1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/delay.h>
27 #include "dm_services.h"
28 #include "basics/dc_common.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "custom_float.h"
32 #include "dcn10_hw_sequencer.h"
33 #include "dcn10_hw_sequencer_debug.h"
34 #include "dce/dce_hwseq.h"
35 #include "abm.h"
36 #include "dmcu.h"
37 #include "dcn10_optc.h"
38 #include "dcn10_dpp.h"
39 #include "dcn10_mpc.h"
40 #include "timing_generator.h"
41 #include "opp.h"
42 #include "ipp.h"
43 #include "mpc.h"
44 #include "reg_helper.h"
45 #include "dcn10_hubp.h"
46 #include "dcn10_hubbub.h"
47 #include "dcn10_cm_common.h"
48 #include "dccg.h"
49 #include "clk_mgr.h"
50 #include "link_hwss.h"
51 #include "dpcd_defs.h"
52 #include "dsc.h"
53 #include "dce/dmub_psr.h"
54 #include "dc_dmub_srv.h"
55 #include "dce/dmub_hw_lock_mgr.h"
56 #include "dc_trace.h"
57 #include "dce/dmub_outbox.h"
58 #include "link.h"
59 
60 #define DC_LOGGER_INIT(logger)
61 
62 #define CTX \
63 	hws->ctx
64 #define REG(reg)\
65 	hws->regs->reg
66 
67 #undef FN
68 #define FN(reg_name, field_name) \
69 	hws->shifts->field_name, hws->masks->field_name
70 
71 /*print is 17 wide, first two characters are spaces*/
72 #define DTN_INFO_MICRO_SEC(ref_cycle) \
73 	print_microsec(dc_ctx, log_ctx, ref_cycle)
74 
75 #define GAMMA_HW_POINTS_NUM 256
76 
77 #define PGFSM_POWER_ON 0
78 #define PGFSM_POWER_OFF 2
79 
print_microsec(struct dc_context * dc_ctx,struct dc_log_buffer_ctx * log_ctx,uint32_t ref_cycle)80 static void print_microsec(struct dc_context *dc_ctx,
81 			   struct dc_log_buffer_ctx *log_ctx,
82 			   uint32_t ref_cycle)
83 {
84 	const uint32_t ref_clk_mhz = dc_ctx->dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000;
85 	static const unsigned int frac = 1000;
86 	uint32_t us_x10 = (ref_cycle * frac) / ref_clk_mhz;
87 
88 	DTN_INFO("  %11d.%03d",
89 			us_x10 / frac,
90 			us_x10 % frac);
91 }
92 
dcn10_lock_all_pipes(struct dc * dc,struct dc_state * context,bool lock)93 void dcn10_lock_all_pipes(struct dc *dc,
94 	struct dc_state *context,
95 	bool lock)
96 {
97 	struct pipe_ctx *pipe_ctx;
98 	struct pipe_ctx *old_pipe_ctx;
99 	struct timing_generator *tg;
100 	int i;
101 
102 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
103 		old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
104 		pipe_ctx = &context->res_ctx.pipe_ctx[i];
105 		tg = pipe_ctx->stream_res.tg;
106 
107 		/*
108 		 * Only lock the top pipe's tg to prevent redundant
109 		 * (un)locking. Also skip if pipe is disabled.
110 		 */
111 		if (pipe_ctx->top_pipe ||
112 		    !pipe_ctx->stream ||
113 		    (!pipe_ctx->plane_state && !old_pipe_ctx->plane_state) ||
114 		    !tg->funcs->is_tg_enabled(tg) ||
115 			pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM)
116 			continue;
117 
118 		if (lock)
119 			dc->hwss.pipe_control_lock(dc, pipe_ctx, true);
120 		else
121 			dc->hwss.pipe_control_lock(dc, pipe_ctx, false);
122 	}
123 }
124 
log_mpc_crc(struct dc * dc,struct dc_log_buffer_ctx * log_ctx)125 static void log_mpc_crc(struct dc *dc,
126 	struct dc_log_buffer_ctx *log_ctx)
127 {
128 	struct dc_context *dc_ctx = dc->ctx;
129 	struct dce_hwseq *hws = dc->hwseq;
130 
131 	if (REG(MPC_CRC_RESULT_GB))
132 		DTN_INFO("MPC_CRC_RESULT_GB:%d MPC_CRC_RESULT_C:%d MPC_CRC_RESULT_AR:%d\n",
133 		REG_READ(MPC_CRC_RESULT_GB), REG_READ(MPC_CRC_RESULT_C), REG_READ(MPC_CRC_RESULT_AR));
134 	if (REG(DPP_TOP0_DPP_CRC_VAL_B_A))
135 		DTN_INFO("DPP_TOP0_DPP_CRC_VAL_B_A:%d DPP_TOP0_DPP_CRC_VAL_R_G:%d\n",
136 		REG_READ(DPP_TOP0_DPP_CRC_VAL_B_A), REG_READ(DPP_TOP0_DPP_CRC_VAL_R_G));
137 }
138 
dcn10_log_hubbub_state(struct dc * dc,struct dc_log_buffer_ctx * log_ctx)139 static void dcn10_log_hubbub_state(struct dc *dc,
140 				   struct dc_log_buffer_ctx *log_ctx)
141 {
142 	struct dc_context *dc_ctx = dc->ctx;
143 	struct dcn_hubbub_wm wm;
144 	int i;
145 
146 	memset(&wm, 0, sizeof(struct dcn_hubbub_wm));
147 	dc->res_pool->hubbub->funcs->wm_read_state(dc->res_pool->hubbub, &wm);
148 
149 	DTN_INFO("HUBBUB WM:      data_urgent  pte_meta_urgent"
150 			"         sr_enter          sr_exit  dram_clk_change\n");
151 
152 	for (i = 0; i < 4; i++) {
153 		struct dcn_hubbub_wm_set *s;
154 
155 		s = &wm.sets[i];
156 		DTN_INFO("WM_Set[%d]:", s->wm_set);
157 		DTN_INFO_MICRO_SEC(s->data_urgent);
158 		DTN_INFO_MICRO_SEC(s->pte_meta_urgent);
159 		DTN_INFO_MICRO_SEC(s->sr_enter);
160 		DTN_INFO_MICRO_SEC(s->sr_exit);
161 		DTN_INFO_MICRO_SEC(s->dram_clk_change);
162 		DTN_INFO("\n");
163 	}
164 
165 	DTN_INFO("\n");
166 }
167 
dcn10_log_hubp_states(struct dc * dc,void * log_ctx)168 static void dcn10_log_hubp_states(struct dc *dc, void *log_ctx)
169 {
170 	struct dc_context *dc_ctx = dc->ctx;
171 	struct resource_pool *pool = dc->res_pool;
172 	int i;
173 
174 	DTN_INFO(
175 		"HUBP:  format  addr_hi  width  height  rot  mir  sw_mode  dcc_en  blank_en  clock_en  ttu_dis  underflow   min_ttu_vblank       qos_low_wm      qos_high_wm\n");
176 	for (i = 0; i < pool->pipe_count; i++) {
177 		struct hubp *hubp = pool->hubps[i];
178 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(hubp)->state);
179 
180 		hubp->funcs->hubp_read_state(hubp);
181 
182 		if (!s->blank_en) {
183 			DTN_INFO("[%2d]:  %5xh  %6xh  %5d  %6d  %2xh  %2xh  %6xh  %6d  %8d  %8d  %7d  %8xh",
184 					hubp->inst,
185 					s->pixel_format,
186 					s->inuse_addr_hi,
187 					s->viewport_width,
188 					s->viewport_height,
189 					s->rotation_angle,
190 					s->h_mirror_en,
191 					s->sw_mode,
192 					s->dcc_en,
193 					s->blank_en,
194 					s->clock_en,
195 					s->ttu_disable,
196 					s->underflow_status);
197 			DTN_INFO_MICRO_SEC(s->min_ttu_vblank);
198 			DTN_INFO_MICRO_SEC(s->qos_level_low_wm);
199 			DTN_INFO_MICRO_SEC(s->qos_level_high_wm);
200 			DTN_INFO("\n");
201 		}
202 	}
203 
204 	DTN_INFO("\n=========RQ========\n");
205 	DTN_INFO("HUBP:  drq_exp_m  prq_exp_m  mrq_exp_m  crq_exp_m  plane1_ba  L:chunk_s  min_chu_s  meta_ch_s"
206 		"  min_m_c_s  dpte_gr_s  mpte_gr_s  swath_hei  pte_row_h  C:chunk_s  min_chu_s  meta_ch_s"
207 		"  min_m_c_s  dpte_gr_s  mpte_gr_s  swath_hei  pte_row_h\n");
208 	for (i = 0; i < pool->pipe_count; i++) {
209 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
210 		struct _vcs_dpi_display_rq_regs_st *rq_regs = &s->rq_regs;
211 
212 		if (!s->blank_en)
213 			DTN_INFO("[%2d]:  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh\n",
214 				pool->hubps[i]->inst, rq_regs->drq_expansion_mode, rq_regs->prq_expansion_mode, rq_regs->mrq_expansion_mode,
215 				rq_regs->crq_expansion_mode, rq_regs->plane1_base_address, rq_regs->rq_regs_l.chunk_size,
216 				rq_regs->rq_regs_l.min_chunk_size, rq_regs->rq_regs_l.meta_chunk_size,
217 				rq_regs->rq_regs_l.min_meta_chunk_size, rq_regs->rq_regs_l.dpte_group_size,
218 				rq_regs->rq_regs_l.mpte_group_size, rq_regs->rq_regs_l.swath_height,
219 				rq_regs->rq_regs_l.pte_row_height_linear, rq_regs->rq_regs_c.chunk_size, rq_regs->rq_regs_c.min_chunk_size,
220 				rq_regs->rq_regs_c.meta_chunk_size, rq_regs->rq_regs_c.min_meta_chunk_size,
221 				rq_regs->rq_regs_c.dpte_group_size, rq_regs->rq_regs_c.mpte_group_size,
222 				rq_regs->rq_regs_c.swath_height, rq_regs->rq_regs_c.pte_row_height_linear);
223 	}
224 
225 	DTN_INFO("========DLG========\n");
226 	DTN_INFO("HUBP:  rc_hbe     dlg_vbe    min_d_y_n  rc_per_ht  rc_x_a_s "
227 			"  dst_y_a_s  dst_y_pf   dst_y_vvb  dst_y_rvb  dst_y_vfl  dst_y_rfl  rf_pix_fq"
228 			"  vratio_pf  vrat_pf_c  rc_pg_vbl  rc_pg_vbc  rc_mc_vbl  rc_mc_vbc  rc_pg_fll"
229 			"  rc_pg_flc  rc_mc_fll  rc_mc_flc  pr_nom_l   pr_nom_c   rc_pg_nl   rc_pg_nc "
230 			"  mr_nom_l   mr_nom_c   rc_mc_nl   rc_mc_nc   rc_ld_pl   rc_ld_pc   rc_ld_l  "
231 			"  rc_ld_c    cha_cur0   ofst_cur1  cha_cur1   vr_af_vc0  ddrq_limt  x_rt_dlay"
232 			"  x_rp_dlay  x_rr_sfl\n");
233 	for (i = 0; i < pool->pipe_count; i++) {
234 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
235 		struct _vcs_dpi_display_dlg_regs_st *dlg_regs = &s->dlg_attr;
236 
237 		if (!s->blank_en)
238 			DTN_INFO("[%2d]:  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh"
239 				"  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh"
240 				"  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh\n",
241 				pool->hubps[i]->inst, dlg_regs->refcyc_h_blank_end, dlg_regs->dlg_vblank_end, dlg_regs->min_dst_y_next_start,
242 				dlg_regs->refcyc_per_htotal, dlg_regs->refcyc_x_after_scaler, dlg_regs->dst_y_after_scaler,
243 				dlg_regs->dst_y_prefetch, dlg_regs->dst_y_per_vm_vblank, dlg_regs->dst_y_per_row_vblank,
244 				dlg_regs->dst_y_per_vm_flip, dlg_regs->dst_y_per_row_flip, dlg_regs->ref_freq_to_pix_freq,
245 				dlg_regs->vratio_prefetch, dlg_regs->vratio_prefetch_c, dlg_regs->refcyc_per_pte_group_vblank_l,
246 				dlg_regs->refcyc_per_pte_group_vblank_c, dlg_regs->refcyc_per_meta_chunk_vblank_l,
247 				dlg_regs->refcyc_per_meta_chunk_vblank_c, dlg_regs->refcyc_per_pte_group_flip_l,
248 				dlg_regs->refcyc_per_pte_group_flip_c, dlg_regs->refcyc_per_meta_chunk_flip_l,
249 				dlg_regs->refcyc_per_meta_chunk_flip_c, dlg_regs->dst_y_per_pte_row_nom_l,
250 				dlg_regs->dst_y_per_pte_row_nom_c, dlg_regs->refcyc_per_pte_group_nom_l,
251 				dlg_regs->refcyc_per_pte_group_nom_c, dlg_regs->dst_y_per_meta_row_nom_l,
252 				dlg_regs->dst_y_per_meta_row_nom_c, dlg_regs->refcyc_per_meta_chunk_nom_l,
253 				dlg_regs->refcyc_per_meta_chunk_nom_c, dlg_regs->refcyc_per_line_delivery_pre_l,
254 				dlg_regs->refcyc_per_line_delivery_pre_c, dlg_regs->refcyc_per_line_delivery_l,
255 				dlg_regs->refcyc_per_line_delivery_c, dlg_regs->chunk_hdl_adjust_cur0, dlg_regs->dst_y_offset_cur1,
256 				dlg_regs->chunk_hdl_adjust_cur1, dlg_regs->vready_after_vcount0, dlg_regs->dst_y_delta_drq_limit,
257 				dlg_regs->xfc_reg_transfer_delay, dlg_regs->xfc_reg_precharge_delay,
258 				dlg_regs->xfc_reg_remote_surface_flip_latency);
259 	}
260 
261 	DTN_INFO("========TTU========\n");
262 	DTN_INFO("HUBP:  qos_ll_wm  qos_lh_wm  mn_ttu_vb  qos_l_flp  rc_rd_p_l  rc_rd_l    rc_rd_p_c"
263 			"  rc_rd_c    rc_rd_c0   rc_rd_pc0  rc_rd_c1   rc_rd_pc1  qos_lf_l   qos_rds_l"
264 			"  qos_lf_c   qos_rds_c  qos_lf_c0  qos_rds_c0 qos_lf_c1  qos_rds_c1\n");
265 	for (i = 0; i < pool->pipe_count; i++) {
266 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
267 		struct _vcs_dpi_display_ttu_regs_st *ttu_regs = &s->ttu_attr;
268 
269 		if (!s->blank_en)
270 			DTN_INFO("[%2d]:  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh  %8xh\n",
271 				pool->hubps[i]->inst, ttu_regs->qos_level_low_wm, ttu_regs->qos_level_high_wm, ttu_regs->min_ttu_vblank,
272 				ttu_regs->qos_level_flip, ttu_regs->refcyc_per_req_delivery_pre_l, ttu_regs->refcyc_per_req_delivery_l,
273 				ttu_regs->refcyc_per_req_delivery_pre_c, ttu_regs->refcyc_per_req_delivery_c, ttu_regs->refcyc_per_req_delivery_cur0,
274 				ttu_regs->refcyc_per_req_delivery_pre_cur0, ttu_regs->refcyc_per_req_delivery_cur1,
275 				ttu_regs->refcyc_per_req_delivery_pre_cur1, ttu_regs->qos_level_fixed_l, ttu_regs->qos_ramp_disable_l,
276 				ttu_regs->qos_level_fixed_c, ttu_regs->qos_ramp_disable_c, ttu_regs->qos_level_fixed_cur0,
277 				ttu_regs->qos_ramp_disable_cur0, ttu_regs->qos_level_fixed_cur1, ttu_regs->qos_ramp_disable_cur1);
278 	}
279 	DTN_INFO("\n");
280 }
281 
dcn10_log_hw_state(struct dc * dc,struct dc_log_buffer_ctx * log_ctx)282 void dcn10_log_hw_state(struct dc *dc,
283 	struct dc_log_buffer_ctx *log_ctx)
284 {
285 	struct dc_context *dc_ctx = dc->ctx;
286 	struct resource_pool *pool = dc->res_pool;
287 	int i;
288 
289 	DTN_INFO_BEGIN();
290 
291 	dcn10_log_hubbub_state(dc, log_ctx);
292 
293 	dcn10_log_hubp_states(dc, log_ctx);
294 
295 	DTN_INFO("DPP:    IGAM format  IGAM mode    DGAM mode    RGAM mode"
296 			"  GAMUT mode  C11 C12   C13 C14   C21 C22   C23 C24   "
297 			"C31 C32   C33 C34\n");
298 	for (i = 0; i < pool->pipe_count; i++) {
299 		struct dpp *dpp = pool->dpps[i];
300 		struct dcn_dpp_state s = {0};
301 
302 		dpp->funcs->dpp_read_state(dpp, &s);
303 
304 		if (!s.is_enabled)
305 			continue;
306 
307 		DTN_INFO("[%2d]:  %11xh  %-11s  %-11s  %-11s"
308 				"%8x    %08xh %08xh %08xh %08xh %08xh %08xh",
309 				dpp->inst,
310 				s.igam_input_format,
311 				(s.igam_lut_mode == 0) ? "BypassFixed" :
312 					((s.igam_lut_mode == 1) ? "BypassFloat" :
313 					((s.igam_lut_mode == 2) ? "RAM" :
314 					((s.igam_lut_mode == 3) ? "RAM" :
315 								 "Unknown"))),
316 				(s.dgam_lut_mode == 0) ? "Bypass" :
317 					((s.dgam_lut_mode == 1) ? "sRGB" :
318 					((s.dgam_lut_mode == 2) ? "Ycc" :
319 					((s.dgam_lut_mode == 3) ? "RAM" :
320 					((s.dgam_lut_mode == 4) ? "RAM" :
321 								 "Unknown")))),
322 				(s.rgam_lut_mode == 0) ? "Bypass" :
323 					((s.rgam_lut_mode == 1) ? "sRGB" :
324 					((s.rgam_lut_mode == 2) ? "Ycc" :
325 					((s.rgam_lut_mode == 3) ? "RAM" :
326 					((s.rgam_lut_mode == 4) ? "RAM" :
327 								 "Unknown")))),
328 				s.gamut_remap_mode,
329 				s.gamut_remap_c11_c12,
330 				s.gamut_remap_c13_c14,
331 				s.gamut_remap_c21_c22,
332 				s.gamut_remap_c23_c24,
333 				s.gamut_remap_c31_c32,
334 				s.gamut_remap_c33_c34);
335 		DTN_INFO("\n");
336 	}
337 	DTN_INFO("\n");
338 
339 	DTN_INFO("MPCC:  OPP  DPP  MPCCBOT  MODE  ALPHA_MODE  PREMULT  OVERLAP_ONLY  IDLE\n");
340 	for (i = 0; i < pool->pipe_count; i++) {
341 		struct mpcc_state s = {0};
342 
343 		pool->mpc->funcs->read_mpcc_state(pool->mpc, i, &s);
344 		if (s.opp_id != 0xf)
345 			DTN_INFO("[%2d]:  %2xh  %2xh  %6xh  %4d  %10d  %7d  %12d  %4d\n",
346 				i, s.opp_id, s.dpp_id, s.bot_mpcc_id,
347 				s.mode, s.alpha_mode, s.pre_multiplied_alpha, s.overlap_only,
348 				s.idle);
349 	}
350 	DTN_INFO("\n");
351 
352 	DTN_INFO("OTG:  v_bs  v_be  v_ss  v_se  vpol  vmax  vmin  vmax_sel  vmin_sel  h_bs  h_be  h_ss  h_se  hpol  htot  vtot  underflow blank_en\n");
353 
354 	for (i = 0; i < pool->timing_generator_count; i++) {
355 		struct timing_generator *tg = pool->timing_generators[i];
356 		struct dcn_otg_state s = {0};
357 		/* Read shared OTG state registers for all DCNx */
358 		optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
359 
360 		/*
361 		 * For DCN2 and greater, a register on the OPP is used to
362 		 * determine if the CRTC is blanked instead of the OTG. So use
363 		 * dpg_is_blanked() if exists, otherwise fallback on otg.
364 		 *
365 		 * TODO: Implement DCN-specific read_otg_state hooks.
366 		 */
367 		if (pool->opps[i]->funcs->dpg_is_blanked)
368 			s.blank_enabled = pool->opps[i]->funcs->dpg_is_blanked(pool->opps[i]);
369 		else
370 			s.blank_enabled = tg->funcs->is_blanked(tg);
371 
372 		//only print if OTG master is enabled
373 		if ((s.otg_enabled & 1) == 0)
374 			continue;
375 
376 		DTN_INFO("[%d]: %5d %5d %5d %5d %5d %5d %5d %9d %9d %5d %5d %5d %5d %5d %5d %5d  %9d %8d\n",
377 				tg->inst,
378 				s.v_blank_start,
379 				s.v_blank_end,
380 				s.v_sync_a_start,
381 				s.v_sync_a_end,
382 				s.v_sync_a_pol,
383 				s.v_total_max,
384 				s.v_total_min,
385 				s.v_total_max_sel,
386 				s.v_total_min_sel,
387 				s.h_blank_start,
388 				s.h_blank_end,
389 				s.h_sync_a_start,
390 				s.h_sync_a_end,
391 				s.h_sync_a_pol,
392 				s.h_total,
393 				s.v_total,
394 				s.underflow_occurred_status,
395 				s.blank_enabled);
396 
397 		// Clear underflow for debug purposes
398 		// We want to keep underflow sticky bit on for the longevity tests outside of test environment.
399 		// This function is called only from Windows or Diags test environment, hence it's safe to clear
400 		// it from here without affecting the original intent.
401 		tg->funcs->clear_optc_underflow(tg);
402 	}
403 	DTN_INFO("\n");
404 
405 	// dcn_dsc_state struct field bytes_per_pixel was renamed to bits_per_pixel
406 	// TODO: Update golden log header to reflect this name change
407 	DTN_INFO("DSC: CLOCK_EN  SLICE_WIDTH  Bytes_pp\n");
408 	for (i = 0; i < pool->res_cap->num_dsc; i++) {
409 		struct display_stream_compressor *dsc = pool->dscs[i];
410 		struct dcn_dsc_state s = {0};
411 
412 		dsc->funcs->dsc_read_state(dsc, &s);
413 		DTN_INFO("[%d]: %-9d %-12d %-10d\n",
414 		dsc->inst,
415 			s.dsc_clock_en,
416 			s.dsc_slice_width,
417 			s.dsc_bits_per_pixel);
418 		DTN_INFO("\n");
419 	}
420 	DTN_INFO("\n");
421 
422 	DTN_INFO("S_ENC: DSC_MODE  SEC_GSP7_LINE_NUM"
423 			"  VBID6_LINE_REFERENCE  VBID6_LINE_NUM  SEC_GSP7_ENABLE  SEC_STREAM_ENABLE\n");
424 	for (i = 0; i < pool->stream_enc_count; i++) {
425 		struct stream_encoder *enc = pool->stream_enc[i];
426 		struct enc_state s = {0};
427 
428 		if (enc->funcs->enc_read_state) {
429 			enc->funcs->enc_read_state(enc, &s);
430 			DTN_INFO("[%-3d]: %-9d %-18d %-21d %-15d %-16d %-17d\n",
431 				enc->id,
432 				s.dsc_mode,
433 				s.sec_gsp_pps_line_num,
434 				s.vbid6_line_reference,
435 				s.vbid6_line_num,
436 				s.sec_gsp_pps_enable,
437 				s.sec_stream_enable);
438 			DTN_INFO("\n");
439 		}
440 	}
441 	DTN_INFO("\n");
442 
443 	DTN_INFO("L_ENC: DPHY_FEC_EN  DPHY_FEC_READY_SHADOW  DPHY_FEC_ACTIVE_STATUS  DP_LINK_TRAINING_COMPLETE\n");
444 	for (i = 0; i < dc->link_count; i++) {
445 		struct link_encoder *lenc = dc->links[i]->link_enc;
446 
447 		struct link_enc_state s = {0};
448 
449 		if (lenc && lenc->funcs->read_state) {
450 			lenc->funcs->read_state(lenc, &s);
451 			DTN_INFO("[%-3d]: %-12d %-22d %-22d %-25d\n",
452 				i,
453 				s.dphy_fec_en,
454 				s.dphy_fec_ready_shadow,
455 				s.dphy_fec_active_status,
456 				s.dp_link_training_complete);
457 			DTN_INFO("\n");
458 		}
459 	}
460 	DTN_INFO("\n");
461 
462 	DTN_INFO("\nCALCULATED Clocks: dcfclk_khz:%d  dcfclk_deep_sleep_khz:%d  dispclk_khz:%d\n"
463 		"dppclk_khz:%d  max_supported_dppclk_khz:%d  fclk_khz:%d  socclk_khz:%d\n\n",
464 			dc->current_state->bw_ctx.bw.dcn.clk.dcfclk_khz,
465 			dc->current_state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz,
466 			dc->current_state->bw_ctx.bw.dcn.clk.dispclk_khz,
467 			dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz,
468 			dc->current_state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz,
469 			dc->current_state->bw_ctx.bw.dcn.clk.fclk_khz,
470 			dc->current_state->bw_ctx.bw.dcn.clk.socclk_khz);
471 
472 	log_mpc_crc(dc, log_ctx);
473 
474 	{
475 		if (pool->hpo_dp_stream_enc_count > 0) {
476 			DTN_INFO("DP HPO S_ENC:  Enabled  OTG   Format   Depth   Vid   SDP   Compressed  Link\n");
477 			for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
478 				struct hpo_dp_stream_encoder_state hpo_dp_se_state = {0};
479 				struct hpo_dp_stream_encoder *hpo_dp_stream_enc = pool->hpo_dp_stream_enc[i];
480 
481 				if (hpo_dp_stream_enc && hpo_dp_stream_enc->funcs->read_state) {
482 					hpo_dp_stream_enc->funcs->read_state(hpo_dp_stream_enc, &hpo_dp_se_state);
483 
484 					DTN_INFO("[%d]:                 %d    %d   %6s       %d     %d     %d            %d     %d\n",
485 							hpo_dp_stream_enc->id - ENGINE_ID_HPO_DP_0,
486 							hpo_dp_se_state.stream_enc_enabled,
487 							hpo_dp_se_state.otg_inst,
488 							(hpo_dp_se_state.pixel_encoding == 0) ? "4:4:4" :
489 									((hpo_dp_se_state.pixel_encoding == 1) ? "4:2:2" :
490 									(hpo_dp_se_state.pixel_encoding == 2) ? "4:2:0" : "Y-Only"),
491 							(hpo_dp_se_state.component_depth == 0) ? 6 :
492 									((hpo_dp_se_state.component_depth == 1) ? 8 :
493 									(hpo_dp_se_state.component_depth == 2) ? 10 : 12),
494 							hpo_dp_se_state.vid_stream_enabled,
495 							hpo_dp_se_state.sdp_enabled,
496 							hpo_dp_se_state.compressed_format,
497 							hpo_dp_se_state.mapped_to_link_enc);
498 				}
499 			}
500 
501 			DTN_INFO("\n");
502 		}
503 
504 		/* log DP HPO L_ENC section if any hpo_dp_link_enc exists */
505 		if (pool->hpo_dp_link_enc_count) {
506 			DTN_INFO("DP HPO L_ENC:  Enabled  Mode   Lanes   Stream  Slots   VC Rate X    VC Rate Y\n");
507 
508 			for (i = 0; i < pool->hpo_dp_link_enc_count; i++) {
509 				struct hpo_dp_link_encoder *hpo_dp_link_enc = pool->hpo_dp_link_enc[i];
510 				struct hpo_dp_link_enc_state hpo_dp_le_state = {0};
511 
512 				if (hpo_dp_link_enc->funcs->read_state) {
513 					hpo_dp_link_enc->funcs->read_state(hpo_dp_link_enc, &hpo_dp_le_state);
514 					DTN_INFO("[%d]:                 %d  %6s     %d        %d      %d     %d     %d\n",
515 							hpo_dp_link_enc->inst,
516 							hpo_dp_le_state.link_enc_enabled,
517 							(hpo_dp_le_state.link_mode == 0) ? "TPS1" :
518 									(hpo_dp_le_state.link_mode == 1) ? "TPS2" :
519 									(hpo_dp_le_state.link_mode == 2) ? "ACTIVE" : "TEST",
520 							hpo_dp_le_state.lane_count,
521 							hpo_dp_le_state.stream_src[0],
522 							hpo_dp_le_state.slot_count[0],
523 							hpo_dp_le_state.vc_rate_x[0],
524 							hpo_dp_le_state.vc_rate_y[0]);
525 					DTN_INFO("\n");
526 				}
527 			}
528 
529 			DTN_INFO("\n");
530 		}
531 	}
532 
533 	DTN_INFO_END();
534 }
535 
dcn10_did_underflow_occur(struct dc * dc,struct pipe_ctx * pipe_ctx)536 bool dcn10_did_underflow_occur(struct dc *dc, struct pipe_ctx *pipe_ctx)
537 {
538 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
539 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
540 
541 	if (tg->funcs->is_optc_underflow_occurred(tg)) {
542 		tg->funcs->clear_optc_underflow(tg);
543 		return true;
544 	}
545 
546 	if (hubp->funcs->hubp_get_underflow_status(hubp)) {
547 		hubp->funcs->hubp_clear_underflow(hubp);
548 		return true;
549 	}
550 	return false;
551 }
552 
dcn10_enable_power_gating_plane(struct dce_hwseq * hws,bool enable)553 void dcn10_enable_power_gating_plane(
554 	struct dce_hwseq *hws,
555 	bool enable)
556 {
557 	bool force_on = true; /* disable power gating */
558 
559 	if (enable)
560 		force_on = false;
561 
562 	/* DCHUBP0/1/2/3 */
563 	REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
564 	REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
565 	REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
566 	REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
567 
568 	/* DPP0/1/2/3 */
569 	REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
570 	REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
571 	REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
572 	REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
573 }
574 
dcn10_disable_vga(struct dce_hwseq * hws)575 void dcn10_disable_vga(
576 	struct dce_hwseq *hws)
577 {
578 	unsigned int in_vga1_mode = 0;
579 	unsigned int in_vga2_mode = 0;
580 	unsigned int in_vga3_mode = 0;
581 	unsigned int in_vga4_mode = 0;
582 
583 	REG_GET(D1VGA_CONTROL, D1VGA_MODE_ENABLE, &in_vga1_mode);
584 	REG_GET(D2VGA_CONTROL, D2VGA_MODE_ENABLE, &in_vga2_mode);
585 	REG_GET(D3VGA_CONTROL, D3VGA_MODE_ENABLE, &in_vga3_mode);
586 	REG_GET(D4VGA_CONTROL, D4VGA_MODE_ENABLE, &in_vga4_mode);
587 
588 	if (in_vga1_mode == 0 && in_vga2_mode == 0 &&
589 			in_vga3_mode == 0 && in_vga4_mode == 0)
590 		return;
591 
592 	REG_WRITE(D1VGA_CONTROL, 0);
593 	REG_WRITE(D2VGA_CONTROL, 0);
594 	REG_WRITE(D3VGA_CONTROL, 0);
595 	REG_WRITE(D4VGA_CONTROL, 0);
596 
597 	/* HW Engineer's Notes:
598 	 *  During switch from vga->extended, if we set the VGA_TEST_ENABLE and
599 	 *  then hit the VGA_TEST_RENDER_START, then the DCHUBP timing gets updated correctly.
600 	 *
601 	 *  Then vBIOS will have it poll for the VGA_TEST_RENDER_DONE and unset
602 	 *  VGA_TEST_ENABLE, to leave it in the same state as before.
603 	 */
604 	REG_UPDATE(VGA_TEST_CONTROL, VGA_TEST_ENABLE, 1);
605 	REG_UPDATE(VGA_TEST_CONTROL, VGA_TEST_RENDER_START, 1);
606 }
607 
608 /**
609  * dcn10_dpp_pg_control - DPP power gate control.
610  *
611  * @hws: dce_hwseq reference.
612  * @dpp_inst: DPP instance reference.
613  * @power_on: true if we want to enable power gate, false otherwise.
614  *
615  * Enable or disable power gate in the specific DPP instance.
616  */
dcn10_dpp_pg_control(struct dce_hwseq * hws,unsigned int dpp_inst,bool power_on)617 void dcn10_dpp_pg_control(
618 		struct dce_hwseq *hws,
619 		unsigned int dpp_inst,
620 		bool power_on)
621 {
622 	uint32_t power_gate = power_on ? 0 : 1;
623 	uint32_t pwr_status = power_on ? PGFSM_POWER_ON : PGFSM_POWER_OFF;
624 
625 	if (hws->ctx->dc->debug.disable_dpp_power_gate)
626 		return;
627 	if (REG(DOMAIN1_PG_CONFIG) == 0)
628 		return;
629 
630 	switch (dpp_inst) {
631 	case 0: /* DPP0 */
632 		REG_UPDATE(DOMAIN1_PG_CONFIG,
633 				DOMAIN1_POWER_GATE, power_gate);
634 
635 		REG_WAIT(DOMAIN1_PG_STATUS,
636 				DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
637 				1, 1000);
638 		break;
639 	case 1: /* DPP1 */
640 		REG_UPDATE(DOMAIN3_PG_CONFIG,
641 				DOMAIN3_POWER_GATE, power_gate);
642 
643 		REG_WAIT(DOMAIN3_PG_STATUS,
644 				DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
645 				1, 1000);
646 		break;
647 	case 2: /* DPP2 */
648 		REG_UPDATE(DOMAIN5_PG_CONFIG,
649 				DOMAIN5_POWER_GATE, power_gate);
650 
651 		REG_WAIT(DOMAIN5_PG_STATUS,
652 				DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
653 				1, 1000);
654 		break;
655 	case 3: /* DPP3 */
656 		REG_UPDATE(DOMAIN7_PG_CONFIG,
657 				DOMAIN7_POWER_GATE, power_gate);
658 
659 		REG_WAIT(DOMAIN7_PG_STATUS,
660 				DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
661 				1, 1000);
662 		break;
663 	default:
664 		BREAK_TO_DEBUGGER();
665 		break;
666 	}
667 }
668 
669 /**
670  * dcn10_hubp_pg_control - HUBP power gate control.
671  *
672  * @hws: dce_hwseq reference.
673  * @hubp_inst: DPP instance reference.
674  * @power_on: true if we want to enable power gate, false otherwise.
675  *
676  * Enable or disable power gate in the specific HUBP instance.
677  */
dcn10_hubp_pg_control(struct dce_hwseq * hws,unsigned int hubp_inst,bool power_on)678 void dcn10_hubp_pg_control(
679 		struct dce_hwseq *hws,
680 		unsigned int hubp_inst,
681 		bool power_on)
682 {
683 	uint32_t power_gate = power_on ? 0 : 1;
684 	uint32_t pwr_status = power_on ? PGFSM_POWER_ON : PGFSM_POWER_OFF;
685 
686 	if (hws->ctx->dc->debug.disable_hubp_power_gate)
687 		return;
688 	if (REG(DOMAIN0_PG_CONFIG) == 0)
689 		return;
690 
691 	switch (hubp_inst) {
692 	case 0: /* DCHUBP0 */
693 		REG_UPDATE(DOMAIN0_PG_CONFIG,
694 				DOMAIN0_POWER_GATE, power_gate);
695 
696 		REG_WAIT(DOMAIN0_PG_STATUS,
697 				DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
698 				1, 1000);
699 		break;
700 	case 1: /* DCHUBP1 */
701 		REG_UPDATE(DOMAIN2_PG_CONFIG,
702 				DOMAIN2_POWER_GATE, power_gate);
703 
704 		REG_WAIT(DOMAIN2_PG_STATUS,
705 				DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
706 				1, 1000);
707 		break;
708 	case 2: /* DCHUBP2 */
709 		REG_UPDATE(DOMAIN4_PG_CONFIG,
710 				DOMAIN4_POWER_GATE, power_gate);
711 
712 		REG_WAIT(DOMAIN4_PG_STATUS,
713 				DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
714 				1, 1000);
715 		break;
716 	case 3: /* DCHUBP3 */
717 		REG_UPDATE(DOMAIN6_PG_CONFIG,
718 				DOMAIN6_POWER_GATE, power_gate);
719 
720 		REG_WAIT(DOMAIN6_PG_STATUS,
721 				DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
722 				1, 1000);
723 		break;
724 	default:
725 		BREAK_TO_DEBUGGER();
726 		break;
727 	}
728 }
729 
power_on_plane_resources(struct dce_hwseq * hws,int plane_id)730 static void power_on_plane_resources(
731 	struct dce_hwseq *hws,
732 	int plane_id)
733 {
734 	DC_LOGGER_INIT(hws->ctx->logger);
735 
736 	if (hws->funcs.dpp_root_clock_control)
737 		hws->funcs.dpp_root_clock_control(hws, plane_id, true);
738 
739 	if (REG(DC_IP_REQUEST_CNTL)) {
740 		REG_SET(DC_IP_REQUEST_CNTL, 0,
741 				IP_REQUEST_EN, 1);
742 
743 		if (hws->funcs.dpp_pg_control)
744 			hws->funcs.dpp_pg_control(hws, plane_id, true);
745 
746 		if (hws->funcs.hubp_pg_control)
747 			hws->funcs.hubp_pg_control(hws, plane_id, true);
748 
749 		REG_SET(DC_IP_REQUEST_CNTL, 0,
750 				IP_REQUEST_EN, 0);
751 		DC_LOG_DEBUG(
752 				"Un-gated front end for pipe %d\n", plane_id);
753 	}
754 }
755 
undo_DEGVIDCN10_253_wa(struct dc * dc)756 static void undo_DEGVIDCN10_253_wa(struct dc *dc)
757 {
758 	struct dce_hwseq *hws = dc->hwseq;
759 	struct hubp *hubp = dc->res_pool->hubps[0];
760 
761 	if (!hws->wa_state.DEGVIDCN10_253_applied)
762 		return;
763 
764 	hubp->funcs->set_blank(hubp, true);
765 
766 	REG_SET(DC_IP_REQUEST_CNTL, 0,
767 			IP_REQUEST_EN, 1);
768 
769 	hws->funcs.hubp_pg_control(hws, 0, false);
770 	REG_SET(DC_IP_REQUEST_CNTL, 0,
771 			IP_REQUEST_EN, 0);
772 
773 	hws->wa_state.DEGVIDCN10_253_applied = false;
774 }
775 
apply_DEGVIDCN10_253_wa(struct dc * dc)776 static void apply_DEGVIDCN10_253_wa(struct dc *dc)
777 {
778 	struct dce_hwseq *hws = dc->hwseq;
779 	struct hubp *hubp = dc->res_pool->hubps[0];
780 	int i;
781 
782 	if (dc->debug.disable_stutter)
783 		return;
784 
785 	if (!hws->wa.DEGVIDCN10_253)
786 		return;
787 
788 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
789 		if (!dc->res_pool->hubps[i]->power_gated)
790 			return;
791 	}
792 
793 	/* all pipe power gated, apply work around to enable stutter. */
794 
795 	REG_SET(DC_IP_REQUEST_CNTL, 0,
796 			IP_REQUEST_EN, 1);
797 
798 	hws->funcs.hubp_pg_control(hws, 0, true);
799 	REG_SET(DC_IP_REQUEST_CNTL, 0,
800 			IP_REQUEST_EN, 0);
801 
802 	hubp->funcs->set_hubp_blank_en(hubp, false);
803 	hws->wa_state.DEGVIDCN10_253_applied = true;
804 }
805 
dcn10_bios_golden_init(struct dc * dc)806 void dcn10_bios_golden_init(struct dc *dc)
807 {
808 	struct dce_hwseq *hws = dc->hwseq;
809 	struct dc_bios *bp = dc->ctx->dc_bios;
810 	int i;
811 	bool allow_self_fresh_force_enable = true;
812 
813 	if (hws->funcs.s0i3_golden_init_wa && hws->funcs.s0i3_golden_init_wa(dc))
814 		return;
815 
816 	if (dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled)
817 		allow_self_fresh_force_enable =
818 				dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled(dc->res_pool->hubbub);
819 
820 
821 	/* WA for making DF sleep when idle after resume from S0i3.
822 	 * DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_ENABLE is set to 1 by
823 	 * command table, if DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_ENABLE = 0
824 	 * before calling command table and it changed to 1 after,
825 	 * it should be set back to 0.
826 	 */
827 
828 	/* initialize dcn global */
829 	bp->funcs->enable_disp_power_gating(bp,
830 			CONTROLLER_ID_D0, ASIC_PIPE_INIT);
831 
832 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
833 		/* initialize dcn per pipe */
834 		bp->funcs->enable_disp_power_gating(bp,
835 				CONTROLLER_ID_D0 + i, ASIC_PIPE_DISABLE);
836 	}
837 
838 	if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
839 		if (allow_self_fresh_force_enable == false &&
840 				dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled(dc->res_pool->hubbub))
841 			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
842 										!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
843 
844 }
845 
false_optc_underflow_wa(struct dc * dc,const struct dc_stream_state * stream,struct timing_generator * tg)846 static void false_optc_underflow_wa(
847 		struct dc *dc,
848 		const struct dc_stream_state *stream,
849 		struct timing_generator *tg)
850 {
851 	int i;
852 	bool underflow;
853 
854 	if (!dc->hwseq->wa.false_optc_underflow)
855 		return;
856 
857 	underflow = tg->funcs->is_optc_underflow_occurred(tg);
858 
859 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
860 		struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
861 
862 		if (old_pipe_ctx->stream != stream)
863 			continue;
864 
865 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, old_pipe_ctx);
866 	}
867 
868 	if (tg->funcs->set_blank_data_double_buffer)
869 		tg->funcs->set_blank_data_double_buffer(tg, true);
870 
871 	if (tg->funcs->is_optc_underflow_occurred(tg) && !underflow)
872 		tg->funcs->clear_optc_underflow(tg);
873 }
874 
calculate_vready_offset_for_group(struct pipe_ctx * pipe)875 static int calculate_vready_offset_for_group(struct pipe_ctx *pipe)
876 {
877 	struct pipe_ctx *other_pipe;
878 	int vready_offset = pipe->pipe_dlg_param.vready_offset;
879 
880 	/* Always use the largest vready_offset of all connected pipes */
881 	for (other_pipe = pipe->bottom_pipe; other_pipe != NULL; other_pipe = other_pipe->bottom_pipe) {
882 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
883 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
884 	}
885 	for (other_pipe = pipe->top_pipe; other_pipe != NULL; other_pipe = other_pipe->top_pipe) {
886 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
887 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
888 	}
889 	for (other_pipe = pipe->next_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->next_odm_pipe) {
890 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
891 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
892 	}
893 	for (other_pipe = pipe->prev_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->prev_odm_pipe) {
894 		if (other_pipe->pipe_dlg_param.vready_offset > vready_offset)
895 			vready_offset = other_pipe->pipe_dlg_param.vready_offset;
896 	}
897 
898 	return vready_offset;
899 }
900 
dcn10_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)901 enum dc_status dcn10_enable_stream_timing(
902 		struct pipe_ctx *pipe_ctx,
903 		struct dc_state *context,
904 		struct dc *dc)
905 {
906 	struct dc_stream_state *stream = pipe_ctx->stream;
907 	enum dc_color_space color_space;
908 	struct tg_color black_color = {0};
909 
910 	/* by upper caller loop, pipe0 is parent pipe and be called first.
911 	 * back end is set up by for pipe0. Other children pipe share back end
912 	 * with pipe 0. No program is needed.
913 	 */
914 	if (pipe_ctx->top_pipe != NULL)
915 		return DC_OK;
916 
917 	/* TODO check if timing_changed, disable stream if timing changed */
918 
919 	/* HW program guide assume display already disable
920 	 * by unplug sequence. OTG assume stop.
921 	 */
922 	pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
923 
924 	if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
925 			pipe_ctx->clock_source,
926 			&pipe_ctx->stream_res.pix_clk_params,
927 			dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
928 			&pipe_ctx->pll_settings)) {
929 		BREAK_TO_DEBUGGER();
930 		return DC_ERROR_UNEXPECTED;
931 	}
932 
933 	if (dc_is_hdmi_tmds_signal(stream->signal)) {
934 		stream->link->phy_state.symclk_ref_cnts.otg = 1;
935 		if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
936 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
937 		else
938 			stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
939 	}
940 
941 	pipe_ctx->stream_res.tg->funcs->program_timing(
942 			pipe_ctx->stream_res.tg,
943 			&stream->timing,
944 			calculate_vready_offset_for_group(pipe_ctx),
945 			pipe_ctx->pipe_dlg_param.vstartup_start,
946 			pipe_ctx->pipe_dlg_param.vupdate_offset,
947 			pipe_ctx->pipe_dlg_param.vupdate_width,
948 			pipe_ctx->stream->signal,
949 			true);
950 
951 #if 0 /* move to after enable_crtc */
952 	/* TODO: OPP FMT, ABM. etc. should be done here. */
953 	/* or FPGA now. instance 0 only. TODO: move to opp.c */
954 
955 	inst_offset = reg_offsets[pipe_ctx->stream_res.tg->inst].fmt;
956 
957 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
958 				pipe_ctx->stream_res.opp,
959 				&stream->bit_depth_params,
960 				&stream->clamping);
961 #endif
962 	/* program otg blank color */
963 	color_space = stream->output_color_space;
964 	color_space_to_black_color(dc, color_space, &black_color);
965 
966 	/*
967 	 * The way 420 is packed, 2 channels carry Y component, 1 channel
968 	 * alternate between Cb and Cr, so both channels need the pixel
969 	 * value for Y
970 	 */
971 	if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
972 		black_color.color_r_cr = black_color.color_g_y;
973 
974 	if (pipe_ctx->stream_res.tg->funcs->set_blank_color)
975 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
976 				pipe_ctx->stream_res.tg,
977 				&black_color);
978 
979 	if (pipe_ctx->stream_res.tg->funcs->is_blanked &&
980 			!pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg)) {
981 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
982 		hwss_wait_for_blank_complete(pipe_ctx->stream_res.tg);
983 		false_optc_underflow_wa(dc, pipe_ctx->stream, pipe_ctx->stream_res.tg);
984 	}
985 
986 	/* VTG is  within DCHUB command block. DCFCLK is always on */
987 	if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
988 		BREAK_TO_DEBUGGER();
989 		return DC_ERROR_UNEXPECTED;
990 	}
991 
992 	/* TODO program crtc source select for non-virtual signal*/
993 	/* TODO program FMT */
994 	/* TODO setup link_enc */
995 	/* TODO set stream attributes */
996 	/* TODO program audio */
997 	/* TODO enable stream if timing changed */
998 	/* TODO unblank stream if DP */
999 
1000 	return DC_OK;
1001 }
1002 
dcn10_reset_back_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx,struct dc_state * context)1003 static void dcn10_reset_back_end_for_pipe(
1004 		struct dc *dc,
1005 		struct pipe_ctx *pipe_ctx,
1006 		struct dc_state *context)
1007 {
1008 	int i;
1009 	struct dc_link *link;
1010 	DC_LOGGER_INIT(dc->ctx->logger);
1011 	if (pipe_ctx->stream_res.stream_enc == NULL) {
1012 		pipe_ctx->stream = NULL;
1013 		return;
1014 	}
1015 
1016 	link = pipe_ctx->stream->link;
1017 	/* DPMS may already disable or */
1018 	/* dpms_off status is incorrect due to fastboot
1019 	 * feature. When system resume from S4 with second
1020 	 * screen only, the dpms_off would be true but
1021 	 * VBIOS lit up eDP, so check link status too.
1022 	 */
1023 	if (!pipe_ctx->stream->dpms_off || link->link_status.link_active)
1024 		dc->link_srv->set_dpms_off(pipe_ctx);
1025 	else if (pipe_ctx->stream_res.audio)
1026 		dc->hwss.disable_audio_stream(pipe_ctx);
1027 
1028 	if (pipe_ctx->stream_res.audio) {
1029 		/*disable az_endpoint*/
1030 		pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
1031 
1032 		/*free audio*/
1033 		if (dc->caps.dynamic_audio == true) {
1034 			/*we have to dynamic arbitrate the audio endpoints*/
1035 			/*we free the resource, need reset is_audio_acquired*/
1036 			update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
1037 					pipe_ctx->stream_res.audio, false);
1038 			pipe_ctx->stream_res.audio = NULL;
1039 		}
1040 	}
1041 
1042 	/* by upper caller loop, parent pipe: pipe0, will be reset last.
1043 	 * back end share by all pipes and will be disable only when disable
1044 	 * parent pipe.
1045 	 */
1046 	if (pipe_ctx->top_pipe == NULL) {
1047 
1048 		if (pipe_ctx->stream_res.abm)
1049 			dc->hwss.set_abm_immediate_disable(pipe_ctx);
1050 
1051 		pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);
1052 
1053 		pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
1054 		if (pipe_ctx->stream_res.tg->funcs->set_drr)
1055 			pipe_ctx->stream_res.tg->funcs->set_drr(
1056 					pipe_ctx->stream_res.tg, NULL);
1057 		if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal))
1058 			pipe_ctx->stream->link->phy_state.symclk_ref_cnts.otg = 0;
1059 	}
1060 
1061 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1062 		if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
1063 			break;
1064 
1065 	if (i == dc->res_pool->pipe_count)
1066 		return;
1067 
1068 	pipe_ctx->stream = NULL;
1069 	DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
1070 					pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
1071 }
1072 
dcn10_hw_wa_force_recovery(struct dc * dc)1073 static bool dcn10_hw_wa_force_recovery(struct dc *dc)
1074 {
1075 	struct hubp *hubp ;
1076 	unsigned int i;
1077 	bool need_recover = true;
1078 
1079 	if (!dc->debug.recovery_enabled)
1080 		return false;
1081 
1082 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1083 		struct pipe_ctx *pipe_ctx =
1084 			&dc->current_state->res_ctx.pipe_ctx[i];
1085 		if (pipe_ctx != NULL) {
1086 			hubp = pipe_ctx->plane_res.hubp;
1087 			if (hubp != NULL && hubp->funcs->hubp_get_underflow_status) {
1088 				if (hubp->funcs->hubp_get_underflow_status(hubp) != 0) {
1089 					/* one pipe underflow, we will reset all the pipes*/
1090 					need_recover = true;
1091 				}
1092 			}
1093 		}
1094 	}
1095 	if (!need_recover)
1096 		return false;
1097 	/*
1098 	DCHUBP_CNTL:HUBP_BLANK_EN=1
1099 	DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=1
1100 	DCHUBP_CNTL:HUBP_DISABLE=1
1101 	DCHUBP_CNTL:HUBP_DISABLE=0
1102 	DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=0
1103 	DCSURF_PRIMARY_SURFACE_ADDRESS
1104 	DCHUBP_CNTL:HUBP_BLANK_EN=0
1105 	*/
1106 
1107 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1108 		struct pipe_ctx *pipe_ctx =
1109 			&dc->current_state->res_ctx.pipe_ctx[i];
1110 		if (pipe_ctx != NULL) {
1111 			hubp = pipe_ctx->plane_res.hubp;
1112 			/*DCHUBP_CNTL:HUBP_BLANK_EN=1*/
1113 			if (hubp != NULL && hubp->funcs->set_hubp_blank_en)
1114 				hubp->funcs->set_hubp_blank_en(hubp, true);
1115 		}
1116 	}
1117 	/*DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=1*/
1118 	hubbub1_soft_reset(dc->res_pool->hubbub, true);
1119 
1120 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1121 		struct pipe_ctx *pipe_ctx =
1122 			&dc->current_state->res_ctx.pipe_ctx[i];
1123 		if (pipe_ctx != NULL) {
1124 			hubp = pipe_ctx->plane_res.hubp;
1125 			/*DCHUBP_CNTL:HUBP_DISABLE=1*/
1126 			if (hubp != NULL && hubp->funcs->hubp_disable_control)
1127 				hubp->funcs->hubp_disable_control(hubp, true);
1128 		}
1129 	}
1130 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1131 		struct pipe_ctx *pipe_ctx =
1132 			&dc->current_state->res_ctx.pipe_ctx[i];
1133 		if (pipe_ctx != NULL) {
1134 			hubp = pipe_ctx->plane_res.hubp;
1135 			/*DCHUBP_CNTL:HUBP_DISABLE=0*/
1136 			if (hubp != NULL && hubp->funcs->hubp_disable_control)
1137 				hubp->funcs->hubp_disable_control(hubp, true);
1138 		}
1139 	}
1140 	/*DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=0*/
1141 	hubbub1_soft_reset(dc->res_pool->hubbub, false);
1142 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1143 		struct pipe_ctx *pipe_ctx =
1144 			&dc->current_state->res_ctx.pipe_ctx[i];
1145 		if (pipe_ctx != NULL) {
1146 			hubp = pipe_ctx->plane_res.hubp;
1147 			/*DCHUBP_CNTL:HUBP_BLANK_EN=0*/
1148 			if (hubp != NULL && hubp->funcs->set_hubp_blank_en)
1149 				hubp->funcs->set_hubp_blank_en(hubp, true);
1150 		}
1151 	}
1152 	return true;
1153 
1154 }
1155 
dcn10_verify_allow_pstate_change_high(struct dc * dc)1156 void dcn10_verify_allow_pstate_change_high(struct dc *dc)
1157 {
1158 	struct hubbub *hubbub = dc->res_pool->hubbub;
1159 	static bool should_log_hw_state; /* prevent hw state log by default */
1160 
1161 	if (!hubbub->funcs->verify_allow_pstate_change_high)
1162 		return;
1163 
1164 	if (!hubbub->funcs->verify_allow_pstate_change_high(hubbub)) {
1165 		int i = 0;
1166 
1167 		if (should_log_hw_state)
1168 			dcn10_log_hw_state(dc, NULL);
1169 
1170 		TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
1171 		BREAK_TO_DEBUGGER();
1172 		if (dcn10_hw_wa_force_recovery(dc)) {
1173 			/*check again*/
1174 			if (!hubbub->funcs->verify_allow_pstate_change_high(hubbub))
1175 				BREAK_TO_DEBUGGER();
1176 		}
1177 	}
1178 }
1179 
1180 /* trigger HW to start disconnect plane from stream on the next vsync */
dcn10_plane_atomic_disconnect(struct dc * dc,struct pipe_ctx * pipe_ctx)1181 void dcn10_plane_atomic_disconnect(struct dc *dc, struct pipe_ctx *pipe_ctx)
1182 {
1183 	struct dce_hwseq *hws = dc->hwseq;
1184 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
1185 	int dpp_id = pipe_ctx->plane_res.dpp->inst;
1186 	struct mpc *mpc = dc->res_pool->mpc;
1187 	struct mpc_tree *mpc_tree_params;
1188 	struct mpcc *mpcc_to_remove = NULL;
1189 	struct output_pixel_processor *opp = pipe_ctx->stream_res.opp;
1190 
1191 	mpc_tree_params = &(opp->mpc_tree_params);
1192 	mpcc_to_remove = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, dpp_id);
1193 
1194 	/*Already reset*/
1195 	if (mpcc_to_remove == NULL)
1196 		return;
1197 
1198 	mpc->funcs->remove_mpcc(mpc, mpc_tree_params, mpcc_to_remove);
1199 	// Phantom pipes have OTG disabled by default, so MPCC_STATUS will never assert idle,
1200 	// so don't wait for MPCC_IDLE in the programming sequence
1201 	if (opp != NULL && !pipe_ctx->plane_state->is_phantom)
1202 		opp->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
1203 
1204 	dc->optimized_required = true;
1205 
1206 	if (hubp->funcs->hubp_disconnect)
1207 		hubp->funcs->hubp_disconnect(hubp);
1208 
1209 	if (dc->debug.sanity_checks)
1210 		hws->funcs.verify_allow_pstate_change_high(dc);
1211 }
1212 
1213 /**
1214  * dcn10_plane_atomic_power_down - Power down plane components.
1215  *
1216  * @dc: dc struct reference. used for grab hwseq.
1217  * @dpp: dpp struct reference.
1218  * @hubp: hubp struct reference.
1219  *
1220  * Keep in mind that this operation requires a power gate configuration;
1221  * however, requests for switch power gate are precisely controlled to avoid
1222  * problems. For this reason, power gate request is usually disabled. This
1223  * function first needs to enable the power gate request before disabling DPP
1224  * and HUBP. Finally, it disables the power gate request again.
1225  */
dcn10_plane_atomic_power_down(struct dc * dc,struct dpp * dpp,struct hubp * hubp)1226 void dcn10_plane_atomic_power_down(struct dc *dc,
1227 		struct dpp *dpp,
1228 		struct hubp *hubp)
1229 {
1230 	struct dce_hwseq *hws = dc->hwseq;
1231 	DC_LOGGER_INIT(dc->ctx->logger);
1232 
1233 	if (REG(DC_IP_REQUEST_CNTL)) {
1234 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1235 				IP_REQUEST_EN, 1);
1236 
1237 		if (hws->funcs.dpp_pg_control)
1238 			hws->funcs.dpp_pg_control(hws, dpp->inst, false);
1239 
1240 		if (hws->funcs.hubp_pg_control)
1241 			hws->funcs.hubp_pg_control(hws, hubp->inst, false);
1242 
1243 		dpp->funcs->dpp_reset(dpp);
1244 
1245 		REG_SET(DC_IP_REQUEST_CNTL, 0,
1246 				IP_REQUEST_EN, 0);
1247 		DC_LOG_DEBUG(
1248 				"Power gated front end %d\n", hubp->inst);
1249 	}
1250 
1251 	if (hws->funcs.dpp_root_clock_control)
1252 		hws->funcs.dpp_root_clock_control(hws, dpp->inst, false);
1253 }
1254 
1255 /* disable HW used by plane.
1256  * note:  cannot disable until disconnect is complete
1257  */
dcn10_plane_atomic_disable(struct dc * dc,struct pipe_ctx * pipe_ctx)1258 void dcn10_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
1259 {
1260 	struct dce_hwseq *hws = dc->hwseq;
1261 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
1262 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
1263 	int opp_id = hubp->opp_id;
1264 
1265 	dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
1266 
1267 	hubp->funcs->hubp_clk_cntl(hubp, false);
1268 
1269 	dpp->funcs->dpp_dppclk_control(dpp, false, false);
1270 
1271 	if (opp_id != 0xf && pipe_ctx->stream_res.opp->mpc_tree_params.opp_list == NULL)
1272 		pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
1273 				pipe_ctx->stream_res.opp,
1274 				false);
1275 
1276 	hubp->power_gated = true;
1277 	dc->optimized_required = false; /* We're powering off, no need to optimize */
1278 
1279 	hws->funcs.plane_atomic_power_down(dc,
1280 			pipe_ctx->plane_res.dpp,
1281 			pipe_ctx->plane_res.hubp);
1282 
1283 	pipe_ctx->stream = NULL;
1284 	memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
1285 	memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
1286 	pipe_ctx->top_pipe = NULL;
1287 	pipe_ctx->bottom_pipe = NULL;
1288 	pipe_ctx->plane_state = NULL;
1289 }
1290 
dcn10_disable_plane(struct dc * dc,struct pipe_ctx * pipe_ctx)1291 void dcn10_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx)
1292 {
1293 	struct dce_hwseq *hws = dc->hwseq;
1294 	DC_LOGGER_INIT(dc->ctx->logger);
1295 
1296 	if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
1297 		return;
1298 
1299 	hws->funcs.plane_atomic_disable(dc, pipe_ctx);
1300 
1301 	apply_DEGVIDCN10_253_wa(dc);
1302 
1303 	DC_LOG_DC("Power down front end %d\n",
1304 					pipe_ctx->pipe_idx);
1305 }
1306 
dcn10_init_pipes(struct dc * dc,struct dc_state * context)1307 void dcn10_init_pipes(struct dc *dc, struct dc_state *context)
1308 {
1309 	int i;
1310 	struct dce_hwseq *hws = dc->hwseq;
1311 	struct hubbub *hubbub = dc->res_pool->hubbub;
1312 	bool can_apply_seamless_boot = false;
1313 
1314 	for (i = 0; i < context->stream_count; i++) {
1315 		if (context->streams[i]->apply_seamless_boot_optimization) {
1316 			can_apply_seamless_boot = true;
1317 			break;
1318 		}
1319 	}
1320 
1321 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1322 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
1323 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1324 
1325 		/* There is assumption that pipe_ctx is not mapping irregularly
1326 		 * to non-preferred front end. If pipe_ctx->stream is not NULL,
1327 		 * we will use the pipe, so don't disable
1328 		 */
1329 		if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
1330 			continue;
1331 
1332 		/* Blank controller using driver code instead of
1333 		 * command table.
1334 		 */
1335 		if (tg->funcs->is_tg_enabled(tg)) {
1336 			if (hws->funcs.init_blank != NULL) {
1337 				hws->funcs.init_blank(dc, tg);
1338 				tg->funcs->lock(tg);
1339 			} else {
1340 				tg->funcs->lock(tg);
1341 				tg->funcs->set_blank(tg, true);
1342 				hwss_wait_for_blank_complete(tg);
1343 			}
1344 		}
1345 	}
1346 
1347 	/* Reset det size */
1348 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1349 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1350 		struct hubp *hubp = dc->res_pool->hubps[i];
1351 
1352 		/* Do not need to reset for seamless boot */
1353 		if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
1354 			continue;
1355 
1356 		if (hubbub && hubp) {
1357 			if (hubbub->funcs->program_det_size)
1358 				hubbub->funcs->program_det_size(hubbub, hubp->inst, 0);
1359 		}
1360 	}
1361 
1362 	/* num_opp will be equal to number of mpcc */
1363 	for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
1364 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1365 
1366 		/* Cannot reset the MPC mux if seamless boot */
1367 		if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
1368 			continue;
1369 
1370 		dc->res_pool->mpc->funcs->mpc_init_single_inst(
1371 				dc->res_pool->mpc, i);
1372 	}
1373 
1374 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1375 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
1376 		struct hubp *hubp = dc->res_pool->hubps[i];
1377 		struct dpp *dpp = dc->res_pool->dpps[i];
1378 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1379 
1380 		/* There is assumption that pipe_ctx is not mapping irregularly
1381 		 * to non-preferred front end. If pipe_ctx->stream is not NULL,
1382 		 * we will use the pipe, so don't disable
1383 		 */
1384 		if (can_apply_seamless_boot &&
1385 			pipe_ctx->stream != NULL &&
1386 			pipe_ctx->stream_res.tg->funcs->is_tg_enabled(
1387 				pipe_ctx->stream_res.tg)) {
1388 			// Enable double buffering for OTG_BLANK no matter if
1389 			// seamless boot is enabled or not to suppress global sync
1390 			// signals when OTG blanked. This is to prevent pipe from
1391 			// requesting data while in PSR.
1392 			tg->funcs->tg_init(tg);
1393 			hubp->power_gated = true;
1394 			continue;
1395 		}
1396 
1397 		/* Disable on the current state so the new one isn't cleared. */
1398 		pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1399 
1400 		dpp->funcs->dpp_reset(dpp);
1401 
1402 		pipe_ctx->stream_res.tg = tg;
1403 		pipe_ctx->pipe_idx = i;
1404 
1405 		pipe_ctx->plane_res.hubp = hubp;
1406 		pipe_ctx->plane_res.dpp = dpp;
1407 		pipe_ctx->plane_res.mpcc_inst = dpp->inst;
1408 		hubp->mpcc_id = dpp->inst;
1409 		hubp->opp_id = OPP_ID_INVALID;
1410 		hubp->power_gated = false;
1411 
1412 		dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
1413 		dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
1414 		dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
1415 		pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
1416 
1417 		hws->funcs.plane_atomic_disconnect(dc, pipe_ctx);
1418 
1419 		if (tg->funcs->is_tg_enabled(tg))
1420 			tg->funcs->unlock(tg);
1421 
1422 		dc->hwss.disable_plane(dc, pipe_ctx);
1423 
1424 		pipe_ctx->stream_res.tg = NULL;
1425 		pipe_ctx->plane_res.hubp = NULL;
1426 
1427 		if (tg->funcs->is_tg_enabled(tg)) {
1428 			if (tg->funcs->init_odm)
1429 				tg->funcs->init_odm(tg);
1430 		}
1431 
1432 		tg->funcs->tg_init(tg);
1433 	}
1434 
1435 	/* Power gate DSCs */
1436 	if (hws->funcs.dsc_pg_control != NULL) {
1437 		uint32_t num_opps = 0;
1438 		uint32_t opp_id_src0 = OPP_ID_INVALID;
1439 		uint32_t opp_id_src1 = OPP_ID_INVALID;
1440 
1441 		// Step 1: To find out which OPTC is running & OPTC DSC is ON
1442 		// We can't use res_pool->res_cap->num_timing_generator to check
1443 		// Because it records display pipes default setting built in driver,
1444 		// not display pipes of the current chip.
1445 		// Some ASICs would be fused display pipes less than the default setting.
1446 		// In dcnxx_resource_construct function, driver would obatin real information.
1447 		for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1448 			uint32_t optc_dsc_state = 0;
1449 			struct timing_generator *tg = dc->res_pool->timing_generators[i];
1450 
1451 			if (tg->funcs->is_tg_enabled(tg)) {
1452 				if (tg->funcs->get_dsc_status)
1453 					tg->funcs->get_dsc_status(tg, &optc_dsc_state);
1454 				// Only one OPTC with DSC is ON, so if we got one result, we would exit this block.
1455 				// non-zero value is DSC enabled
1456 				if (optc_dsc_state != 0) {
1457 					tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
1458 					break;
1459 				}
1460 			}
1461 		}
1462 
1463 		// Step 2: To power down DSC but skip DSC  of running OPTC
1464 		for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
1465 			struct dcn_dsc_state s  = {0};
1466 
1467 			dc->res_pool->dscs[i]->funcs->dsc_read_state(dc->res_pool->dscs[i], &s);
1468 
1469 			if ((s.dsc_opp_source == opp_id_src0 || s.dsc_opp_source == opp_id_src1) &&
1470 				s.dsc_clock_en && s.dsc_fw_en)
1471 				continue;
1472 
1473 			hws->funcs.dsc_pg_control(hws, dc->res_pool->dscs[i]->inst, false);
1474 		}
1475 	}
1476 }
1477 
dcn10_init_hw(struct dc * dc)1478 void dcn10_init_hw(struct dc *dc)
1479 {
1480 	int i;
1481 	struct abm *abm = dc->res_pool->abm;
1482 	struct dmcu *dmcu = dc->res_pool->dmcu;
1483 	struct dce_hwseq *hws = dc->hwseq;
1484 	struct dc_bios *dcb = dc->ctx->dc_bios;
1485 	struct resource_pool *res_pool = dc->res_pool;
1486 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
1487 	bool   is_optimized_init_done = false;
1488 
1489 	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
1490 		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
1491 
1492 	/* Align bw context with hw config when system resume. */
1493 	if (dc->clk_mgr->clks.dispclk_khz != 0 && dc->clk_mgr->clks.dppclk_khz != 0) {
1494 		dc->current_state->bw_ctx.bw.dcn.clk.dispclk_khz = dc->clk_mgr->clks.dispclk_khz;
1495 		dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz = dc->clk_mgr->clks.dppclk_khz;
1496 	}
1497 
1498 	// Initialize the dccg
1499 	if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->dccg_init)
1500 		dc->res_pool->dccg->funcs->dccg_init(res_pool->dccg);
1501 
1502 	if (!dcb->funcs->is_accelerated_mode(dcb))
1503 		hws->funcs.disable_vga(dc->hwseq);
1504 
1505 	if (!dc_dmub_srv_optimized_init_done(dc->ctx->dmub_srv))
1506 		hws->funcs.bios_golden_init(dc);
1507 
1508 
1509 	if (dc->ctx->dc_bios->fw_info_valid) {
1510 		res_pool->ref_clocks.xtalin_clock_inKhz =
1511 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
1512 
1513 		if (res_pool->dccg && res_pool->hubbub) {
1514 
1515 			(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
1516 					dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
1517 					&res_pool->ref_clocks.dccg_ref_clock_inKhz);
1518 
1519 			(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
1520 					res_pool->ref_clocks.dccg_ref_clock_inKhz,
1521 					&res_pool->ref_clocks.dchub_ref_clock_inKhz);
1522 		} else {
1523 			// Not all ASICs have DCCG sw component
1524 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
1525 					res_pool->ref_clocks.xtalin_clock_inKhz;
1526 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
1527 					res_pool->ref_clocks.xtalin_clock_inKhz;
1528 		}
1529 	} else
1530 		ASSERT_CRITICAL(false);
1531 
1532 	for (i = 0; i < dc->link_count; i++) {
1533 		/* Power up AND update implementation according to the
1534 		 * required signal (which may be different from the
1535 		 * default signal on connector).
1536 		 */
1537 		struct dc_link *link = dc->links[i];
1538 
1539 		if (!is_optimized_init_done)
1540 			link->link_enc->funcs->hw_init(link->link_enc);
1541 
1542 		/* Check for enabled DIG to identify enabled display */
1543 		if (link->link_enc->funcs->is_dig_enabled &&
1544 			link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1545 			link->link_status.link_active = true;
1546 			if (link->link_enc->funcs->fec_is_active &&
1547 					link->link_enc->funcs->fec_is_active(link->link_enc))
1548 				link->fec_state = dc_link_fec_enabled;
1549 		}
1550 	}
1551 
1552 	/* we want to turn off all dp displays before doing detection */
1553 	dc->link_srv->blank_all_dp_displays(dc);
1554 
1555 	if (hws->funcs.enable_power_gating_plane)
1556 		hws->funcs.enable_power_gating_plane(dc->hwseq, true);
1557 
1558 	/* If taking control over from VBIOS, we may want to optimize our first
1559 	 * mode set, so we need to skip powering down pipes until we know which
1560 	 * pipes we want to use.
1561 	 * Otherwise, if taking control is not possible, we need to power
1562 	 * everything down.
1563 	 */
1564 	if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
1565 		if (!is_optimized_init_done) {
1566 			hws->funcs.init_pipes(dc, dc->current_state);
1567 			if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
1568 				dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
1569 						!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
1570 		}
1571 	}
1572 
1573 	if (!is_optimized_init_done) {
1574 
1575 		for (i = 0; i < res_pool->audio_count; i++) {
1576 			struct audio *audio = res_pool->audios[i];
1577 
1578 			audio->funcs->hw_init(audio);
1579 		}
1580 
1581 		for (i = 0; i < dc->link_count; i++) {
1582 			struct dc_link *link = dc->links[i];
1583 
1584 			if (link->panel_cntl)
1585 				backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
1586 		}
1587 
1588 		if (abm != NULL)
1589 			abm->funcs->abm_init(abm, backlight);
1590 
1591 		if (dmcu != NULL && !dmcu->auto_load_dmcu)
1592 			dmcu->funcs->dmcu_init(dmcu);
1593 	}
1594 
1595 	if (abm != NULL && dmcu != NULL)
1596 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
1597 
1598 	/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
1599 	if (!is_optimized_init_done)
1600 		REG_WRITE(DIO_MEM_PWR_CTRL, 0);
1601 
1602 	if (!dc->debug.disable_clock_gate) {
1603 		/* enable all DCN clock gating */
1604 		REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
1605 
1606 		REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
1607 
1608 		REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
1609 	}
1610 
1611 	if (dc->clk_mgr->funcs->notify_wm_ranges)
1612 		dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
1613 }
1614 
1615 /* In headless boot cases, DIG may be turned
1616  * on which causes HW/SW discrepancies.
1617  * To avoid this, power down hardware on boot
1618  * if DIG is turned on
1619  */
dcn10_power_down_on_boot(struct dc * dc)1620 void dcn10_power_down_on_boot(struct dc *dc)
1621 {
1622 	struct dc_link *edp_links[MAX_NUM_EDP];
1623 	struct dc_link *edp_link = NULL;
1624 	int edp_num;
1625 	int i = 0;
1626 
1627 	dc_get_edp_links(dc, edp_links, &edp_num);
1628 	if (edp_num)
1629 		edp_link = edp_links[0];
1630 
1631 	if (edp_link && edp_link->link_enc->funcs->is_dig_enabled &&
1632 			edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1633 			dc->hwseq->funcs.edp_backlight_control &&
1634 			dc->hwss.power_down &&
1635 			dc->hwss.edp_power_control) {
1636 		dc->hwseq->funcs.edp_backlight_control(edp_link, false);
1637 		dc->hwss.power_down(dc);
1638 		dc->hwss.edp_power_control(edp_link, false);
1639 	} else {
1640 		for (i = 0; i < dc->link_count; i++) {
1641 			struct dc_link *link = dc->links[i];
1642 
1643 			if (link->link_enc && link->link_enc->funcs->is_dig_enabled &&
1644 					link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
1645 					dc->hwss.power_down) {
1646 				dc->hwss.power_down(dc);
1647 				break;
1648 			}
1649 
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * Call update_clocks with empty context
1655 	 * to send DISPLAY_OFF
1656 	 * Otherwise DISPLAY_OFF may not be asserted
1657 	 */
1658 	if (dc->clk_mgr->funcs->set_low_power_state)
1659 		dc->clk_mgr->funcs->set_low_power_state(dc->clk_mgr);
1660 }
1661 
dcn10_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)1662 void dcn10_reset_hw_ctx_wrap(
1663 		struct dc *dc,
1664 		struct dc_state *context)
1665 {
1666 	int i;
1667 	struct dce_hwseq *hws = dc->hwseq;
1668 
1669 	/* Reset Back End*/
1670 	for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
1671 		struct pipe_ctx *pipe_ctx_old =
1672 			&dc->current_state->res_ctx.pipe_ctx[i];
1673 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1674 
1675 		if (!pipe_ctx_old->stream)
1676 			continue;
1677 
1678 		if (pipe_ctx_old->top_pipe)
1679 			continue;
1680 
1681 		if (!pipe_ctx->stream ||
1682 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
1683 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
1684 
1685 			dcn10_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
1686 			if (hws->funcs.enable_stream_gating)
1687 				hws->funcs.enable_stream_gating(dc, pipe_ctx_old);
1688 			if (old_clk)
1689 				old_clk->funcs->cs_power_down(old_clk);
1690 		}
1691 	}
1692 }
1693 
patch_address_for_sbs_tb_stereo(struct pipe_ctx * pipe_ctx,PHYSICAL_ADDRESS_LOC * addr)1694 static bool patch_address_for_sbs_tb_stereo(
1695 		struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
1696 {
1697 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1698 	bool sec_split = pipe_ctx->top_pipe &&
1699 			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
1700 	if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
1701 		(pipe_ctx->stream->timing.timing_3d_format ==
1702 		 TIMING_3D_FORMAT_SIDE_BY_SIDE ||
1703 		 pipe_ctx->stream->timing.timing_3d_format ==
1704 		 TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
1705 		*addr = plane_state->address.grph_stereo.left_addr;
1706 		plane_state->address.grph_stereo.left_addr =
1707 		plane_state->address.grph_stereo.right_addr;
1708 		return true;
1709 	} else {
1710 		if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
1711 			plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
1712 			plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
1713 			plane_state->address.grph_stereo.right_addr =
1714 			plane_state->address.grph_stereo.left_addr;
1715 			plane_state->address.grph_stereo.right_meta_addr =
1716 			plane_state->address.grph_stereo.left_meta_addr;
1717 		}
1718 	}
1719 	return false;
1720 }
1721 
dcn10_update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)1722 void dcn10_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
1723 {
1724 	bool addr_patched = false;
1725 	PHYSICAL_ADDRESS_LOC addr;
1726 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1727 
1728 	if (plane_state == NULL)
1729 		return;
1730 
1731 	addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
1732 
1733 	pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
1734 			pipe_ctx->plane_res.hubp,
1735 			&plane_state->address,
1736 			plane_state->flip_immediate);
1737 
1738 	plane_state->status.requested_address = plane_state->address;
1739 
1740 	if (plane_state->flip_immediate)
1741 		plane_state->status.current_address = plane_state->address;
1742 
1743 	if (addr_patched)
1744 		pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
1745 }
1746 
dcn10_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)1747 bool dcn10_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
1748 			const struct dc_plane_state *plane_state)
1749 {
1750 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
1751 	const struct dc_transfer_func *tf = NULL;
1752 	bool result = true;
1753 
1754 	if (dpp_base == NULL)
1755 		return false;
1756 
1757 	if (plane_state->in_transfer_func)
1758 		tf = plane_state->in_transfer_func;
1759 
1760 	if (plane_state->gamma_correction &&
1761 		!dpp_base->ctx->dc->debug.always_use_regamma
1762 		&& !plane_state->gamma_correction->is_identity
1763 			&& dce_use_lut(plane_state->format))
1764 		dpp_base->funcs->dpp_program_input_lut(dpp_base, plane_state->gamma_correction);
1765 
1766 	if (tf == NULL)
1767 		dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
1768 	else if (tf->type == TF_TYPE_PREDEFINED) {
1769 		switch (tf->tf) {
1770 		case TRANSFER_FUNCTION_SRGB:
1771 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_sRGB);
1772 			break;
1773 		case TRANSFER_FUNCTION_BT709:
1774 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_xvYCC);
1775 			break;
1776 		case TRANSFER_FUNCTION_LINEAR:
1777 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
1778 			break;
1779 		case TRANSFER_FUNCTION_PQ:
1780 			dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_USER_PWL);
1781 			cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params);
1782 			dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params);
1783 			result = true;
1784 			break;
1785 		default:
1786 			result = false;
1787 			break;
1788 		}
1789 	} else if (tf->type == TF_TYPE_BYPASS) {
1790 		dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
1791 	} else {
1792 		cm_helper_translate_curve_to_degamma_hw_format(tf,
1793 					&dpp_base->degamma_params);
1794 		dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
1795 				&dpp_base->degamma_params);
1796 		result = true;
1797 	}
1798 
1799 	return result;
1800 }
1801 
1802 #define MAX_NUM_HW_POINTS 0x200
1803 
log_tf(struct dc_context * ctx,struct dc_transfer_func * tf,uint32_t hw_points_num)1804 static void log_tf(struct dc_context *ctx,
1805 				struct dc_transfer_func *tf, uint32_t hw_points_num)
1806 {
1807 	// DC_LOG_GAMMA is default logging of all hw points
1808 	// DC_LOG_ALL_GAMMA logs all points, not only hw points
1809 	// DC_LOG_ALL_TF_POINTS logs all channels of the tf
1810 	int i = 0;
1811 
1812 	DC_LOGGER_INIT(ctx->logger);
1813 	DC_LOG_GAMMA("Gamma Correction TF");
1814 	DC_LOG_ALL_GAMMA("Logging all tf points...");
1815 	DC_LOG_ALL_TF_CHANNELS("Logging all channels...");
1816 
1817 	for (i = 0; i < hw_points_num; i++) {
1818 		DC_LOG_GAMMA("R\t%d\t%llu", i, tf->tf_pts.red[i].value);
1819 		DC_LOG_ALL_TF_CHANNELS("G\t%d\t%llu", i, tf->tf_pts.green[i].value);
1820 		DC_LOG_ALL_TF_CHANNELS("B\t%d\t%llu", i, tf->tf_pts.blue[i].value);
1821 	}
1822 
1823 	for (i = hw_points_num; i < MAX_NUM_HW_POINTS; i++) {
1824 		DC_LOG_ALL_GAMMA("R\t%d\t%llu", i, tf->tf_pts.red[i].value);
1825 		DC_LOG_ALL_TF_CHANNELS("G\t%d\t%llu", i, tf->tf_pts.green[i].value);
1826 		DC_LOG_ALL_TF_CHANNELS("B\t%d\t%llu", i, tf->tf_pts.blue[i].value);
1827 	}
1828 }
1829 
dcn10_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)1830 bool dcn10_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
1831 				const struct dc_stream_state *stream)
1832 {
1833 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
1834 
1835 	if (dpp == NULL)
1836 		return false;
1837 
1838 	dpp->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
1839 
1840 	if (stream->out_transfer_func &&
1841 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
1842 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB)
1843 		dpp->funcs->dpp_program_regamma_pwl(dpp, NULL, OPP_REGAMMA_SRGB);
1844 
1845 	/* dcn10_translate_regamma_to_hw_format takes 750us, only do it when full
1846 	 * update.
1847 	 */
1848 	else if (cm_helper_translate_curve_to_hw_format(dc->ctx,
1849 			stream->out_transfer_func,
1850 			&dpp->regamma_params, false)) {
1851 		dpp->funcs->dpp_program_regamma_pwl(
1852 				dpp,
1853 				&dpp->regamma_params, OPP_REGAMMA_USER);
1854 	} else
1855 		dpp->funcs->dpp_program_regamma_pwl(dpp, NULL, OPP_REGAMMA_BYPASS);
1856 
1857 	if (stream != NULL && stream->ctx != NULL &&
1858 			stream->out_transfer_func != NULL) {
1859 		log_tf(stream->ctx,
1860 				stream->out_transfer_func,
1861 				dpp->regamma_params.hw_points_num);
1862 	}
1863 
1864 	return true;
1865 }
1866 
dcn10_pipe_control_lock(struct dc * dc,struct pipe_ctx * pipe,bool lock)1867 void dcn10_pipe_control_lock(
1868 	struct dc *dc,
1869 	struct pipe_ctx *pipe,
1870 	bool lock)
1871 {
1872 	struct dce_hwseq *hws = dc->hwseq;
1873 
1874 	/* use TG master update lock to lock everything on the TG
1875 	 * therefore only top pipe need to lock
1876 	 */
1877 	if (!pipe || pipe->top_pipe)
1878 		return;
1879 
1880 	if (dc->debug.sanity_checks)
1881 		hws->funcs.verify_allow_pstate_change_high(dc);
1882 
1883 	if (lock)
1884 		pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
1885 	else
1886 		pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
1887 
1888 	if (dc->debug.sanity_checks)
1889 		hws->funcs.verify_allow_pstate_change_high(dc);
1890 }
1891 
1892 /**
1893  * delay_cursor_until_vupdate() - Delay cursor update if too close to VUPDATE.
1894  *
1895  * Software keepout workaround to prevent cursor update locking from stalling
1896  * out cursor updates indefinitely or from old values from being retained in
1897  * the case where the viewport changes in the same frame as the cursor.
1898  *
1899  * The idea is to calculate the remaining time from VPOS to VUPDATE. If it's
1900  * too close to VUPDATE, then stall out until VUPDATE finishes.
1901  *
1902  * TODO: Optimize cursor programming to be once per frame before VUPDATE
1903  *       to avoid the need for this workaround.
1904  *
1905  * @dc: Current DC state
1906  * @pipe_ctx: Pipe_ctx pointer for delayed cursor update
1907  *
1908  * Return: void
1909  */
delay_cursor_until_vupdate(struct dc * dc,struct pipe_ctx * pipe_ctx)1910 static void delay_cursor_until_vupdate(struct dc *dc, struct pipe_ctx *pipe_ctx)
1911 {
1912 	struct dc_stream_state *stream = pipe_ctx->stream;
1913 	struct crtc_position position;
1914 	uint32_t vupdate_start, vupdate_end;
1915 	unsigned int lines_to_vupdate, us_to_vupdate, vpos;
1916 	unsigned int us_per_line, us_vupdate;
1917 
1918 	if (!dc->hwss.calc_vupdate_position || !dc->hwss.get_position)
1919 		return;
1920 
1921 	if (!pipe_ctx->stream_res.stream_enc || !pipe_ctx->stream_res.tg)
1922 		return;
1923 
1924 	dc->hwss.calc_vupdate_position(dc, pipe_ctx, &vupdate_start,
1925 				       &vupdate_end);
1926 
1927 	dc->hwss.get_position(&pipe_ctx, 1, &position);
1928 	vpos = position.vertical_count;
1929 
1930 	/* Avoid wraparound calculation issues */
1931 	vupdate_start += stream->timing.v_total;
1932 	vupdate_end += stream->timing.v_total;
1933 	vpos += stream->timing.v_total;
1934 
1935 	if (vpos <= vupdate_start) {
1936 		/* VPOS is in VACTIVE or back porch. */
1937 		lines_to_vupdate = vupdate_start - vpos;
1938 	} else if (vpos > vupdate_end) {
1939 		/* VPOS is in the front porch. */
1940 		return;
1941 	} else {
1942 		/* VPOS is in VUPDATE. */
1943 		lines_to_vupdate = 0;
1944 	}
1945 
1946 	/* Calculate time until VUPDATE in microseconds. */
1947 	us_per_line =
1948 		stream->timing.h_total * 10000u / stream->timing.pix_clk_100hz;
1949 	us_to_vupdate = lines_to_vupdate * us_per_line;
1950 
1951 	/* 70 us is a conservative estimate of cursor update time*/
1952 	if (us_to_vupdate > 70)
1953 		return;
1954 
1955 	/* Stall out until the cursor update completes. */
1956 	if (vupdate_end < vupdate_start)
1957 		vupdate_end += stream->timing.v_total;
1958 	us_vupdate = (vupdate_end - vupdate_start + 1) * us_per_line;
1959 	udelay(us_to_vupdate + us_vupdate);
1960 }
1961 
dcn10_cursor_lock(struct dc * dc,struct pipe_ctx * pipe,bool lock)1962 void dcn10_cursor_lock(struct dc *dc, struct pipe_ctx *pipe, bool lock)
1963 {
1964 	/* cursor lock is per MPCC tree, so only need to lock one pipe per stream */
1965 	if (!pipe || pipe->top_pipe)
1966 		return;
1967 
1968 	/* Prevent cursor lock from stalling out cursor updates. */
1969 	if (lock)
1970 		delay_cursor_until_vupdate(dc, pipe);
1971 
1972 	if (pipe->stream && should_use_dmub_lock(pipe->stream->link)) {
1973 		union dmub_hw_lock_flags hw_locks = { 0 };
1974 		struct dmub_hw_lock_inst_flags inst_flags = { 0 };
1975 
1976 		hw_locks.bits.lock_cursor = 1;
1977 		inst_flags.opp_inst = pipe->stream_res.opp->inst;
1978 
1979 		dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
1980 					lock,
1981 					&hw_locks,
1982 					&inst_flags);
1983 	} else
1984 		dc->res_pool->mpc->funcs->cursor_lock(dc->res_pool->mpc,
1985 				pipe->stream_res.opp->inst, lock);
1986 }
1987 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)1988 static bool wait_for_reset_trigger_to_occur(
1989 	struct dc_context *dc_ctx,
1990 	struct timing_generator *tg)
1991 {
1992 	bool rc = false;
1993 
1994 	/* To avoid endless loop we wait at most
1995 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
1996 	const uint32_t frames_to_wait_on_triggered_reset = 10;
1997 	int i;
1998 
1999 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2000 
2001 		if (!tg->funcs->is_counter_moving(tg)) {
2002 			DC_ERROR("TG counter is not moving!\n");
2003 			break;
2004 		}
2005 
2006 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2007 			rc = true;
2008 			/* usually occurs at i=1 */
2009 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2010 					i);
2011 			break;
2012 		}
2013 
2014 		/* Wait for one frame. */
2015 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2016 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2017 	}
2018 
2019 	if (false == rc)
2020 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2021 
2022 	return rc;
2023 }
2024 
reduceSizeAndFraction(uint64_t * numerator,uint64_t * denominator,bool checkUint32Bounary)2025 static uint64_t reduceSizeAndFraction(uint64_t *numerator,
2026 				      uint64_t *denominator,
2027 				      bool checkUint32Bounary)
2028 {
2029 	int i;
2030 	bool ret = checkUint32Bounary == false;
2031 	uint64_t max_int32 = 0xffffffff;
2032 	uint64_t num, denom;
2033 	static const uint16_t prime_numbers[] = {
2034 		2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
2035 		47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103,
2036 		107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
2037 		167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
2038 		229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
2039 		283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353,
2040 		359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421,
2041 		431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487,
2042 		491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569,
2043 		571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
2044 		641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
2045 		709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773,
2046 		787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857,
2047 		859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937,
2048 		941, 947, 953, 967, 971, 977, 983, 991, 997};
2049 	int count = ARRAY_SIZE(prime_numbers);
2050 
2051 	num = *numerator;
2052 	denom = *denominator;
2053 	for (i = 0; i < count; i++) {
2054 		uint32_t num_remainder, denom_remainder;
2055 		uint64_t num_result, denom_result;
2056 		if (checkUint32Bounary &&
2057 			num <= max_int32 && denom <= max_int32) {
2058 			ret = true;
2059 			break;
2060 		}
2061 		do {
2062 			num_result = div_u64_rem(num, prime_numbers[i], &num_remainder);
2063 			denom_result = div_u64_rem(denom, prime_numbers[i], &denom_remainder);
2064 			if (num_remainder == 0 && denom_remainder == 0) {
2065 				num = num_result;
2066 				denom = denom_result;
2067 			}
2068 		} while (num_remainder == 0 && denom_remainder == 0);
2069 	}
2070 	*numerator = num;
2071 	*denominator = denom;
2072 	return ret;
2073 }
2074 
is_low_refresh_rate(struct pipe_ctx * pipe)2075 static bool is_low_refresh_rate(struct pipe_ctx *pipe)
2076 {
2077 	uint32_t master_pipe_refresh_rate =
2078 		pipe->stream->timing.pix_clk_100hz * 100 /
2079 		pipe->stream->timing.h_total /
2080 		pipe->stream->timing.v_total;
2081 	return master_pipe_refresh_rate <= 30;
2082 }
2083 
get_clock_divider(struct pipe_ctx * pipe,bool account_low_refresh_rate)2084 static uint8_t get_clock_divider(struct pipe_ctx *pipe,
2085 				 bool account_low_refresh_rate)
2086 {
2087 	uint32_t clock_divider = 1;
2088 	uint32_t numpipes = 1;
2089 
2090 	if (account_low_refresh_rate && is_low_refresh_rate(pipe))
2091 		clock_divider *= 2;
2092 
2093 	if (pipe->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420)
2094 		clock_divider *= 2;
2095 
2096 	while (pipe->next_odm_pipe) {
2097 		pipe = pipe->next_odm_pipe;
2098 		numpipes++;
2099 	}
2100 	clock_divider *= numpipes;
2101 
2102 	return clock_divider;
2103 }
2104 
dcn10_align_pixel_clocks(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2105 static int dcn10_align_pixel_clocks(struct dc *dc, int group_size,
2106 				    struct pipe_ctx *grouped_pipes[])
2107 {
2108 	struct dc_context *dc_ctx = dc->ctx;
2109 	int i, master = -1, embedded = -1;
2110 	struct dc_crtc_timing *hw_crtc_timing;
2111 	uint64_t phase[MAX_PIPES];
2112 	uint64_t modulo[MAX_PIPES];
2113 	unsigned int pclk;
2114 
2115 	uint32_t embedded_pix_clk_100hz;
2116 	uint16_t embedded_h_total;
2117 	uint16_t embedded_v_total;
2118 	uint32_t dp_ref_clk_100hz =
2119 		dc->res_pool->dp_clock_source->ctx->dc->clk_mgr->dprefclk_khz*10;
2120 
2121 	hw_crtc_timing = kcalloc(MAX_PIPES, sizeof(*hw_crtc_timing), GFP_KERNEL);
2122 	if (!hw_crtc_timing)
2123 		return master;
2124 
2125 	if (dc->config.vblank_alignment_dto_params &&
2126 		dc->res_pool->dp_clock_source->funcs->override_dp_pix_clk) {
2127 		embedded_h_total =
2128 			(dc->config.vblank_alignment_dto_params >> 32) & 0x7FFF;
2129 		embedded_v_total =
2130 			(dc->config.vblank_alignment_dto_params >> 48) & 0x7FFF;
2131 		embedded_pix_clk_100hz =
2132 			dc->config.vblank_alignment_dto_params & 0xFFFFFFFF;
2133 
2134 		for (i = 0; i < group_size; i++) {
2135 			grouped_pipes[i]->stream_res.tg->funcs->get_hw_timing(
2136 					grouped_pipes[i]->stream_res.tg,
2137 					&hw_crtc_timing[i]);
2138 			dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
2139 				dc->res_pool->dp_clock_source,
2140 				grouped_pipes[i]->stream_res.tg->inst,
2141 				&pclk);
2142 			hw_crtc_timing[i].pix_clk_100hz = pclk;
2143 			if (dc_is_embedded_signal(
2144 					grouped_pipes[i]->stream->signal)) {
2145 				embedded = i;
2146 				master = i;
2147 				phase[i] = embedded_pix_clk_100hz*100;
2148 				modulo[i] = dp_ref_clk_100hz*100;
2149 			} else {
2150 
2151 				phase[i] = (uint64_t)embedded_pix_clk_100hz*
2152 					hw_crtc_timing[i].h_total*
2153 					hw_crtc_timing[i].v_total;
2154 				phase[i] = div_u64(phase[i], get_clock_divider(grouped_pipes[i], true));
2155 				modulo[i] = (uint64_t)dp_ref_clk_100hz*
2156 					embedded_h_total*
2157 					embedded_v_total;
2158 
2159 				if (reduceSizeAndFraction(&phase[i],
2160 						&modulo[i], true) == false) {
2161 					/*
2162 					 * this will help to stop reporting
2163 					 * this timing synchronizable
2164 					 */
2165 					DC_SYNC_INFO("Failed to reduce DTO parameters\n");
2166 					grouped_pipes[i]->stream->has_non_synchronizable_pclk = true;
2167 				}
2168 			}
2169 		}
2170 
2171 		for (i = 0; i < group_size; i++) {
2172 			if (i != embedded && !grouped_pipes[i]->stream->has_non_synchronizable_pclk) {
2173 				dc->res_pool->dp_clock_source->funcs->override_dp_pix_clk(
2174 					dc->res_pool->dp_clock_source,
2175 					grouped_pipes[i]->stream_res.tg->inst,
2176 					phase[i], modulo[i]);
2177 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
2178 					dc->res_pool->dp_clock_source,
2179 					grouped_pipes[i]->stream_res.tg->inst, &pclk);
2180 				grouped_pipes[i]->stream->timing.pix_clk_100hz =
2181 					pclk*get_clock_divider(grouped_pipes[i], false);
2182 				if (master == -1)
2183 					master = i;
2184 			}
2185 		}
2186 
2187 	}
2188 
2189 	kfree(hw_crtc_timing);
2190 	return master;
2191 }
2192 
dcn10_enable_vblanks_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2193 void dcn10_enable_vblanks_synchronization(
2194 	struct dc *dc,
2195 	int group_index,
2196 	int group_size,
2197 	struct pipe_ctx *grouped_pipes[])
2198 {
2199 	struct dc_context *dc_ctx = dc->ctx;
2200 	struct output_pixel_processor *opp;
2201 	struct timing_generator *tg;
2202 	int i, width, height, master;
2203 
2204 	for (i = 1; i < group_size; i++) {
2205 		opp = grouped_pipes[i]->stream_res.opp;
2206 		tg = grouped_pipes[i]->stream_res.tg;
2207 		tg->funcs->get_otg_active_size(tg, &width, &height);
2208 
2209 		if (!tg->funcs->is_tg_enabled(tg)) {
2210 			DC_SYNC_INFO("Skipping timing sync on disabled OTG\n");
2211 			return;
2212 		}
2213 
2214 		if (opp->funcs->opp_program_dpg_dimensions)
2215 			opp->funcs->opp_program_dpg_dimensions(opp, width, 2*(height) + 1);
2216 	}
2217 
2218 	for (i = 0; i < group_size; i++) {
2219 		if (grouped_pipes[i]->stream == NULL)
2220 			continue;
2221 		grouped_pipes[i]->stream->vblank_synchronized = false;
2222 		grouped_pipes[i]->stream->has_non_synchronizable_pclk = false;
2223 	}
2224 
2225 	DC_SYNC_INFO("Aligning DP DTOs\n");
2226 
2227 	master = dcn10_align_pixel_clocks(dc, group_size, grouped_pipes);
2228 
2229 	DC_SYNC_INFO("Synchronizing VBlanks\n");
2230 
2231 	if (master >= 0) {
2232 		for (i = 0; i < group_size; i++) {
2233 			if (i != master && !grouped_pipes[i]->stream->has_non_synchronizable_pclk)
2234 				grouped_pipes[i]->stream_res.tg->funcs->align_vblanks(
2235 					grouped_pipes[master]->stream_res.tg,
2236 					grouped_pipes[i]->stream_res.tg,
2237 					grouped_pipes[master]->stream->timing.pix_clk_100hz,
2238 					grouped_pipes[i]->stream->timing.pix_clk_100hz,
2239 					get_clock_divider(grouped_pipes[master], false),
2240 					get_clock_divider(grouped_pipes[i], false));
2241 			grouped_pipes[i]->stream->vblank_synchronized = true;
2242 		}
2243 		grouped_pipes[master]->stream->vblank_synchronized = true;
2244 		DC_SYNC_INFO("Sync complete\n");
2245 	}
2246 
2247 	for (i = 1; i < group_size; i++) {
2248 		opp = grouped_pipes[i]->stream_res.opp;
2249 		tg = grouped_pipes[i]->stream_res.tg;
2250 		tg->funcs->get_otg_active_size(tg, &width, &height);
2251 		if (opp->funcs->opp_program_dpg_dimensions)
2252 			opp->funcs->opp_program_dpg_dimensions(opp, width, height);
2253 	}
2254 }
2255 
dcn10_enable_timing_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2256 void dcn10_enable_timing_synchronization(
2257 	struct dc *dc,
2258 	int group_index,
2259 	int group_size,
2260 	struct pipe_ctx *grouped_pipes[])
2261 {
2262 	struct dc_context *dc_ctx = dc->ctx;
2263 	struct output_pixel_processor *opp;
2264 	struct timing_generator *tg;
2265 	int i, width, height;
2266 
2267 	DC_SYNC_INFO("Setting up OTG reset trigger\n");
2268 
2269 	for (i = 1; i < group_size; i++) {
2270 		if (grouped_pipes[i]->stream && grouped_pipes[i]->stream->mall_stream_config.type == SUBVP_PHANTOM)
2271 			continue;
2272 
2273 		opp = grouped_pipes[i]->stream_res.opp;
2274 		tg = grouped_pipes[i]->stream_res.tg;
2275 		tg->funcs->get_otg_active_size(tg, &width, &height);
2276 
2277 		if (!tg->funcs->is_tg_enabled(tg)) {
2278 			DC_SYNC_INFO("Skipping timing sync on disabled OTG\n");
2279 			return;
2280 		}
2281 
2282 		if (opp->funcs->opp_program_dpg_dimensions)
2283 			opp->funcs->opp_program_dpg_dimensions(opp, width, 2*(height) + 1);
2284 	}
2285 
2286 	for (i = 0; i < group_size; i++) {
2287 		if (grouped_pipes[i]->stream == NULL)
2288 			continue;
2289 
2290 		if (grouped_pipes[i]->stream && grouped_pipes[i]->stream->mall_stream_config.type == SUBVP_PHANTOM)
2291 			continue;
2292 
2293 		grouped_pipes[i]->stream->vblank_synchronized = false;
2294 	}
2295 
2296 	for (i = 1; i < group_size; i++) {
2297 		if (grouped_pipes[i]->stream && grouped_pipes[i]->stream->mall_stream_config.type == SUBVP_PHANTOM)
2298 			continue;
2299 
2300 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2301 				grouped_pipes[i]->stream_res.tg,
2302 				grouped_pipes[0]->stream_res.tg->inst);
2303 	}
2304 
2305 	DC_SYNC_INFO("Waiting for trigger\n");
2306 
2307 	/* Need to get only check 1 pipe for having reset as all the others are
2308 	 * synchronized. Look at last pipe programmed to reset.
2309 	 */
2310 
2311 	if (grouped_pipes[1]->stream && grouped_pipes[1]->stream->mall_stream_config.type != SUBVP_PHANTOM)
2312 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[1]->stream_res.tg);
2313 
2314 	for (i = 1; i < group_size; i++) {
2315 		if (grouped_pipes[i]->stream && grouped_pipes[i]->stream->mall_stream_config.type == SUBVP_PHANTOM)
2316 			continue;
2317 
2318 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2319 				grouped_pipes[i]->stream_res.tg);
2320 	}
2321 
2322 	for (i = 1; i < group_size; i++) {
2323 		if (grouped_pipes[i]->stream && grouped_pipes[i]->stream->mall_stream_config.type == SUBVP_PHANTOM)
2324 			continue;
2325 
2326 		opp = grouped_pipes[i]->stream_res.opp;
2327 		tg = grouped_pipes[i]->stream_res.tg;
2328 		tg->funcs->get_otg_active_size(tg, &width, &height);
2329 		if (opp->funcs->opp_program_dpg_dimensions)
2330 			opp->funcs->opp_program_dpg_dimensions(opp, width, height);
2331 	}
2332 
2333 	DC_SYNC_INFO("Sync complete\n");
2334 }
2335 
dcn10_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2336 void dcn10_enable_per_frame_crtc_position_reset(
2337 	struct dc *dc,
2338 	int group_size,
2339 	struct pipe_ctx *grouped_pipes[])
2340 {
2341 	struct dc_context *dc_ctx = dc->ctx;
2342 	int i;
2343 
2344 	DC_SYNC_INFO("Setting up\n");
2345 	for (i = 0; i < group_size; i++)
2346 		if (grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset)
2347 			grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2348 					grouped_pipes[i]->stream_res.tg,
2349 					0,
2350 					&grouped_pipes[i]->stream->triggered_crtc_reset);
2351 
2352 	DC_SYNC_INFO("Waiting for trigger\n");
2353 
2354 	for (i = 0; i < group_size; i++)
2355 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2356 
2357 	DC_SYNC_INFO("Multi-display sync is complete\n");
2358 }
2359 
mmhub_read_vm_system_aperture_settings(struct dcn10_hubp * hubp1,struct vm_system_aperture_param * apt,struct dce_hwseq * hws)2360 static void mmhub_read_vm_system_aperture_settings(struct dcn10_hubp *hubp1,
2361 		struct vm_system_aperture_param *apt,
2362 		struct dce_hwseq *hws)
2363 {
2364 	PHYSICAL_ADDRESS_LOC physical_page_number;
2365 	uint32_t logical_addr_low;
2366 	uint32_t logical_addr_high;
2367 
2368 	REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB,
2369 			PHYSICAL_PAGE_NUMBER_MSB, &physical_page_number.high_part);
2370 	REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB,
2371 			PHYSICAL_PAGE_NUMBER_LSB, &physical_page_number.low_part);
2372 
2373 	REG_GET(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
2374 			LOGICAL_ADDR, &logical_addr_low);
2375 
2376 	REG_GET(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
2377 			LOGICAL_ADDR, &logical_addr_high);
2378 
2379 	apt->sys_default.quad_part =  physical_page_number.quad_part << 12;
2380 	apt->sys_low.quad_part =  (int64_t)logical_addr_low << 18;
2381 	apt->sys_high.quad_part =  (int64_t)logical_addr_high << 18;
2382 }
2383 
2384 /* Temporary read settings, future will get values from kmd directly */
mmhub_read_vm_context0_settings(struct dcn10_hubp * hubp1,struct vm_context0_param * vm0,struct dce_hwseq * hws)2385 static void mmhub_read_vm_context0_settings(struct dcn10_hubp *hubp1,
2386 		struct vm_context0_param *vm0,
2387 		struct dce_hwseq *hws)
2388 {
2389 	PHYSICAL_ADDRESS_LOC fb_base;
2390 	PHYSICAL_ADDRESS_LOC fb_offset;
2391 	uint32_t fb_base_value;
2392 	uint32_t fb_offset_value;
2393 
2394 	REG_GET(DCHUBBUB_SDPIF_FB_BASE, SDPIF_FB_BASE, &fb_base_value);
2395 	REG_GET(DCHUBBUB_SDPIF_FB_OFFSET, SDPIF_FB_OFFSET, &fb_offset_value);
2396 
2397 	REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32,
2398 			PAGE_DIRECTORY_ENTRY_HI32, &vm0->pte_base.high_part);
2399 	REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32,
2400 			PAGE_DIRECTORY_ENTRY_LO32, &vm0->pte_base.low_part);
2401 
2402 	REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32,
2403 			LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_start.high_part);
2404 	REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32,
2405 			LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_start.low_part);
2406 
2407 	REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32,
2408 			LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_end.high_part);
2409 	REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32,
2410 			LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_end.low_part);
2411 
2412 	REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_HI32,
2413 			PHYSICAL_PAGE_ADDR_HI4, &vm0->fault_default.high_part);
2414 	REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_LO32,
2415 			PHYSICAL_PAGE_ADDR_LO32, &vm0->fault_default.low_part);
2416 
2417 	/*
2418 	 * The values in VM_CONTEXT0_PAGE_TABLE_BASE_ADDR is in UMA space.
2419 	 * Therefore we need to do
2420 	 * DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR = VM_CONTEXT0_PAGE_TABLE_BASE_ADDR
2421 	 * - DCHUBBUB_SDPIF_FB_OFFSET + DCHUBBUB_SDPIF_FB_BASE
2422 	 */
2423 	fb_base.quad_part = (uint64_t)fb_base_value << 24;
2424 	fb_offset.quad_part = (uint64_t)fb_offset_value << 24;
2425 	vm0->pte_base.quad_part += fb_base.quad_part;
2426 	vm0->pte_base.quad_part -= fb_offset.quad_part;
2427 }
2428 
2429 
dcn10_program_pte_vm(struct dce_hwseq * hws,struct hubp * hubp)2430 static void dcn10_program_pte_vm(struct dce_hwseq *hws, struct hubp *hubp)
2431 {
2432 	struct dcn10_hubp *hubp1 = TO_DCN10_HUBP(hubp);
2433 	struct vm_system_aperture_param apt = {0};
2434 	struct vm_context0_param vm0 = {0};
2435 
2436 	mmhub_read_vm_system_aperture_settings(hubp1, &apt, hws);
2437 	mmhub_read_vm_context0_settings(hubp1, &vm0, hws);
2438 
2439 	hubp->funcs->hubp_set_vm_system_aperture_settings(hubp, &apt);
2440 	hubp->funcs->hubp_set_vm_context0_settings(hubp, &vm0);
2441 }
2442 
dcn10_enable_plane(struct dc * dc,struct pipe_ctx * pipe_ctx,struct dc_state * context)2443 static void dcn10_enable_plane(
2444 	struct dc *dc,
2445 	struct pipe_ctx *pipe_ctx,
2446 	struct dc_state *context)
2447 {
2448 	struct dce_hwseq *hws = dc->hwseq;
2449 
2450 	if (dc->debug.sanity_checks) {
2451 		hws->funcs.verify_allow_pstate_change_high(dc);
2452 	}
2453 
2454 	undo_DEGVIDCN10_253_wa(dc);
2455 
2456 	power_on_plane_resources(dc->hwseq,
2457 		pipe_ctx->plane_res.hubp->inst);
2458 
2459 	/* enable DCFCLK current DCHUB */
2460 	pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
2461 
2462 	/* make sure OPP_PIPE_CLOCK_EN = 1 */
2463 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
2464 			pipe_ctx->stream_res.opp,
2465 			true);
2466 
2467 	if (dc->config.gpu_vm_support)
2468 		dcn10_program_pte_vm(hws, pipe_ctx->plane_res.hubp);
2469 
2470 	if (dc->debug.sanity_checks) {
2471 		hws->funcs.verify_allow_pstate_change_high(dc);
2472 	}
2473 
2474 	if (!pipe_ctx->top_pipe
2475 		&& pipe_ctx->plane_state
2476 		&& pipe_ctx->plane_state->flip_int_enabled
2477 		&& pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int)
2478 			pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int(pipe_ctx->plane_res.hubp);
2479 
2480 }
2481 
dcn10_program_gamut_remap(struct pipe_ctx * pipe_ctx)2482 void dcn10_program_gamut_remap(struct pipe_ctx *pipe_ctx)
2483 {
2484 	int i = 0;
2485 	struct dpp_grph_csc_adjustment adjust;
2486 	memset(&adjust, 0, sizeof(adjust));
2487 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2488 
2489 
2490 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2491 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2492 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2493 			adjust.temperature_matrix[i] =
2494 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2495 	} else if (pipe_ctx->plane_state &&
2496 		   pipe_ctx->plane_state->gamut_remap_matrix.enable_remap == true) {
2497 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2498 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2499 			adjust.temperature_matrix[i] =
2500 				pipe_ctx->plane_state->gamut_remap_matrix.matrix[i];
2501 	}
2502 
2503 	pipe_ctx->plane_res.dpp->funcs->dpp_set_gamut_remap(pipe_ctx->plane_res.dpp, &adjust);
2504 }
2505 
2506 
dcn10_is_rear_mpo_fix_required(struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace)2507 static bool dcn10_is_rear_mpo_fix_required(struct pipe_ctx *pipe_ctx, enum dc_color_space colorspace)
2508 {
2509 	if (pipe_ctx->plane_state && pipe_ctx->plane_state->layer_index > 0 && is_rgb_cspace(colorspace)) {
2510 		if (pipe_ctx->top_pipe) {
2511 			struct pipe_ctx *top = pipe_ctx->top_pipe;
2512 
2513 			while (top->top_pipe)
2514 				top = top->top_pipe; // Traverse to top pipe_ctx
2515 			if (top->plane_state && top->plane_state->layer_index == 0)
2516 				return true; // Front MPO plane not hidden
2517 		}
2518 	}
2519 	return false;
2520 }
2521 
dcn10_set_csc_adjustment_rgb_mpo_fix(struct pipe_ctx * pipe_ctx,uint16_t * matrix)2522 static void dcn10_set_csc_adjustment_rgb_mpo_fix(struct pipe_ctx *pipe_ctx, uint16_t *matrix)
2523 {
2524 	// Override rear plane RGB bias to fix MPO brightness
2525 	uint16_t rgb_bias = matrix[3];
2526 
2527 	matrix[3] = 0;
2528 	matrix[7] = 0;
2529 	matrix[11] = 0;
2530 	pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment(pipe_ctx->plane_res.dpp, matrix);
2531 	matrix[3] = rgb_bias;
2532 	matrix[7] = rgb_bias;
2533 	matrix[11] = rgb_bias;
2534 }
2535 
dcn10_program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2536 void dcn10_program_output_csc(struct dc *dc,
2537 		struct pipe_ctx *pipe_ctx,
2538 		enum dc_color_space colorspace,
2539 		uint16_t *matrix,
2540 		int opp_id)
2541 {
2542 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2543 		if (pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment != NULL) {
2544 
2545 			/* MPO is broken with RGB colorspaces when OCSC matrix
2546 			 * brightness offset >= 0 on DCN1 due to OCSC before MPC
2547 			 * Blending adds offsets from front + rear to rear plane
2548 			 *
2549 			 * Fix is to set RGB bias to 0 on rear plane, top plane
2550 			 * black value pixels add offset instead of rear + front
2551 			 */
2552 
2553 			int16_t rgb_bias = matrix[3];
2554 			// matrix[3/7/11] are all the same offset value
2555 
2556 			if (rgb_bias > 0 && dcn10_is_rear_mpo_fix_required(pipe_ctx, colorspace)) {
2557 				dcn10_set_csc_adjustment_rgb_mpo_fix(pipe_ctx, matrix);
2558 			} else {
2559 				pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment(pipe_ctx->plane_res.dpp, matrix);
2560 			}
2561 		}
2562 	} else {
2563 		if (pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_default != NULL)
2564 			pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_default(pipe_ctx->plane_res.dpp, colorspace);
2565 	}
2566 }
2567 
dcn10_update_dpp(struct dpp * dpp,struct dc_plane_state * plane_state)2568 static void dcn10_update_dpp(struct dpp *dpp, struct dc_plane_state *plane_state)
2569 {
2570 	struct dc_bias_and_scale bns_params = {0};
2571 
2572 	// program the input csc
2573 	dpp->funcs->dpp_setup(dpp,
2574 			plane_state->format,
2575 			EXPANSION_MODE_ZERO,
2576 			plane_state->input_csc_color_matrix,
2577 			plane_state->color_space,
2578 			NULL);
2579 
2580 	//set scale and bias registers
2581 	build_prescale_params(&bns_params, plane_state);
2582 	if (dpp->funcs->dpp_program_bias_and_scale)
2583 		dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params);
2584 }
2585 
dcn10_update_visual_confirm_color(struct dc * dc,struct pipe_ctx * pipe_ctx,int mpcc_id)2586 void dcn10_update_visual_confirm_color(struct dc *dc,
2587 		struct pipe_ctx *pipe_ctx,
2588 		int mpcc_id)
2589 {
2590 	struct mpc *mpc = dc->res_pool->mpc;
2591 
2592 	if (mpc->funcs->set_bg_color) {
2593 		memcpy(&pipe_ctx->plane_state->visual_confirm_color, &(pipe_ctx->visual_confirm_color), sizeof(struct tg_color));
2594 		mpc->funcs->set_bg_color(mpc, &(pipe_ctx->visual_confirm_color), mpcc_id);
2595 	}
2596 }
2597 
dcn10_update_mpcc(struct dc * dc,struct pipe_ctx * pipe_ctx)2598 void dcn10_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
2599 {
2600 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2601 	struct mpcc_blnd_cfg blnd_cfg = {0};
2602 	bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
2603 	int mpcc_id;
2604 	struct mpcc *new_mpcc;
2605 	struct mpc *mpc = dc->res_pool->mpc;
2606 	struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
2607 
2608 	blnd_cfg.overlap_only = false;
2609 	blnd_cfg.global_gain = 0xff;
2610 
2611 	if (per_pixel_alpha) {
2612 		/* DCN1.0 has output CM before MPC which seems to screw with
2613 		 * pre-multiplied alpha.
2614 		 */
2615 		blnd_cfg.pre_multiplied_alpha = (is_rgb_cspace(
2616 				pipe_ctx->stream->output_color_space)
2617 						&& pipe_ctx->plane_state->pre_multiplied_alpha);
2618 		if (pipe_ctx->plane_state->global_alpha) {
2619 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA_COMBINED_GLOBAL_GAIN;
2620 			blnd_cfg.global_gain = pipe_ctx->plane_state->global_alpha_value;
2621 		} else {
2622 			blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
2623 		}
2624 	} else {
2625 		blnd_cfg.pre_multiplied_alpha = false;
2626 		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
2627 	}
2628 
2629 	if (pipe_ctx->plane_state->global_alpha)
2630 		blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
2631 	else
2632 		blnd_cfg.global_alpha = 0xff;
2633 
2634 	/*
2635 	 * TODO: remove hack
2636 	 * Note: currently there is a bug in init_hw such that
2637 	 * on resume from hibernate, BIOS sets up MPCC0, and
2638 	 * we do mpcc_remove but the mpcc cannot go to idle
2639 	 * after remove. This cause us to pick mpcc1 here,
2640 	 * which causes a pstate hang for yet unknown reason.
2641 	 */
2642 	mpcc_id = hubp->inst;
2643 
2644 	/* If there is no full update, don't need to touch MPC tree*/
2645 	if (!pipe_ctx->plane_state->update_flags.bits.full_update) {
2646 		mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
2647 		dc->hwss.update_visual_confirm_color(dc, pipe_ctx, mpcc_id);
2648 		return;
2649 	}
2650 
2651 	/* check if this MPCC is already being used */
2652 	new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id);
2653 	/* remove MPCC if being used */
2654 	if (new_mpcc != NULL)
2655 		mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc);
2656 	else
2657 		if (dc->debug.sanity_checks)
2658 			mpc->funcs->assert_mpcc_idle_before_connect(
2659 					dc->res_pool->mpc, mpcc_id);
2660 
2661 	/* Call MPC to insert new plane */
2662 	new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
2663 			mpc_tree_params,
2664 			&blnd_cfg,
2665 			NULL,
2666 			NULL,
2667 			hubp->inst,
2668 			mpcc_id);
2669 	dc->hwss.update_visual_confirm_color(dc, pipe_ctx, mpcc_id);
2670 
2671 	ASSERT(new_mpcc != NULL);
2672 	hubp->opp_id = pipe_ctx->stream_res.opp->inst;
2673 	hubp->mpcc_id = mpcc_id;
2674 }
2675 
update_scaler(struct pipe_ctx * pipe_ctx)2676 static void update_scaler(struct pipe_ctx *pipe_ctx)
2677 {
2678 	bool per_pixel_alpha =
2679 			pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
2680 
2681 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = per_pixel_alpha;
2682 	pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
2683 	/* scaler configuration */
2684 	pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler(
2685 			pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data);
2686 }
2687 
dcn10_update_dchubp_dpp(struct dc * dc,struct pipe_ctx * pipe_ctx,struct dc_state * context)2688 static void dcn10_update_dchubp_dpp(
2689 	struct dc *dc,
2690 	struct pipe_ctx *pipe_ctx,
2691 	struct dc_state *context)
2692 {
2693 	struct dce_hwseq *hws = dc->hwseq;
2694 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
2695 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
2696 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2697 	struct plane_size size = plane_state->plane_size;
2698 	unsigned int compat_level = 0;
2699 	bool should_divided_by_2 = false;
2700 
2701 	/* depends on DML calculation, DPP clock value may change dynamically */
2702 	/* If request max dpp clk is lower than current dispclk, no need to
2703 	 * divided by 2
2704 	 */
2705 	if (plane_state->update_flags.bits.full_update) {
2706 
2707 		/* new calculated dispclk, dppclk are stored in
2708 		 * context->bw_ctx.bw.dcn.clk.dispclk_khz / dppclk_khz. current
2709 		 * dispclk, dppclk are from dc->clk_mgr->clks.dispclk_khz.
2710 		 * dcn10_validate_bandwidth compute new dispclk, dppclk.
2711 		 * dispclk will put in use after optimize_bandwidth when
2712 		 * ramp_up_dispclk_with_dpp is called.
2713 		 * there are two places for dppclk be put in use. One location
2714 		 * is the same as the location as dispclk. Another is within
2715 		 * update_dchubp_dpp which happens between pre_bandwidth and
2716 		 * optimize_bandwidth.
2717 		 * dppclk updated within update_dchubp_dpp will cause new
2718 		 * clock values of dispclk and dppclk not be in use at the same
2719 		 * time. when clocks are decreased, this may cause dppclk is
2720 		 * lower than previous configuration and let pipe stuck.
2721 		 * for example, eDP + external dp,  change resolution of DP from
2722 		 * 1920x1080x144hz to 1280x960x60hz.
2723 		 * before change: dispclk = 337889 dppclk = 337889
2724 		 * change mode, dcn10_validate_bandwidth calculate
2725 		 *                dispclk = 143122 dppclk = 143122
2726 		 * update_dchubp_dpp be executed before dispclk be updated,
2727 		 * dispclk = 337889, but dppclk use new value dispclk /2 =
2728 		 * 168944. this will cause pipe pstate warning issue.
2729 		 * solution: between pre_bandwidth and optimize_bandwidth, while
2730 		 * dispclk is going to be decreased, keep dppclk = dispclk
2731 		 **/
2732 		if (context->bw_ctx.bw.dcn.clk.dispclk_khz <
2733 				dc->clk_mgr->clks.dispclk_khz)
2734 			should_divided_by_2 = false;
2735 		else
2736 			should_divided_by_2 =
2737 					context->bw_ctx.bw.dcn.clk.dppclk_khz <=
2738 					dc->clk_mgr->clks.dispclk_khz / 2;
2739 
2740 		dpp->funcs->dpp_dppclk_control(
2741 				dpp,
2742 				should_divided_by_2,
2743 				true);
2744 
2745 		if (dc->res_pool->dccg)
2746 			dc->res_pool->dccg->funcs->update_dpp_dto(
2747 					dc->res_pool->dccg,
2748 					dpp->inst,
2749 					pipe_ctx->plane_res.bw.dppclk_khz);
2750 		else
2751 			dc->clk_mgr->clks.dppclk_khz = should_divided_by_2 ?
2752 						dc->clk_mgr->clks.dispclk_khz / 2 :
2753 							dc->clk_mgr->clks.dispclk_khz;
2754 	}
2755 
2756 	/* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG
2757 	 * VTG is within DCHUBBUB which is commond block share by each pipe HUBP.
2758 	 * VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG
2759 	 */
2760 	if (plane_state->update_flags.bits.full_update) {
2761 		hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst);
2762 
2763 		hubp->funcs->hubp_setup(
2764 			hubp,
2765 			&pipe_ctx->dlg_regs,
2766 			&pipe_ctx->ttu_regs,
2767 			&pipe_ctx->rq_regs,
2768 			&pipe_ctx->pipe_dlg_param);
2769 		hubp->funcs->hubp_setup_interdependent(
2770 			hubp,
2771 			&pipe_ctx->dlg_regs,
2772 			&pipe_ctx->ttu_regs);
2773 	}
2774 
2775 	size.surface_size = pipe_ctx->plane_res.scl_data.viewport;
2776 
2777 	if (plane_state->update_flags.bits.full_update ||
2778 		plane_state->update_flags.bits.bpp_change)
2779 		dcn10_update_dpp(dpp, plane_state);
2780 
2781 	if (plane_state->update_flags.bits.full_update ||
2782 		plane_state->update_flags.bits.per_pixel_alpha_change ||
2783 		plane_state->update_flags.bits.global_alpha_change)
2784 		hws->funcs.update_mpcc(dc, pipe_ctx);
2785 
2786 	if (plane_state->update_flags.bits.full_update ||
2787 		plane_state->update_flags.bits.per_pixel_alpha_change ||
2788 		plane_state->update_flags.bits.global_alpha_change ||
2789 		plane_state->update_flags.bits.scaling_change ||
2790 		plane_state->update_flags.bits.position_change) {
2791 		update_scaler(pipe_ctx);
2792 	}
2793 
2794 	if (plane_state->update_flags.bits.full_update ||
2795 		plane_state->update_flags.bits.scaling_change ||
2796 		plane_state->update_flags.bits.position_change) {
2797 		hubp->funcs->mem_program_viewport(
2798 			hubp,
2799 			&pipe_ctx->plane_res.scl_data.viewport,
2800 			&pipe_ctx->plane_res.scl_data.viewport_c);
2801 	}
2802 
2803 	if (pipe_ctx->stream->cursor_attributes.address.quad_part != 0) {
2804 		dc->hwss.set_cursor_position(pipe_ctx);
2805 		dc->hwss.set_cursor_attribute(pipe_ctx);
2806 
2807 		if (dc->hwss.set_cursor_sdr_white_level)
2808 			dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
2809 	}
2810 
2811 	if (plane_state->update_flags.bits.full_update) {
2812 		/*gamut remap*/
2813 		dc->hwss.program_gamut_remap(pipe_ctx);
2814 
2815 		dc->hwss.program_output_csc(dc,
2816 				pipe_ctx,
2817 				pipe_ctx->stream->output_color_space,
2818 				pipe_ctx->stream->csc_color_matrix.matrix,
2819 				pipe_ctx->stream_res.opp->inst);
2820 	}
2821 
2822 	if (plane_state->update_flags.bits.full_update ||
2823 		plane_state->update_flags.bits.pixel_format_change ||
2824 		plane_state->update_flags.bits.horizontal_mirror_change ||
2825 		plane_state->update_flags.bits.rotation_change ||
2826 		plane_state->update_flags.bits.swizzle_change ||
2827 		plane_state->update_flags.bits.dcc_change ||
2828 		plane_state->update_flags.bits.bpp_change ||
2829 		plane_state->update_flags.bits.scaling_change ||
2830 		plane_state->update_flags.bits.plane_size_change) {
2831 		hubp->funcs->hubp_program_surface_config(
2832 			hubp,
2833 			plane_state->format,
2834 			&plane_state->tiling_info,
2835 			&size,
2836 			plane_state->rotation,
2837 			&plane_state->dcc,
2838 			plane_state->horizontal_mirror,
2839 			compat_level);
2840 	}
2841 
2842 	hubp->power_gated = false;
2843 
2844 	hws->funcs.update_plane_addr(dc, pipe_ctx);
2845 
2846 	if (is_pipe_tree_visible(pipe_ctx))
2847 		hubp->funcs->set_blank(hubp, false);
2848 }
2849 
dcn10_blank_pixel_data(struct dc * dc,struct pipe_ctx * pipe_ctx,bool blank)2850 void dcn10_blank_pixel_data(
2851 		struct dc *dc,
2852 		struct pipe_ctx *pipe_ctx,
2853 		bool blank)
2854 {
2855 	enum dc_color_space color_space;
2856 	struct tg_color black_color = {0};
2857 	struct stream_resource *stream_res = &pipe_ctx->stream_res;
2858 	struct dc_stream_state *stream = pipe_ctx->stream;
2859 
2860 	/* program otg blank color */
2861 	color_space = stream->output_color_space;
2862 	color_space_to_black_color(dc, color_space, &black_color);
2863 
2864 	/*
2865 	 * The way 420 is packed, 2 channels carry Y component, 1 channel
2866 	 * alternate between Cb and Cr, so both channels need the pixel
2867 	 * value for Y
2868 	 */
2869 	if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
2870 		black_color.color_r_cr = black_color.color_g_y;
2871 
2872 
2873 	if (stream_res->tg->funcs->set_blank_color)
2874 		stream_res->tg->funcs->set_blank_color(
2875 				stream_res->tg,
2876 				&black_color);
2877 
2878 	if (!blank) {
2879 		if (stream_res->tg->funcs->set_blank)
2880 			stream_res->tg->funcs->set_blank(stream_res->tg, blank);
2881 		if (stream_res->abm) {
2882 			dc->hwss.set_pipe(pipe_ctx);
2883 			stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level);
2884 		}
2885 	} else {
2886 		dc->hwss.set_abm_immediate_disable(pipe_ctx);
2887 		if (stream_res->tg->funcs->set_blank) {
2888 			stream_res->tg->funcs->wait_for_state(stream_res->tg, CRTC_STATE_VBLANK);
2889 			stream_res->tg->funcs->set_blank(stream_res->tg, blank);
2890 		}
2891 	}
2892 }
2893 
dcn10_set_hdr_multiplier(struct pipe_ctx * pipe_ctx)2894 void dcn10_set_hdr_multiplier(struct pipe_ctx *pipe_ctx)
2895 {
2896 	struct fixed31_32 multiplier = pipe_ctx->plane_state->hdr_mult;
2897 	uint32_t hw_mult = 0x1f000; // 1.0 default multiplier
2898 	struct custom_float_format fmt;
2899 
2900 	fmt.exponenta_bits = 6;
2901 	fmt.mantissa_bits = 12;
2902 	fmt.sign = true;
2903 
2904 
2905 	if (!dc_fixpt_eq(multiplier, dc_fixpt_from_int(0))) // check != 0
2906 		convert_to_custom_float_format(multiplier, &fmt, &hw_mult);
2907 
2908 	pipe_ctx->plane_res.dpp->funcs->dpp_set_hdr_multiplier(
2909 			pipe_ctx->plane_res.dpp, hw_mult);
2910 }
2911 
dcn10_program_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx,struct dc_state * context)2912 void dcn10_program_pipe(
2913 		struct dc *dc,
2914 		struct pipe_ctx *pipe_ctx,
2915 		struct dc_state *context)
2916 {
2917 	struct dce_hwseq *hws = dc->hwseq;
2918 
2919 	if (pipe_ctx->top_pipe == NULL) {
2920 		bool blank = !is_pipe_tree_visible(pipe_ctx);
2921 
2922 		pipe_ctx->stream_res.tg->funcs->program_global_sync(
2923 				pipe_ctx->stream_res.tg,
2924 				calculate_vready_offset_for_group(pipe_ctx),
2925 				pipe_ctx->pipe_dlg_param.vstartup_start,
2926 				pipe_ctx->pipe_dlg_param.vupdate_offset,
2927 				pipe_ctx->pipe_dlg_param.vupdate_width);
2928 
2929 		pipe_ctx->stream_res.tg->funcs->set_vtg_params(
2930 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, true);
2931 
2932 		if (hws->funcs.setup_vupdate_interrupt)
2933 			hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
2934 
2935 		hws->funcs.blank_pixel_data(dc, pipe_ctx, blank);
2936 	}
2937 
2938 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2939 		dcn10_enable_plane(dc, pipe_ctx, context);
2940 
2941 	dcn10_update_dchubp_dpp(dc, pipe_ctx, context);
2942 
2943 	hws->funcs.set_hdr_multiplier(pipe_ctx);
2944 
2945 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2946 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2947 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2948 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2949 
2950 	/* dcn10_translate_regamma_to_hw_format takes 750us to finish
2951 	 * only do gamma programming for full update.
2952 	 * TODO: This can be further optimized/cleaned up
2953 	 * Always call this for now since it does memcmp inside before
2954 	 * doing heavy calculation and programming
2955 	 */
2956 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2957 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2958 }
2959 
dcn10_wait_for_pending_cleared(struct dc * dc,struct dc_state * context)2960 void dcn10_wait_for_pending_cleared(struct dc *dc,
2961 		struct dc_state *context)
2962 {
2963 		struct pipe_ctx *pipe_ctx;
2964 		struct timing_generator *tg;
2965 		int i;
2966 
2967 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2968 			pipe_ctx = &context->res_ctx.pipe_ctx[i];
2969 			tg = pipe_ctx->stream_res.tg;
2970 
2971 			/*
2972 			 * Only wait for top pipe's tg penindg bit
2973 			 * Also skip if pipe is disabled.
2974 			 */
2975 			if (pipe_ctx->top_pipe ||
2976 			    !pipe_ctx->stream || !pipe_ctx->plane_state ||
2977 			    !tg->funcs->is_tg_enabled(tg))
2978 				continue;
2979 
2980 			/*
2981 			 * Wait for VBLANK then VACTIVE to ensure we get VUPDATE.
2982 			 * For some reason waiting for OTG_UPDATE_PENDING cleared
2983 			 * seems to not trigger the update right away, and if we
2984 			 * lock again before VUPDATE then we don't get a separated
2985 			 * operation.
2986 			 */
2987 			pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VBLANK);
2988 			pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE);
2989 		}
2990 }
2991 
dcn10_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)2992 void dcn10_post_unlock_program_front_end(
2993 		struct dc *dc,
2994 		struct dc_state *context)
2995 {
2996 	int i;
2997 
2998 	DC_LOGGER_INIT(dc->ctx->logger);
2999 
3000 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3001 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3002 
3003 		if (!pipe_ctx->top_pipe &&
3004 			!pipe_ctx->prev_odm_pipe &&
3005 			pipe_ctx->stream) {
3006 			struct timing_generator *tg = pipe_ctx->stream_res.tg;
3007 
3008 			if (context->stream_status[i].plane_count == 0)
3009 				false_optc_underflow_wa(dc, pipe_ctx->stream, tg);
3010 		}
3011 	}
3012 
3013 	for (i = 0; i < dc->res_pool->pipe_count; i++)
3014 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable)
3015 			dc->hwss.disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
3016 
3017 	for (i = 0; i < dc->res_pool->pipe_count; i++)
3018 		if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable) {
3019 			dc->hwss.optimize_bandwidth(dc, context);
3020 			break;
3021 		}
3022 
3023 	if (dc->hwseq->wa.DEGVIDCN10_254)
3024 		hubbub1_wm_change_req_wa(dc->res_pool->hubbub);
3025 }
3026 
dcn10_stereo_hw_frame_pack_wa(struct dc * dc,struct dc_state * context)3027 static void dcn10_stereo_hw_frame_pack_wa(struct dc *dc, struct dc_state *context)
3028 {
3029 	uint8_t i;
3030 
3031 	for (i = 0; i < context->stream_count; i++) {
3032 		if (context->streams[i]->timing.timing_3d_format
3033 				== TIMING_3D_FORMAT_HW_FRAME_PACKING) {
3034 			/*
3035 			 * Disable stutter
3036 			 */
3037 			hubbub1_allow_self_refresh_control(dc->res_pool->hubbub, false);
3038 			break;
3039 		}
3040 	}
3041 }
3042 
dcn10_prepare_bandwidth(struct dc * dc,struct dc_state * context)3043 void dcn10_prepare_bandwidth(
3044 		struct dc *dc,
3045 		struct dc_state *context)
3046 {
3047 	struct dce_hwseq *hws = dc->hwseq;
3048 	struct hubbub *hubbub = dc->res_pool->hubbub;
3049 	int min_fclk_khz, min_dcfclk_khz, socclk_khz;
3050 
3051 	if (dc->debug.sanity_checks)
3052 		hws->funcs.verify_allow_pstate_change_high(dc);
3053 
3054 	if (context->stream_count == 0)
3055 		context->bw_ctx.bw.dcn.clk.phyclk_khz = 0;
3056 
3057 	dc->clk_mgr->funcs->update_clocks(
3058 			dc->clk_mgr,
3059 			context,
3060 			false);
3061 
3062 	dc->wm_optimized_required = hubbub->funcs->program_watermarks(hubbub,
3063 			&context->bw_ctx.bw.dcn.watermarks,
3064 			dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
3065 			true);
3066 	dcn10_stereo_hw_frame_pack_wa(dc, context);
3067 
3068 	if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE) {
3069 		DC_FP_START();
3070 		dcn_get_soc_clks(
3071 			dc, &min_fclk_khz, &min_dcfclk_khz, &socclk_khz);
3072 		DC_FP_END();
3073 		dcn_bw_notify_pplib_of_wm_ranges(
3074 			dc, min_fclk_khz, min_dcfclk_khz, socclk_khz);
3075 	}
3076 
3077 	if (dc->debug.sanity_checks)
3078 		hws->funcs.verify_allow_pstate_change_high(dc);
3079 }
3080 
dcn10_optimize_bandwidth(struct dc * dc,struct dc_state * context)3081 void dcn10_optimize_bandwidth(
3082 		struct dc *dc,
3083 		struct dc_state *context)
3084 {
3085 	struct dce_hwseq *hws = dc->hwseq;
3086 	struct hubbub *hubbub = dc->res_pool->hubbub;
3087 	int min_fclk_khz, min_dcfclk_khz, socclk_khz;
3088 
3089 	if (dc->debug.sanity_checks)
3090 		hws->funcs.verify_allow_pstate_change_high(dc);
3091 
3092 	if (context->stream_count == 0)
3093 		context->bw_ctx.bw.dcn.clk.phyclk_khz = 0;
3094 
3095 	dc->clk_mgr->funcs->update_clocks(
3096 			dc->clk_mgr,
3097 			context,
3098 			true);
3099 
3100 	hubbub->funcs->program_watermarks(hubbub,
3101 			&context->bw_ctx.bw.dcn.watermarks,
3102 			dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
3103 			true);
3104 
3105 	dcn10_stereo_hw_frame_pack_wa(dc, context);
3106 
3107 	if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE) {
3108 		DC_FP_START();
3109 		dcn_get_soc_clks(
3110 			dc, &min_fclk_khz, &min_dcfclk_khz, &socclk_khz);
3111 		DC_FP_END();
3112 		dcn_bw_notify_pplib_of_wm_ranges(
3113 			dc, min_fclk_khz, min_dcfclk_khz, socclk_khz);
3114 	}
3115 
3116 	if (dc->debug.sanity_checks)
3117 		hws->funcs.verify_allow_pstate_change_high(dc);
3118 }
3119 
dcn10_set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)3120 void dcn10_set_drr(struct pipe_ctx **pipe_ctx,
3121 		int num_pipes, struct dc_crtc_timing_adjust adjust)
3122 {
3123 	int i = 0;
3124 	struct drr_params params = {0};
3125 	// DRR set trigger event mapped to OTG_TRIG_A (bit 11) for manual control flow
3126 	unsigned int event_triggers = 0x800;
3127 	// Note DRR trigger events are generated regardless of whether num frames met.
3128 	unsigned int num_frames = 2;
3129 
3130 	params.vertical_total_max = adjust.v_total_max;
3131 	params.vertical_total_min = adjust.v_total_min;
3132 	params.vertical_total_mid = adjust.v_total_mid;
3133 	params.vertical_total_mid_frame_num = adjust.v_total_mid_frame_num;
3134 	/* TODO: If multiple pipes are to be supported, you need
3135 	 * some GSL stuff. Static screen triggers may be programmed differently
3136 	 * as well.
3137 	 */
3138 	for (i = 0; i < num_pipes; i++) {
3139 		if ((pipe_ctx[i]->stream_res.tg != NULL) && pipe_ctx[i]->stream_res.tg->funcs) {
3140 			if (pipe_ctx[i]->stream_res.tg->funcs->set_drr)
3141 				pipe_ctx[i]->stream_res.tg->funcs->set_drr(
3142 					pipe_ctx[i]->stream_res.tg, &params);
3143 			if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
3144 				if (pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control)
3145 					pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
3146 						pipe_ctx[i]->stream_res.tg,
3147 						event_triggers, num_frames);
3148 		}
3149 	}
3150 }
3151 
dcn10_get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)3152 void dcn10_get_position(struct pipe_ctx **pipe_ctx,
3153 		int num_pipes,
3154 		struct crtc_position *position)
3155 {
3156 	int i = 0;
3157 
3158 	/* TODO: handle pipes > 1
3159 	 */
3160 	for (i = 0; i < num_pipes; i++)
3161 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
3162 }
3163 
dcn10_set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)3164 void dcn10_set_static_screen_control(struct pipe_ctx **pipe_ctx,
3165 		int num_pipes, const struct dc_static_screen_params *params)
3166 {
3167 	unsigned int i;
3168 	unsigned int triggers = 0;
3169 
3170 	if (params->triggers.surface_update)
3171 		triggers |= 0x80;
3172 	if (params->triggers.cursor_update)
3173 		triggers |= 0x2;
3174 	if (params->triggers.force_trigger)
3175 		triggers |= 0x1;
3176 
3177 	for (i = 0; i < num_pipes; i++)
3178 		pipe_ctx[i]->stream_res.tg->funcs->
3179 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
3180 					triggers, params->num_frames);
3181 }
3182 
dcn10_config_stereo_parameters(struct dc_stream_state * stream,struct crtc_stereo_flags * flags)3183 static void dcn10_config_stereo_parameters(
3184 		struct dc_stream_state *stream, struct crtc_stereo_flags *flags)
3185 {
3186 	enum view_3d_format view_format = stream->view_format;
3187 	enum dc_timing_3d_format timing_3d_format =\
3188 			stream->timing.timing_3d_format;
3189 	bool non_stereo_timing = false;
3190 
3191 	if (timing_3d_format == TIMING_3D_FORMAT_NONE ||
3192 		timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE ||
3193 		timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM)
3194 		non_stereo_timing = true;
3195 
3196 	if (non_stereo_timing == false &&
3197 		view_format == VIEW_3D_FORMAT_FRAME_SEQUENTIAL) {
3198 
3199 		flags->PROGRAM_STEREO         = 1;
3200 		flags->PROGRAM_POLARITY       = 1;
3201 		if (timing_3d_format == TIMING_3D_FORMAT_FRAME_ALTERNATE ||
3202 			timing_3d_format == TIMING_3D_FORMAT_INBAND_FA ||
3203 			timing_3d_format == TIMING_3D_FORMAT_DP_HDMI_INBAND_FA ||
3204 			timing_3d_format == TIMING_3D_FORMAT_SIDEBAND_FA) {
3205 
3206 			if (stream->link && stream->link->ddc) {
3207 				enum display_dongle_type dongle = \
3208 						stream->link->ddc->dongle_type;
3209 
3210 				if (dongle == DISPLAY_DONGLE_DP_VGA_CONVERTER ||
3211 					dongle == DISPLAY_DONGLE_DP_DVI_CONVERTER ||
3212 					dongle == DISPLAY_DONGLE_DP_HDMI_CONVERTER)
3213 					flags->DISABLE_STEREO_DP_SYNC = 1;
3214 			}
3215 		}
3216 		flags->RIGHT_EYE_POLARITY =\
3217 				stream->timing.flags.RIGHT_EYE_3D_POLARITY;
3218 		if (timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
3219 			flags->FRAME_PACKED = 1;
3220 	}
3221 
3222 	return;
3223 }
3224 
dcn10_setup_stereo(struct pipe_ctx * pipe_ctx,struct dc * dc)3225 void dcn10_setup_stereo(struct pipe_ctx *pipe_ctx, struct dc *dc)
3226 {
3227 	struct crtc_stereo_flags flags = { 0 };
3228 	struct dc_stream_state *stream = pipe_ctx->stream;
3229 
3230 	dcn10_config_stereo_parameters(stream, &flags);
3231 
3232 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_SIDEBAND_FA) {
3233 		if (!dc_set_generic_gpio_for_stereo(true, dc->ctx->gpio_service))
3234 			dc_set_generic_gpio_for_stereo(false, dc->ctx->gpio_service);
3235 	} else {
3236 		dc_set_generic_gpio_for_stereo(false, dc->ctx->gpio_service);
3237 	}
3238 
3239 	pipe_ctx->stream_res.opp->funcs->opp_program_stereo(
3240 		pipe_ctx->stream_res.opp,
3241 		flags.PROGRAM_STEREO == 1,
3242 		&stream->timing);
3243 
3244 	pipe_ctx->stream_res.tg->funcs->program_stereo(
3245 		pipe_ctx->stream_res.tg,
3246 		&stream->timing,
3247 		&flags);
3248 
3249 	return;
3250 }
3251 
get_hubp_by_inst(struct resource_pool * res_pool,int mpcc_inst)3252 static struct hubp *get_hubp_by_inst(struct resource_pool *res_pool, int mpcc_inst)
3253 {
3254 	int i;
3255 
3256 	for (i = 0; i < res_pool->pipe_count; i++) {
3257 		if (res_pool->hubps[i]->inst == mpcc_inst)
3258 			return res_pool->hubps[i];
3259 	}
3260 	ASSERT(false);
3261 	return NULL;
3262 }
3263 
dcn10_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)3264 void dcn10_wait_for_mpcc_disconnect(
3265 		struct dc *dc,
3266 		struct resource_pool *res_pool,
3267 		struct pipe_ctx *pipe_ctx)
3268 {
3269 	struct dce_hwseq *hws = dc->hwseq;
3270 	int mpcc_inst;
3271 
3272 	if (dc->debug.sanity_checks) {
3273 		hws->funcs.verify_allow_pstate_change_high(dc);
3274 	}
3275 
3276 	if (!pipe_ctx->stream_res.opp)
3277 		return;
3278 
3279 	for (mpcc_inst = 0; mpcc_inst < MAX_PIPES; mpcc_inst++) {
3280 		if (pipe_ctx->stream_res.opp->mpcc_disconnect_pending[mpcc_inst]) {
3281 			struct hubp *hubp = get_hubp_by_inst(res_pool, mpcc_inst);
3282 
3283 			if (pipe_ctx->stream_res.tg &&
3284 				pipe_ctx->stream_res.tg->funcs->is_tg_enabled(pipe_ctx->stream_res.tg))
3285 				res_pool->mpc->funcs->wait_for_idle(res_pool->mpc, mpcc_inst);
3286 			pipe_ctx->stream_res.opp->mpcc_disconnect_pending[mpcc_inst] = false;
3287 			hubp->funcs->set_blank(hubp, true);
3288 		}
3289 	}
3290 
3291 	if (dc->debug.sanity_checks) {
3292 		hws->funcs.verify_allow_pstate_change_high(dc);
3293 	}
3294 
3295 }
3296 
dcn10_dummy_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)3297 bool dcn10_dummy_display_power_gating(
3298 	struct dc *dc,
3299 	uint8_t controller_id,
3300 	struct dc_bios *dcb,
3301 	enum pipe_gating_control power_gating)
3302 {
3303 	return true;
3304 }
3305 
dcn10_update_pending_status(struct pipe_ctx * pipe_ctx)3306 void dcn10_update_pending_status(struct pipe_ctx *pipe_ctx)
3307 {
3308 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
3309 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
3310 	bool flip_pending;
3311 	struct dc *dc = pipe_ctx->stream->ctx->dc;
3312 
3313 	if (plane_state == NULL)
3314 		return;
3315 
3316 	flip_pending = pipe_ctx->plane_res.hubp->funcs->hubp_is_flip_pending(
3317 					pipe_ctx->plane_res.hubp);
3318 
3319 	plane_state->status.is_flip_pending = plane_state->status.is_flip_pending || flip_pending;
3320 
3321 	if (!flip_pending)
3322 		plane_state->status.current_address = plane_state->status.requested_address;
3323 
3324 	if (plane_state->status.current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
3325 			tg->funcs->is_stereo_left_eye) {
3326 		plane_state->status.is_right_eye =
3327 				!tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
3328 	}
3329 
3330 	if (dc->hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied) {
3331 		struct dce_hwseq *hwseq = dc->hwseq;
3332 		struct timing_generator *tg = dc->res_pool->timing_generators[0];
3333 		unsigned int cur_frame = tg->funcs->get_frame_count(tg);
3334 
3335 		if (cur_frame != hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame) {
3336 			struct hubbub *hubbub = dc->res_pool->hubbub;
3337 
3338 			hubbub->funcs->allow_self_refresh_control(hubbub, !dc->debug.disable_stutter);
3339 			hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = false;
3340 		}
3341 	}
3342 }
3343 
dcn10_update_dchub(struct dce_hwseq * hws,struct dchub_init_data * dh_data)3344 void dcn10_update_dchub(struct dce_hwseq *hws, struct dchub_init_data *dh_data)
3345 {
3346 	struct hubbub *hubbub = hws->ctx->dc->res_pool->hubbub;
3347 
3348 	/* In DCN, this programming sequence is owned by the hubbub */
3349 	hubbub->funcs->update_dchub(hubbub, dh_data);
3350 }
3351 
dcn10_can_pipe_disable_cursor(struct pipe_ctx * pipe_ctx)3352 static bool dcn10_can_pipe_disable_cursor(struct pipe_ctx *pipe_ctx)
3353 {
3354 	struct pipe_ctx *test_pipe, *split_pipe;
3355 	const struct scaler_data *scl_data = &pipe_ctx->plane_res.scl_data;
3356 	struct rect r1 = scl_data->recout, r2, r2_half;
3357 	int r1_r = r1.x + r1.width, r1_b = r1.y + r1.height, r2_r, r2_b;
3358 	int cur_layer = pipe_ctx->plane_state->layer_index;
3359 
3360 	/**
3361 	 * Disable the cursor if there's another pipe above this with a
3362 	 * plane that contains this pipe's viewport to prevent double cursor
3363 	 * and incorrect scaling artifacts.
3364 	 */
3365 	for (test_pipe = pipe_ctx->top_pipe; test_pipe;
3366 	     test_pipe = test_pipe->top_pipe) {
3367 		// Skip invisible layer and pipe-split plane on same layer
3368 		if (!test_pipe->plane_state ||
3369 		    !test_pipe->plane_state->visible ||
3370 		    test_pipe->plane_state->layer_index == cur_layer)
3371 			continue;
3372 
3373 		r2 = test_pipe->plane_res.scl_data.recout;
3374 		r2_r = r2.x + r2.width;
3375 		r2_b = r2.y + r2.height;
3376 		split_pipe = test_pipe;
3377 
3378 		/**
3379 		 * There is another half plane on same layer because of
3380 		 * pipe-split, merge together per same height.
3381 		 */
3382 		for (split_pipe = pipe_ctx->top_pipe; split_pipe;
3383 		     split_pipe = split_pipe->top_pipe)
3384 			if (split_pipe->plane_state->layer_index == test_pipe->plane_state->layer_index) {
3385 				r2_half = split_pipe->plane_res.scl_data.recout;
3386 				r2.x = (r2_half.x < r2.x) ? r2_half.x : r2.x;
3387 				r2.width = r2.width + r2_half.width;
3388 				r2_r = r2.x + r2.width;
3389 				break;
3390 			}
3391 
3392 		if (r1.x >= r2.x && r1.y >= r2.y && r1_r <= r2_r && r1_b <= r2_b)
3393 			return true;
3394 	}
3395 
3396 	return false;
3397 }
3398 
dcn10_set_cursor_position(struct pipe_ctx * pipe_ctx)3399 void dcn10_set_cursor_position(struct pipe_ctx *pipe_ctx)
3400 {
3401 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
3402 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
3403 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
3404 	struct dc_cursor_mi_param param = {
3405 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
3406 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.dchub_ref_clock_inKhz,
3407 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
3408 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
3409 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
3410 		.rotation = pipe_ctx->plane_state->rotation,
3411 		.mirror = pipe_ctx->plane_state->horizontal_mirror,
3412 		.stream = pipe_ctx->stream,
3413 	};
3414 	bool pipe_split_on = false;
3415 	bool odm_combine_on = (pipe_ctx->next_odm_pipe != NULL) ||
3416 		(pipe_ctx->prev_odm_pipe != NULL);
3417 
3418 	int x_plane = pipe_ctx->plane_state->dst_rect.x;
3419 	int y_plane = pipe_ctx->plane_state->dst_rect.y;
3420 	int x_pos = pos_cpy.x;
3421 	int y_pos = pos_cpy.y;
3422 
3423 	if ((pipe_ctx->top_pipe != NULL) || (pipe_ctx->bottom_pipe != NULL)) {
3424 		if ((pipe_ctx->plane_state->src_rect.width != pipe_ctx->plane_res.scl_data.viewport.width) ||
3425 			(pipe_ctx->plane_state->src_rect.height != pipe_ctx->plane_res.scl_data.viewport.height)) {
3426 			pipe_split_on = true;
3427 		}
3428 	}
3429 
3430 	/**
3431 	 * DC cursor is stream space, HW cursor is plane space and drawn
3432 	 * as part of the framebuffer.
3433 	 *
3434 	 * Cursor position can't be negative, but hotspot can be used to
3435 	 * shift cursor out of the plane bounds. Hotspot must be smaller
3436 	 * than the cursor size.
3437 	 */
3438 
3439 	/**
3440 	 * Translate cursor from stream space to plane space.
3441 	 *
3442 	 * If the cursor is scaled then we need to scale the position
3443 	 * to be in the approximately correct place. We can't do anything
3444 	 * about the actual size being incorrect, that's a limitation of
3445 	 * the hardware.
3446 	 */
3447 	if (param.rotation == ROTATION_ANGLE_90 || param.rotation == ROTATION_ANGLE_270) {
3448 		x_pos = (x_pos - x_plane) * pipe_ctx->plane_state->src_rect.height /
3449 				pipe_ctx->plane_state->dst_rect.width;
3450 		y_pos = (y_pos - y_plane) * pipe_ctx->plane_state->src_rect.width /
3451 				pipe_ctx->plane_state->dst_rect.height;
3452 	} else {
3453 		x_pos = (x_pos - x_plane) * pipe_ctx->plane_state->src_rect.width /
3454 				pipe_ctx->plane_state->dst_rect.width;
3455 		y_pos = (y_pos - y_plane) * pipe_ctx->plane_state->src_rect.height /
3456 				pipe_ctx->plane_state->dst_rect.height;
3457 	}
3458 
3459 	/**
3460 	 * If the cursor's source viewport is clipped then we need to
3461 	 * translate the cursor to appear in the correct position on
3462 	 * the screen.
3463 	 *
3464 	 * This translation isn't affected by scaling so it needs to be
3465 	 * done *after* we adjust the position for the scale factor.
3466 	 *
3467 	 * This is only done by opt-in for now since there are still
3468 	 * some usecases like tiled display that might enable the
3469 	 * cursor on both streams while expecting dc to clip it.
3470 	 */
3471 	if (pos_cpy.translate_by_source) {
3472 		x_pos += pipe_ctx->plane_state->src_rect.x;
3473 		y_pos += pipe_ctx->plane_state->src_rect.y;
3474 	}
3475 
3476 	/**
3477 	 * If the position is negative then we need to add to the hotspot
3478 	 * to shift the cursor outside the plane.
3479 	 */
3480 
3481 	if (x_pos < 0) {
3482 		pos_cpy.x_hotspot -= x_pos;
3483 		x_pos = 0;
3484 	}
3485 
3486 	if (y_pos < 0) {
3487 		pos_cpy.y_hotspot -= y_pos;
3488 		y_pos = 0;
3489 	}
3490 
3491 	pos_cpy.x = (uint32_t)x_pos;
3492 	pos_cpy.y = (uint32_t)y_pos;
3493 
3494 	if (pipe_ctx->plane_state->address.type
3495 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
3496 		pos_cpy.enable = false;
3497 
3498 	if (pos_cpy.enable && dcn10_can_pipe_disable_cursor(pipe_ctx))
3499 		pos_cpy.enable = false;
3500 
3501 
3502 	if (param.rotation == ROTATION_ANGLE_0) {
3503 		int viewport_width =
3504 			pipe_ctx->plane_res.scl_data.viewport.width;
3505 		int viewport_x =
3506 			pipe_ctx->plane_res.scl_data.viewport.x;
3507 
3508 		if (param.mirror) {
3509 			if (pipe_split_on || odm_combine_on) {
3510 				if (pos_cpy.x >= viewport_width + viewport_x) {
3511 					pos_cpy.x = 2 * viewport_width
3512 							- pos_cpy.x + 2 * viewport_x;
3513 				} else {
3514 					uint32_t temp_x = pos_cpy.x;
3515 
3516 					pos_cpy.x = 2 * viewport_x - pos_cpy.x;
3517 					if (temp_x >= viewport_x +
3518 						(int)hubp->curs_attr.width || pos_cpy.x
3519 						<= (int)hubp->curs_attr.width +
3520 						pipe_ctx->plane_state->src_rect.x) {
3521 						pos_cpy.x = temp_x + viewport_width;
3522 					}
3523 				}
3524 			} else {
3525 				pos_cpy.x = viewport_width - pos_cpy.x + 2 * viewport_x;
3526 			}
3527 		}
3528 	}
3529 	// Swap axis and mirror horizontally
3530 	else if (param.rotation == ROTATION_ANGLE_90) {
3531 		uint32_t temp_x = pos_cpy.x;
3532 
3533 		pos_cpy.x = pipe_ctx->plane_res.scl_data.viewport.width -
3534 				(pos_cpy.y - pipe_ctx->plane_res.scl_data.viewport.x) + pipe_ctx->plane_res.scl_data.viewport.x;
3535 		pos_cpy.y = temp_x;
3536 	}
3537 	// Swap axis and mirror vertically
3538 	else if (param.rotation == ROTATION_ANGLE_270) {
3539 		uint32_t temp_y = pos_cpy.y;
3540 		int viewport_height =
3541 			pipe_ctx->plane_res.scl_data.viewport.height;
3542 		int viewport_y =
3543 			pipe_ctx->plane_res.scl_data.viewport.y;
3544 
3545 		/**
3546 		 * Display groups that are 1xnY, have pos_cpy.x > 2 * viewport.height
3547 		 * For pipe split cases:
3548 		 * - apply offset of viewport.y to normalize pos_cpy.x
3549 		 * - calculate the pos_cpy.y as before
3550 		 * - shift pos_cpy.y back by same offset to get final value
3551 		 * - since we iterate through both pipes, use the lower
3552 		 *   viewport.y for offset
3553 		 * For non pipe split cases, use the same calculation for
3554 		 *  pos_cpy.y as the 180 degree rotation case below,
3555 		 *  but use pos_cpy.x as our input because we are rotating
3556 		 *  270 degrees
3557 		 */
3558 		if (pipe_split_on || odm_combine_on) {
3559 			int pos_cpy_x_offset;
3560 			int other_pipe_viewport_y;
3561 
3562 			if (pipe_split_on) {
3563 				if (pipe_ctx->bottom_pipe) {
3564 					other_pipe_viewport_y =
3565 						pipe_ctx->bottom_pipe->plane_res.scl_data.viewport.y;
3566 				} else {
3567 					other_pipe_viewport_y =
3568 						pipe_ctx->top_pipe->plane_res.scl_data.viewport.y;
3569 				}
3570 			} else {
3571 				if (pipe_ctx->next_odm_pipe) {
3572 					other_pipe_viewport_y =
3573 						pipe_ctx->next_odm_pipe->plane_res.scl_data.viewport.y;
3574 				} else {
3575 					other_pipe_viewport_y =
3576 						pipe_ctx->prev_odm_pipe->plane_res.scl_data.viewport.y;
3577 				}
3578 			}
3579 			pos_cpy_x_offset = (viewport_y > other_pipe_viewport_y) ?
3580 				other_pipe_viewport_y : viewport_y;
3581 			pos_cpy.x -= pos_cpy_x_offset;
3582 			if (pos_cpy.x > viewport_height) {
3583 				pos_cpy.x = pos_cpy.x - viewport_height;
3584 				pos_cpy.y = viewport_height - pos_cpy.x;
3585 			} else {
3586 				pos_cpy.y = 2 * viewport_height - pos_cpy.x;
3587 			}
3588 			pos_cpy.y += pos_cpy_x_offset;
3589 		} else {
3590 			pos_cpy.y = (2 * viewport_y) + viewport_height - pos_cpy.x;
3591 		}
3592 		pos_cpy.x = temp_y;
3593 	}
3594 	// Mirror horizontally and vertically
3595 	else if (param.rotation == ROTATION_ANGLE_180) {
3596 		int viewport_width =
3597 			pipe_ctx->plane_res.scl_data.viewport.width;
3598 		int viewport_x =
3599 			pipe_ctx->plane_res.scl_data.viewport.x;
3600 
3601 		if (!param.mirror) {
3602 			if (pipe_split_on || odm_combine_on) {
3603 				if (pos_cpy.x >= viewport_width + viewport_x) {
3604 					pos_cpy.x = 2 * viewport_width
3605 							- pos_cpy.x + 2 * viewport_x;
3606 				} else {
3607 					uint32_t temp_x = pos_cpy.x;
3608 
3609 					pos_cpy.x = 2 * viewport_x - pos_cpy.x;
3610 					if (temp_x >= viewport_x +
3611 						(int)hubp->curs_attr.width || pos_cpy.x
3612 						<= (int)hubp->curs_attr.width +
3613 						pipe_ctx->plane_state->src_rect.x) {
3614 						pos_cpy.x = 2 * viewport_width - temp_x;
3615 					}
3616 				}
3617 			} else {
3618 				pos_cpy.x = viewport_width - pos_cpy.x + 2 * viewport_x;
3619 			}
3620 		}
3621 
3622 		/**
3623 		 * Display groups that are 1xnY, have pos_cpy.y > viewport.height
3624 		 * Calculation:
3625 		 *   delta_from_bottom = viewport.y + viewport.height - pos_cpy.y
3626 		 *   pos_cpy.y_new = viewport.y + delta_from_bottom
3627 		 * Simplify it as:
3628 		 *   pos_cpy.y = viewport.y * 2 + viewport.height - pos_cpy.y
3629 		 */
3630 		pos_cpy.y = (2 * pipe_ctx->plane_res.scl_data.viewport.y) +
3631 			pipe_ctx->plane_res.scl_data.viewport.height - pos_cpy.y;
3632 	}
3633 
3634 	hubp->funcs->set_cursor_position(hubp, &pos_cpy, &param);
3635 	dpp->funcs->set_cursor_position(dpp, &pos_cpy, &param, hubp->curs_attr.width, hubp->curs_attr.height);
3636 }
3637 
dcn10_set_cursor_attribute(struct pipe_ctx * pipe_ctx)3638 void dcn10_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
3639 {
3640 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
3641 
3642 	pipe_ctx->plane_res.hubp->funcs->set_cursor_attributes(
3643 			pipe_ctx->plane_res.hubp, attributes);
3644 	pipe_ctx->plane_res.dpp->funcs->set_cursor_attributes(
3645 		pipe_ctx->plane_res.dpp, attributes);
3646 }
3647 
dcn10_set_cursor_sdr_white_level(struct pipe_ctx * pipe_ctx)3648 void dcn10_set_cursor_sdr_white_level(struct pipe_ctx *pipe_ctx)
3649 {
3650 	uint32_t sdr_white_level = pipe_ctx->stream->cursor_attributes.sdr_white_level;
3651 	struct fixed31_32 multiplier;
3652 	struct dpp_cursor_attributes opt_attr = { 0 };
3653 	uint32_t hw_scale = 0x3c00; // 1.0 default multiplier
3654 	struct custom_float_format fmt;
3655 
3656 	if (!pipe_ctx->plane_res.dpp->funcs->set_optional_cursor_attributes)
3657 		return;
3658 
3659 	fmt.exponenta_bits = 5;
3660 	fmt.mantissa_bits = 10;
3661 	fmt.sign = true;
3662 
3663 	if (sdr_white_level > 80) {
3664 		multiplier = dc_fixpt_from_fraction(sdr_white_level, 80);
3665 		convert_to_custom_float_format(multiplier, &fmt, &hw_scale);
3666 	}
3667 
3668 	opt_attr.scale = hw_scale;
3669 	opt_attr.bias = 0;
3670 
3671 	pipe_ctx->plane_res.dpp->funcs->set_optional_cursor_attributes(
3672 			pipe_ctx->plane_res.dpp, &opt_attr);
3673 }
3674 
3675 /*
3676  * apply_front_porch_workaround  TODO FPGA still need?
3677  *
3678  * This is a workaround for a bug that has existed since R5xx and has not been
3679  * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
3680  */
apply_front_porch_workaround(struct dc_crtc_timing * timing)3681 static void apply_front_porch_workaround(
3682 	struct dc_crtc_timing *timing)
3683 {
3684 	if (timing->flags.INTERLACE == 1) {
3685 		if (timing->v_front_porch < 2)
3686 			timing->v_front_porch = 2;
3687 	} else {
3688 		if (timing->v_front_porch < 1)
3689 			timing->v_front_porch = 1;
3690 	}
3691 }
3692 
dcn10_get_vupdate_offset_from_vsync(struct pipe_ctx * pipe_ctx)3693 int dcn10_get_vupdate_offset_from_vsync(struct pipe_ctx *pipe_ctx)
3694 {
3695 	const struct dc_crtc_timing *dc_crtc_timing = &pipe_ctx->stream->timing;
3696 	struct dc_crtc_timing patched_crtc_timing;
3697 	int vesa_sync_start;
3698 	int asic_blank_end;
3699 	int interlace_factor;
3700 
3701 	patched_crtc_timing = *dc_crtc_timing;
3702 	apply_front_porch_workaround(&patched_crtc_timing);
3703 
3704 	interlace_factor = patched_crtc_timing.flags.INTERLACE ? 2 : 1;
3705 
3706 	vesa_sync_start = patched_crtc_timing.v_addressable +
3707 			patched_crtc_timing.v_border_bottom +
3708 			patched_crtc_timing.v_front_porch;
3709 
3710 	asic_blank_end = (patched_crtc_timing.v_total -
3711 			vesa_sync_start -
3712 			patched_crtc_timing.v_border_top)
3713 			* interlace_factor;
3714 
3715 	return asic_blank_end -
3716 			pipe_ctx->pipe_dlg_param.vstartup_start + 1;
3717 }
3718 
dcn10_calc_vupdate_position(struct dc * dc,struct pipe_ctx * pipe_ctx,uint32_t * start_line,uint32_t * end_line)3719 void dcn10_calc_vupdate_position(
3720 		struct dc *dc,
3721 		struct pipe_ctx *pipe_ctx,
3722 		uint32_t *start_line,
3723 		uint32_t *end_line)
3724 {
3725 	const struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
3726 	int vupdate_pos = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
3727 
3728 	if (vupdate_pos >= 0)
3729 		*start_line = vupdate_pos - ((vupdate_pos / timing->v_total) * timing->v_total);
3730 	else
3731 		*start_line = vupdate_pos + ((-vupdate_pos / timing->v_total) + 1) * timing->v_total - 1;
3732 	*end_line = (*start_line + 2) % timing->v_total;
3733 }
3734 
dcn10_cal_vline_position(struct dc * dc,struct pipe_ctx * pipe_ctx,uint32_t * start_line,uint32_t * end_line)3735 static void dcn10_cal_vline_position(
3736 		struct dc *dc,
3737 		struct pipe_ctx *pipe_ctx,
3738 		uint32_t *start_line,
3739 		uint32_t *end_line)
3740 {
3741 	const struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
3742 	int vline_pos = pipe_ctx->stream->periodic_interrupt.lines_offset;
3743 
3744 	if (pipe_ctx->stream->periodic_interrupt.ref_point == START_V_UPDATE) {
3745 		if (vline_pos > 0)
3746 			vline_pos--;
3747 		else if (vline_pos < 0)
3748 			vline_pos++;
3749 
3750 		vline_pos += dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
3751 		if (vline_pos >= 0)
3752 			*start_line = vline_pos - ((vline_pos / timing->v_total) * timing->v_total);
3753 		else
3754 			*start_line = vline_pos + ((-vline_pos / timing->v_total) + 1) * timing->v_total - 1;
3755 		*end_line = (*start_line + 2) % timing->v_total;
3756 	} else if (pipe_ctx->stream->periodic_interrupt.ref_point == START_V_SYNC) {
3757 		// vsync is line 0 so start_line is just the requested line offset
3758 		*start_line = vline_pos;
3759 		*end_line = (*start_line + 2) % timing->v_total;
3760 	} else
3761 		ASSERT(0);
3762 }
3763 
dcn10_setup_periodic_interrupt(struct dc * dc,struct pipe_ctx * pipe_ctx)3764 void dcn10_setup_periodic_interrupt(
3765 		struct dc *dc,
3766 		struct pipe_ctx *pipe_ctx)
3767 {
3768 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
3769 	uint32_t start_line = 0;
3770 	uint32_t end_line = 0;
3771 
3772 	dcn10_cal_vline_position(dc, pipe_ctx, &start_line, &end_line);
3773 
3774 	tg->funcs->setup_vertical_interrupt0(tg, start_line, end_line);
3775 }
3776 
dcn10_setup_vupdate_interrupt(struct dc * dc,struct pipe_ctx * pipe_ctx)3777 void dcn10_setup_vupdate_interrupt(struct dc *dc, struct pipe_ctx *pipe_ctx)
3778 {
3779 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
3780 	int start_line = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
3781 
3782 	if (start_line < 0) {
3783 		ASSERT(0);
3784 		start_line = 0;
3785 	}
3786 
3787 	if (tg->funcs->setup_vertical_interrupt2)
3788 		tg->funcs->setup_vertical_interrupt2(tg, start_line);
3789 }
3790 
dcn10_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)3791 void dcn10_unblank_stream(struct pipe_ctx *pipe_ctx,
3792 		struct dc_link_settings *link_settings)
3793 {
3794 	struct encoder_unblank_param params = {0};
3795 	struct dc_stream_state *stream = pipe_ctx->stream;
3796 	struct dc_link *link = stream->link;
3797 	struct dce_hwseq *hws = link->dc->hwseq;
3798 
3799 	/* only 3 items below are used by unblank */
3800 	params.timing = pipe_ctx->stream->timing;
3801 
3802 	params.link_settings.link_rate = link_settings->link_rate;
3803 
3804 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
3805 		if (params.timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
3806 			params.timing.pix_clk_100hz /= 2;
3807 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
3808 	}
3809 
3810 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
3811 		hws->funcs.edp_backlight_control(link, true);
3812 	}
3813 }
3814 
dcn10_send_immediate_sdp_message(struct pipe_ctx * pipe_ctx,const uint8_t * custom_sdp_message,unsigned int sdp_message_size)3815 void dcn10_send_immediate_sdp_message(struct pipe_ctx *pipe_ctx,
3816 				const uint8_t *custom_sdp_message,
3817 				unsigned int sdp_message_size)
3818 {
3819 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
3820 		pipe_ctx->stream_res.stream_enc->funcs->send_immediate_sdp_message(
3821 				pipe_ctx->stream_res.stream_enc,
3822 				custom_sdp_message,
3823 				sdp_message_size);
3824 	}
3825 }
dcn10_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)3826 enum dc_status dcn10_set_clock(struct dc *dc,
3827 			enum dc_clock_type clock_type,
3828 			uint32_t clk_khz,
3829 			uint32_t stepping)
3830 {
3831 	struct dc_state *context = dc->current_state;
3832 	struct dc_clock_config clock_cfg = {0};
3833 	struct dc_clocks *current_clocks = &context->bw_ctx.bw.dcn.clk;
3834 
3835 	if (!dc->clk_mgr || !dc->clk_mgr->funcs->get_clock)
3836 		return DC_FAIL_UNSUPPORTED_1;
3837 
3838 	dc->clk_mgr->funcs->get_clock(dc->clk_mgr,
3839 		context, clock_type, &clock_cfg);
3840 
3841 	if (clk_khz > clock_cfg.max_clock_khz)
3842 		return DC_FAIL_CLK_EXCEED_MAX;
3843 
3844 	if (clk_khz < clock_cfg.min_clock_khz)
3845 		return DC_FAIL_CLK_BELOW_MIN;
3846 
3847 	if (clk_khz < clock_cfg.bw_requirequired_clock_khz)
3848 		return DC_FAIL_CLK_BELOW_CFG_REQUIRED;
3849 
3850 	/*update internal request clock for update clock use*/
3851 	if (clock_type == DC_CLOCK_TYPE_DISPCLK)
3852 		current_clocks->dispclk_khz = clk_khz;
3853 	else if (clock_type == DC_CLOCK_TYPE_DPPCLK)
3854 		current_clocks->dppclk_khz = clk_khz;
3855 	else
3856 		return DC_ERROR_UNEXPECTED;
3857 
3858 	if (dc->clk_mgr->funcs->update_clocks)
3859 				dc->clk_mgr->funcs->update_clocks(dc->clk_mgr,
3860 				context, true);
3861 	return DC_OK;
3862 
3863 }
3864 
dcn10_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)3865 void dcn10_get_clock(struct dc *dc,
3866 			enum dc_clock_type clock_type,
3867 			struct dc_clock_config *clock_cfg)
3868 {
3869 	struct dc_state *context = dc->current_state;
3870 
3871 	if (dc->clk_mgr && dc->clk_mgr->funcs->get_clock)
3872 				dc->clk_mgr->funcs->get_clock(dc->clk_mgr, context, clock_type, clock_cfg);
3873 
3874 }
3875 
dcn10_get_dcc_en_bits(struct dc * dc,int * dcc_en_bits)3876 void dcn10_get_dcc_en_bits(struct dc *dc, int *dcc_en_bits)
3877 {
3878 	struct resource_pool *pool = dc->res_pool;
3879 	int i;
3880 
3881 	for (i = 0; i < pool->pipe_count; i++) {
3882 		struct hubp *hubp = pool->hubps[i];
3883 		struct dcn_hubp_state *s = &(TO_DCN10_HUBP(hubp)->state);
3884 
3885 		hubp->funcs->hubp_read_state(hubp);
3886 
3887 		if (!s->blank_en)
3888 			dcc_en_bits[i] = s->dcc_en ? 1 : 0;
3889 	}
3890 }
3891