1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include <linux/delay.h>
27
28 #include "dm_services.h"
29 #include "dc.h"
30 #include "dc_bios_types.h"
31 #include "core_types.h"
32 #include "core_status.h"
33 #include "resource.h"
34 #include "dm_helpers.h"
35 #include "dce110_timing_generator.h"
36 #include "dce/dce_hwseq.h"
37 #include "gpio_service_interface.h"
38
39 #include "dce110_compressor.h"
40
41 #include "bios/bios_parser_helper.h"
42 #include "timing_generator.h"
43 #include "mem_input.h"
44 #include "opp.h"
45 #include "ipp.h"
46 #include "transform.h"
47 #include "stream_encoder.h"
48 #include "link_encoder.h"
49 #include "link_enc_cfg.h"
50 #include "link_hwss.h"
51 #include "dc_link_dp.h"
52 #include "dccg.h"
53 #include "clock_source.h"
54 #include "clk_mgr.h"
55 #include "abm.h"
56 #include "audio.h"
57 #include "reg_helper.h"
58 #include "panel_cntl.h"
59 #include "inc/link_dpcd.h"
60 #include "dpcd_defs.h"
61 /* include DCE11 register header files */
62 #include "dce/dce_11_0_d.h"
63 #include "dce/dce_11_0_sh_mask.h"
64 #include "custom_float.h"
65
66 #include "atomfirmware.h"
67
68 #include "dcn10/dcn10_hw_sequencer.h"
69
70 #include "link/link_dp_trace.h"
71 #include "dce110_hw_sequencer.h"
72
73 #define GAMMA_HW_POINTS_NUM 256
74
75 /*
76 * All values are in milliseconds;
77 * For eDP, after power-up/power/down,
78 * 300/500 msec max. delay from LCDVCC to black video generation
79 */
80 #define PANEL_POWER_UP_TIMEOUT 300
81 #define PANEL_POWER_DOWN_TIMEOUT 500
82 #define HPD_CHECK_INTERVAL 10
83 #define OLED_POST_T7_DELAY 100
84 #define OLED_PRE_T11_DELAY 150
85
86 #define CTX \
87 hws->ctx
88
89 #define DC_LOGGER_INIT()
90
91 #define REG(reg)\
92 hws->regs->reg
93
94 #undef FN
95 #define FN(reg_name, field_name) \
96 hws->shifts->field_name, hws->masks->field_name
97
98 struct dce110_hw_seq_reg_offsets {
99 uint32_t crtc;
100 };
101
102 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
103 {
104 .crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
105 },
106 {
107 .crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
108 },
109 {
110 .crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
111 },
112 {
113 .crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
114 }
115 };
116
117 #define HW_REG_BLND(reg, id)\
118 (reg + reg_offsets[id].blnd)
119
120 #define HW_REG_CRTC(reg, id)\
121 (reg + reg_offsets[id].crtc)
122
123 #define MAX_WATERMARK 0xFFFF
124 #define SAFE_NBP_MARK 0x7FFF
125
126 /*******************************************************************************
127 * Private definitions
128 ******************************************************************************/
129 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)130 static void dce110_init_pte(struct dc_context *ctx)
131 {
132 uint32_t addr;
133 uint32_t value = 0;
134 uint32_t chunk_int = 0;
135 uint32_t chunk_mul = 0;
136
137 addr = mmUNP_DVMM_PTE_CONTROL;
138 value = dm_read_reg(ctx, addr);
139
140 set_reg_field_value(
141 value,
142 0,
143 DVMM_PTE_CONTROL,
144 DVMM_USE_SINGLE_PTE);
145
146 set_reg_field_value(
147 value,
148 1,
149 DVMM_PTE_CONTROL,
150 DVMM_PTE_BUFFER_MODE0);
151
152 set_reg_field_value(
153 value,
154 1,
155 DVMM_PTE_CONTROL,
156 DVMM_PTE_BUFFER_MODE1);
157
158 dm_write_reg(ctx, addr, value);
159
160 addr = mmDVMM_PTE_REQ;
161 value = dm_read_reg(ctx, addr);
162
163 chunk_int = get_reg_field_value(
164 value,
165 DVMM_PTE_REQ,
166 HFLIP_PTEREQ_PER_CHUNK_INT);
167
168 chunk_mul = get_reg_field_value(
169 value,
170 DVMM_PTE_REQ,
171 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
172
173 if (chunk_int != 0x4 || chunk_mul != 0x4) {
174
175 set_reg_field_value(
176 value,
177 255,
178 DVMM_PTE_REQ,
179 MAX_PTEREQ_TO_ISSUE);
180
181 set_reg_field_value(
182 value,
183 4,
184 DVMM_PTE_REQ,
185 HFLIP_PTEREQ_PER_CHUNK_INT);
186
187 set_reg_field_value(
188 value,
189 4,
190 DVMM_PTE_REQ,
191 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
192
193 dm_write_reg(ctx, addr, value);
194 }
195 }
196 /**************************************************************************/
197
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)198 static void enable_display_pipe_clock_gating(
199 struct dc_context *ctx,
200 bool clock_gating)
201 {
202 /*TODO*/
203 }
204
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)205 static bool dce110_enable_display_power_gating(
206 struct dc *dc,
207 uint8_t controller_id,
208 struct dc_bios *dcb,
209 enum pipe_gating_control power_gating)
210 {
211 enum bp_result bp_result = BP_RESULT_OK;
212 enum bp_pipe_control_action cntl;
213 struct dc_context *ctx = dc->ctx;
214 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
215
216 if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
217 return true;
218
219 if (power_gating == PIPE_GATING_CONTROL_INIT)
220 cntl = ASIC_PIPE_INIT;
221 else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
222 cntl = ASIC_PIPE_ENABLE;
223 else
224 cntl = ASIC_PIPE_DISABLE;
225
226 if (controller_id == underlay_idx)
227 controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
228
229 if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
230
231 bp_result = dcb->funcs->enable_disp_power_gating(
232 dcb, controller_id + 1, cntl);
233
234 /* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
235 * by default when command table is called
236 *
237 * Bios parser accepts controller_id = 6 as indicative of
238 * underlay pipe in dce110. But we do not support more
239 * than 3.
240 */
241 if (controller_id < CONTROLLER_ID_MAX - 1)
242 dm_write_reg(ctx,
243 HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
244 0);
245 }
246
247 if (power_gating != PIPE_GATING_CONTROL_ENABLE)
248 dce110_init_pte(ctx);
249
250 if (bp_result == BP_RESULT_OK)
251 return true;
252 else
253 return false;
254 }
255
build_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)256 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
257 const struct dc_plane_state *plane_state)
258 {
259 prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
260
261 switch (plane_state->format) {
262 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
263 prescale_params->scale = 0x2082;
264 break;
265 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
266 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
267 prescale_params->scale = 0x2020;
268 break;
269 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
270 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
271 prescale_params->scale = 0x2008;
272 break;
273 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
274 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
275 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
276 prescale_params->scale = 0x2000;
277 break;
278 default:
279 ASSERT(false);
280 break;
281 }
282 }
283
284 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)285 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
286 const struct dc_plane_state *plane_state)
287 {
288 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
289 const struct dc_transfer_func *tf = NULL;
290 struct ipp_prescale_params prescale_params = { 0 };
291 bool result = true;
292
293 if (ipp == NULL)
294 return false;
295
296 if (plane_state->in_transfer_func)
297 tf = plane_state->in_transfer_func;
298
299 build_prescale_params(&prescale_params, plane_state);
300 ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
301
302 if (plane_state->gamma_correction &&
303 !plane_state->gamma_correction->is_identity &&
304 dce_use_lut(plane_state->format))
305 ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
306
307 if (tf == NULL) {
308 /* Default case if no input transfer function specified */
309 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
310 } else if (tf->type == TF_TYPE_PREDEFINED) {
311 switch (tf->tf) {
312 case TRANSFER_FUNCTION_SRGB:
313 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
314 break;
315 case TRANSFER_FUNCTION_BT709:
316 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
317 break;
318 case TRANSFER_FUNCTION_LINEAR:
319 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
320 break;
321 case TRANSFER_FUNCTION_PQ:
322 default:
323 result = false;
324 break;
325 }
326 } else if (tf->type == TF_TYPE_BYPASS) {
327 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
328 } else {
329 /*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
330 result = false;
331 }
332
333 return result;
334 }
335
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)336 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
337 struct curve_points *arr_points,
338 uint32_t hw_points_num)
339 {
340 struct custom_float_format fmt;
341
342 struct pwl_result_data *rgb = rgb_resulted;
343
344 uint32_t i = 0;
345
346 fmt.exponenta_bits = 6;
347 fmt.mantissa_bits = 12;
348 fmt.sign = true;
349
350 if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
351 &arr_points[0].custom_float_x)) {
352 BREAK_TO_DEBUGGER();
353 return false;
354 }
355
356 if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
357 &arr_points[0].custom_float_offset)) {
358 BREAK_TO_DEBUGGER();
359 return false;
360 }
361
362 if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
363 &arr_points[0].custom_float_slope)) {
364 BREAK_TO_DEBUGGER();
365 return false;
366 }
367
368 fmt.mantissa_bits = 10;
369 fmt.sign = false;
370
371 if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
372 &arr_points[1].custom_float_x)) {
373 BREAK_TO_DEBUGGER();
374 return false;
375 }
376
377 if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
378 &arr_points[1].custom_float_y)) {
379 BREAK_TO_DEBUGGER();
380 return false;
381 }
382
383 if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
384 &arr_points[1].custom_float_slope)) {
385 BREAK_TO_DEBUGGER();
386 return false;
387 }
388
389 fmt.mantissa_bits = 12;
390 fmt.sign = true;
391
392 while (i != hw_points_num) {
393 if (!convert_to_custom_float_format(rgb->red, &fmt,
394 &rgb->red_reg)) {
395 BREAK_TO_DEBUGGER();
396 return false;
397 }
398
399 if (!convert_to_custom_float_format(rgb->green, &fmt,
400 &rgb->green_reg)) {
401 BREAK_TO_DEBUGGER();
402 return false;
403 }
404
405 if (!convert_to_custom_float_format(rgb->blue, &fmt,
406 &rgb->blue_reg)) {
407 BREAK_TO_DEBUGGER();
408 return false;
409 }
410
411 if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
412 &rgb->delta_red_reg)) {
413 BREAK_TO_DEBUGGER();
414 return false;
415 }
416
417 if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
418 &rgb->delta_green_reg)) {
419 BREAK_TO_DEBUGGER();
420 return false;
421 }
422
423 if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
424 &rgb->delta_blue_reg)) {
425 BREAK_TO_DEBUGGER();
426 return false;
427 }
428
429 ++rgb;
430 ++i;
431 }
432
433 return true;
434 }
435
436 #define MAX_LOW_POINT 25
437 #define NUMBER_REGIONS 16
438 #define NUMBER_SW_SEGMENTS 16
439
440 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)441 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
442 struct pwl_params *regamma_params)
443 {
444 struct curve_points *arr_points;
445 struct pwl_result_data *rgb_resulted;
446 struct pwl_result_data *rgb;
447 struct pwl_result_data *rgb_plus_1;
448 struct fixed31_32 y_r;
449 struct fixed31_32 y_g;
450 struct fixed31_32 y_b;
451 struct fixed31_32 y1_min;
452 struct fixed31_32 y3_max;
453
454 int32_t region_start, region_end;
455 uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
456
457 if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
458 return false;
459
460 arr_points = regamma_params->arr_points;
461 rgb_resulted = regamma_params->rgb_resulted;
462 hw_points = 0;
463
464 memset(regamma_params, 0, sizeof(struct pwl_params));
465
466 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
467 /* 16 segments
468 * segments are from 2^-11 to 2^5
469 */
470 region_start = -11;
471 region_end = region_start + NUMBER_REGIONS;
472
473 for (i = 0; i < NUMBER_REGIONS; i++)
474 seg_distr[i] = 4;
475
476 } else {
477 /* 10 segments
478 * segment is from 2^-10 to 2^1
479 * We include an extra segment for range [2^0, 2^1). This is to
480 * ensure that colors with normalized values of 1 don't miss the
481 * LUT.
482 */
483 region_start = -10;
484 region_end = 1;
485
486 seg_distr[0] = 4;
487 seg_distr[1] = 4;
488 seg_distr[2] = 4;
489 seg_distr[3] = 4;
490 seg_distr[4] = 4;
491 seg_distr[5] = 4;
492 seg_distr[6] = 4;
493 seg_distr[7] = 4;
494 seg_distr[8] = 4;
495 seg_distr[9] = 4;
496 seg_distr[10] = 0;
497 seg_distr[11] = -1;
498 seg_distr[12] = -1;
499 seg_distr[13] = -1;
500 seg_distr[14] = -1;
501 seg_distr[15] = -1;
502 }
503
504 for (k = 0; k < 16; k++) {
505 if (seg_distr[k] != -1)
506 hw_points += (1 << seg_distr[k]);
507 }
508
509 j = 0;
510 for (k = 0; k < (region_end - region_start); k++) {
511 increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
512 start_index = (region_start + k + MAX_LOW_POINT) *
513 NUMBER_SW_SEGMENTS;
514 for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
515 i += increment) {
516 if (j == hw_points - 1)
517 break;
518 rgb_resulted[j].red = output_tf->tf_pts.red[i];
519 rgb_resulted[j].green = output_tf->tf_pts.green[i];
520 rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
521 j++;
522 }
523 }
524
525 /* last point */
526 start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
527 rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
528 rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
529 rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
530
531 arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
532 dc_fixpt_from_int(region_start));
533 arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
534 dc_fixpt_from_int(region_end));
535
536 y_r = rgb_resulted[0].red;
537 y_g = rgb_resulted[0].green;
538 y_b = rgb_resulted[0].blue;
539
540 y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
541
542 arr_points[0].y = y1_min;
543 arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
544 arr_points[0].x);
545
546 y_r = rgb_resulted[hw_points - 1].red;
547 y_g = rgb_resulted[hw_points - 1].green;
548 y_b = rgb_resulted[hw_points - 1].blue;
549
550 /* see comment above, m_arrPoints[1].y should be the Y value for the
551 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
552 */
553 y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
554
555 arr_points[1].y = y3_max;
556
557 arr_points[1].slope = dc_fixpt_zero;
558
559 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
560 /* for PQ, we want to have a straight line from last HW X point,
561 * and the slope to be such that we hit 1.0 at 10000 nits.
562 */
563 const struct fixed31_32 end_value = dc_fixpt_from_int(125);
564
565 arr_points[1].slope = dc_fixpt_div(
566 dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
567 dc_fixpt_sub(end_value, arr_points[1].x));
568 }
569
570 regamma_params->hw_points_num = hw_points;
571
572 k = 0;
573 for (i = 1; i < 16; i++) {
574 if (seg_distr[k] != -1) {
575 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
576 regamma_params->arr_curve_points[i].offset =
577 regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
578 }
579 k++;
580 }
581
582 if (seg_distr[k] != -1)
583 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
584
585 rgb = rgb_resulted;
586 rgb_plus_1 = rgb_resulted + 1;
587
588 i = 1;
589
590 while (i != hw_points + 1) {
591 if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
592 rgb_plus_1->red = rgb->red;
593 if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
594 rgb_plus_1->green = rgb->green;
595 if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
596 rgb_plus_1->blue = rgb->blue;
597
598 rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
599 rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
600 rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
601
602 ++rgb_plus_1;
603 ++rgb;
604 ++i;
605 }
606
607 convert_to_custom_float(rgb_resulted, arr_points, hw_points);
608
609 return true;
610 }
611
612 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)613 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
614 const struct dc_stream_state *stream)
615 {
616 struct transform *xfm = pipe_ctx->plane_res.xfm;
617
618 xfm->funcs->opp_power_on_regamma_lut(xfm, true);
619 xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
620
621 if (stream->out_transfer_func &&
622 stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
623 stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
624 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
625 } else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
626 &xfm->regamma_params)) {
627 xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
628 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
629 } else {
630 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
631 }
632
633 xfm->funcs->opp_power_on_regamma_lut(xfm, false);
634
635 return true;
636 }
637
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)638 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
639 {
640 bool is_hdmi_tmds;
641 bool is_dp;
642
643 ASSERT(pipe_ctx->stream);
644
645 if (pipe_ctx->stream_res.stream_enc == NULL)
646 return; /* this is not root pipe */
647
648 is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
649 is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
650
651 if (!is_hdmi_tmds && !is_dp)
652 return;
653
654 if (is_hdmi_tmds)
655 pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
656 pipe_ctx->stream_res.stream_enc,
657 &pipe_ctx->stream_res.encoder_info_frame);
658 else
659 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
660 pipe_ctx->stream_res.stream_enc,
661 &pipe_ctx->stream_res.encoder_info_frame);
662 }
663
dce110_enable_stream(struct pipe_ctx * pipe_ctx)664 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
665 {
666 enum dc_lane_count lane_count =
667 pipe_ctx->stream->link->cur_link_settings.lane_count;
668 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
669 struct dc_link *link = pipe_ctx->stream->link;
670 const struct dc *dc = link->dc;
671 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
672 uint32_t active_total_with_borders;
673 uint32_t early_control = 0;
674 struct timing_generator *tg = pipe_ctx->stream_res.tg;
675
676 link_hwss->setup_stream_encoder(pipe_ctx);
677
678 dc->hwss.update_info_frame(pipe_ctx);
679
680 /* enable early control to avoid corruption on DP monitor*/
681 active_total_with_borders =
682 timing->h_addressable
683 + timing->h_border_left
684 + timing->h_border_right;
685
686 if (lane_count != 0)
687 early_control = active_total_with_borders % lane_count;
688
689 if (early_control == 0)
690 early_control = lane_count;
691
692 tg->funcs->set_early_control(tg, early_control);
693
694 /* enable audio only within mode set */
695 if (pipe_ctx->stream_res.audio != NULL) {
696 if (dc_is_dp_signal(pipe_ctx->stream->signal))
697 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
698 }
699
700
701
702
703 }
704
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)705 static enum bp_result link_transmitter_control(
706 struct dc_bios *bios,
707 struct bp_transmitter_control *cntl)
708 {
709 enum bp_result result;
710
711 result = bios->funcs->transmitter_control(bios, cntl);
712
713 return result;
714 }
715
716 /*
717 * @brief
718 * eDP only.
719 */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)720 void dce110_edp_wait_for_hpd_ready(
721 struct dc_link *link,
722 bool power_up)
723 {
724 struct dc_context *ctx = link->ctx;
725 struct graphics_object_id connector = link->link_enc->connector;
726 struct gpio *hpd;
727 struct dc_sink *sink = link->local_sink;
728 bool edp_hpd_high = false;
729 uint32_t time_elapsed = 0;
730 uint32_t timeout = power_up ?
731 PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
732
733 if (dal_graphics_object_id_get_connector_id(connector)
734 != CONNECTOR_ID_EDP) {
735 BREAK_TO_DEBUGGER();
736 return;
737 }
738
739 if (!power_up)
740 /*
741 * From KV, we will not HPD low after turning off VCC -
742 * instead, we will check the SW timer in power_up().
743 */
744 return;
745
746 /*
747 * When we power on/off the eDP panel,
748 * we need to wait until SENSE bit is high/low.
749 */
750
751 /* obtain HPD */
752 /* TODO what to do with this? */
753 hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
754
755 if (!hpd) {
756 BREAK_TO_DEBUGGER();
757 return;
758 }
759
760 if (sink != NULL) {
761 if (sink->edid_caps.panel_patch.extra_t3_ms > 0) {
762 int extra_t3_in_ms = sink->edid_caps.panel_patch.extra_t3_ms;
763
764 msleep(extra_t3_in_ms);
765 }
766 }
767
768 dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
769
770 /* wait until timeout or panel detected */
771
772 do {
773 uint32_t detected = 0;
774
775 dal_gpio_get_value(hpd, &detected);
776
777 if (!(detected ^ power_up)) {
778 edp_hpd_high = true;
779 break;
780 }
781
782 msleep(HPD_CHECK_INTERVAL);
783
784 time_elapsed += HPD_CHECK_INTERVAL;
785 } while (time_elapsed < timeout);
786
787 dal_gpio_close(hpd);
788
789 dal_gpio_destroy_irq(&hpd);
790
791 if (false == edp_hpd_high) {
792 DC_LOG_WARNING(
793 "%s: wait timed out!\n", __func__);
794 }
795 }
796
dce110_edp_power_control(struct dc_link * link,bool power_up)797 void dce110_edp_power_control(
798 struct dc_link *link,
799 bool power_up)
800 {
801 struct dc_context *ctx = link->ctx;
802 struct bp_transmitter_control cntl = { 0 };
803 enum bp_result bp_result;
804 uint8_t panel_instance;
805
806
807 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
808 != CONNECTOR_ID_EDP) {
809 BREAK_TO_DEBUGGER();
810 return;
811 }
812
813 if (!link->panel_cntl)
814 return;
815 if (power_up !=
816 link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
817
818 unsigned long long current_ts = dm_get_timestamp(ctx);
819 unsigned long long time_since_edp_poweroff_ms =
820 div64_u64(dm_get_elapse_time_in_ns(
821 ctx,
822 current_ts,
823 dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
824 unsigned long long time_since_edp_poweron_ms =
825 div64_u64(dm_get_elapse_time_in_ns(
826 ctx,
827 current_ts,
828 dp_trace_get_edp_poweron_timestamp(link)), 1000000);
829 DC_LOG_HW_RESUME_S3(
830 "%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
831 __func__,
832 power_up,
833 current_ts,
834 dp_trace_get_edp_poweroff_timestamp(link),
835 dp_trace_get_edp_poweron_timestamp(link),
836 time_since_edp_poweroff_ms,
837 time_since_edp_poweron_ms);
838
839 /* Send VBIOS command to prompt eDP panel power */
840 if (power_up) {
841 /* edp requires a min of 500ms from LCDVDD off to on */
842 unsigned long long remaining_min_edp_poweroff_time_ms = 500;
843
844 /* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
845 if (link->local_sink != NULL)
846 remaining_min_edp_poweroff_time_ms +=
847 link->local_sink->edid_caps.panel_patch.extra_t12_ms;
848
849 /* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
850 if (dp_trace_get_edp_poweroff_timestamp(link) != 0) {
851 if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
852 remaining_min_edp_poweroff_time_ms =
853 remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
854 else
855 remaining_min_edp_poweroff_time_ms = 0;
856 }
857
858 if (remaining_min_edp_poweroff_time_ms) {
859 DC_LOG_HW_RESUME_S3(
860 "%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
861 __func__, remaining_min_edp_poweroff_time_ms);
862 msleep(remaining_min_edp_poweroff_time_ms);
863 DC_LOG_HW_RESUME_S3(
864 "%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
865 __func__, remaining_min_edp_poweroff_time_ms);
866 dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
867 __func__, remaining_min_edp_poweroff_time_ms);
868 } else {
869 DC_LOG_HW_RESUME_S3(
870 "%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
871 __func__, remaining_min_edp_poweroff_time_ms);
872 }
873 }
874
875 DC_LOG_HW_RESUME_S3(
876 "%s: BEGIN: Panel Power action: %s\n",
877 __func__, (power_up ? "On":"Off"));
878
879 cntl.action = power_up ?
880 TRANSMITTER_CONTROL_POWER_ON :
881 TRANSMITTER_CONTROL_POWER_OFF;
882 cntl.transmitter = link->link_enc->transmitter;
883 cntl.connector_obj_id = link->link_enc->connector;
884 cntl.coherent = false;
885 cntl.lanes_number = LANE_COUNT_FOUR;
886 cntl.hpd_sel = link->link_enc->hpd_source;
887 panel_instance = link->panel_cntl->inst;
888
889 if (ctx->dc->ctx->dmub_srv &&
890 ctx->dc->debug.dmub_command_table) {
891 if (cntl.action == TRANSMITTER_CONTROL_POWER_ON)
892 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
893 LVTMA_CONTROL_POWER_ON,
894 panel_instance);
895 else
896 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
897 LVTMA_CONTROL_POWER_OFF,
898 panel_instance);
899 }
900
901 bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
902
903 DC_LOG_HW_RESUME_S3(
904 "%s: END: Panel Power action: %s bp_result=%u\n",
905 __func__, (power_up ? "On":"Off"),
906 bp_result);
907
908 dp_trace_set_edp_power_timestamp(link, power_up);
909
910 DC_LOG_HW_RESUME_S3(
911 "%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
912 __func__,
913 dp_trace_get_edp_poweroff_timestamp(link),
914 dp_trace_get_edp_poweron_timestamp(link));
915
916 if (bp_result != BP_RESULT_OK)
917 DC_LOG_ERROR(
918 "%s: Panel Power bp_result: %d\n",
919 __func__, bp_result);
920 } else {
921 DC_LOG_HW_RESUME_S3(
922 "%s: Skipping Panel Power action: %s\n",
923 __func__, (power_up ? "On":"Off"));
924 }
925 }
926
dce110_edp_wait_for_T12(struct dc_link * link)927 void dce110_edp_wait_for_T12(
928 struct dc_link *link)
929 {
930 struct dc_context *ctx = link->ctx;
931
932 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
933 != CONNECTOR_ID_EDP) {
934 BREAK_TO_DEBUGGER();
935 return;
936 }
937
938 if (!link->panel_cntl)
939 return;
940
941 if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
942 dp_trace_get_edp_poweroff_timestamp(link) != 0) {
943 unsigned int t12_duration = 500; // Default T12 as per spec
944 unsigned long long current_ts = dm_get_timestamp(ctx);
945 unsigned long long time_since_edp_poweroff_ms =
946 div64_u64(dm_get_elapse_time_in_ns(
947 ctx,
948 current_ts,
949 dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
950
951 t12_duration += link->local_sink->edid_caps.panel_patch.extra_t12_ms; // Add extra T12
952
953 if (time_since_edp_poweroff_ms < t12_duration)
954 msleep(t12_duration - time_since_edp_poweroff_ms);
955 }
956 }
957
958 /*todo: cloned in stream enc, fix*/
959 /*
960 * @brief
961 * eDP only. Control the backlight of the eDP panel
962 */
dce110_edp_backlight_control(struct dc_link * link,bool enable)963 void dce110_edp_backlight_control(
964 struct dc_link *link,
965 bool enable)
966 {
967 struct dc_context *ctx = link->ctx;
968 struct bp_transmitter_control cntl = { 0 };
969 uint8_t panel_instance;
970
971 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
972 != CONNECTOR_ID_EDP) {
973 BREAK_TO_DEBUGGER();
974 return;
975 }
976
977 if (link->panel_cntl) {
978 bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
979
980 if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
981 DC_LOG_HW_RESUME_S3(
982 "%s: panel already powered up/off. Do nothing.\n",
983 __func__);
984 return;
985 }
986 }
987
988 /* Send VBIOS command to control eDP panel backlight */
989
990 DC_LOG_HW_RESUME_S3(
991 "%s: backlight action: %s\n",
992 __func__, (enable ? "On":"Off"));
993
994 cntl.action = enable ?
995 TRANSMITTER_CONTROL_BACKLIGHT_ON :
996 TRANSMITTER_CONTROL_BACKLIGHT_OFF;
997
998 /*cntl.engine_id = ctx->engine;*/
999 cntl.transmitter = link->link_enc->transmitter;
1000 cntl.connector_obj_id = link->link_enc->connector;
1001 /*todo: unhardcode*/
1002 cntl.lanes_number = LANE_COUNT_FOUR;
1003 cntl.hpd_sel = link->link_enc->hpd_source;
1004 cntl.signal = SIGNAL_TYPE_EDP;
1005
1006 /* For eDP, the following delays might need to be considered
1007 * after link training completed:
1008 * idle period - min. accounts for required BS-Idle pattern,
1009 * max. allows for source frame synchronization);
1010 * 50 msec max. delay from valid video data from source
1011 * to video on dislpay or backlight enable.
1012 *
1013 * Disable the delay for now.
1014 * Enable it in the future if necessary.
1015 */
1016 /* dc_service_sleep_in_milliseconds(50); */
1017 /*edp 1.2*/
1018 panel_instance = link->panel_cntl->inst;
1019
1020 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1021 if (!link->dc->config.edp_no_power_sequencing)
1022 /*
1023 * Sometimes, DP receiver chip power-controlled externally by an
1024 * Embedded Controller could be treated and used as eDP,
1025 * if it drives mobile display. In this case,
1026 * we shouldn't be doing power-sequencing, hence we can skip
1027 * waiting for T7-ready.
1028 */
1029 edp_receiver_ready_T7(link);
1030 else
1031 DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1032 }
1033
1034 if (ctx->dc->ctx->dmub_srv &&
1035 ctx->dc->debug.dmub_command_table) {
1036 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1037 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1038 LVTMA_CONTROL_LCD_BLON,
1039 panel_instance);
1040 else
1041 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1042 LVTMA_CONTROL_LCD_BLOFF,
1043 panel_instance);
1044 }
1045
1046 link_transmitter_control(ctx->dc_bios, &cntl);
1047
1048 if (enable && link->dpcd_sink_ext_caps.bits.oled)
1049 msleep(OLED_POST_T7_DELAY);
1050
1051 if (link->dpcd_sink_ext_caps.bits.oled ||
1052 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1053 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1054 dc_link_backlight_enable_aux(link, enable);
1055
1056 /*edp 1.2*/
1057 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1058 if (!link->dc->config.edp_no_power_sequencing)
1059 /*
1060 * Sometimes, DP receiver chip power-controlled externally by an
1061 * Embedded Controller could be treated and used as eDP,
1062 * if it drives mobile display. In this case,
1063 * we shouldn't be doing power-sequencing, hence we can skip
1064 * waiting for T9-ready.
1065 */
1066 edp_add_delay_for_T9(link);
1067 else
1068 DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1069 }
1070
1071 if (!enable && link->dpcd_sink_ext_caps.bits.oled)
1072 msleep(OLED_PRE_T11_DELAY);
1073 }
1074
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1075 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1076 {
1077 /* notify audio driver for audio modes of monitor */
1078 struct dc *dc;
1079 struct clk_mgr *clk_mgr;
1080 unsigned int i, num_audio = 1;
1081
1082 if (!pipe_ctx->stream)
1083 return;
1084
1085 dc = pipe_ctx->stream->ctx->dc;
1086 clk_mgr = dc->clk_mgr;
1087
1088 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1089 return;
1090
1091 if (pipe_ctx->stream_res.audio) {
1092 for (i = 0; i < MAX_PIPES; i++) {
1093 /*current_state not updated yet*/
1094 if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1095 num_audio++;
1096 }
1097
1098 pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1099
1100 if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1101 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1102 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1103 /* un-mute audio */
1104 /* TODO: audio should be per stream rather than per link */
1105 if (is_dp_128b_132b_signal(pipe_ctx))
1106 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1107 pipe_ctx->stream_res.hpo_dp_stream_enc, false);
1108 else
1109 pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1110 pipe_ctx->stream_res.stream_enc, false);
1111 if (pipe_ctx->stream_res.audio)
1112 pipe_ctx->stream_res.audio->enabled = true;
1113 }
1114
1115 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1116 dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_ENABLE_AUDIO_STREAM);
1117 }
1118
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1119 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1120 {
1121 struct dc *dc;
1122 struct clk_mgr *clk_mgr;
1123
1124 if (!pipe_ctx || !pipe_ctx->stream)
1125 return;
1126
1127 dc = pipe_ctx->stream->ctx->dc;
1128 clk_mgr = dc->clk_mgr;
1129
1130 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1131 return;
1132
1133 if (is_dp_128b_132b_signal(pipe_ctx))
1134 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1135 pipe_ctx->stream_res.hpo_dp_stream_enc, true);
1136 else
1137 pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1138 pipe_ctx->stream_res.stream_enc, true);
1139 if (pipe_ctx->stream_res.audio) {
1140 pipe_ctx->stream_res.audio->enabled = false;
1141
1142 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1143 if (is_dp_128b_132b_signal(pipe_ctx))
1144 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_disable(
1145 pipe_ctx->stream_res.hpo_dp_stream_enc);
1146 else
1147 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1148 pipe_ctx->stream_res.stream_enc);
1149 else
1150 pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1151 pipe_ctx->stream_res.stream_enc);
1152
1153 if (clk_mgr->funcs->enable_pme_wa)
1154 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1155 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1156
1157 /* TODO: notify audio driver for if audio modes list changed
1158 * add audio mode list change flag */
1159 /* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1160 * stream->stream_engine_id);
1161 */
1162 }
1163
1164 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1165 dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_DISABLE_AUDIO_STREAM);
1166 }
1167
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1168 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1169 {
1170 struct dc_stream_state *stream = pipe_ctx->stream;
1171 struct dc_link *link = stream->link;
1172 struct dc *dc = pipe_ctx->stream->ctx->dc;
1173 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1174
1175 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1176 pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1177 pipe_ctx->stream_res.stream_enc);
1178 pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1179 pipe_ctx->stream_res.stream_enc);
1180 }
1181
1182 if (is_dp_128b_132b_signal(pipe_ctx)) {
1183 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1184 pipe_ctx->stream_res.hpo_dp_stream_enc);
1185 } else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1186 pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1187 pipe_ctx->stream_res.stream_enc);
1188
1189 dc->hwss.disable_audio_stream(pipe_ctx);
1190
1191 link_hwss->reset_stream_encoder(pipe_ctx);
1192
1193 if (is_dp_128b_132b_signal(pipe_ctx)) {
1194 /* TODO: This looks like a bug to me as we are disabling HPO IO when
1195 * we are just disabling a single HPO stream. Shouldn't we disable HPO
1196 * HW control only when HPOs for all streams are disabled?
1197 */
1198 if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
1199 pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
1200 pipe_ctx->stream->ctx->dc->hwseq, false);
1201 }
1202 }
1203
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1204 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1205 struct dc_link_settings *link_settings)
1206 {
1207 struct encoder_unblank_param params = { { 0 } };
1208 struct dc_stream_state *stream = pipe_ctx->stream;
1209 struct dc_link *link = stream->link;
1210 struct dce_hwseq *hws = link->dc->hwseq;
1211
1212 /* only 3 items below are used by unblank */
1213 params.timing = pipe_ctx->stream->timing;
1214 params.link_settings.link_rate = link_settings->link_rate;
1215
1216 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1217 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms);
1218
1219 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1220 hws->funcs.edp_backlight_control(link, true);
1221 }
1222 }
1223
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1224 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1225 {
1226 struct dc_stream_state *stream = pipe_ctx->stream;
1227 struct dc_link *link = stream->link;
1228 struct dce_hwseq *hws = link->dc->hwseq;
1229
1230 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1231 hws->funcs.edp_backlight_control(link, false);
1232 link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1233 }
1234
1235 if (is_dp_128b_132b_signal(pipe_ctx)) {
1236 /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1237 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1238 pipe_ctx->stream_res.hpo_dp_stream_enc);
1239 } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1240 pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1241
1242 if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1243 /*
1244 * After output is idle pattern some sinks need time to recognize the stream
1245 * has changed or they enter protection state and hang.
1246 */
1247 msleep(60);
1248 } else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
1249 if (!link->dc->config.edp_no_power_sequencing) {
1250 /*
1251 * Sometimes, DP receiver chip power-controlled externally by an
1252 * Embedded Controller could be treated and used as eDP,
1253 * if it drives mobile display. In this case,
1254 * we shouldn't be doing power-sequencing, hence we can skip
1255 * waiting for T9-ready.
1256 */
1257 edp_receiver_ready_T9(link);
1258 }
1259 }
1260 }
1261
1262 }
1263
1264
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1265 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1266 {
1267 if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1268 pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1269 }
1270
translate_to_dto_source(enum controller_id crtc_id)1271 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1272 {
1273 switch (crtc_id) {
1274 case CONTROLLER_ID_D0:
1275 return DTO_SOURCE_ID0;
1276 case CONTROLLER_ID_D1:
1277 return DTO_SOURCE_ID1;
1278 case CONTROLLER_ID_D2:
1279 return DTO_SOURCE_ID2;
1280 case CONTROLLER_ID_D3:
1281 return DTO_SOURCE_ID3;
1282 case CONTROLLER_ID_D4:
1283 return DTO_SOURCE_ID4;
1284 case CONTROLLER_ID_D5:
1285 return DTO_SOURCE_ID5;
1286 default:
1287 return DTO_SOURCE_UNKNOWN;
1288 }
1289 }
1290
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1291 static void build_audio_output(
1292 struct dc_state *state,
1293 const struct pipe_ctx *pipe_ctx,
1294 struct audio_output *audio_output)
1295 {
1296 const struct dc_stream_state *stream = pipe_ctx->stream;
1297 audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1298
1299 audio_output->signal = pipe_ctx->stream->signal;
1300
1301 /* audio_crtc_info */
1302
1303 audio_output->crtc_info.h_total =
1304 stream->timing.h_total;
1305
1306 /*
1307 * Audio packets are sent during actual CRTC blank physical signal, we
1308 * need to specify actual active signal portion
1309 */
1310 audio_output->crtc_info.h_active =
1311 stream->timing.h_addressable
1312 + stream->timing.h_border_left
1313 + stream->timing.h_border_right;
1314
1315 audio_output->crtc_info.v_active =
1316 stream->timing.v_addressable
1317 + stream->timing.v_border_top
1318 + stream->timing.v_border_bottom;
1319
1320 audio_output->crtc_info.pixel_repetition = 1;
1321
1322 audio_output->crtc_info.interlaced =
1323 stream->timing.flags.INTERLACE;
1324
1325 audio_output->crtc_info.refresh_rate =
1326 (stream->timing.pix_clk_100hz*100)/
1327 (stream->timing.h_total*stream->timing.v_total);
1328
1329 audio_output->crtc_info.color_depth =
1330 stream->timing.display_color_depth;
1331
1332 audio_output->crtc_info.requested_pixel_clock_100Hz =
1333 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1334
1335 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1336 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1337
1338 /*for HDMI, audio ACR is with deep color ratio factor*/
1339 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1340 audio_output->crtc_info.requested_pixel_clock_100Hz ==
1341 (stream->timing.pix_clk_100hz)) {
1342 if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1343 audio_output->crtc_info.requested_pixel_clock_100Hz =
1344 audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1345 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1346 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1347
1348 }
1349 }
1350
1351 if (state->clk_mgr &&
1352 (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1353 pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1354 audio_output->pll_info.dp_dto_source_clock_in_khz =
1355 state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1356 state->clk_mgr);
1357 }
1358
1359 audio_output->pll_info.feed_back_divider =
1360 pipe_ctx->pll_settings.feedback_divider;
1361
1362 audio_output->pll_info.dto_source =
1363 translate_to_dto_source(
1364 pipe_ctx->stream_res.tg->inst + 1);
1365
1366 /* TODO hard code to enable for now. Need get from stream */
1367 audio_output->pll_info.ss_enabled = true;
1368
1369 audio_output->pll_info.ss_percentage =
1370 pipe_ctx->pll_settings.ss_percentage;
1371 }
1372
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1373 static void program_scaler(const struct dc *dc,
1374 const struct pipe_ctx *pipe_ctx)
1375 {
1376 struct tg_color color = {0};
1377
1378 /* TOFPGA */
1379 if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1380 return;
1381
1382 if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1383 get_surface_visual_confirm_color(pipe_ctx, &color);
1384 else
1385 color_space_to_black_color(dc,
1386 pipe_ctx->stream->output_color_space,
1387 &color);
1388
1389 pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1390 pipe_ctx->plane_res.xfm,
1391 pipe_ctx->plane_res.scl_data.lb_params.depth,
1392 &pipe_ctx->stream->bit_depth_params);
1393
1394 if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1395 /*
1396 * The way 420 is packed, 2 channels carry Y component, 1 channel
1397 * alternate between Cb and Cr, so both channels need the pixel
1398 * value for Y
1399 */
1400 if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1401 color.color_r_cr = color.color_g_y;
1402
1403 pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1404 pipe_ctx->stream_res.tg,
1405 &color);
1406 }
1407
1408 pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1409 &pipe_ctx->plane_res.scl_data);
1410 }
1411
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1412 static enum dc_status dce110_enable_stream_timing(
1413 struct pipe_ctx *pipe_ctx,
1414 struct dc_state *context,
1415 struct dc *dc)
1416 {
1417 struct dc_stream_state *stream = pipe_ctx->stream;
1418 struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1419 pipe_ctx[pipe_ctx->pipe_idx];
1420 struct tg_color black_color = {0};
1421
1422 if (!pipe_ctx_old->stream) {
1423
1424 /* program blank color */
1425 color_space_to_black_color(dc,
1426 stream->output_color_space, &black_color);
1427 pipe_ctx->stream_res.tg->funcs->set_blank_color(
1428 pipe_ctx->stream_res.tg,
1429 &black_color);
1430
1431 /*
1432 * Must blank CRTC after disabling power gating and before any
1433 * programming, otherwise CRTC will be hung in bad state
1434 */
1435 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1436
1437 if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1438 pipe_ctx->clock_source,
1439 &pipe_ctx->stream_res.pix_clk_params,
1440 &pipe_ctx->pll_settings)) {
1441 BREAK_TO_DEBUGGER();
1442 return DC_ERROR_UNEXPECTED;
1443 }
1444
1445 pipe_ctx->stream_res.tg->funcs->program_timing(
1446 pipe_ctx->stream_res.tg,
1447 &stream->timing,
1448 0,
1449 0,
1450 0,
1451 0,
1452 pipe_ctx->stream->signal,
1453 true);
1454 }
1455
1456 if (!pipe_ctx_old->stream) {
1457 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1458 pipe_ctx->stream_res.tg)) {
1459 BREAK_TO_DEBUGGER();
1460 return DC_ERROR_UNEXPECTED;
1461 }
1462 }
1463
1464 return DC_OK;
1465 }
1466
apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1467 static enum dc_status apply_single_controller_ctx_to_hw(
1468 struct pipe_ctx *pipe_ctx,
1469 struct dc_state *context,
1470 struct dc *dc)
1471 {
1472 struct dc_stream_state *stream = pipe_ctx->stream;
1473 struct dc_link *link = stream->link;
1474 struct drr_params params = {0};
1475 unsigned int event_triggers = 0;
1476 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1477 struct dce_hwseq *hws = dc->hwseq;
1478
1479 if (hws->funcs.disable_stream_gating) {
1480 hws->funcs.disable_stream_gating(dc, pipe_ctx);
1481 }
1482
1483 if (pipe_ctx->stream_res.audio != NULL) {
1484 struct audio_output audio_output;
1485
1486 build_audio_output(context, pipe_ctx, &audio_output);
1487
1488 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1489 if (is_dp_128b_132b_signal(pipe_ctx))
1490 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_setup(
1491 pipe_ctx->stream_res.hpo_dp_stream_enc,
1492 pipe_ctx->stream_res.audio->inst,
1493 &pipe_ctx->stream->audio_info);
1494 else
1495 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1496 pipe_ctx->stream_res.stream_enc,
1497 pipe_ctx->stream_res.audio->inst,
1498 &pipe_ctx->stream->audio_info);
1499 else
1500 pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1501 pipe_ctx->stream_res.stream_enc,
1502 pipe_ctx->stream_res.audio->inst,
1503 &pipe_ctx->stream->audio_info,
1504 &audio_output.crtc_info);
1505
1506 pipe_ctx->stream_res.audio->funcs->az_configure(
1507 pipe_ctx->stream_res.audio,
1508 pipe_ctx->stream->signal,
1509 &audio_output.crtc_info,
1510 &pipe_ctx->stream->audio_info);
1511 }
1512
1513 /* make sure no pipes syncd to the pipe being enabled */
1514 if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1515 check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1516
1517 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1518 pipe_ctx->stream_res.opp,
1519 &stream->bit_depth_params,
1520 &stream->clamping);
1521
1522 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1523 pipe_ctx->stream_res.opp,
1524 COLOR_SPACE_YCBCR601,
1525 stream->timing.display_color_depth,
1526 stream->signal);
1527
1528 while (odm_pipe) {
1529 odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1530 odm_pipe->stream_res.opp,
1531 COLOR_SPACE_YCBCR601,
1532 stream->timing.display_color_depth,
1533 stream->signal);
1534
1535 odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1536 odm_pipe->stream_res.opp,
1537 &stream->bit_depth_params,
1538 &stream->clamping);
1539 odm_pipe = odm_pipe->next_odm_pipe;
1540 }
1541
1542 /* DCN3.1 FPGA Workaround
1543 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1544 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1545 * function core_link_enable_stream
1546 */
1547 if (!(hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)))
1548 /* */
1549 /* Do not touch stream timing on seamless boot optimization. */
1550 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1551 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1552
1553 if (hws->funcs.setup_vupdate_interrupt)
1554 hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1555
1556 params.vertical_total_min = stream->adjust.v_total_min;
1557 params.vertical_total_max = stream->adjust.v_total_max;
1558 if (pipe_ctx->stream_res.tg->funcs->set_drr)
1559 pipe_ctx->stream_res.tg->funcs->set_drr(
1560 pipe_ctx->stream_res.tg, ¶ms);
1561
1562 // DRR should set trigger event to monitor surface update event
1563 if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1564 event_triggers = 0x80;
1565 /* Event triggers and num frames initialized for DRR, but can be
1566 * later updated for PSR use. Note DRR trigger events are generated
1567 * regardless of whether num frames met.
1568 */
1569 if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1570 pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1571 pipe_ctx->stream_res.tg, event_triggers, 2);
1572
1573 if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1574 pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1575 pipe_ctx->stream_res.stream_enc,
1576 pipe_ctx->stream_res.tg->inst);
1577
1578 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1579 dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1580
1581 if (!stream->dpms_off)
1582 core_link_enable_stream(context, pipe_ctx);
1583
1584 /* DCN3.1 FPGA Workaround
1585 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1586 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1587 * function core_link_enable_stream
1588 */
1589 if (hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)) {
1590 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1591 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1592 }
1593
1594 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1595
1596 pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1597
1598 return DC_OK;
1599 }
1600
1601 /******************************************************************************/
1602
power_down_encoders(struct dc * dc)1603 static void power_down_encoders(struct dc *dc)
1604 {
1605 int i;
1606
1607 for (i = 0; i < dc->link_count; i++) {
1608 enum signal_type signal = dc->links[i]->connector_signal;
1609
1610 dc_link_blank_dp_stream(dc->links[i], false);
1611
1612 if (signal != SIGNAL_TYPE_EDP)
1613 signal = SIGNAL_TYPE_NONE;
1614
1615 if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1616 dc->links[i]->link_enc->funcs->disable_output(
1617 dc->links[i]->link_enc, signal);
1618
1619 dc->links[i]->link_status.link_active = false;
1620 memset(&dc->links[i]->cur_link_settings, 0,
1621 sizeof(dc->links[i]->cur_link_settings));
1622 }
1623 }
1624
power_down_controllers(struct dc * dc)1625 static void power_down_controllers(struct dc *dc)
1626 {
1627 int i;
1628
1629 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1630 dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1631 dc->res_pool->timing_generators[i]);
1632 }
1633 }
1634
power_down_clock_sources(struct dc * dc)1635 static void power_down_clock_sources(struct dc *dc)
1636 {
1637 int i;
1638
1639 if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1640 dc->res_pool->dp_clock_source) == false)
1641 dm_error("Failed to power down pll! (dp clk src)\n");
1642
1643 for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1644 if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1645 dc->res_pool->clock_sources[i]) == false)
1646 dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1647 }
1648 }
1649
power_down_all_hw_blocks(struct dc * dc)1650 static void power_down_all_hw_blocks(struct dc *dc)
1651 {
1652 power_down_encoders(dc);
1653
1654 power_down_controllers(dc);
1655
1656 power_down_clock_sources(dc);
1657
1658 if (dc->fbc_compressor)
1659 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1660 }
1661
disable_vga_and_power_gate_all_controllers(struct dc * dc)1662 static void disable_vga_and_power_gate_all_controllers(
1663 struct dc *dc)
1664 {
1665 int i;
1666 struct timing_generator *tg;
1667 struct dc_context *ctx = dc->ctx;
1668
1669 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1670 tg = dc->res_pool->timing_generators[i];
1671
1672 if (tg->funcs->disable_vga)
1673 tg->funcs->disable_vga(tg);
1674 }
1675 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1676 /* Enable CLOCK gating for each pipe BEFORE controller
1677 * powergating. */
1678 enable_display_pipe_clock_gating(ctx,
1679 true);
1680
1681 dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1682 dc->hwss.disable_plane(dc,
1683 &dc->current_state->res_ctx.pipe_ctx[i]);
1684 }
1685 }
1686
1687
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1688 static void get_edp_streams(struct dc_state *context,
1689 struct dc_stream_state **edp_streams,
1690 int *edp_stream_num)
1691 {
1692 int i;
1693
1694 *edp_stream_num = 0;
1695 for (i = 0; i < context->stream_count; i++) {
1696 if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1697 edp_streams[*edp_stream_num] = context->streams[i];
1698 if (++(*edp_stream_num) == MAX_NUM_EDP)
1699 return;
1700 }
1701 }
1702 }
1703
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1704 static void get_edp_links_with_sink(
1705 struct dc *dc,
1706 struct dc_link **edp_links_with_sink,
1707 int *edp_with_sink_num)
1708 {
1709 int i;
1710
1711 /* check if there is an eDP panel not in use */
1712 *edp_with_sink_num = 0;
1713 for (i = 0; i < dc->link_count; i++) {
1714 if (dc->links[i]->local_sink &&
1715 dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1716 edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1717 if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1718 return;
1719 }
1720 }
1721 }
1722
1723 /*
1724 * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1725 * 1. Power down all DC HW blocks
1726 * 2. Disable VGA engine on all controllers
1727 * 3. Enable power gating for controller
1728 * 4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1729 */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1730 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1731 {
1732 struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1733 struct dc_link *edp_links[MAX_NUM_EDP];
1734 struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1735 struct dc_link *edp_link_with_sink = NULL;
1736 struct dc_link *edp_link = NULL;
1737 struct dce_hwseq *hws = dc->hwseq;
1738 int edp_with_sink_num;
1739 int edp_num;
1740 int edp_stream_num;
1741 int i;
1742 bool can_apply_edp_fast_boot = false;
1743 bool can_apply_seamless_boot = false;
1744 bool keep_edp_vdd_on = false;
1745 DC_LOGGER_INIT();
1746
1747
1748 get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1749 get_edp_links(dc, edp_links, &edp_num);
1750
1751 if (hws->funcs.init_pipes)
1752 hws->funcs.init_pipes(dc, context);
1753
1754 get_edp_streams(context, edp_streams, &edp_stream_num);
1755
1756 // Check fastboot support, disable on DCE8 because of blank screens
1757 if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1758 dc->ctx->dce_version != DCE_VERSION_8_1 &&
1759 dc->ctx->dce_version != DCE_VERSION_8_3) {
1760 for (i = 0; i < edp_num; i++) {
1761 edp_link = edp_links[i];
1762 if (edp_link != edp_streams[0]->link)
1763 continue;
1764 // enable fastboot if backend is enabled on eDP
1765 if (edp_link->link_enc->funcs->is_dig_enabled &&
1766 edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1767 edp_link->link_status.link_active) {
1768 struct dc_stream_state *edp_stream = edp_streams[0];
1769
1770 can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1771 edp_stream->sink, &edp_stream->timing);
1772 edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1773 if (can_apply_edp_fast_boot)
1774 DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1775
1776 break;
1777 }
1778 }
1779 // We are trying to enable eDP, don't power down VDD
1780 if (can_apply_edp_fast_boot)
1781 keep_edp_vdd_on = true;
1782 }
1783
1784 // Check seamless boot support
1785 for (i = 0; i < context->stream_count; i++) {
1786 if (context->streams[i]->apply_seamless_boot_optimization) {
1787 can_apply_seamless_boot = true;
1788 break;
1789 }
1790 }
1791
1792 /* eDP should not have stream in resume from S4 and so even with VBios post
1793 * it should get turned off
1794 */
1795 if (edp_with_sink_num)
1796 edp_link_with_sink = edp_links_with_sink[0];
1797
1798 if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1799 if (edp_link_with_sink && !keep_edp_vdd_on) {
1800 /*turn off backlight before DP_blank and encoder powered down*/
1801 hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1802 }
1803 /*resume from S3, no vbios posting, no need to power down again*/
1804 power_down_all_hw_blocks(dc);
1805 disable_vga_and_power_gate_all_controllers(dc);
1806 if (edp_link_with_sink && !keep_edp_vdd_on)
1807 dc->hwss.edp_power_control(edp_link_with_sink, false);
1808 }
1809 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1810 }
1811
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1812 static uint32_t compute_pstate_blackout_duration(
1813 struct bw_fixed blackout_duration,
1814 const struct dc_stream_state *stream)
1815 {
1816 uint32_t total_dest_line_time_ns;
1817 uint32_t pstate_blackout_duration_ns;
1818
1819 pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1820
1821 total_dest_line_time_ns = 1000000UL *
1822 (stream->timing.h_total * 10) /
1823 stream->timing.pix_clk_100hz +
1824 pstate_blackout_duration_ns;
1825
1826 return total_dest_line_time_ns;
1827 }
1828
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)1829 static void dce110_set_displaymarks(
1830 const struct dc *dc,
1831 struct dc_state *context)
1832 {
1833 uint8_t i, num_pipes;
1834 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1835
1836 for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1837 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1838 uint32_t total_dest_line_time_ns;
1839
1840 if (pipe_ctx->stream == NULL)
1841 continue;
1842
1843 total_dest_line_time_ns = compute_pstate_blackout_duration(
1844 dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1845 pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1846 pipe_ctx->plane_res.mi,
1847 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1848 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1849 context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1850 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1851 total_dest_line_time_ns);
1852 if (i == underlay_idx) {
1853 num_pipes++;
1854 pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1855 pipe_ctx->plane_res.mi,
1856 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1857 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1858 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1859 total_dest_line_time_ns);
1860 }
1861 num_pipes++;
1862 }
1863 }
1864
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)1865 void dce110_set_safe_displaymarks(
1866 struct resource_context *res_ctx,
1867 const struct resource_pool *pool)
1868 {
1869 int i;
1870 int underlay_idx = pool->underlay_pipe_index;
1871 struct dce_watermarks max_marks = {
1872 MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1873 struct dce_watermarks nbp_marks = {
1874 SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1875 struct dce_watermarks min_marks = { 0, 0, 0, 0};
1876
1877 for (i = 0; i < MAX_PIPES; i++) {
1878 if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1879 continue;
1880
1881 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1882 res_ctx->pipe_ctx[i].plane_res.mi,
1883 nbp_marks,
1884 max_marks,
1885 min_marks,
1886 max_marks,
1887 MAX_WATERMARK);
1888
1889 if (i == underlay_idx)
1890 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1891 res_ctx->pipe_ctx[i].plane_res.mi,
1892 nbp_marks,
1893 max_marks,
1894 max_marks,
1895 MAX_WATERMARK);
1896
1897 }
1898 }
1899
1900 /*******************************************************************************
1901 * Public functions
1902 ******************************************************************************/
1903
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)1904 static void set_drr(struct pipe_ctx **pipe_ctx,
1905 int num_pipes, struct dc_crtc_timing_adjust adjust)
1906 {
1907 int i = 0;
1908 struct drr_params params = {0};
1909 // DRR should set trigger event to monitor surface update event
1910 unsigned int event_triggers = 0x80;
1911 // Note DRR trigger events are generated regardless of whether num frames met.
1912 unsigned int num_frames = 2;
1913
1914 params.vertical_total_max = adjust.v_total_max;
1915 params.vertical_total_min = adjust.v_total_min;
1916
1917 /* TODO: If multiple pipes are to be supported, you need
1918 * some GSL stuff. Static screen triggers may be programmed differently
1919 * as well.
1920 */
1921 for (i = 0; i < num_pipes; i++) {
1922 pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1923 pipe_ctx[i]->stream_res.tg, ¶ms);
1924
1925 if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1926 pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1927 pipe_ctx[i]->stream_res.tg,
1928 event_triggers, num_frames);
1929 }
1930 }
1931
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)1932 static void get_position(struct pipe_ctx **pipe_ctx,
1933 int num_pipes,
1934 struct crtc_position *position)
1935 {
1936 int i = 0;
1937
1938 /* TODO: handle pipes > 1
1939 */
1940 for (i = 0; i < num_pipes; i++)
1941 pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1942 }
1943
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)1944 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1945 int num_pipes, const struct dc_static_screen_params *params)
1946 {
1947 unsigned int i;
1948 unsigned int triggers = 0;
1949
1950 if (params->triggers.overlay_update)
1951 triggers |= 0x100;
1952 if (params->triggers.surface_update)
1953 triggers |= 0x80;
1954 if (params->triggers.cursor_update)
1955 triggers |= 0x2;
1956 if (params->triggers.force_trigger)
1957 triggers |= 0x1;
1958
1959 if (num_pipes) {
1960 struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1961
1962 if (dc->fbc_compressor)
1963 triggers |= 0x84;
1964 }
1965
1966 for (i = 0; i < num_pipes; i++)
1967 pipe_ctx[i]->stream_res.tg->funcs->
1968 set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1969 triggers, params->num_frames);
1970 }
1971
1972 /*
1973 * Check if FBC can be enabled
1974 */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)1975 static bool should_enable_fbc(struct dc *dc,
1976 struct dc_state *context,
1977 uint32_t *pipe_idx)
1978 {
1979 uint32_t i;
1980 struct pipe_ctx *pipe_ctx = NULL;
1981 struct resource_context *res_ctx = &context->res_ctx;
1982 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1983
1984
1985 ASSERT(dc->fbc_compressor);
1986
1987 /* FBC memory should be allocated */
1988 if (!dc->ctx->fbc_gpu_addr)
1989 return false;
1990
1991 /* Only supports single display */
1992 if (context->stream_count != 1)
1993 return false;
1994
1995 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1996 if (res_ctx->pipe_ctx[i].stream) {
1997
1998 pipe_ctx = &res_ctx->pipe_ctx[i];
1999
2000 if (!pipe_ctx)
2001 continue;
2002
2003 /* fbc not applicable on underlay pipe */
2004 if (pipe_ctx->pipe_idx != underlay_idx) {
2005 *pipe_idx = i;
2006 break;
2007 }
2008 }
2009 }
2010
2011 if (i == dc->res_pool->pipe_count)
2012 return false;
2013
2014 if (!pipe_ctx->stream->link)
2015 return false;
2016
2017 /* Only supports eDP */
2018 if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2019 return false;
2020
2021 /* PSR should not be enabled */
2022 if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2023 return false;
2024
2025 /* Nothing to compress */
2026 if (!pipe_ctx->plane_state)
2027 return false;
2028
2029 /* Only for non-linear tiling */
2030 if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2031 return false;
2032
2033 return true;
2034 }
2035
2036 /*
2037 * Enable FBC
2038 */
enable_fbc(struct dc * dc,struct dc_state * context)2039 static void enable_fbc(
2040 struct dc *dc,
2041 struct dc_state *context)
2042 {
2043 uint32_t pipe_idx = 0;
2044
2045 if (should_enable_fbc(dc, context, &pipe_idx)) {
2046 /* Program GRPH COMPRESSED ADDRESS and PITCH */
2047 struct compr_addr_and_pitch_params params = {0, 0, 0};
2048 struct compressor *compr = dc->fbc_compressor;
2049 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2050
2051 params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2052 params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2053 params.inst = pipe_ctx->stream_res.tg->inst;
2054 compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2055
2056 compr->funcs->surface_address_and_pitch(compr, ¶ms);
2057 compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2058
2059 compr->funcs->enable_fbc(compr, ¶ms);
2060 }
2061 }
2062
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2063 static void dce110_reset_hw_ctx_wrap(
2064 struct dc *dc,
2065 struct dc_state *context)
2066 {
2067 int i;
2068
2069 /* Reset old context */
2070 /* look up the targets that have been removed since last commit */
2071 for (i = 0; i < MAX_PIPES; i++) {
2072 struct pipe_ctx *pipe_ctx_old =
2073 &dc->current_state->res_ctx.pipe_ctx[i];
2074 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2075
2076 /* Note: We need to disable output if clock sources change,
2077 * since bios does optimization and doesn't apply if changing
2078 * PHY when not already disabled.
2079 */
2080
2081 /* Skip underlay pipe since it will be handled in commit surface*/
2082 if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2083 continue;
2084
2085 if (!pipe_ctx->stream ||
2086 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2087 struct clock_source *old_clk = pipe_ctx_old->clock_source;
2088
2089 /* Disable if new stream is null. O/w, if stream is
2090 * disabled already, no need to disable again.
2091 */
2092 if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2093 core_link_disable_stream(pipe_ctx_old);
2094
2095 /* free acquired resources*/
2096 if (pipe_ctx_old->stream_res.audio) {
2097 /*disable az_endpoint*/
2098 pipe_ctx_old->stream_res.audio->funcs->
2099 az_disable(pipe_ctx_old->stream_res.audio);
2100
2101 /*free audio*/
2102 if (dc->caps.dynamic_audio == true) {
2103 /*we have to dynamic arbitrate the audio endpoints*/
2104 /*we free the resource, need reset is_audio_acquired*/
2105 update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2106 pipe_ctx_old->stream_res.audio, false);
2107 pipe_ctx_old->stream_res.audio = NULL;
2108 }
2109 }
2110 }
2111
2112 pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2113 if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2114 dm_error("DC: failed to blank crtc!\n");
2115 BREAK_TO_DEBUGGER();
2116 }
2117 pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2118 pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2119 pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2120
2121 if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2122 dc->res_pool,
2123 old_clk))
2124 old_clk->funcs->cs_power_down(old_clk);
2125
2126 dc->hwss.disable_plane(dc, pipe_ctx_old);
2127
2128 pipe_ctx_old->stream = NULL;
2129 }
2130 }
2131 }
2132
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2133 static void dce110_setup_audio_dto(
2134 struct dc *dc,
2135 struct dc_state *context)
2136 {
2137 int i;
2138
2139 /* program audio wall clock. use HDMI as clock source if HDMI
2140 * audio active. Otherwise, use DP as clock source
2141 * first, loop to find any HDMI audio, if not, loop find DP audio
2142 */
2143 /* Setup audio rate clock source */
2144 /* Issue:
2145 * Audio lag happened on DP monitor when unplug a HDMI monitor
2146 *
2147 * Cause:
2148 * In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2149 * is set to either dto0 or dto1, audio should work fine.
2150 * In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2151 * set to dto0 will cause audio lag.
2152 *
2153 * Solution:
2154 * Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2155 * find first available pipe with audio, setup audio wall DTO per topology
2156 * instead of per pipe.
2157 */
2158 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2159 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2160
2161 if (pipe_ctx->stream == NULL)
2162 continue;
2163
2164 if (pipe_ctx->top_pipe)
2165 continue;
2166 if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2167 continue;
2168 if (pipe_ctx->stream_res.audio != NULL) {
2169 struct audio_output audio_output;
2170
2171 build_audio_output(context, pipe_ctx, &audio_output);
2172
2173 if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2174 struct dtbclk_dto_params dto_params = {0};
2175
2176 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2177 pipe_ctx->stream_res.audio,
2178 pipe_ctx->stream->signal,
2179 &audio_output.crtc_info,
2180 &audio_output.pll_info);
2181
2182 dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2183 dc->res_pool->dccg,
2184 &dto_params);
2185
2186 } else
2187 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2188 pipe_ctx->stream_res.audio,
2189 pipe_ctx->stream->signal,
2190 &audio_output.crtc_info,
2191 &audio_output.pll_info);
2192 break;
2193 }
2194 }
2195
2196 /* no HDMI audio is found, try DP audio */
2197 if (i == dc->res_pool->pipe_count) {
2198 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2199 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2200
2201 if (pipe_ctx->stream == NULL)
2202 continue;
2203
2204 if (pipe_ctx->top_pipe)
2205 continue;
2206
2207 if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2208 continue;
2209
2210 if (pipe_ctx->stream_res.audio != NULL) {
2211 struct audio_output audio_output;
2212
2213 build_audio_output(context, pipe_ctx, &audio_output);
2214
2215 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2216 pipe_ctx->stream_res.audio,
2217 pipe_ctx->stream->signal,
2218 &audio_output.crtc_info,
2219 &audio_output.pll_info);
2220 break;
2221 }
2222 }
2223 }
2224 }
2225
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2226 enum dc_status dce110_apply_ctx_to_hw(
2227 struct dc *dc,
2228 struct dc_state *context)
2229 {
2230 struct dce_hwseq *hws = dc->hwseq;
2231 struct dc_bios *dcb = dc->ctx->dc_bios;
2232 enum dc_status status;
2233 int i;
2234
2235 /* reset syncd pipes from disabled pipes */
2236 if (dc->config.use_pipe_ctx_sync_logic)
2237 reset_syncd_pipes_from_disabled_pipes(dc, context);
2238
2239 /* Reset old context */
2240 /* look up the targets that have been removed since last commit */
2241 hws->funcs.reset_hw_ctx_wrap(dc, context);
2242
2243 /* Skip applying if no targets */
2244 if (context->stream_count <= 0)
2245 return DC_OK;
2246
2247 /* Apply new context */
2248 dcb->funcs->set_scratch_critical_state(dcb, true);
2249
2250 /* below is for real asic only */
2251 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2252 struct pipe_ctx *pipe_ctx_old =
2253 &dc->current_state->res_ctx.pipe_ctx[i];
2254 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2255
2256 if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2257 continue;
2258
2259 if (pipe_ctx->stream == pipe_ctx_old->stream) {
2260 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2261 dce_crtc_switch_to_clk_src(dc->hwseq,
2262 pipe_ctx->clock_source, i);
2263 continue;
2264 }
2265
2266 hws->funcs.enable_display_power_gating(
2267 dc, i, dc->ctx->dc_bios,
2268 PIPE_GATING_CONTROL_DISABLE);
2269 }
2270
2271 if (dc->fbc_compressor)
2272 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2273
2274 dce110_setup_audio_dto(dc, context);
2275
2276 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2277 struct pipe_ctx *pipe_ctx_old =
2278 &dc->current_state->res_ctx.pipe_ctx[i];
2279 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2280
2281 if (pipe_ctx->stream == NULL)
2282 continue;
2283
2284 if (pipe_ctx->stream == pipe_ctx_old->stream &&
2285 pipe_ctx->stream->link->link_state_valid) {
2286 continue;
2287 }
2288
2289 if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2290 continue;
2291
2292 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2293 continue;
2294
2295 status = apply_single_controller_ctx_to_hw(
2296 pipe_ctx,
2297 context,
2298 dc);
2299
2300 if (DC_OK != status)
2301 return status;
2302 }
2303
2304 if (dc->fbc_compressor)
2305 enable_fbc(dc, dc->current_state);
2306
2307 dcb->funcs->set_scratch_critical_state(dcb, false);
2308
2309 return DC_OK;
2310 }
2311
2312 /*******************************************************************************
2313 * Front End programming
2314 ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2315 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2316 {
2317 struct default_adjustment default_adjust = { 0 };
2318
2319 default_adjust.force_hw_default = false;
2320 default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2321 default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2322 default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2323 default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2324
2325 /* display color depth */
2326 default_adjust.color_depth =
2327 pipe_ctx->stream->timing.display_color_depth;
2328
2329 /* Lb color depth */
2330 default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2331
2332 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2333 pipe_ctx->plane_res.xfm, &default_adjust);
2334 }
2335
2336
2337 /*******************************************************************************
2338 * In order to turn on/off specific surface we will program
2339 * Blender + CRTC
2340 *
2341 * In case that we have two surfaces and they have a different visibility
2342 * we can't turn off the CRTC since it will turn off the entire display
2343 *
2344 * |----------------------------------------------- |
2345 * |bottom pipe|curr pipe | | |
2346 * |Surface |Surface | Blender | CRCT |
2347 * |visibility |visibility | Configuration| |
2348 * |------------------------------------------------|
2349 * | off | off | CURRENT_PIPE | blank |
2350 * | off | on | CURRENT_PIPE | unblank |
2351 * | on | off | OTHER_PIPE | unblank |
2352 * | on | on | BLENDING | unblank |
2353 * -------------------------------------------------|
2354 *
2355 ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2356 static void program_surface_visibility(const struct dc *dc,
2357 struct pipe_ctx *pipe_ctx)
2358 {
2359 enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2360 bool blank_target = false;
2361
2362 if (pipe_ctx->bottom_pipe) {
2363
2364 /* For now we are supporting only two pipes */
2365 ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2366
2367 if (pipe_ctx->bottom_pipe->plane_state->visible) {
2368 if (pipe_ctx->plane_state->visible)
2369 blender_mode = BLND_MODE_BLENDING;
2370 else
2371 blender_mode = BLND_MODE_OTHER_PIPE;
2372
2373 } else if (!pipe_ctx->plane_state->visible)
2374 blank_target = true;
2375
2376 } else if (!pipe_ctx->plane_state->visible)
2377 blank_target = true;
2378
2379 dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2380 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2381
2382 }
2383
program_gamut_remap(struct pipe_ctx * pipe_ctx)2384 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2385 {
2386 int i = 0;
2387 struct xfm_grph_csc_adjustment adjust;
2388 memset(&adjust, 0, sizeof(adjust));
2389 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2390
2391
2392 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2393 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2394
2395 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2396 adjust.temperature_matrix[i] =
2397 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2398 }
2399
2400 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2401 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2402 static void update_plane_addr(const struct dc *dc,
2403 struct pipe_ctx *pipe_ctx)
2404 {
2405 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2406
2407 if (plane_state == NULL)
2408 return;
2409
2410 pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2411 pipe_ctx->plane_res.mi,
2412 &plane_state->address,
2413 plane_state->flip_immediate);
2414
2415 plane_state->status.requested_address = plane_state->address;
2416 }
2417
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2418 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2419 {
2420 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2421
2422 if (plane_state == NULL)
2423 return;
2424
2425 plane_state->status.is_flip_pending =
2426 pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2427 pipe_ctx->plane_res.mi);
2428
2429 if (plane_state->status.is_flip_pending && !plane_state->visible)
2430 pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2431
2432 plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2433 if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2434 pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2435 plane_state->status.is_right_eye =\
2436 !pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2437 }
2438 }
2439
dce110_power_down(struct dc * dc)2440 void dce110_power_down(struct dc *dc)
2441 {
2442 power_down_all_hw_blocks(dc);
2443 disable_vga_and_power_gate_all_controllers(dc);
2444 }
2445
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2446 static bool wait_for_reset_trigger_to_occur(
2447 struct dc_context *dc_ctx,
2448 struct timing_generator *tg)
2449 {
2450 bool rc = false;
2451
2452 /* To avoid endless loop we wait at most
2453 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2454 const uint32_t frames_to_wait_on_triggered_reset = 10;
2455 uint32_t i;
2456
2457 for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2458
2459 if (!tg->funcs->is_counter_moving(tg)) {
2460 DC_ERROR("TG counter is not moving!\n");
2461 break;
2462 }
2463
2464 if (tg->funcs->did_triggered_reset_occur(tg)) {
2465 rc = true;
2466 /* usually occurs at i=1 */
2467 DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2468 i);
2469 break;
2470 }
2471
2472 /* Wait for one frame. */
2473 tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2474 tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2475 }
2476
2477 if (false == rc)
2478 DC_ERROR("GSL: Timeout on reset trigger!\n");
2479
2480 return rc;
2481 }
2482
2483 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2484 static void dce110_enable_timing_synchronization(
2485 struct dc *dc,
2486 int group_index,
2487 int group_size,
2488 struct pipe_ctx *grouped_pipes[])
2489 {
2490 struct dc_context *dc_ctx = dc->ctx;
2491 struct dcp_gsl_params gsl_params = { 0 };
2492 int i;
2493
2494 DC_SYNC_INFO("GSL: Setting-up...\n");
2495
2496 /* Designate a single TG in the group as a master.
2497 * Since HW doesn't care which one, we always assign
2498 * the 1st one in the group. */
2499 gsl_params.gsl_group = 0;
2500 gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2501
2502 for (i = 0; i < group_size; i++)
2503 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2504 grouped_pipes[i]->stream_res.tg, &gsl_params);
2505
2506 /* Reset slave controllers on master VSync */
2507 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2508
2509 for (i = 1 /* skip the master */; i < group_size; i++)
2510 grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2511 grouped_pipes[i]->stream_res.tg,
2512 gsl_params.gsl_group);
2513
2514 for (i = 1 /* skip the master */; i < group_size; i++) {
2515 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2516 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2517 grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2518 grouped_pipes[i]->stream_res.tg);
2519 }
2520
2521 /* GSL Vblank synchronization is a one time sync mechanism, assumption
2522 * is that the sync'ed displays will not drift out of sync over time*/
2523 DC_SYNC_INFO("GSL: Restoring register states.\n");
2524 for (i = 0; i < group_size; i++)
2525 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2526
2527 DC_SYNC_INFO("GSL: Set-up complete.\n");
2528 }
2529
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2530 static void dce110_enable_per_frame_crtc_position_reset(
2531 struct dc *dc,
2532 int group_size,
2533 struct pipe_ctx *grouped_pipes[])
2534 {
2535 struct dc_context *dc_ctx = dc->ctx;
2536 struct dcp_gsl_params gsl_params = { 0 };
2537 int i;
2538
2539 gsl_params.gsl_group = 0;
2540 gsl_params.gsl_master = 0;
2541
2542 for (i = 0; i < group_size; i++)
2543 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2544 grouped_pipes[i]->stream_res.tg, &gsl_params);
2545
2546 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2547
2548 for (i = 1; i < group_size; i++)
2549 grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2550 grouped_pipes[i]->stream_res.tg,
2551 gsl_params.gsl_master,
2552 &grouped_pipes[i]->stream->triggered_crtc_reset);
2553
2554 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2555 for (i = 1; i < group_size; i++)
2556 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2557
2558 for (i = 0; i < group_size; i++)
2559 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2560
2561 }
2562
init_pipes(struct dc * dc,struct dc_state * context)2563 static void init_pipes(struct dc *dc, struct dc_state *context)
2564 {
2565 // Do nothing
2566 }
2567
init_hw(struct dc * dc)2568 static void init_hw(struct dc *dc)
2569 {
2570 int i;
2571 struct dc_bios *bp;
2572 struct transform *xfm;
2573 struct abm *abm;
2574 struct dmcu *dmcu;
2575 struct dce_hwseq *hws = dc->hwseq;
2576 uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2577
2578 bp = dc->ctx->dc_bios;
2579 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2580 xfm = dc->res_pool->transforms[i];
2581 xfm->funcs->transform_reset(xfm);
2582
2583 hws->funcs.enable_display_power_gating(
2584 dc, i, bp,
2585 PIPE_GATING_CONTROL_INIT);
2586 hws->funcs.enable_display_power_gating(
2587 dc, i, bp,
2588 PIPE_GATING_CONTROL_DISABLE);
2589 hws->funcs.enable_display_pipe_clock_gating(
2590 dc->ctx,
2591 true);
2592 }
2593
2594 dce_clock_gating_power_up(dc->hwseq, false);
2595 /***************************************/
2596
2597 for (i = 0; i < dc->link_count; i++) {
2598 /****************************************/
2599 /* Power up AND update implementation according to the
2600 * required signal (which may be different from the
2601 * default signal on connector). */
2602 struct dc_link *link = dc->links[i];
2603
2604 link->link_enc->funcs->hw_init(link->link_enc);
2605 }
2606
2607 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2608 struct timing_generator *tg = dc->res_pool->timing_generators[i];
2609
2610 tg->funcs->disable_vga(tg);
2611
2612 /* Blank controller using driver code instead of
2613 * command table. */
2614 tg->funcs->set_blank(tg, true);
2615 hwss_wait_for_blank_complete(tg);
2616 }
2617
2618 for (i = 0; i < dc->res_pool->audio_count; i++) {
2619 struct audio *audio = dc->res_pool->audios[i];
2620 audio->funcs->hw_init(audio);
2621 }
2622
2623 for (i = 0; i < dc->link_count; i++) {
2624 struct dc_link *link = dc->links[i];
2625
2626 if (link->panel_cntl)
2627 backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2628 }
2629
2630 abm = dc->res_pool->abm;
2631 if (abm != NULL)
2632 abm->funcs->abm_init(abm, backlight);
2633
2634 dmcu = dc->res_pool->dmcu;
2635 if (dmcu != NULL && abm != NULL)
2636 abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2637
2638 if (dc->fbc_compressor)
2639 dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2640
2641 }
2642
2643
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2644 void dce110_prepare_bandwidth(
2645 struct dc *dc,
2646 struct dc_state *context)
2647 {
2648 struct clk_mgr *dccg = dc->clk_mgr;
2649
2650 dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2651
2652 dccg->funcs->update_clocks(
2653 dccg,
2654 context,
2655 false);
2656 }
2657
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2658 void dce110_optimize_bandwidth(
2659 struct dc *dc,
2660 struct dc_state *context)
2661 {
2662 struct clk_mgr *dccg = dc->clk_mgr;
2663
2664 dce110_set_displaymarks(dc, context);
2665
2666 dccg->funcs->update_clocks(
2667 dccg,
2668 context,
2669 true);
2670 }
2671
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2672 static void dce110_program_front_end_for_pipe(
2673 struct dc *dc, struct pipe_ctx *pipe_ctx)
2674 {
2675 struct mem_input *mi = pipe_ctx->plane_res.mi;
2676 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2677 struct xfm_grph_csc_adjustment adjust;
2678 struct out_csc_color_matrix tbl_entry;
2679 unsigned int i;
2680 struct dce_hwseq *hws = dc->hwseq;
2681
2682 DC_LOGGER_INIT();
2683 memset(&tbl_entry, 0, sizeof(tbl_entry));
2684
2685 memset(&adjust, 0, sizeof(adjust));
2686 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2687
2688 dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2689
2690 set_default_colors(pipe_ctx);
2691 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2692 == true) {
2693 tbl_entry.color_space =
2694 pipe_ctx->stream->output_color_space;
2695
2696 for (i = 0; i < 12; i++)
2697 tbl_entry.regval[i] =
2698 pipe_ctx->stream->csc_color_matrix.matrix[i];
2699
2700 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2701 (pipe_ctx->plane_res.xfm, &tbl_entry);
2702 }
2703
2704 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2705 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2706
2707 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2708 adjust.temperature_matrix[i] =
2709 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2710 }
2711
2712 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2713
2714 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2715
2716 program_scaler(dc, pipe_ctx);
2717
2718 mi->funcs->mem_input_program_surface_config(
2719 mi,
2720 plane_state->format,
2721 &plane_state->tiling_info,
2722 &plane_state->plane_size,
2723 plane_state->rotation,
2724 NULL,
2725 false);
2726 if (mi->funcs->set_blank)
2727 mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2728
2729 if (dc->config.gpu_vm_support)
2730 mi->funcs->mem_input_program_pte_vm(
2731 pipe_ctx->plane_res.mi,
2732 plane_state->format,
2733 &plane_state->tiling_info,
2734 plane_state->rotation);
2735
2736 /* Moved programming gamma from dc to hwss */
2737 if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2738 pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2739 pipe_ctx->plane_state->update_flags.bits.gamma_change)
2740 hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2741
2742 if (pipe_ctx->plane_state->update_flags.bits.full_update)
2743 hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2744
2745 DC_LOG_SURFACE(
2746 "Pipe:%d %p: addr hi:0x%x, "
2747 "addr low:0x%x, "
2748 "src: %d, %d, %d,"
2749 " %d; dst: %d, %d, %d, %d;"
2750 "clip: %d, %d, %d, %d\n",
2751 pipe_ctx->pipe_idx,
2752 (void *) pipe_ctx->plane_state,
2753 pipe_ctx->plane_state->address.grph.addr.high_part,
2754 pipe_ctx->plane_state->address.grph.addr.low_part,
2755 pipe_ctx->plane_state->src_rect.x,
2756 pipe_ctx->plane_state->src_rect.y,
2757 pipe_ctx->plane_state->src_rect.width,
2758 pipe_ctx->plane_state->src_rect.height,
2759 pipe_ctx->plane_state->dst_rect.x,
2760 pipe_ctx->plane_state->dst_rect.y,
2761 pipe_ctx->plane_state->dst_rect.width,
2762 pipe_ctx->plane_state->dst_rect.height,
2763 pipe_ctx->plane_state->clip_rect.x,
2764 pipe_ctx->plane_state->clip_rect.y,
2765 pipe_ctx->plane_state->clip_rect.width,
2766 pipe_ctx->plane_state->clip_rect.height);
2767
2768 DC_LOG_SURFACE(
2769 "Pipe %d: width, height, x, y\n"
2770 "viewport:%d, %d, %d, %d\n"
2771 "recout: %d, %d, %d, %d\n",
2772 pipe_ctx->pipe_idx,
2773 pipe_ctx->plane_res.scl_data.viewport.width,
2774 pipe_ctx->plane_res.scl_data.viewport.height,
2775 pipe_ctx->plane_res.scl_data.viewport.x,
2776 pipe_ctx->plane_res.scl_data.viewport.y,
2777 pipe_ctx->plane_res.scl_data.recout.width,
2778 pipe_ctx->plane_res.scl_data.recout.height,
2779 pipe_ctx->plane_res.scl_data.recout.x,
2780 pipe_ctx->plane_res.scl_data.recout.y);
2781 }
2782
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2783 static void dce110_apply_ctx_for_surface(
2784 struct dc *dc,
2785 const struct dc_stream_state *stream,
2786 int num_planes,
2787 struct dc_state *context)
2788 {
2789 int i;
2790
2791 if (num_planes == 0)
2792 return;
2793
2794 if (dc->fbc_compressor)
2795 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2796
2797 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2798 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2799
2800 if (pipe_ctx->stream != stream)
2801 continue;
2802
2803 /* Need to allocate mem before program front end for Fiji */
2804 pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2805 pipe_ctx->plane_res.mi,
2806 pipe_ctx->stream->timing.h_total,
2807 pipe_ctx->stream->timing.v_total,
2808 pipe_ctx->stream->timing.pix_clk_100hz / 10,
2809 context->stream_count);
2810
2811 dce110_program_front_end_for_pipe(dc, pipe_ctx);
2812
2813 dc->hwss.update_plane_addr(dc, pipe_ctx);
2814
2815 program_surface_visibility(dc, pipe_ctx);
2816
2817 }
2818
2819 if (dc->fbc_compressor)
2820 enable_fbc(dc, context);
2821 }
2822
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)2823 static void dce110_post_unlock_program_front_end(
2824 struct dc *dc,
2825 struct dc_state *context)
2826 {
2827 }
2828
dce110_power_down_fe(struct dc * dc,struct pipe_ctx * pipe_ctx)2829 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2830 {
2831 struct dce_hwseq *hws = dc->hwseq;
2832 int fe_idx = pipe_ctx->plane_res.mi ?
2833 pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2834
2835 /* Do not power down fe when stream is active on dce*/
2836 if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2837 return;
2838
2839 hws->funcs.enable_display_power_gating(
2840 dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2841
2842 dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2843 dc->res_pool->transforms[fe_idx]);
2844 }
2845
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)2846 static void dce110_wait_for_mpcc_disconnect(
2847 struct dc *dc,
2848 struct resource_pool *res_pool,
2849 struct pipe_ctx *pipe_ctx)
2850 {
2851 /* do nothing*/
2852 }
2853
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2854 static void program_output_csc(struct dc *dc,
2855 struct pipe_ctx *pipe_ctx,
2856 enum dc_color_space colorspace,
2857 uint16_t *matrix,
2858 int opp_id)
2859 {
2860 int i;
2861 struct out_csc_color_matrix tbl_entry;
2862
2863 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2864 enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2865
2866 for (i = 0; i < 12; i++)
2867 tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2868
2869 tbl_entry.color_space = color_space;
2870
2871 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2872 pipe_ctx->plane_res.xfm, &tbl_entry);
2873 }
2874 }
2875
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)2876 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2877 {
2878 struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2879 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2880 struct mem_input *mi = pipe_ctx->plane_res.mi;
2881 struct dc_cursor_mi_param param = {
2882 .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2883 .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2884 .viewport = pipe_ctx->plane_res.scl_data.viewport,
2885 .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2886 .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2887 .rotation = pipe_ctx->plane_state->rotation,
2888 .mirror = pipe_ctx->plane_state->horizontal_mirror
2889 };
2890
2891 /**
2892 * If the cursor's source viewport is clipped then we need to
2893 * translate the cursor to appear in the correct position on
2894 * the screen.
2895 *
2896 * This translation isn't affected by scaling so it needs to be
2897 * done *after* we adjust the position for the scale factor.
2898 *
2899 * This is only done by opt-in for now since there are still
2900 * some usecases like tiled display that might enable the
2901 * cursor on both streams while expecting dc to clip it.
2902 */
2903 if (pos_cpy.translate_by_source) {
2904 pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2905 pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2906 }
2907
2908 if (pipe_ctx->plane_state->address.type
2909 == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2910 pos_cpy.enable = false;
2911
2912 if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2913 pos_cpy.enable = false;
2914
2915 if (ipp->funcs->ipp_cursor_set_position)
2916 ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, ¶m);
2917 if (mi->funcs->set_cursor_position)
2918 mi->funcs->set_cursor_position(mi, &pos_cpy, ¶m);
2919 }
2920
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)2921 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2922 {
2923 struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2924
2925 if (pipe_ctx->plane_res.ipp &&
2926 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2927 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2928 pipe_ctx->plane_res.ipp, attributes);
2929
2930 if (pipe_ctx->plane_res.mi &&
2931 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2932 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2933 pipe_ctx->plane_res.mi, attributes);
2934
2935 if (pipe_ctx->plane_res.xfm &&
2936 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2937 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2938 pipe_ctx->plane_res.xfm, attributes);
2939 }
2940
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,uint32_t backlight_pwm_u16_16,uint32_t frame_ramp)2941 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2942 uint32_t backlight_pwm_u16_16,
2943 uint32_t frame_ramp)
2944 {
2945 struct dc_link *link = pipe_ctx->stream->link;
2946 struct dc *dc = link->ctx->dc;
2947 struct abm *abm = pipe_ctx->stream_res.abm;
2948 struct panel_cntl *panel_cntl = link->panel_cntl;
2949 struct dmcu *dmcu = dc->res_pool->dmcu;
2950 bool fw_set_brightness = true;
2951 /* DMCU -1 for all controller id values,
2952 * therefore +1 here
2953 */
2954 uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2955
2956 if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2957 return false;
2958
2959 if (dmcu)
2960 fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2961
2962 if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2963 panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2964 else
2965 abm->funcs->set_backlight_level_pwm(
2966 abm,
2967 backlight_pwm_u16_16,
2968 frame_ramp,
2969 controller_id,
2970 link->panel_cntl->inst);
2971
2972 return true;
2973 }
2974
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)2975 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2976 {
2977 struct abm *abm = pipe_ctx->stream_res.abm;
2978 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2979
2980 if (abm)
2981 abm->funcs->set_abm_immediate_disable(abm,
2982 pipe_ctx->stream->link->panel_cntl->inst);
2983
2984 if (panel_cntl)
2985 panel_cntl->funcs->store_backlight_level(panel_cntl);
2986 }
2987
dce110_set_pipe(struct pipe_ctx * pipe_ctx)2988 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
2989 {
2990 struct abm *abm = pipe_ctx->stream_res.abm;
2991 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2992 uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
2993
2994 if (abm && panel_cntl)
2995 abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
2996 }
2997
2998 static const struct hw_sequencer_funcs dce110_funcs = {
2999 .program_gamut_remap = program_gamut_remap,
3000 .program_output_csc = program_output_csc,
3001 .init_hw = init_hw,
3002 .apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3003 .apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3004 .post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3005 .update_plane_addr = update_plane_addr,
3006 .update_pending_status = dce110_update_pending_status,
3007 .enable_accelerated_mode = dce110_enable_accelerated_mode,
3008 .enable_timing_synchronization = dce110_enable_timing_synchronization,
3009 .enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3010 .update_info_frame = dce110_update_info_frame,
3011 .enable_stream = dce110_enable_stream,
3012 .disable_stream = dce110_disable_stream,
3013 .unblank_stream = dce110_unblank_stream,
3014 .blank_stream = dce110_blank_stream,
3015 .enable_audio_stream = dce110_enable_audio_stream,
3016 .disable_audio_stream = dce110_disable_audio_stream,
3017 .disable_plane = dce110_power_down_fe,
3018 .pipe_control_lock = dce_pipe_control_lock,
3019 .interdependent_update_lock = NULL,
3020 .cursor_lock = dce_pipe_control_lock,
3021 .prepare_bandwidth = dce110_prepare_bandwidth,
3022 .optimize_bandwidth = dce110_optimize_bandwidth,
3023 .set_drr = set_drr,
3024 .get_position = get_position,
3025 .set_static_screen_control = set_static_screen_control,
3026 .setup_stereo = NULL,
3027 .set_avmute = dce110_set_avmute,
3028 .wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3029 .edp_backlight_control = dce110_edp_backlight_control,
3030 .edp_power_control = dce110_edp_power_control,
3031 .edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3032 .set_cursor_position = dce110_set_cursor_position,
3033 .set_cursor_attribute = dce110_set_cursor_attribute,
3034 .set_backlight_level = dce110_set_backlight_level,
3035 .set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3036 .set_pipe = dce110_set_pipe,
3037 };
3038
3039 static const struct hwseq_private_funcs dce110_private_funcs = {
3040 .init_pipes = init_pipes,
3041 .update_plane_addr = update_plane_addr,
3042 .set_input_transfer_func = dce110_set_input_transfer_func,
3043 .set_output_transfer_func = dce110_set_output_transfer_func,
3044 .power_down = dce110_power_down,
3045 .enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3046 .enable_display_power_gating = dce110_enable_display_power_gating,
3047 .reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3048 .enable_stream_timing = dce110_enable_stream_timing,
3049 .disable_stream_gating = NULL,
3050 .enable_stream_gating = NULL,
3051 .edp_backlight_control = dce110_edp_backlight_control,
3052 };
3053
dce110_hw_sequencer_construct(struct dc * dc)3054 void dce110_hw_sequencer_construct(struct dc *dc)
3055 {
3056 dc->hwss = dce110_funcs;
3057 dc->hwseq->funcs = dce110_private_funcs;
3058 }
3059
3060