };
551
552 static const struct dcn_hubbub_mask hubbub_mask = {
553 HUBBUB_MASK_SH_LIST_DCN20(_MASK)
554 };
555
556 #define vmid_regs(id)\
557 [id] = {\
558 DCN20_VMID_REG_LIST(id)\
559 }
560
561 static const struct dcn_vmid_registers vmid_regs[] = {
562 vmid_regs(0),
563 vmid_regs(1),
564 vmid_regs(2),
565 vmid_regs(3),
566 vmid_regs(4),
567 vmid_regs(5),
568 vmid_regs(6),
569 vmid_regs(7),
570 vmid_regs(8),
571 vmid_regs(9),
572 vmid_regs(10),
573 vmid_regs(11),
574 vmid_regs(12),
575 vmid_regs(13),
576 vmid_regs(14),
577 vmid_regs(15)
578 };
579
580 static const struct dcn20_vmid_shift vmid_shifts = {
581 DCN20_VMID_MASK_SH_LIST(__SHIFT)
582 };
583
584 static const struct dcn20_vmid_mask vmid_masks = {
585 DCN20_VMID_MASK_SH_LIST(_MASK)
586 };
587
588 static const struct dce110_aux_registers_shift aux_shift = {
589 DCN_AUX_MASK_SH_LIST(__SHIFT)
590 };
591
592 static const struct dce110_aux_registers_mask aux_mask = {
593 DCN_AUX_MASK_SH_LIST(_MASK)
594 };
595
map_transmitter_id_to_phy_instance(enum transmitter transmitter)596 static int map_transmitter_id_to_phy_instance(
597 enum transmitter transmitter)
598 {
599 switch (transmitter) {
600 case TRANSMITTER_UNIPHY_A:
601 return 0;
602 break;
603 case TRANSMITTER_UNIPHY_B:
604 return 1;
605 break;
606 case TRANSMITTER_UNIPHY_C:
607 return 2;
608 break;
609 case TRANSMITTER_UNIPHY_D:
610 return 3;
611 break;
612 case TRANSMITTER_UNIPHY_E:
613 return 4;
614 break;
615 case TRANSMITTER_UNIPHY_F:
616 return 5;
617 break;
618 default:
619 ASSERT(0);
620 return 0;
621 }
622 }
623
624 #define dsc_regsDCN20(id)\
625 [id] = {\
626 DSC_REG_LIST_DCN20(id)\
627 }
628
629 static const struct dcn20_dsc_registers dsc_regs[] = {
630 dsc_regsDCN20(0),
631 dsc_regsDCN20(1),
632 dsc_regsDCN20(2),
633 dsc_regsDCN20(3),
634 dsc_regsDCN20(4),
635 dsc_regsDCN20(5)
636 };
637
638 static const struct dcn20_dsc_shift dsc_shift = {
639 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
640 };
641
642 static const struct dcn20_dsc_mask dsc_mask = {
643 DSC_REG_LIST_SH_MASK_DCN20(_MASK)
644 };
645
646 static const struct dccg_registers dccg_regs = {
647 DCCG_REG_LIST_DCN2()
648 };
649
650 static const struct dccg_shift dccg_shift = {
651 DCCG_MASK_SH_LIST_DCN2(__SHIFT)
652 };
653
654 static const struct dccg_mask dccg_mask = {
655 DCCG_MASK_SH_LIST_DCN2(_MASK)
656 };
657
658 static const struct resource_caps res_cap_nv10 = {
659 .num_timing_generator = 6,
660 .num_opp = 6,
661 .num_video_plane = 6,
662 .num_audio = 7,
663 .num_stream_encoder = 6,
664 .num_pll = 6,
665 .num_dwb = 1,
666 .num_ddc = 6,
667 .num_vmid = 16,
668 .num_dsc = 6,
669 };
670
671 static const struct dc_plane_cap plane_cap = {
672 .type = DC_PLANE_TYPE_DCN_UNIVERSAL,
673 .per_pixel_alpha = true,
674
675 .pixel_format_support = {
676 .argb8888 = true,
677 .nv12 = true,
678 .fp16 = true,
679 .p010 = true
680 },
681
682 .max_upscale_factor = {
683 .argb8888 = 16000,
684 .nv12 = 16000,
685 .fp16 = 1
686 },
687
688 .max_downscale_factor = {
689 .argb8888 = 250,
690 .nv12 = 250,
691 .fp16 = 1
692 },
693 16,
694 16
695 };
696 static const struct resource_caps res_cap_nv14 = {
697 .num_timing_generator = 5,
698 .num_opp = 5,
699 .num_video_plane = 5,
700 .num_audio = 6,
701 .num_stream_encoder = 5,
702 .num_pll = 5,
703 .num_dwb = 1,
704 .num_ddc = 5,
705 .num_vmid = 16,
706 .num_dsc = 5,
707 };
708
709 static const struct dc_debug_options debug_defaults_drv = {
710 .disable_dmcu = false,
711 .force_abm_enable = false,
712 .timing_trace = false,
713 .clock_trace = true,
714 .disable_pplib_clock_request = true,
715 .pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP,
716 .force_single_disp_pipe_split = false,
717 .disable_dcc = DCC_ENABLE,
718 .vsr_support = true,
719 .performance_trace = false,
720 .max_downscale_src_width = 5120,/*upto 5K*/
721 .disable_pplib_wm_range = false,
722 .scl_reset_length10 = true,
723 .sanity_checks = false,
724 .underflow_assert_delay_us = 0xFFFFFFFF,
725 .enable_legacy_fast_update = true,
726 };
727
dcn20_dpp_destroy(struct dpp ** dpp)728 void dcn20_dpp_destroy(struct dpp **dpp)
729 {
730 kfree(TO_DCN20_DPP(*dpp));
731 *dpp = NULL;
732 }
733
dcn20_dpp_create(struct dc_context * ctx,uint32_t inst)734 struct dpp *dcn20_dpp_create(
735 struct dc_context *ctx,
736 uint32_t inst)
737 {
738 struct dcn20_dpp *dpp =
739 kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC);
740
741 if (!dpp)
742 return NULL;
743
744 if (dpp2_construct(dpp, ctx, inst,
745 &tf_regs[inst], &tf_shift, &tf_mask))
746 return &dpp->base;
747
748 BREAK_TO_DEBUGGER();
749 kfree(dpp);
750 return NULL;
751 }
752
dcn20_ipp_create(struct dc_context * ctx,uint32_t inst)753 struct input_pixel_processor *dcn20_ipp_create(
754 struct dc_context *ctx, uint32_t inst)
755 {
756 struct dcn10_ipp *ipp =
757 kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC);
758
759 if (!ipp) {
760 BREAK_TO_DEBUGGER();
761 return NULL;
762 }
763
764 dcn20_ipp_construct(ipp, ctx, inst,
765 &ipp_regs[inst], &ipp_shift, &ipp_mask);
766 return &ipp->base;
767 }
768
769
dcn20_opp_create(struct dc_context * ctx,uint32_t inst)770 struct output_pixel_processor *dcn20_opp_create(
771 struct dc_context *ctx, uint32_t inst)
772 {
773 struct dcn20_opp *opp =
774 kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC);
775
776 if (!opp) {
777 BREAK_TO_DEBUGGER();
778 return NULL;
779 }
780
781 dcn20_opp_construct(opp, ctx, inst,
782 &opp_regs[inst], &opp_shift, &opp_mask);
783 return &opp->base;
784 }
785
dcn20_aux_engine_create(struct dc_context * ctx,uint32_t inst)786 struct dce_aux *dcn20_aux_engine_create(
787 struct dc_context *ctx,
788 uint32_t inst)
789 {
790 struct aux_engine_dce110 *aux_engine =
791 kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC);
792
793 if (!aux_engine)
794 return NULL;
795
796 dce110_aux_engine_construct(aux_engine, ctx, inst,
797 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
798 &aux_engine_regs[inst],
799 &aux_mask,
800 &aux_shift,
801 ctx->dc->caps.extended_aux_timeout_support);
802
803 return &aux_engine->base;
804 }
805 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
806
807 static const struct dce_i2c_registers i2c_hw_regs[] = {
808 i2c_inst_regs(1),
809 i2c_inst_regs(2),
810 i2c_inst_regs(3),
811 i2c_inst_regs(4),
812 i2c_inst_regs(5),
813 i2c_inst_regs(6),
814 };
815
816 static const struct dce_i2c_shift i2c_shifts = {
817 I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
818 };
819
820 static const struct dce_i2c_mask i2c_masks = {
821 I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
822 };
823
dcn20_i2c_hw_create(struct dc_context * ctx,uint32_t inst)824 struct dce_i2c_hw *dcn20_i2c_hw_create(
825 struct dc_context *ctx,
826 uint32_t inst)
827 {
828 struct dce_i2c_hw *dce_i2c_hw =
829 kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC);
830
831 if (!dce_i2c_hw)
832 return NULL;
833
834 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
835 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
836
837 return dce_i2c_hw;
838 }
dcn20_mpc_create(struct dc_context * ctx)839 struct mpc *dcn20_mpc_create(struct dc_context *ctx)
840 {
841 struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc),
842 GFP_ATOMIC);
843
844 if (!mpc20)
845 return NULL;
846
847 dcn20_mpc_construct(mpc20, ctx,
848 &mpc_regs,
849 &mpc_shift,
850 &mpc_mask,
851 6);
852
853 return &mpc20->base;
854 }
855
dcn20_hubbub_create(struct dc_context * ctx)856 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx)
857 {
858 int i;
859 struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub),
860 GFP_ATOMIC);
861
862 if (!hubbub)
863 return NULL;
864
865 hubbub2_construct(hubbub, ctx,
866 &hubbub_reg,
867 &hubbub_shift,
868 &hubbub_mask);
869
870 for (i = 0; i < res_cap_nv10.num_vmid; i++) {
871 struct dcn20_vmid *vmid = &hubbub->vmid[i];
872
873 vmid->ctx = ctx;
874
875 vmid->regs = &vmid_regs[i];
876 vmid->shifts = &vmid_shifts;
877 vmid->masks = &vmid_masks;
878 }
879
880 return &hubbub->base;
881 }
882
dcn20_timing_generator_create(struct dc_context * ctx,uint32_t instance)883 struct timing_generator *dcn20_timing_generator_create(
884 struct dc_context *ctx,
885 uint32_t instance)
886 {
887 struct optc *tgn10 =
888 kzalloc(sizeof(struct optc), GFP_ATOMIC);
889
890 if (!tgn10)
891 return NULL;
892
893 tgn10->base.inst = instance;
894 tgn10->base.ctx = ctx;
895
896 tgn10->tg_regs = &tg_regs[instance];
897 tgn10->tg_shift = &tg_shift;
898 tgn10->tg_mask = &tg_mask;
899
900 dcn20_timing_generator_init(tgn10);
901
902 return &tgn10->base;
903 }
904
905 static const struct encoder_feature_support link_enc_feature = {
906 .max_hdmi_deep_color = COLOR_DEPTH_121212,
907 .max_hdmi_pixel_clock = 600000,
908 .hdmi_ycbcr420_supported = true,
909 .dp_ycbcr420_supported = true,
910 .fec_supported = true,
911 .flags.bits.IS_HBR2_CAPABLE = true,
912 .flags.bits.IS_HBR3_CAPABLE = true,
913 .flags.bits.IS_TPS3_CAPABLE = true,
914 .flags.bits.IS_TPS4_CAPABLE = true
915 };
916
dcn20_link_encoder_create(struct dc_context * ctx,const struct encoder_init_data * enc_init_data)917 struct link_encoder *dcn20_link_encoder_create(
918 struct dc_context *ctx,
919 const struct encoder_init_data *enc_init_data)
920 {
921 struct dcn20_link_encoder *enc20 =
922 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
923 int link_regs_id;
924
925 if (!enc20)
926 return NULL;
927
928 link_regs_id =
929 map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
930
931 dcn20_link_encoder_construct(enc20,
932 enc_init_data,
933 &link_enc_feature,
934 &link_enc_regs[link_regs_id],
935 &link_enc_aux_regs[enc_init_data->channel - 1],
936 &link_enc_hpd_regs[enc_init_data->hpd_source],
937 &le_shift,
938 &le_mask);
939
940 return &enc20->enc10.base;
941 }
942
dcn20_panel_cntl_create(const struct panel_cntl_init_data * init_data)943 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data)
944 {
945 struct dce_panel_cntl *panel_cntl =
946 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
947
948 if (!panel_cntl)
949 return NULL;
950
951 dce_panel_cntl_construct(panel_cntl,
952 init_data,
953 &panel_cntl_regs[init_data->inst],
954 &panel_cntl_shift,
955 &panel_cntl_mask);
956
957 return &panel_cntl->base;
958 }
959
dcn20_clock_source_create(struct dc_context * ctx,struct dc_bios * bios,enum clock_source_id id,const struct dce110_clk_src_regs * regs,bool dp_clk_src)960 static struct clock_source *dcn20_clock_source_create(
961 struct dc_context *ctx,
962 struct dc_bios *bios,
963 enum clock_source_id id,
964 const struct dce110_clk_src_regs *regs,
965 bool dp_clk_src)
966 {
967 struct dce110_clk_src *clk_src =
968 kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC);
969
970 if (!clk_src)
971 return NULL;
972
973 if (dcn20_clk_src_construct(clk_src, ctx, bios, id,
974 regs, &cs_shift, &cs_mask)) {
975 clk_src->base.dp_clk_src = dp_clk_src;
976 return &clk_src->base;
977 }
978
979 kfree(clk_src);
980 BREAK_TO_DEBUGGER();
981 return NULL;
982 }
983
read_dce_straps(struct dc_context * ctx,struct resource_straps * straps)984 static void read_dce_straps(
985 struct dc_context *ctx,
986 struct resource_straps *straps)
987 {
988 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
989 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
990 }
991
dcn20_create_audio(struct dc_context * ctx,unsigned int inst)992 static struct audio *dcn20_create_audio(
993 struct dc_context *ctx, unsigned int inst)
994 {
995 return dce_audio_create(ctx, inst,
996 &audio_regs[inst], &audio_shift, &audio_mask);
997 }
998
dcn20_stream_encoder_create(enum engine_id eng_id,struct dc_context * ctx)999 struct stream_encoder *dcn20_stream_encoder_create(
1000 enum engine_id eng_id,
1001 struct dc_context *ctx)
1002 {
1003 struct dcn10_stream_encoder *enc1 =
1004 kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1005
1006 if (!enc1)
1007 return NULL;
1008
1009 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
1010 if (eng_id >= ENGINE_ID_DIGD)
1011 eng_id++;
1012 }
1013
1014 dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id,
1015 &stream_enc_regs[eng_id],
1016 &se_shift, &se_mask);
1017
1018 return &enc1->base;
1019 }
1020
1021 static const struct dce_hwseq_registers hwseq_reg = {
1022 HWSEQ_DCN2_REG_LIST()
1023 };
1024
1025 static const struct dce_hwseq_shift hwseq_shift = {
1026 HWSEQ_DCN2_MASK_SH_LIST(__SHIFT)
1027 };
1028
1029 static const struct dce_hwseq_mask hwseq_mask = {
1030 HWSEQ_DCN2_MASK_SH_LIST(_MASK)
1031 };
1032
dcn20_hwseq_create(struct dc_context * ctx)1033 struct dce_hwseq *dcn20_hwseq_create(
1034 struct dc_context *ctx)
1035 {
1036 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1037
1038 if (hws) {
1039 hws->ctx = ctx;
1040 hws->regs = &hwseq_reg;
1041 hws->shifts = &hwseq_shift;
1042 hws->masks = &hwseq_mask;
1043 }
1044 return hws;
1045 }
1046
1047 static const struct resource_create_funcs res_create_funcs = {
1048 .read_dce_straps = read_dce_straps,
1049 .create_audio = dcn20_create_audio,
1050 .create_stream_encoder = dcn20_stream_encoder_create,
1051 .create_hwseq = dcn20_hwseq_create,
1052 };
1053
1054 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu);
1055
dcn20_clock_source_destroy(struct clock_source ** clk_src)1056 void dcn20_clock_source_destroy(struct clock_source **clk_src)
1057 {
1058 kfree(TO_DCE110_CLK_SRC(*clk_src));
1059 *clk_src = NULL;
1060 }
1061
1062
dcn20_dsc_create(struct dc_context * ctx,uint32_t inst)1063 struct display_stream_compressor *dcn20_dsc_create(
1064 struct dc_context *ctx, uint32_t inst)
1065 {
1066 struct dcn20_dsc *dsc =
1067 kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC);
1068
1069 if (!dsc) {
1070 BREAK_TO_DEBUGGER();
1071 return NULL;
1072 }
1073
1074 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1075 return &dsc->base;
1076 }
1077
dcn20_dsc_destroy(struct display_stream_compressor ** dsc)1078 void dcn20_dsc_destroy(struct display_stream_compressor **dsc)
1079 {
1080 kfree(container_of(*dsc, struct dcn20_dsc, base));
1081 *dsc = NULL;
1082 }
1083
1084
dcn20_resource_destruct(struct dcn20_resource_pool * pool)1085 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool)
1086 {
1087 unsigned int i;
1088
1089 for (i = 0; i < pool->base.stream_enc_count; i++) {
1090 if (pool->base.stream_enc[i] != NULL) {
1091 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1092 pool->base.stream_enc[i] = NULL;
1093 }
1094 }
1095
1096 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1097 if (pool->base.dscs[i] != NULL)
1098 dcn20_dsc_destroy(&pool->base.dscs[i]);
1099 }
1100
1101 if (pool->base.mpc != NULL) {
1102 kfree(TO_DCN20_MPC(pool->base.mpc));
1103 pool->base.mpc = NULL;
1104 }
1105 if (pool->base.hubbub != NULL) {
1106 kfree(pool->base.hubbub);
1107 pool->base.hubbub = NULL;
1108 }
1109 for (i = 0; i < pool->base.pipe_count; i++) {
1110 if (pool->base.dpps[i] != NULL)
1111 dcn20_dpp_destroy(&pool->base.dpps[i]);
1112
1113 if (pool->base.ipps[i] != NULL)
1114 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1115
1116 if (pool->base.hubps[i] != NULL) {
1117 kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1118 pool->base.hubps[i] = NULL;
1119 }
1120
1121 if (pool->base.irqs != NULL) {
1122 dal_irq_service_destroy(&pool->base.irqs);
1123 }
1124 }
1125
1126 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1127 if (pool->base.engines[i] != NULL)
1128 dce110_engine_destroy(&pool->base.engines[i]);
1129 if (pool->base.hw_i2cs[i] != NULL) {
1130 kfree(pool->base.hw_i2cs[i]);
1131 pool->base.hw_i2cs[i] = NULL;
1132 }
1133 if (pool->base.sw_i2cs[i] != NULL) {
1134 kfree(pool->base.sw_i2cs[i]);
1135 pool->base.sw_i2cs[i] = NULL;
1136 }
1137 }
1138
1139 for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1140 if (pool->base.opps[i] != NULL)
1141 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1142 }
1143
1144 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1145 if (pool->base.timing_generators[i] != NULL) {
1146 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1147 pool->base.timing_generators[i] = NULL;
1148 }
1149 }
1150
1151 for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1152 if (pool->base.dwbc[i] != NULL) {
1153 kfree(TO_DCN20_DWBC(pool->base.dwbc[i]));
1154 pool->base.dwbc[i] = NULL;
1155 }
1156 if (pool->base.mcif_wb[i] != NULL) {
1157 kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i]));
1158 pool->base.mcif_wb[i] = NULL;
1159 }
1160 }
1161
1162 for (i = 0; i < pool->base.audio_count; i++) {
1163 if (pool->base.audios[i])
1164 dce_aud_destroy(&pool->base.audios[i]);
1165 }
1166
1167 for (i = 0; i < pool->base.clk_src_count; i++) {
1168 if (pool->base.clock_sources[i] != NULL) {
1169 dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1170 pool->base.clock_sources[i] = NULL;
1171 }
1172 }
1173
1174 if (pool->base.dp_clock_source != NULL) {
1175 dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1176 pool->base.dp_clock_source = NULL;
1177 }
1178
1179
1180 if (pool->base.abm != NULL)
1181 dce_abm_destroy(&pool->base.abm);
1182
1183 if (pool->base.dmcu != NULL)
1184 dce_dmcu_destroy(&pool->base.dmcu);
1185
1186 if (pool->base.dccg != NULL)
1187 dcn_dccg_destroy(&pool->base.dccg);
1188
1189 if (pool->base.pp_smu != NULL)
1190 dcn20_pp_smu_destroy(&pool->base.pp_smu);
1191
1192 if (pool->base.oem_device != NULL) {
1193 struct dc *dc = pool->base.oem_device->ctx->dc;
1194
1195 dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1196 }
1197 }
1198
dcn20_hubp_create(struct dc_context * ctx,uint32_t inst)1199 struct hubp *dcn20_hubp_create(
1200 struct dc_context *ctx,
1201 uint32_t inst)
1202 {
1203 struct dcn20_hubp *hubp2 =
1204 kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC);
1205
1206 if (!hubp2)
1207 return NULL;
1208
1209 if (hubp2_construct(hubp2, ctx, inst,
1210 &hubp_regs[inst], &hubp_shift, &hubp_mask))
1211 return &hubp2->base;
1212
1213 BREAK_TO_DEBUGGER();
1214 kfree(hubp2);
1215 return NULL;
1216 }
1217
get_pixel_clock_parameters(struct pipe_ctx * pipe_ctx,struct pixel_clk_params * pixel_clk_params)1218 static void get_pixel_clock_parameters(
1219 struct pipe_ctx *pipe_ctx,
1220 struct pixel_clk_params *pixel_clk_params)
1221 {
1222 const struct dc_stream_state *stream = pipe_ctx->stream;
1223 struct pipe_ctx *odm_pipe;
1224 int opp_cnt = 1;
1225 struct dc_link *link = stream->link;
1226 struct link_encoder *link_enc = NULL;
1227 struct dc *dc = pipe_ctx->stream->ctx->dc;
1228 struct dce_hwseq *hws = dc->hwseq;
1229
1230 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1231 opp_cnt++;
1232
1233 pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
1234
1235 link_enc = link_enc_cfg_get_link_enc(link);
1236 if (link_enc)
1237 pixel_clk_params->encoder_object_id = link_enc->id;
1238
1239 pixel_clk_params->signal_type = pipe_ctx->stream->signal;
1240 pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
1241 /* TODO: un-hardcode*/
1242 /* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */
1243 pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
1244 LINK_RATE_REF_FREQ_IN_KHZ;
1245 pixel_clk_params->flags.ENABLE_SS = 0;
1246 pixel_clk_params->color_depth =
1247 stream->timing.display_color_depth;
1248 pixel_clk_params->flags.DISPLAY_BLANKED = 1;
1249 pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
1250
1251 if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
1252 pixel_clk_params->color_depth = COLOR_DEPTH_888;
1253
1254 if (opp_cnt == 4)
1255 pixel_clk_params->requested_pix_clk_100hz /= 4;
1256 else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2)
1257 pixel_clk_params->requested_pix_clk_100hz /= 2;
1258 else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) {
1259 if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx))
1260 pixel_clk_params->requested_pix_clk_100hz /= 2;
1261 }
1262
1263 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1264 pixel_clk_params->requested_pix_clk_100hz *= 2;
1265
1266 }
1267
build_clamping_params(struct dc_stream_state * stream)1268 static void build_clamping_params(struct dc_stream_state *stream)
1269 {
1270 stream->clamping.clamping_level = CLAMPING_FULL_RANGE;
1271 stream->clamping.c_depth = stream->timing.display_color_depth;
1272 stream->clamping.pixel_encoding = stream->timing.pixel_encoding;
1273 }
1274
build_pipe_hw_param(struct pipe_ctx * pipe_ctx)1275 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
1276 {
1277
1278 get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
1279
1280 pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
1281 pipe_ctx->clock_source,
1282 &pipe_ctx->stream_res.pix_clk_params,
1283 &pipe_ctx->pll_settings);
1284
1285 pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
1286
1287 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
1288 &pipe_ctx->stream->bit_depth_params);
1289 build_clamping_params(pipe_ctx->stream);
1290
1291 return DC_OK;
1292 }
1293
dcn20_build_mapped_resource(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)1294 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream)
1295 {
1296 enum dc_status status = DC_OK;
1297 struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
1298
1299 if (!pipe_ctx)
1300 return DC_ERROR_UNEXPECTED;
1301
1302
1303 status = build_pipe_hw_param(pipe_ctx);
1304
1305 return status;
1306 }
1307
1308
dcn20_acquire_dsc(const struct dc * dc,struct resource_context * res_ctx,struct display_stream_compressor ** dsc,int pipe_idx)1309 void dcn20_acquire_dsc(const struct dc *dc,
1310 struct resource_context *res_ctx,
1311 struct display_stream_compressor **dsc,
1312 int pipe_idx)
1313 {
1314 int i;
1315 const struct resource_pool *pool = dc->res_pool;
1316 struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc;
1317
1318 ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */
1319 *dsc = NULL;
1320
1321 /* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */
1322 if (pool->res_cap->num_dsc == pool->res_cap->num_opp) {
1323 *dsc = pool->dscs[pipe_idx];
1324 res_ctx->is_dsc_acquired[pipe_idx] = true;
1325 return;
1326 }
1327
1328 /* Return old DSC to avoid the need for re-programming */
1329 if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) {
1330 *dsc = dsc_old;
1331 res_ctx->is_dsc_acquired[dsc_old->inst] = true;
1332 return ;
1333 }
1334
1335 /* Find first free DSC */
1336 for (i = 0; i < pool->res_cap->num_dsc; i++)
1337 if (!res_ctx->is_dsc_acquired[i]) {
1338 *dsc = pool->dscs[i];
1339 res_ctx->is_dsc_acquired[i] = true;
1340 break;
1341 }
1342 }
1343
dcn20_release_dsc(struct resource_context * res_ctx,const struct resource_pool * pool,struct display_stream_compressor ** dsc)1344 void dcn20_release_dsc(struct resource_context *res_ctx,
1345 const struct resource_pool *pool,
1346 struct display_stream_compressor **dsc)
1347 {
1348 int i;
1349
1350 for (i = 0; i < pool->res_cap->num_dsc; i++)
1351 if (pool->dscs[i] == *dsc) {
1352 res_ctx->is_dsc_acquired[i] = false;
1353 *dsc = NULL;
1354 break;
1355 }
1356 }
1357
1358
1359
dcn20_add_dsc_to_stream_resource(struct dc * dc,struct dc_state * dc_ctx,struct dc_stream_state * dc_stream)1360 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc,
1361 struct dc_state *dc_ctx,
1362 struct dc_stream_state *dc_stream)
1363 {
1364 enum dc_status result = DC_OK;
1365 int i;
1366
1367 /* Get a DSC if required and available */
1368 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1369 struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i];
1370
1371 if (pipe_ctx->top_pipe)
1372 continue;
1373
1374 if (pipe_ctx->stream != dc_stream)
1375 continue;
1376
1377 if (pipe_ctx->stream_res.dsc)
1378 continue;
1379
1380 dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i);
1381
1382 /* The number of DSCs can be less than the number of pipes */
1383 if (!pipe_ctx->stream_res.dsc) {
1384 result = DC_NO_DSC_RESOURCE;
1385 }
1386
1387 break;
1388 }
1389
1390 return result;
1391 }
1392
1393
remove_dsc_from_stream_resource(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1394 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc,
1395 struct dc_state *new_ctx,
1396 struct dc_stream_state *dc_stream)
1397 {
1398 struct pipe_ctx *pipe_ctx = NULL;
1399 int i;
1400
1401 for (i = 0; i < MAX_PIPES; i++) {
1402 if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) {
1403 pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1404
1405 if (pipe_ctx->stream_res.dsc)
1406 dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc);
1407 }
1408 }
1409
1410 if (!pipe_ctx)
1411 return DC_ERROR_UNEXPECTED;
1412 else
1413 return DC_OK;
1414 }
1415
1416
dcn20_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1417 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1418 {
1419 enum dc_status result = DC_ERROR_UNEXPECTED;
1420
1421 result = resource_map_pool_resources(dc, new_ctx, dc_stream);
1422
1423 if (result == DC_OK)
1424 result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream);
1425
1426 /* Get a DSC if required and available */
1427 if (result == DC_OK && dc_stream->timing.flags.DSC)
1428 result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream);
1429
1430 if (result == DC_OK)
1431 result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream);
1432
1433 return result;
1434 }
1435
1436
dcn20_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1437 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1438 {
1439 enum dc_status result = DC_OK;
1440
1441 result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream);
1442
1443 return result;
1444 }
1445
1446 /**
1447 * dcn20_split_stream_for_odm - Check if stream can be splited for ODM
1448 *
1449 * @dc: DC object with resource pool info required for pipe split
1450 * @res_ctx: Persistent state of resources
1451 * @prev_odm_pipe: Reference to the previous ODM pipe
1452 * @next_odm_pipe: Reference to the next ODM pipe
1453 *
1454 * This function takes a logically active pipe and a logically free pipe and
1455 * halves all the scaling parameters that need to be halved while populating
1456 * the free pipe with the required resources and configuring the next/previous
1457 * ODM pipe pointers.
1458 *
1459 * Return:
1460 * Return true if split stream for ODM is possible, otherwise, return false.
1461 */
dcn20_split_stream_for_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * prev_odm_pipe,struct pipe_ctx * next_odm_pipe)1462 bool dcn20_split_stream_for_odm(
1463 const struct dc *dc,
1464 struct resource_context *res_ctx,
1465 struct pipe_ctx *prev_odm_pipe,
1466 struct pipe_ctx *next_odm_pipe)
1467 {
1468 int pipe_idx = next_odm_pipe->pipe_idx;
1469 const struct resource_pool *pool = dc->res_pool;
1470
1471 *next_odm_pipe = *prev_odm_pipe;
1472
1473 next_odm_pipe->pipe_idx = pipe_idx;
1474 next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx];
1475 next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx];
1476 next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx];
1477 next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx];
1478 next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx];
1479 next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst;
1480 next_odm_pipe->stream_res.dsc = NULL;
1481 if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) {
1482 next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe;
1483 next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe;
1484 }
1485 if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) {
1486 prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe;
1487 next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe;
1488 }
1489 if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) {
1490 prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe;
1491 next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe;
1492 }
1493 prev_odm_pipe->next_odm_pipe = next_odm_pipe;
1494 next_odm_pipe->prev_odm_pipe = prev_odm_pipe;
1495
1496 if (prev_odm_pipe->plane_state) {
1497 struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data;
1498 int new_width;
1499
1500 /* HACTIVE halved for odm combine */
1501 sd->h_active /= 2;
1502 /* Calculate new vp and recout for left pipe */
1503 /* Need at least 16 pixels width per side */
1504 if (sd->recout.x + 16 >= sd->h_active)
1505 return false;
1506 new_width = sd->h_active - sd->recout.x;
1507 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1508 sd->ratios.horz, sd->recout.width - new_width));
1509 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1510 sd->ratios.horz_c, sd->recout.width - new_width));
1511 sd->recout.width = new_width;
1512
1513 /* Calculate new vp and recout for right pipe */
1514 sd = &next_odm_pipe->plane_res.scl_data;
1515 /* HACTIVE halved for odm combine */
1516 sd->h_active /= 2;
1517 /* Need at least 16 pixels width per side */
1518 if (new_width <= 16)
1519 return false;
1520 new_width = sd->recout.width + sd->recout.x - sd->h_active;
1521 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1522 sd->ratios.horz, sd->recout.width - new_width));
1523 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1524 sd->ratios.horz_c, sd->recout.width - new_width));
1525 sd->recout.width = new_width;
1526 sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int(
1527 sd->ratios.horz, sd->h_active - sd->recout.x));
1528 sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int(
1529 sd->ratios.horz_c, sd->h_active - sd->recout.x));
1530 sd->recout.x = 0;
1531 }
1532 if (!next_odm_pipe->top_pipe)
1533 next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx];
1534 else
1535 next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp;
1536 if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) {
1537 dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx);
1538 ASSERT(next_odm_pipe->stream_res.dsc);
1539 if (next_odm_pipe->stream_res.dsc == NULL)
1540 return false;
1541 }
1542
1543 return true;
1544 }
1545
dcn20_split_stream_for_mpc(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * primary_pipe,struct pipe_ctx * secondary_pipe)1546 void dcn20_split_stream_for_mpc(
1547 struct resource_context *res_ctx,
1548 const struct resource_pool *pool,
1549 struct pipe_ctx *primary_pipe,
1550 struct pipe_ctx *secondary_pipe)
1551 {
1552 int pipe_idx = secondary_pipe->pipe_idx;
1553 struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe;
1554
1555 *secondary_pipe = *primary_pipe;
1556 secondary_pipe->bottom_pipe = sec_bot_pipe;
1557
1558 secondary_pipe->pipe_idx = pipe_idx;
1559 secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx];
1560 secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx];
1561 secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx];
1562 secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx];
1563 secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx];
1564 secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst;
1565 secondary_pipe->stream_res.dsc = NULL;
1566 if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) {
1567 ASSERT(!secondary_pipe->bottom_pipe);
1568 secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe;
1569 secondary_pipe->bottom_pipe->top_pipe = secondary_pipe;
1570 }
1571 primary_pipe->bottom_pipe = secondary_pipe;
1572 secondary_pipe->top_pipe = primary_pipe;
1573
1574 ASSERT(primary_pipe->plane_state);
1575 }
1576
dcn20_calc_max_scaled_time(unsigned int time_per_pixel,enum mmhubbub_wbif_mode mode,unsigned int urgent_watermark)1577 unsigned int dcn20_calc_max_scaled_time(
1578 unsigned int time_per_pixel,
1579 enum mmhubbub_wbif_mode mode,
1580 unsigned int urgent_watermark)
1581 {
1582 unsigned int time_per_byte = 0;
1583 unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */
1584 unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */
1585 unsigned int small_free_entry, max_free_entry;
1586 unsigned int buf_lh_capability;
1587 unsigned int max_scaled_time;
1588
1589 if (mode == PACKED_444) /* packed mode */
1590 time_per_byte = time_per_pixel/4;
1591 else if (mode == PLANAR_420_8BPC)
1592 time_per_byte = time_per_pixel;
1593 else if (mode == PLANAR_420_10BPC) /* p010 */
1594 time_per_byte = time_per_pixel * 819/1024;
1595
1596 if (time_per_byte == 0)
1597 time_per_byte = 1;
1598
1599 small_free_entry = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry;
1600 max_free_entry = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry;
1601 buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */
1602 max_scaled_time = buf_lh_capability - urgent_watermark;
1603 return max_scaled_time;
1604 }
1605
dcn20_set_mcif_arb_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)1606 void dcn20_set_mcif_arb_params(
1607 struct dc *dc,
1608 struct dc_state *context,
1609 display_e2e_pipe_params_st *pipes,
1610 int pipe_cnt)
1611 {
1612 enum mmhubbub_wbif_mode wbif_mode;
1613 struct mcif_arb_params *wb_arb_params;
1614 int i, j, dwb_pipe;
1615
1616 /* Writeback MCIF_WB arbitration parameters */
1617 dwb_pipe = 0;
1618 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1619
1620 if (!context->res_ctx.pipe_ctx[i].stream)
1621 continue;
1622
1623 for (j = 0; j < MAX_DWB_PIPES; j++) {
1624 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false)
1625 continue;
1626
1627 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1628 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1629
1630 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) {
1631 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC)
1632 wbif_mode = PLANAR_420_8BPC;
1633 else
1634 wbif_mode = PLANAR_420_10BPC;
1635 } else
1636 wbif_mode = PACKED_444;
1637
1638 DC_FP_START();
1639 dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i);
1640 DC_FP_END();
1641
1642 wb_arb_params->slice_lines = 32;
1643 wb_arb_params->arbitration_slice = 2;
1644 wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1645 wbif_mode,
1646 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1647
1648 dwb_pipe++;
1649
1650 if (dwb_pipe >= MAX_DWB_PIPES)
1651 return;
1652 }
1653 if (dwb_pipe >= MAX_DWB_PIPES)
1654 return;
1655 }
1656 }
1657
dcn20_validate_dsc(struct dc * dc,struct dc_state * new_ctx)1658 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx)
1659 {
1660 int i;
1661
1662 /* Validate DSC config, dsc count validation is already done */
1663 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1664 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1665 struct dc_stream_state *stream = pipe_ctx->stream;
1666 struct dsc_config dsc_cfg;
1667 struct pipe_ctx *odm_pipe;
1668 int opp_cnt = 1;
1669
1670 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1671 opp_cnt++;
1672
1673 /* Only need to validate top pipe */
1674 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC)
1675 continue;
1676
1677 dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left
1678 + stream->timing.h_border_right) / opp_cnt;
1679 dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top
1680 + stream->timing.v_border_bottom;
1681 dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
1682 dsc_cfg.color_depth = stream->timing.display_color_depth;
1683 dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
1684 dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
1685 dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
1686
1687 if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg))
1688 return false;
1689 }
1690 return true;
1691 }
1692
dcn20_find_secondary_pipe(struct dc * dc,struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1693 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc,
1694 struct resource_context *res_ctx,
1695 const struct resource_pool *pool,
1696 const struct pipe_ctx *primary_pipe)
1697 {
1698 struct pipe_ctx *secondary_pipe = NULL;
1699
1700 if (dc && primary_pipe) {
1701 int j;
1702 int preferred_pipe_idx = 0;
1703
1704 /* first check the prev dc state:
1705 * if this primary pipe has a bottom pipe in prev. state
1706 * and if the bottom pipe is still available (which it should be),
1707 * pick that pipe as secondary
1708 * Same logic applies for ODM pipes
1709 */
1710 if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) {
1711 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx;
1712 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1713 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1714 secondary_pipe->pipe_idx = preferred_pipe_idx;
1715 }
1716 }
1717 if (secondary_pipe == NULL &&
1718 dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) {
1719 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx;
1720 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1721 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1722 secondary_pipe->pipe_idx = preferred_pipe_idx;
1723 }
1724 }
1725
1726 /*
1727 * if this primary pipe does not have a bottom pipe in prev. state
1728 * start backward and find a pipe that did not used to be a bottom pipe in
1729 * prev. dc state. This way we make sure we keep the same assignment as
1730 * last state and will not have to reprogram every pipe
1731 */
1732 if (secondary_pipe == NULL) {
1733 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1734 if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL
1735 && dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) {
1736 preferred_pipe_idx = j;
1737
1738 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1739 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1740 secondary_pipe->pipe_idx = preferred_pipe_idx;
1741 break;
1742 }
1743 }
1744 }
1745 }
1746 /*
1747 * We should never hit this assert unless assignments are shuffled around
1748 * if this happens we will prob. hit a vsync tdr
1749 */
1750 ASSERT(secondary_pipe);
1751 /*
1752 * search backwards for the second pipe to keep pipe
1753 * assignment more consistent
1754 */
1755 if (secondary_pipe == NULL) {
1756 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1757 preferred_pipe_idx = j;
1758
1759 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1760 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1761 secondary_pipe->pipe_idx = preferred_pipe_idx;
1762 break;
1763 }
1764 }
1765 }
1766 }
1767
1768 return secondary_pipe;
1769 }
1770
dcn20_merge_pipes_for_validate(struct dc * dc,struct dc_state * context)1771 void dcn20_merge_pipes_for_validate(
1772 struct dc *dc,
1773 struct dc_state *context)
1774 {
1775 int i;
1776
1777 /* merge previously split odm pipes since mode support needs to make the decision */
1778 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1779 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1780 struct pipe_ctx *odm_pipe = pipe->next_odm_pipe;
1781
1782 if (pipe->prev_odm_pipe)
1783 continue;
1784
1785 pipe->next_odm_pipe = NULL;
1786 while (odm_pipe) {
1787 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1788
1789 odm_pipe->plane_state = NULL;
1790 odm_pipe->stream = NULL;
1791 odm_pipe->top_pipe = NULL;
1792 odm_pipe->bottom_pipe = NULL;
1793 odm_pipe->prev_odm_pipe = NULL;
1794 odm_pipe->next_odm_pipe = NULL;
1795 if (odm_pipe->stream_res.dsc)
1796 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc);
1797 /* Clear plane_res and stream_res */
1798 memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res));
1799 memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res));
1800 odm_pipe = next_odm_pipe;
1801 }
1802 if (pipe->plane_state)
1803 resource_build_scaling_params(pipe);
1804 }
1805
1806 /* merge previously mpc split pipes since mode support needs to make the decision */
1807 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1808 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1809 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
1810
1811 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state)
1812 continue;
1813
1814 pipe->bottom_pipe = hsplit_pipe->bottom_pipe;
1815 if (hsplit_pipe->bottom_pipe)
1816 hsplit_pipe->bottom_pipe->top_pipe = pipe;
1817 hsplit_pipe->plane_state = NULL;
1818 hsplit_pipe->stream = NULL;
1819 hsplit_pipe->top_pipe = NULL;
1820 hsplit_pipe->bottom_pipe = NULL;
1821
1822 /* Clear plane_res and stream_res */
1823 memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res));
1824 memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res));
1825 if (pipe->plane_state)
1826 resource_build_scaling_params(pipe);
1827 }
1828 }
1829
dcn20_validate_apply_pipe_split_flags(struct dc * dc,struct dc_state * context,int vlevel,int * split,bool * merge)1830 int dcn20_validate_apply_pipe_split_flags(
1831 struct dc *dc,
1832 struct dc_state *context,
1833 int vlevel,
1834 int *split,
1835 bool *merge)
1836 {
1837 int i, pipe_idx, vlevel_split;
1838 int plane_count = 0;
1839 bool force_split = false;
1840 bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID;
1841 struct vba_vars_st *v = &context->bw_ctx.dml.vba;
1842 int max_mpc_comb = v->maxMpcComb;
1843
1844 if (context->stream_count > 1) {
1845 if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP)
1846 avoid_split = true;
1847 } else if (dc->debug.force_single_disp_pipe_split)
1848 force_split = true;
1849
1850 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1851 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1852
1853 /**
1854 * Workaround for avoiding pipe-split in cases where we'd split
1855 * planes that are too small, resulting in splits that aren't
1856 * valid for the scaler.
1857 */
1858 if (pipe->plane_state &&
1859 (pipe->plane_state->dst_rect.width <= 16 ||
1860 pipe->plane_state->dst_rect.height <= 16 ||
1861 pipe->plane_state->src_rect.width <= 16 ||
1862 pipe->plane_state->src_rect.height <= 16))
1863 avoid_split = true;
1864
1865 /* TODO: fix dc bugs and remove this split threshold thing */
1866 if (pipe->stream && !pipe->prev_odm_pipe &&
1867 (!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state))
1868 ++plane_count;
1869 }
1870 if (plane_count > dc->res_pool->pipe_count / 2)
1871 avoid_split = true;
1872
1873 /* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */
1874 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1875 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1876 struct dc_crtc_timing timing;
1877
1878 if (!pipe->stream)
1879 continue;
1880 else {
1881 timing = pipe->stream->timing;
1882 if (timing.h_border_left + timing.h_border_right
1883 + timing.v_border_top + timing.v_border_bottom > 0) {
1884 avoid_split = true;
1885 break;
1886 }
1887 }
1888 }
1889
1890 /* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */
1891 if (avoid_split) {
1892 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1893 if (!context->res_ctx.pipe_ctx[i].stream)
1894 continue;
1895
1896 for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++)
1897 if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 &&
1898 v->ModeSupport[vlevel][0])
1899 break;
1900 /* Impossible to not split this pipe */
1901 if (vlevel > context->bw_ctx.dml.soc.num_states)
1902 vlevel = vlevel_split;
1903 else
1904 max_mpc_comb = 0;
1905 pipe_idx++;
1906 }
1907 v->maxMpcComb = max_mpc_comb;
1908 }
1909
1910 /* Split loop sets which pipe should be split based on dml outputs and dc flags */
1911 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1912 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1913 int pipe_plane = v->pipe_plane[pipe_idx];
1914 bool split4mpc = context->stream_count == 1 && plane_count == 1
1915 && dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4;
1916
1917 if (!context->res_ctx.pipe_ctx[i].stream)
1918 continue;
1919
1920 if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4)
1921 split[i] = 4;
1922 else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2)
1923 split[i] = 2;
1924
1925 if ((pipe->stream->view_format ==
1926 VIEW_3D_FORMAT_SIDE_BY_SIDE ||
1927 pipe->stream->view_format ==
1928 VIEW_3D_FORMAT_TOP_AND_BOTTOM) &&
1929 (pipe->stream->timing.timing_3d_format ==
1930 TIMING_3D_FORMAT_TOP_AND_BOTTOM ||
1931 pipe->stream->timing.timing_3d_format ==
1932 TIMING_3D_FORMAT_SIDE_BY_SIDE))
1933 split[i] = 2;
1934 if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) {
1935 split[i] = 2;
1936 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1;
1937 }
1938 if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) {
1939 split[i] = 4;
1940 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1;
1941 }
1942 /*420 format workaround*/
1943 if (pipe->stream->timing.h_addressable > 7680 &&
1944 pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1945 split[i] = 4;
1946 }
1947 v->ODMCombineEnabled[pipe_plane] =
1948 v->ODMCombineEnablePerState[vlevel][pipe_plane];
1949
1950 if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) {
1951 if (resource_get_num_mpc_splits(pipe) == 1) {
1952 /*If need split for mpc but 2 way split already*/
1953 if (split[i] == 4)
1954 split[i] = 2; /* 2 -> 4 MPC */
1955 else if (split[i] == 2)
1956 split[i] = 0; /* 2 -> 2 MPC */
1957 else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state)
1958 merge[i] = true; /* 2 -> 1 MPC */
1959 } else if (resource_get_num_mpc_splits(pipe) == 3) {
1960 /*If need split for mpc but 4 way split already*/
1961 if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe)
1962 || !pipe->bottom_pipe)) {
1963 merge[i] = true; /* 4 -> 2 MPC */
1964 } else if (split[i] == 0 && pipe->top_pipe &&
1965 pipe->top_pipe->plane_state == pipe->plane_state)
1966 merge[i] = true; /* 4 -> 1 MPC */
1967 split[i] = 0;
1968 } else if (resource_get_num_odm_splits(pipe)) {
1969 /* ODM -> MPC transition */
1970 if (pipe->prev_odm_pipe) {
1971 split[i] = 0;
1972 merge[i] = true;
1973 }
1974 }
1975 } else {
1976 if (resource_get_num_odm_splits(pipe) == 1) {
1977 /*If need split for odm but 2 way split already*/
1978 if (split[i] == 4)
1979 split[i] = 2; /* 2 -> 4 ODM */
1980 else if (split[i] == 2)
1981 split[i] = 0; /* 2 -> 2 ODM */
1982 else if (pipe->prev_odm_pipe) {
1983 ASSERT(0); /* NOT expected yet */
1984 merge[i] = true; /* exit ODM */
1985 }
1986 } else if (resource_get_num_odm_splits(pipe) == 3) {
1987 /*If need split for odm but 4 way split already*/
1988 if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe)
1989 || !pipe->next_odm_pipe)) {
1990 merge[i] = true; /* 4 -> 2 ODM */
1991 } else if (split[i] == 0 && pipe->prev_odm_pipe) {
1992 ASSERT(0); /* NOT expected yet */
1993 merge[i] = true; /* exit ODM */
1994 }
1995 split[i] = 0;
1996 } else if (resource_get_num_mpc_splits(pipe)) {
1997 /* MPC -> ODM transition */
1998 ASSERT(0); /* NOT expected yet */
1999 if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2000 split[i] = 0;
2001 merge[i] = true;
2002 }
2003 }
2004 }
2005
2006 /* Adjust dppclk when split is forced, do not bother with dispclk */
2007 if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) {
2008 DC_FP_START();
2009 dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false);
2010 DC_FP_END();
2011 }
2012 pipe_idx++;
2013 }
2014
2015 return vlevel;
2016 }
2017
dcn20_fast_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * pipe_split_from,int * vlevel_out,bool fast_validate)2018 bool dcn20_fast_validate_bw(
2019 struct dc *dc,
2020 struct dc_state *context,
2021 display_e2e_pipe_params_st *pipes,
2022 int *pipe_cnt_out,
2023 int *pipe_split_from,
2024 int *vlevel_out,
2025 bool fast_validate)
2026 {
2027 bool out = false;
2028 int split[MAX_PIPES] = { 0 };
2029 int pipe_cnt, i, pipe_idx, vlevel;
2030
2031 ASSERT(pipes);
2032 if (!pipes)
2033 return false;
2034
2035 dcn20_merge_pipes_for_validate(dc, context);
2036
2037 DC_FP_START();
2038 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2039 DC_FP_END();
2040
2041 *pipe_cnt_out = pipe_cnt;
2042
2043 if (!pipe_cnt) {
2044 out = true;
2045 goto validate_out;
2046 }
2047
2048 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2049
2050 if (vlevel > context->bw_ctx.dml.soc.num_states)
2051 goto validate_fail;
2052
2053 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL);
2054
2055 /*initialize pipe_just_split_from to invalid idx*/
2056 for (i = 0; i < MAX_PIPES; i++)
2057 pipe_split_from[i] = -1;
2058
2059 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2060 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2061 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
2062
2063 if (!pipe->stream || pipe_split_from[i] >= 0)
2064 continue;
2065
2066 pipe_idx++;
2067
2068 if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2069 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2070 ASSERT(hsplit_pipe);
2071 if (!dcn20_split_stream_for_odm(
2072 dc, &context->res_ctx,
2073 pipe, hsplit_pipe))
2074 goto validate_fail;
2075 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2076 dcn20_build_mapped_resource(dc, context, pipe->stream);
2077 }
2078
2079 if (!pipe->plane_state)
2080 continue;
2081 /* Skip 2nd half of already split pipe */
2082 if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state)
2083 continue;
2084
2085 /* We do not support mpo + odm at the moment */
2086 if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state
2087 && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx])
2088 goto validate_fail;
2089
2090 if (split[i] == 2) {
2091 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) {
2092 /* pipe not split previously needs split */
2093 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2094 ASSERT(hsplit_pipe);
2095 if (!hsplit_pipe) {
2096 DC_FP_START();
2097 dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true);
2098 DC_FP_END();
2099 continue;
2100 }
2101 if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2102 if (!dcn20_split_stream_for_odm(
2103 dc, &context->res_ctx,
2104 pipe, hsplit_pipe))
2105 goto validate_fail;
2106 dcn20_build_mapped_resource(dc, context, pipe->stream);
2107 } else {
2108 dcn20_split_stream_for_mpc(
2109 &context->res_ctx, dc->res_pool,
2110 pipe, hsplit_pipe);
2111 resource_build_scaling_params(pipe);
2112 resource_build_scaling_params(hsplit_pipe);
2113 }
2114 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2115 }
2116 } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) {
2117 /* merge should already have been done */
2118 ASSERT(0);
2119 }
2120 }
2121 /* Actual dsc count per stream dsc validation*/
2122 if (!dcn20_validate_dsc(dc, context)) {
2123 context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] =
2124 DML_FAIL_DSC_VALIDATION_FAILURE;
2125 goto validate_fail;
2126 }
2127
2128 *vlevel_out = vlevel;
2129
2130 out = true;
2131 goto validate_out;
2132
2133 validate_fail:
2134 out = false;
2135
2136 validate_out:
2137 return out;
2138 }
2139
dcn20_validate_bandwidth(struct dc * dc,struct dc_state * context,bool fast_validate)2140 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context,
2141 bool fast_validate)
2142 {
2143 bool voltage_supported;
2144 DC_FP_START();
2145 voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate);
2146 DC_FP_END();
2147 return voltage_supported;
2148 }
2149
dcn20_acquire_free_pipe_for_layer(const struct dc_state * cur_ctx,struct dc_state * new_ctx,const struct resource_pool * pool,const struct pipe_ctx * opp_head)2150 struct pipe_ctx *dcn20_acquire_free_pipe_for_layer(
2151 const struct dc_state *cur_ctx,
2152 struct dc_state *new_ctx,
2153 const struct resource_pool *pool,
2154 const struct pipe_ctx *opp_head)
2155 {
2156 struct resource_context *res_ctx = &new_ctx->res_ctx;
2157 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(res_ctx, opp_head->stream);
2158 struct pipe_ctx *sec_dpp_pipe = resource_find_free_secondary_pipe_legacy(res_ctx, pool, otg_master);
2159
2160 ASSERT(otg_master);
2161
2162 if (!sec_dpp_pipe)
2163 return NULL;
2164
2165 sec_dpp_pipe->stream = opp_head->stream;
2166 sec_dpp_pipe->stream_res.tg = opp_head->stream_res.tg;
2167 sec_dpp_pipe->stream_res.opp = opp_head->stream_res.opp;
2168
2169 sec_dpp_pipe->plane_res.hubp = pool->hubps[sec_dpp_pipe->pipe_idx];
2170 sec_dpp_pipe->plane_res.ipp = pool->ipps[sec_dpp_pipe->pipe_idx];
2171 sec_dpp_pipe->plane_res.dpp = pool->dpps[sec_dpp_pipe->pipe_idx];
2172 sec_dpp_pipe->plane_res.mpcc_inst = pool->dpps[sec_dpp_pipe->pipe_idx]->inst;
2173
2174 return sec_dpp_pipe;
2175 }
2176
dcn20_get_dcc_compression_cap(const struct dc * dc,const struct dc_dcc_surface_param * input,struct dc_surface_dcc_cap * output)2177 bool dcn20_get_dcc_compression_cap(const struct dc *dc,
2178 const struct dc_dcc_surface_param *input,
2179 struct dc_surface_dcc_cap *output)
2180 {
2181 return dc->res_pool->hubbub->funcs->get_dcc_compression_cap(
2182 dc->res_pool->hubbub,
2183 input,
2184 output);
2185 }
2186
dcn20_destroy_resource_pool(struct resource_pool ** pool)2187 static void dcn20_destroy_resource_pool(struct resource_pool **pool)
2188 {
2189 struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool);
2190
2191 dcn20_resource_destruct(dcn20_pool);
2192 kfree(dcn20_pool);
2193 *pool = NULL;
2194 }
2195
2196
2197 static struct dc_cap_funcs cap_funcs = {
2198 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap
2199 };
2200
2201
dcn20_patch_unknown_plane_state(struct dc_plane_state * plane_state)2202 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state)
2203 {
2204 enum surface_pixel_format surf_pix_format = plane_state->format;
2205 unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format);
2206
2207 plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_S;
2208 if (bpp == 64)
2209 plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_D;
2210
2211 return DC_OK;
2212 }
2213
2214 static const struct resource_funcs dcn20_res_pool_funcs = {
2215 .destroy = dcn20_destroy_resource_pool,
2216 .link_enc_create = dcn20_link_encoder_create,
2217 .panel_cntl_create = dcn20_panel_cntl_create,
2218 .validate_bandwidth = dcn20_validate_bandwidth,
2219 .acquire_free_pipe_as_secondary_dpp_pipe = dcn20_acquire_free_pipe_for_layer,
2220 .add_stream_to_ctx = dcn20_add_stream_to_ctx,
2221 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2222 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2223 .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context,
2224 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2225 .set_mcif_arb_params = dcn20_set_mcif_arb_params,
2226 .populate_dml_pipes = dcn20_populate_dml_pipes_from_context,
2227 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link
2228 };
2229
dcn20_dwbc_create(struct dc_context * ctx,struct resource_pool * pool)2230 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
2231 {
2232 int i;
2233 uint32_t pipe_count = pool->res_cap->num_dwb;
2234
2235 for (i = 0; i < pipe_count; i++) {
2236 struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc),
2237 GFP_KERNEL);
2238
2239 if (!dwbc20) {
2240 dm_error("DC: failed to create dwbc20!\n");
2241 return false;
2242 }
2243 dcn20_dwbc_construct(dwbc20, ctx,
2244 &dwbc20_regs[i],
2245 &dwbc20_shift,
2246 &dwbc20_mask,
2247 i);
2248 pool->dwbc[i] = &dwbc20->base;
2249 }
2250 return true;
2251 }
2252
dcn20_mmhubbub_create(struct dc_context * ctx,struct resource_pool * pool)2253 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
2254 {
2255 int i;
2256 uint32_t pipe_count = pool->res_cap->num_dwb;
2257
2258 ASSERT(pipe_count > 0);
2259
2260 for (i = 0; i < pipe_count; i++) {
2261 struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub),
2262 GFP_KERNEL);
2263
2264 if (!mcif_wb20) {
2265 dm_error("DC: failed to create mcif_wb20!\n");
2266 return false;
2267 }
2268
2269 dcn20_mmhubbub_construct(mcif_wb20, ctx,
2270 &mcif_wb20_regs[i],
2271 &mcif_wb20_shift,
2272 &mcif_wb20_mask,
2273 i);
2274
2275 pool->mcif_wb[i] = &mcif_wb20->base;
2276 }
2277 return true;
2278 }
2279
dcn20_pp_smu_create(struct dc_context * ctx)2280 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx)
2281 {
2282 struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC);
2283
2284 if (!pp_smu)
2285 return pp_smu;
2286
2287 dm_pp_get_funcs(ctx, pp_smu);
2288
2289 if (pp_smu->ctx.ver != PP_SMU_VER_NV)
2290 pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs));
2291
2292 return pp_smu;
2293 }
2294
dcn20_pp_smu_destroy(struct pp_smu_funcs ** pp_smu)2295 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu)
2296 {
2297 if (pp_smu && *pp_smu) {
2298 kfree(*pp_smu);
2299 *pp_smu = NULL;
2300 }
2301 }
2302
get_asic_rev_soc_bb(uint32_t hw_internal_rev)2303 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb(
2304 uint32_t hw_internal_rev)
2305 {
2306 if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2307 return &dcn2_0_nv14_soc;
2308
2309 if (ASICREV_IS_NAVI12_P(hw_internal_rev))
2310 return &dcn2_0_nv12_soc;
2311
2312 return &dcn2_0_soc;
2313 }
2314
get_asic_rev_ip_params(uint32_t hw_internal_rev)2315 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params(
2316 uint32_t hw_internal_rev)
2317 {
2318 /* NV14 */
2319 if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2320 return &dcn2_0_nv14_ip;
2321
2322 /* NV12 and NV10 */
2323 return &dcn2_0_ip;
2324 }
2325
get_dml_project_version(uint32_t hw_internal_rev)2326 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev)
2327 {
2328 return DML_PROJECT_NAVI10v2;
2329 }
2330
init_soc_bounding_box(struct dc * dc,struct dcn20_resource_pool * pool)2331 static bool init_soc_bounding_box(struct dc *dc,
2332 struct dcn20_resource_pool *pool)
2333 {
2334 struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2335 get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev);
2336 struct _vcs_dpi_ip_params_st *loaded_ip =
2337 get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev);
2338
2339 DC_LOGGER_INIT(dc->ctx->logger);
2340
2341 if (pool->base.pp_smu) {
2342 struct pp_smu_nv_clock_table max_clocks = {0};
2343 unsigned int uclk_states[8] = {0};
2344 unsigned int num_states = 0;
2345 enum pp_smu_status status;
2346 bool clock_limits_available = false;
2347 bool uclk_states_available = false;
2348
2349 if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) {
2350 status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states)
2351 (&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states);
2352
2353 uclk_states_available = (status == PP_SMU_RESULT_OK);
2354 }
2355
2356 if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) {
2357 status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks)
2358 (&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks);
2359 /* SMU cannot set DCF clock to anything equal to or higher than SOC clock
2360 */
2361 if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz)
2362 max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000;
2363 clock_limits_available = (status == PP_SMU_RESULT_OK);
2364 }
2365
2366 if (clock_limits_available && uclk_states_available && num_states) {
2367 DC_FP_START();
2368 dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states);
2369 DC_FP_END();
2370 } else if (clock_limits_available) {
2371 DC_FP_START();
2372 dcn20_cap_soc_clocks(loaded_bb, max_clocks);
2373 DC_FP_END();
2374 }
2375 }
2376
2377 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
2378 loaded_ip->max_num_dpp = pool->base.pipe_count;
2379 DC_FP_START();
2380 dcn20_patch_bounding_box(dc, loaded_bb);
2381 DC_FP_END();
2382 return true;
2383 }
2384
dcn20_resource_construct(uint8_t num_virtual_links,struct dc * dc,struct dcn20_resource_pool * pool)2385 static bool dcn20_resource_construct(
2386 uint8_t num_virtual_links,
2387 struct dc *dc,
2388 struct dcn20_resource_pool *pool)
2389 {
2390 int i;
2391 struct dc_context *ctx = dc->ctx;
2392 struct irq_service_init_data init_data;
2393 struct ddc_service_init_data ddc_init_data = {0};
2394 struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2395 get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev);
2396 struct _vcs_dpi_ip_params_st *loaded_ip =
2397 get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev);
2398 enum dml_project dml_project_version =
2399 get_dml_project_version(ctx->asic_id.hw_internal_rev);
2400
2401 ctx->dc_bios->regs = &bios_regs;
2402 pool->base.funcs = &dcn20_res_pool_funcs;
2403
2404 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
2405 pool->base.res_cap = &res_cap_nv14;
2406 pool->base.pipe_count = 5;
2407 pool->base.mpcc_count = 5;
2408 } else {
2409 pool->base.res_cap = &res_cap_nv10;
2410 pool->base.pipe_count = 6;
2411 pool->base.mpcc_count = 6;
2412 }
2413 /*************************************************
2414 * Resource + asic cap harcoding *
2415 *************************************************/
2416 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2417
2418 dc->caps.max_downscale_ratio = 200;
2419 dc->caps.i2c_speed_in_khz = 100;
2420 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2421 dc->caps.max_cursor_size = 256;
2422 dc->caps.min_horizontal_blanking_period = 80;
2423 dc->caps.dmdata_alloc_size = 2048;
2424
2425 dc->caps.max_slave_planes = 1;
2426 dc->caps.max_slave_yuv_planes = 1;
2427 dc->caps.max_slave_rgb_planes = 1;
2428 dc->caps.post_blend_color_processing = true;
2429 dc->caps.force_dp_tps4_for_cp2520 = true;
2430 dc->caps.extended_aux_timeout_support = true;
2431
2432 /* Color pipeline capabilities */
2433 dc->caps.color.dpp.dcn_arch = 1;
2434 dc->caps.color.dpp.input_lut_shared = 0;
2435 dc->caps.color.dpp.icsc = 1;
2436 dc->caps.color.dpp.dgam_ram = 1;
2437 dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2438 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2439 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0;
2440 dc->caps.color.dpp.dgam_rom_caps.pq = 0;
2441 dc->caps.color.dpp.dgam_rom_caps.hlg = 0;
2442 dc->caps.color.dpp.post_csc = 0;
2443 dc->caps.color.dpp.gamma_corr = 0;
2444 dc->caps.color.dpp.dgam_rom_for_yuv = 1;
2445
2446 dc->caps.color.dpp.hw_3d_lut = 1;
2447 dc->caps.color.dpp.ogam_ram = 1;
2448 // no OGAM ROM on DCN2, only MPC ROM
2449 dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2450 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2451 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2452 dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2453 dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2454 dc->caps.color.dpp.ocsc = 0;
2455
2456 dc->caps.color.mpc.gamut_remap = 0;
2457 dc->caps.color.mpc.num_3dluts = 0;
2458 dc->caps.color.mpc.shared_3d_lut = 0;
2459 dc->caps.color.mpc.ogam_ram = 1;
2460 dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2461 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2462 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2463 dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2464 dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2465 dc->caps.color.mpc.ocsc = 1;
2466
2467 dc->caps.dp_hdmi21_pcon_support = true;
2468
2469 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2470 dc->debug = debug_defaults_drv;
2471
2472 //dcn2.0x
2473 dc->work_arounds.dedcn20_305_wa = true;
2474
2475 // Init the vm_helper
2476 if (dc->vm_helper)
2477 vm_helper_init(dc->vm_helper, 16);
2478
2479 /*************************************************
2480 * Create resources *
2481 *************************************************/
2482
2483 pool->base.clock_sources[DCN20_CLK_SRC_PLL0] =
2484 dcn20_clock_source_create(ctx, ctx->dc_bios,
2485 CLOCK_SOURCE_COMBO_PHY_PLL0,
2486 &clk_src_regs[0], false);
2487 pool->base.clock_sources[DCN20_CLK_SRC_PLL1] =
2488 dcn20_clock_source_create(ctx, ctx->dc_bios,
2489 CLOCK_SOURCE_COMBO_PHY_PLL1,
2490 &clk_src_regs[1], false);
2491 pool->base.clock_sources[DCN20_CLK_SRC_PLL2] =
2492 dcn20_clock_source_create(ctx, ctx->dc_bios,
2493 CLOCK_SOURCE_COMBO_PHY_PLL2,
2494 &clk_src_regs[2], false);
2495 pool->base.clock_sources[DCN20_CLK_SRC_PLL3] =
2496 dcn20_clock_source_create(ctx, ctx->dc_bios,
2497 CLOCK_SOURCE_COMBO_PHY_PLL3,
2498 &clk_src_regs[3], false);
2499 pool->base.clock_sources[DCN20_CLK_SRC_PLL4] =
2500 dcn20_clock_source_create(ctx, ctx->dc_bios,
2501 CLOCK_SOURCE_COMBO_PHY_PLL4,
2502 &clk_src_regs[4], false);
2503 pool->base.clock_sources[DCN20_CLK_SRC_PLL5] =
2504 dcn20_clock_source_create(ctx, ctx->dc_bios,
2505 CLOCK_SOURCE_COMBO_PHY_PLL5,
2506 &clk_src_regs[5], false);
2507 pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL;
2508 /* todo: not reuse phy_pll registers */
2509 pool->base.dp_clock_source =
2510 dcn20_clock_source_create(ctx, ctx->dc_bios,
2511 CLOCK_SOURCE_ID_DP_DTO,
2512 &clk_src_regs[0], true);
2513
2514 for (i = 0; i < pool->base.clk_src_count; i++) {
2515 if (pool->base.clock_sources[i] == NULL) {
2516 dm_error("DC: failed to create clock sources!\n");
2517 BREAK_TO_DEBUGGER();
2518 goto create_fail;
2519 }
2520 }
2521
2522 pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2523 if (pool->base.dccg == NULL) {
2524 dm_error("DC: failed to create dccg!\n");
2525 BREAK_TO_DEBUGGER();
2526 goto create_fail;
2527 }
2528
2529 pool->base.dmcu = dcn20_dmcu_create(ctx,
2530 &dmcu_regs,
2531 &dmcu_shift,
2532 &dmcu_mask);
2533 if (pool->base.dmcu == NULL) {
2534 dm_error("DC: failed to create dmcu!\n");
2535 BREAK_TO_DEBUGGER();
2536 goto create_fail;
2537 }
2538
2539 pool->base.abm = dce_abm_create(ctx,
2540 &abm_regs,
2541 &abm_shift,
2542 &abm_mask);
2543 if (pool->base.abm == NULL) {
2544 dm_error("DC: failed to create abm!\n");
2545 BREAK_TO_DEBUGGER();
2546 goto create_fail;
2547 }
2548
2549 pool->base.pp_smu = dcn20_pp_smu_create(ctx);
2550
2551
2552 if (!init_soc_bounding_box(dc, pool)) {
2553 dm_error("DC: failed to initialize soc bounding box!\n");
2554 BREAK_TO_DEBUGGER();
2555 goto create_fail;
2556 }
2557
2558 dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version);
2559
2560 if (!dc->debug.disable_pplib_wm_range) {
2561 struct pp_smu_wm_range_sets ranges = {0};
2562 int i = 0;
2563
2564 ranges.num_reader_wm_sets = 0;
2565
2566 if (loaded_bb->num_states == 1) {
2567 ranges.reader_wm_sets[0].wm_inst = i;
2568 ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2569 ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2570 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2571 ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2572
2573 ranges.num_reader_wm_sets = 1;
2574 } else if (loaded_bb->num_states > 1) {
2575 for (i = 0; i < 4 && i < loaded_bb->num_states; i++) {
2576 ranges.reader_wm_sets[i].wm_inst = i;
2577 ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2578 ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2579 DC_FP_START();
2580 dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb);
2581 DC_FP_END();
2582
2583 ranges.num_reader_wm_sets = i + 1;
2584 }
2585
2586 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2587 ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2588 }
2589
2590 ranges.num_writer_wm_sets = 1;
2591
2592 ranges.writer_wm_sets[0].wm_inst = 0;
2593 ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2594 ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2595 ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2596 ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2597
2598 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
2599 if (pool->base.pp_smu->nv_funcs.set_wm_ranges)
2600 pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges);
2601 }
2602
2603 init_data.ctx = dc->ctx;
2604 pool->base.irqs = dal_irq_service_dcn20_create(&init_data);
2605 if (!pool->base.irqs)
2606 goto create_fail;
2607
2608 /* mem input -> ipp -> dpp -> opp -> TG */
2609 for (i = 0; i < pool->base.pipe_count; i++) {
2610 pool->base.hubps[i] = dcn20_hubp_create(ctx, i);
2611 if (pool->base.hubps[i] == NULL) {
2612 BREAK_TO_DEBUGGER();
2613 dm_error(
2614 "DC: failed to create memory input!\n");
2615 goto create_fail;
2616 }
2617
2618 pool->base.ipps[i] = dcn20_ipp_create(ctx, i);
2619 if (pool->base.ipps[i] == NULL) {
2620 BREAK_TO_DEBUGGER();
2621 dm_error(
2622 "DC: failed to create input pixel processor!\n");
2623 goto create_fail;
2624 }
2625
2626 pool->base.dpps[i] = dcn20_dpp_create(ctx, i);
2627 if (pool->base.dpps[i] == NULL) {
2628 BREAK_TO_DEBUGGER();
2629 dm_error(
2630 "DC: failed to create dpps!\n");
2631 goto create_fail;
2632 }
2633 }
2634 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2635 pool->base.engines[i] = dcn20_aux_engine_create(ctx, i);
2636 if (pool->base.engines[i] == NULL) {
2637 BREAK_TO_DEBUGGER();
2638 dm_error(
2639 "DC:failed to create aux engine!!\n");
2640 goto create_fail;
2641 }
2642 pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i);
2643 if (pool->base.hw_i2cs[i] == NULL) {
2644 BREAK_TO_DEBUGGER();
2645 dm_error(
2646 "DC:failed to create hw i2c!!\n");
2647 goto create_fail;
2648 }
2649 pool->base.sw_i2cs[i] = NULL;
2650 }
2651
2652 for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2653 pool->base.opps[i] = dcn20_opp_create(ctx, i);
2654 if (pool->base.opps[i] == NULL) {
2655 BREAK_TO_DEBUGGER();
2656 dm_error(
2657 "DC: failed to create output pixel processor!\n");
2658 goto create_fail;
2659 }
2660 }
2661
2662 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2663 pool->base.timing_generators[i] = dcn20_timing_generator_create(
2664 ctx, i);
2665 if (pool->base.timing_generators[i] == NULL) {
2666 BREAK_TO_DEBUGGER();
2667 dm_error("DC: failed to create tg!\n");
2668 goto create_fail;
2669 }
2670 }
2671
2672 pool->base.timing_generator_count = i;
2673
2674 pool->base.mpc = dcn20_mpc_create(ctx);
2675 if (pool->base.mpc == NULL) {
2676 BREAK_TO_DEBUGGER();
2677 dm_error("DC: failed to create mpc!\n");
2678 goto create_fail;
2679 }
2680
2681 pool->base.hubbub = dcn20_hubbub_create(ctx);
2682 if (pool->base.hubbub == NULL) {
2683 BREAK_TO_DEBUGGER();
2684 dm_error("DC: failed to create hubbub!\n");
2685 goto create_fail;
2686 }
2687
2688 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2689 pool->base.dscs[i] = dcn20_dsc_create(ctx, i);
2690 if (pool->base.dscs[i] == NULL) {
2691 BREAK_TO_DEBUGGER();
2692 dm_error("DC: failed to create display stream compressor %d!\n", i);
2693 goto create_fail;
2694 }
2695 }
2696
2697 if (!dcn20_dwbc_create(ctx, &pool->base)) {
2698 BREAK_TO_DEBUGGER();
2699 dm_error("DC: failed to create dwbc!\n");
2700 goto create_fail;
2701 }
2702 if (!dcn20_mmhubbub_create(ctx, &pool->base)) {
2703 BREAK_TO_DEBUGGER();
2704 dm_error("DC: failed to create mcif_wb!\n");
2705 goto create_fail;
2706 }
2707
2708 if (!resource_construct(num_virtual_links, dc, &pool->base,
2709 &res_create_funcs))
2710 goto create_fail;
2711
2712 dcn20_hw_sequencer_construct(dc);
2713
2714 // IF NV12, set PG function pointer to NULL. It's not that
2715 // PG isn't supported for NV12, it's that we don't want to
2716 // program the registers because that will cause more power
2717 // to be consumed. We could have created dcn20_init_hw to get
2718 // the same effect by checking ASIC rev, but there was a
2719 // request at some point to not check ASIC rev on hw sequencer.
2720 if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) {
2721 dc->hwseq->funcs.enable_power_gating_plane = NULL;
2722 dc->debug.disable_dpp_power_gate = true;
2723 dc->debug.disable_hubp_power_gate = true;
2724 }
2725
2726
2727 dc->caps.max_planes = pool->base.pipe_count;
2728
2729 for (i = 0; i < dc->caps.max_planes; ++i)
2730 dc->caps.planes[i] = plane_cap;
2731
2732 dc->cap_funcs = cap_funcs;
2733
2734 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2735 ddc_init_data.ctx = dc->ctx;
2736 ddc_init_data.link = NULL;
2737 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2738 ddc_init_data.id.enum_id = 0;
2739 ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2740 pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2741 } else {
2742 pool->base.oem_device = NULL;
2743 }
2744
2745 return true;
2746
2747 create_fail:
2748
2749 dcn20_resource_destruct(pool);
2750
2751 return false;
2752 }
2753
dcn20_create_resource_pool(const struct dc_init_data * init_data,struct dc * dc)2754 struct resource_pool *dcn20_create_resource_pool(
2755 const struct dc_init_data *init_data,
2756 struct dc *dc)
2757 {
2758 struct dcn20_resource_pool *pool =
2759 kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC);
2760
2761 if (!pool)
2762 return NULL;
2763
2764 if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool))
2765 return &pool->base;
2766
2767 BREAK_TO_DEBUGGER();
2768 kfree(pool);
2769 return NULL;
2770 }
2771