1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_timing_generator.h"
34 #include "dce/dce_hwseq.h"
35 #include "gpio_service_interface.h"
36
37 #include "dce110_compressor.h"
38
39 #include "bios/bios_parser_helper.h"
40 #include "timing_generator.h"
41 #include "mem_input.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "transform.h"
45 #include "stream_encoder.h"
46 #include "link_encoder.h"
47 #include "link_enc_cfg.h"
48 #include "link_hwss.h"
49 #include "dc_link_dp.h"
50 #include "dccg.h"
51 #include "clock_source.h"
52 #include "clk_mgr.h"
53 #include "abm.h"
54 #include "audio.h"
55 #include "reg_helper.h"
56 #include "panel_cntl.h"
57 #include "inc/link_dpcd.h"
58 #include "dpcd_defs.h"
59 /* include DCE11 register header files */
60 #include "dce/dce_11_0_d.h"
61 #include "dce/dce_11_0_sh_mask.h"
62 #include "custom_float.h"
63
64 #include "atomfirmware.h"
65
66 #include "dcn10/dcn10_hw_sequencer.h"
67
68 #include "link/link_dp_trace.h"
69 #include "dce110_hw_sequencer.h"
70
71 #define GAMMA_HW_POINTS_NUM 256
72
73 /*
74 * All values are in milliseconds;
75 * For eDP, after power-up/power/down,
76 * 300/500 msec max. delay from LCDVCC to black video generation
77 */
78 #define PANEL_POWER_UP_TIMEOUT 300
79 #define PANEL_POWER_DOWN_TIMEOUT 500
80 #define HPD_CHECK_INTERVAL 10
81 #define OLED_POST_T7_DELAY 100
82 #define OLED_PRE_T11_DELAY 150
83
84 #define CTX \
85 hws->ctx
86
87 #define DC_LOGGER_INIT()
88
89 #define REG(reg)\
90 hws->regs->reg
91
92 #undef FN
93 #define FN(reg_name, field_name) \
94 hws->shifts->field_name, hws->masks->field_name
95
96 struct dce110_hw_seq_reg_offsets {
97 uint32_t crtc;
98 };
99
100 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
101 {
102 .crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
103 },
104 {
105 .crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
106 },
107 {
108 .crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
109 },
110 {
111 .crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
112 }
113 };
114
115 #define HW_REG_BLND(reg, id)\
116 (reg + reg_offsets[id].blnd)
117
118 #define HW_REG_CRTC(reg, id)\
119 (reg + reg_offsets[id].crtc)
120
121 #define MAX_WATERMARK 0xFFFF
122 #define SAFE_NBP_MARK 0x7FFF
123
124 /*******************************************************************************
125 * Private definitions
126 ******************************************************************************/
127 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)128 static void dce110_init_pte(struct dc_context *ctx)
129 {
130 uint32_t addr;
131 uint32_t value = 0;
132 uint32_t chunk_int = 0;
133 uint32_t chunk_mul = 0;
134
135 addr = mmUNP_DVMM_PTE_CONTROL;
136 value = dm_read_reg(ctx, addr);
137
138 set_reg_field_value(
139 value,
140 0,
141 DVMM_PTE_CONTROL,
142 DVMM_USE_SINGLE_PTE);
143
144 set_reg_field_value(
145 value,
146 1,
147 DVMM_PTE_CONTROL,
148 DVMM_PTE_BUFFER_MODE0);
149
150 set_reg_field_value(
151 value,
152 1,
153 DVMM_PTE_CONTROL,
154 DVMM_PTE_BUFFER_MODE1);
155
156 dm_write_reg(ctx, addr, value);
157
158 addr = mmDVMM_PTE_REQ;
159 value = dm_read_reg(ctx, addr);
160
161 chunk_int = get_reg_field_value(
162 value,
163 DVMM_PTE_REQ,
164 HFLIP_PTEREQ_PER_CHUNK_INT);
165
166 chunk_mul = get_reg_field_value(
167 value,
168 DVMM_PTE_REQ,
169 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
170
171 if (chunk_int != 0x4 || chunk_mul != 0x4) {
172
173 set_reg_field_value(
174 value,
175 255,
176 DVMM_PTE_REQ,
177 MAX_PTEREQ_TO_ISSUE);
178
179 set_reg_field_value(
180 value,
181 4,
182 DVMM_PTE_REQ,
183 HFLIP_PTEREQ_PER_CHUNK_INT);
184
185 set_reg_field_value(
186 value,
187 4,
188 DVMM_PTE_REQ,
189 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
190
191 dm_write_reg(ctx, addr, value);
192 }
193 }
194 /**************************************************************************/
195
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)196 static void enable_display_pipe_clock_gating(
197 struct dc_context *ctx,
198 bool clock_gating)
199 {
200 /*TODO*/
201 }
202
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)203 static bool dce110_enable_display_power_gating(
204 struct dc *dc,
205 uint8_t controller_id,
206 struct dc_bios *dcb,
207 enum pipe_gating_control power_gating)
208 {
209 enum bp_result bp_result = BP_RESULT_OK;
210 enum bp_pipe_control_action cntl;
211 struct dc_context *ctx = dc->ctx;
212 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
213
214 if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
215 return true;
216
217 if (power_gating == PIPE_GATING_CONTROL_INIT)
218 cntl = ASIC_PIPE_INIT;
219 else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
220 cntl = ASIC_PIPE_ENABLE;
221 else
222 cntl = ASIC_PIPE_DISABLE;
223
224 if (controller_id == underlay_idx)
225 controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
226
227 if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
228
229 bp_result = dcb->funcs->enable_disp_power_gating(
230 dcb, controller_id + 1, cntl);
231
232 /* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
233 * by default when command table is called
234 *
235 * Bios parser accepts controller_id = 6 as indicative of
236 * underlay pipe in dce110. But we do not support more
237 * than 3.
238 */
239 if (controller_id < CONTROLLER_ID_MAX - 1)
240 dm_write_reg(ctx,
241 HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
242 0);
243 }
244
245 if (power_gating != PIPE_GATING_CONTROL_ENABLE)
246 dce110_init_pte(ctx);
247
248 if (bp_result == BP_RESULT_OK)
249 return true;
250 else
251 return false;
252 }
253
build_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)254 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
255 const struct dc_plane_state *plane_state)
256 {
257 prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
258
259 switch (plane_state->format) {
260 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
261 prescale_params->scale = 0x2082;
262 break;
263 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
264 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
265 prescale_params->scale = 0x2020;
266 break;
267 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
268 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
269 prescale_params->scale = 0x2008;
270 break;
271 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
272 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
273 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
274 prescale_params->scale = 0x2000;
275 break;
276 default:
277 ASSERT(false);
278 break;
279 }
280 }
281
282 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)283 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
284 const struct dc_plane_state *plane_state)
285 {
286 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
287 const struct dc_transfer_func *tf = NULL;
288 struct ipp_prescale_params prescale_params = { 0 };
289 bool result = true;
290
291 if (ipp == NULL)
292 return false;
293
294 if (plane_state->in_transfer_func)
295 tf = plane_state->in_transfer_func;
296
297 build_prescale_params(&prescale_params, plane_state);
298 ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
299
300 if (plane_state->gamma_correction &&
301 !plane_state->gamma_correction->is_identity &&
302 dce_use_lut(plane_state->format))
303 ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
304
305 if (tf == NULL) {
306 /* Default case if no input transfer function specified */
307 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
308 } else if (tf->type == TF_TYPE_PREDEFINED) {
309 switch (tf->tf) {
310 case TRANSFER_FUNCTION_SRGB:
311 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
312 break;
313 case TRANSFER_FUNCTION_BT709:
314 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
315 break;
316 case TRANSFER_FUNCTION_LINEAR:
317 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
318 break;
319 case TRANSFER_FUNCTION_PQ:
320 default:
321 result = false;
322 break;
323 }
324 } else if (tf->type == TF_TYPE_BYPASS) {
325 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
326 } else {
327 /*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
328 result = false;
329 }
330
331 return result;
332 }
333
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)334 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
335 struct curve_points *arr_points,
336 uint32_t hw_points_num)
337 {
338 struct custom_float_format fmt;
339
340 struct pwl_result_data *rgb = rgb_resulted;
341
342 uint32_t i = 0;
343
344 fmt.exponenta_bits = 6;
345 fmt.mantissa_bits = 12;
346 fmt.sign = true;
347
348 if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
349 &arr_points[0].custom_float_x)) {
350 BREAK_TO_DEBUGGER();
351 return false;
352 }
353
354 if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
355 &arr_points[0].custom_float_offset)) {
356 BREAK_TO_DEBUGGER();
357 return false;
358 }
359
360 if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
361 &arr_points[0].custom_float_slope)) {
362 BREAK_TO_DEBUGGER();
363 return false;
364 }
365
366 fmt.mantissa_bits = 10;
367 fmt.sign = false;
368
369 if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
370 &arr_points[1].custom_float_x)) {
371 BREAK_TO_DEBUGGER();
372 return false;
373 }
374
375 if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
376 &arr_points[1].custom_float_y)) {
377 BREAK_TO_DEBUGGER();
378 return false;
379 }
380
381 if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
382 &arr_points[1].custom_float_slope)) {
383 BREAK_TO_DEBUGGER();
384 return false;
385 }
386
387 fmt.mantissa_bits = 12;
388 fmt.sign = true;
389
390 while (i != hw_points_num) {
391 if (!convert_to_custom_float_format(rgb->red, &fmt,
392 &rgb->red_reg)) {
393 BREAK_TO_DEBUGGER();
394 return false;
395 }
396
397 if (!convert_to_custom_float_format(rgb->green, &fmt,
398 &rgb->green_reg)) {
399 BREAK_TO_DEBUGGER();
400 return false;
401 }
402
403 if (!convert_to_custom_float_format(rgb->blue, &fmt,
404 &rgb->blue_reg)) {
405 BREAK_TO_DEBUGGER();
406 return false;
407 }
408
409 if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
410 &rgb->delta_red_reg)) {
411 BREAK_TO_DEBUGGER();
412 return false;
413 }
414
415 if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
416 &rgb->delta_green_reg)) {
417 BREAK_TO_DEBUGGER();
418 return false;
419 }
420
421 if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
422 &rgb->delta_blue_reg)) {
423 BREAK_TO_DEBUGGER();
424 return false;
425 }
426
427 ++rgb;
428 ++i;
429 }
430
431 return true;
432 }
433
434 #define MAX_LOW_POINT 25
435 #define NUMBER_REGIONS 16
436 #define NUMBER_SW_SEGMENTS 16
437
438 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)439 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
440 struct pwl_params *regamma_params)
441 {
442 struct curve_points *arr_points;
443 struct pwl_result_data *rgb_resulted;
444 struct pwl_result_data *rgb;
445 struct pwl_result_data *rgb_plus_1;
446 struct fixed31_32 y_r;
447 struct fixed31_32 y_g;
448 struct fixed31_32 y_b;
449 struct fixed31_32 y1_min;
450 struct fixed31_32 y3_max;
451
452 int32_t region_start, region_end;
453 uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
454
455 if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
456 return false;
457
458 arr_points = regamma_params->arr_points;
459 rgb_resulted = regamma_params->rgb_resulted;
460 hw_points = 0;
461
462 memset(regamma_params, 0, sizeof(struct pwl_params));
463
464 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
465 /* 16 segments
466 * segments are from 2^-11 to 2^5
467 */
468 region_start = -11;
469 region_end = region_start + NUMBER_REGIONS;
470
471 for (i = 0; i < NUMBER_REGIONS; i++)
472 seg_distr[i] = 4;
473
474 } else {
475 /* 10 segments
476 * segment is from 2^-10 to 2^1
477 * We include an extra segment for range [2^0, 2^1). This is to
478 * ensure that colors with normalized values of 1 don't miss the
479 * LUT.
480 */
481 region_start = -10;
482 region_end = 1;
483
484 seg_distr[0] = 4;
485 seg_distr[1] = 4;
486 seg_distr[2] = 4;
487 seg_distr[3] = 4;
488 seg_distr[4] = 4;
489 seg_distr[5] = 4;
490 seg_distr[6] = 4;
491 seg_distr[7] = 4;
492 seg_distr[8] = 4;
493 seg_distr[9] = 4;
494 seg_distr[10] = 0;
495 seg_distr[11] = -1;
496 seg_distr[12] = -1;
497 seg_distr[13] = -1;
498 seg_distr[14] = -1;
499 seg_distr[15] = -1;
500 }
501
502 for (k = 0; k < 16; k++) {
503 if (seg_distr[k] != -1)
504 hw_points += (1 << seg_distr[k]);
505 }
506
507 j = 0;
508 for (k = 0; k < (region_end - region_start); k++) {
509 increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
510 start_index = (region_start + k + MAX_LOW_POINT) *
511 NUMBER_SW_SEGMENTS;
512 for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
513 i += increment) {
514 if (j == hw_points - 1)
515 break;
516 rgb_resulted[j].red = output_tf->tf_pts.red[i];
517 rgb_resulted[j].green = output_tf->tf_pts.green[i];
518 rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
519 j++;
520 }
521 }
522
523 /* last point */
524 start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
525 rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
526 rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
527 rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
528
529 arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
530 dc_fixpt_from_int(region_start));
531 arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
532 dc_fixpt_from_int(region_end));
533
534 y_r = rgb_resulted[0].red;
535 y_g = rgb_resulted[0].green;
536 y_b = rgb_resulted[0].blue;
537
538 y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
539
540 arr_points[0].y = y1_min;
541 arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
542 arr_points[0].x);
543
544 y_r = rgb_resulted[hw_points - 1].red;
545 y_g = rgb_resulted[hw_points - 1].green;
546 y_b = rgb_resulted[hw_points - 1].blue;
547
548 /* see comment above, m_arrPoints[1].y should be the Y value for the
549 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
550 */
551 y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
552
553 arr_points[1].y = y3_max;
554
555 arr_points[1].slope = dc_fixpt_zero;
556
557 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
558 /* for PQ, we want to have a straight line from last HW X point,
559 * and the slope to be such that we hit 1.0 at 10000 nits.
560 */
561 const struct fixed31_32 end_value = dc_fixpt_from_int(125);
562
563 arr_points[1].slope = dc_fixpt_div(
564 dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
565 dc_fixpt_sub(end_value, arr_points[1].x));
566 }
567
568 regamma_params->hw_points_num = hw_points;
569
570 k = 0;
571 for (i = 1; i < 16; i++) {
572 if (seg_distr[k] != -1) {
573 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
574 regamma_params->arr_curve_points[i].offset =
575 regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
576 }
577 k++;
578 }
579
580 if (seg_distr[k] != -1)
581 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
582
583 rgb = rgb_resulted;
584 rgb_plus_1 = rgb_resulted + 1;
585
586 i = 1;
587
588 while (i != hw_points + 1) {
589 if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
590 rgb_plus_1->red = rgb->red;
591 if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
592 rgb_plus_1->green = rgb->green;
593 if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
594 rgb_plus_1->blue = rgb->blue;
595
596 rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
597 rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
598 rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
599
600 ++rgb_plus_1;
601 ++rgb;
602 ++i;
603 }
604
605 convert_to_custom_float(rgb_resulted, arr_points, hw_points);
606
607 return true;
608 }
609
610 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)611 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
612 const struct dc_stream_state *stream)
613 {
614 struct transform *xfm = pipe_ctx->plane_res.xfm;
615
616 xfm->funcs->opp_power_on_regamma_lut(xfm, true);
617 xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
618
619 if (stream->out_transfer_func &&
620 stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
621 stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
622 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
623 } else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
624 &xfm->regamma_params)) {
625 xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
626 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
627 } else {
628 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
629 }
630
631 xfm->funcs->opp_power_on_regamma_lut(xfm, false);
632
633 return true;
634 }
635
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)636 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
637 {
638 bool is_hdmi_tmds;
639 bool is_dp;
640
641 ASSERT(pipe_ctx->stream);
642
643 if (pipe_ctx->stream_res.stream_enc == NULL)
644 return; /* this is not root pipe */
645
646 is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
647 is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
648
649 if (!is_hdmi_tmds && !is_dp)
650 return;
651
652 if (is_hdmi_tmds)
653 pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
654 pipe_ctx->stream_res.stream_enc,
655 &pipe_ctx->stream_res.encoder_info_frame);
656 else
657 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
658 pipe_ctx->stream_res.stream_enc,
659 &pipe_ctx->stream_res.encoder_info_frame);
660 }
661
dce110_enable_stream(struct pipe_ctx * pipe_ctx)662 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
663 {
664 enum dc_lane_count lane_count =
665 pipe_ctx->stream->link->cur_link_settings.lane_count;
666 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
667 struct dc_link *link = pipe_ctx->stream->link;
668 const struct dc *dc = link->dc;
669 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
670 uint32_t active_total_with_borders;
671 uint32_t early_control = 0;
672 struct timing_generator *tg = pipe_ctx->stream_res.tg;
673
674 link_hwss->setup_stream_encoder(pipe_ctx);
675
676 dc->hwss.update_info_frame(pipe_ctx);
677
678 /* enable early control to avoid corruption on DP monitor*/
679 active_total_with_borders =
680 timing->h_addressable
681 + timing->h_border_left
682 + timing->h_border_right;
683
684 if (lane_count != 0)
685 early_control = active_total_with_borders % lane_count;
686
687 if (early_control == 0)
688 early_control = lane_count;
689
690 tg->funcs->set_early_control(tg, early_control);
691
692 /* enable audio only within mode set */
693 if (pipe_ctx->stream_res.audio != NULL) {
694 if (dc_is_dp_signal(pipe_ctx->stream->signal))
695 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
696 }
697
698
699
700
701 }
702
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)703 static enum bp_result link_transmitter_control(
704 struct dc_bios *bios,
705 struct bp_transmitter_control *cntl)
706 {
707 enum bp_result result;
708
709 result = bios->funcs->transmitter_control(bios, cntl);
710
711 return result;
712 }
713
714 /*
715 * @brief
716 * eDP only.
717 */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)718 void dce110_edp_wait_for_hpd_ready(
719 struct dc_link *link,
720 bool power_up)
721 {
722 struct dc_context *ctx = link->ctx;
723 struct graphics_object_id connector = link->link_enc->connector;
724 struct gpio *hpd;
725 bool edp_hpd_high = false;
726 uint32_t time_elapsed = 0;
727 uint32_t timeout = power_up ?
728 PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
729
730 if (dal_graphics_object_id_get_connector_id(connector)
731 != CONNECTOR_ID_EDP) {
732 BREAK_TO_DEBUGGER();
733 return;
734 }
735
736 if (!power_up)
737 /*
738 * From KV, we will not HPD low after turning off VCC -
739 * instead, we will check the SW timer in power_up().
740 */
741 return;
742
743 /*
744 * When we power on/off the eDP panel,
745 * we need to wait until SENSE bit is high/low.
746 */
747
748 /* obtain HPD */
749 /* TODO what to do with this? */
750 hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
751
752 if (!hpd) {
753 BREAK_TO_DEBUGGER();
754 return;
755 }
756
757 if (link != NULL) {
758 if (link->panel_config.pps.extra_t3_ms > 0) {
759 int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
760
761 msleep(extra_t3_in_ms);
762 }
763 }
764
765 dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
766
767 /* wait until timeout or panel detected */
768
769 do {
770 uint32_t detected = 0;
771
772 dal_gpio_get_value(hpd, &detected);
773
774 if (!(detected ^ power_up)) {
775 edp_hpd_high = true;
776 break;
777 }
778
779 msleep(HPD_CHECK_INTERVAL);
780
781 time_elapsed += HPD_CHECK_INTERVAL;
782 } while (time_elapsed < timeout);
783
784 dal_gpio_close(hpd);
785
786 dal_gpio_destroy_irq(&hpd);
787
788 if (false == edp_hpd_high) {
789 DC_LOG_WARNING(
790 "%s: wait timed out!\n", __func__);
791 }
792 }
793
dce110_edp_power_control(struct dc_link * link,bool power_up)794 void dce110_edp_power_control(
795 struct dc_link *link,
796 bool power_up)
797 {
798 struct dc_context *ctx = link->ctx;
799 struct bp_transmitter_control cntl = { 0 };
800 enum bp_result bp_result;
801 uint8_t panel_instance;
802
803
804 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
805 != CONNECTOR_ID_EDP) {
806 BREAK_TO_DEBUGGER();
807 return;
808 }
809
810 if (!link->panel_cntl)
811 return;
812 if (power_up !=
813 link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
814
815 unsigned long long current_ts = dm_get_timestamp(ctx);
816 unsigned long long time_since_edp_poweroff_ms =
817 div64_u64(dm_get_elapse_time_in_ns(
818 ctx,
819 current_ts,
820 dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
821 unsigned long long time_since_edp_poweron_ms =
822 div64_u64(dm_get_elapse_time_in_ns(
823 ctx,
824 current_ts,
825 dp_trace_get_edp_poweron_timestamp(link)), 1000000);
826 DC_LOG_HW_RESUME_S3(
827 "%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
828 __func__,
829 power_up,
830 current_ts,
831 dp_trace_get_edp_poweroff_timestamp(link),
832 dp_trace_get_edp_poweron_timestamp(link),
833 time_since_edp_poweroff_ms,
834 time_since_edp_poweron_ms);
835
836 /* Send VBIOS command to prompt eDP panel power */
837 if (power_up) {
838 /* edp requires a min of 500ms from LCDVDD off to on */
839 unsigned long long remaining_min_edp_poweroff_time_ms = 500;
840
841 /* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
842 if (link->local_sink != NULL)
843 remaining_min_edp_poweroff_time_ms +=
844 link->panel_config.pps.extra_t12_ms;
845
846 /* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
847 if (dp_trace_get_edp_poweroff_timestamp(link) != 0) {
848 if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
849 remaining_min_edp_poweroff_time_ms =
850 remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
851 else
852 remaining_min_edp_poweroff_time_ms = 0;
853 }
854
855 if (remaining_min_edp_poweroff_time_ms) {
856 DC_LOG_HW_RESUME_S3(
857 "%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
858 __func__, remaining_min_edp_poweroff_time_ms);
859 msleep(remaining_min_edp_poweroff_time_ms);
860 DC_LOG_HW_RESUME_S3(
861 "%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
862 __func__, remaining_min_edp_poweroff_time_ms);
863 dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
864 __func__, remaining_min_edp_poweroff_time_ms);
865 } else {
866 DC_LOG_HW_RESUME_S3(
867 "%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
868 __func__, remaining_min_edp_poweroff_time_ms);
869 }
870 }
871
872 DC_LOG_HW_RESUME_S3(
873 "%s: BEGIN: Panel Power action: %s\n",
874 __func__, (power_up ? "On":"Off"));
875
876 cntl.action = power_up ?
877 TRANSMITTER_CONTROL_POWER_ON :
878 TRANSMITTER_CONTROL_POWER_OFF;
879 cntl.transmitter = link->link_enc->transmitter;
880 cntl.connector_obj_id = link->link_enc->connector;
881 cntl.coherent = false;
882 cntl.lanes_number = LANE_COUNT_FOUR;
883 cntl.hpd_sel = link->link_enc->hpd_source;
884 panel_instance = link->panel_cntl->inst;
885
886 if (ctx->dc->ctx->dmub_srv &&
887 ctx->dc->debug.dmub_command_table) {
888 if (cntl.action == TRANSMITTER_CONTROL_POWER_ON)
889 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
890 LVTMA_CONTROL_POWER_ON,
891 panel_instance);
892 else
893 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
894 LVTMA_CONTROL_POWER_OFF,
895 panel_instance);
896 }
897
898 bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
899
900 DC_LOG_HW_RESUME_S3(
901 "%s: END: Panel Power action: %s bp_result=%u\n",
902 __func__, (power_up ? "On":"Off"),
903 bp_result);
904
905 dp_trace_set_edp_power_timestamp(link, power_up);
906
907 DC_LOG_HW_RESUME_S3(
908 "%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
909 __func__,
910 dp_trace_get_edp_poweroff_timestamp(link),
911 dp_trace_get_edp_poweron_timestamp(link));
912
913 if (bp_result != BP_RESULT_OK)
914 DC_LOG_ERROR(
915 "%s: Panel Power bp_result: %d\n",
916 __func__, bp_result);
917 } else {
918 DC_LOG_HW_RESUME_S3(
919 "%s: Skipping Panel Power action: %s\n",
920 __func__, (power_up ? "On":"Off"));
921 }
922 }
923
dce110_edp_wait_for_T12(struct dc_link * link)924 void dce110_edp_wait_for_T12(
925 struct dc_link *link)
926 {
927 struct dc_context *ctx = link->ctx;
928
929 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
930 != CONNECTOR_ID_EDP) {
931 BREAK_TO_DEBUGGER();
932 return;
933 }
934
935 if (!link->panel_cntl)
936 return;
937
938 if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
939 dp_trace_get_edp_poweroff_timestamp(link) != 0) {
940 unsigned int t12_duration = 500; // Default T12 as per spec
941 unsigned long long current_ts = dm_get_timestamp(ctx);
942 unsigned long long time_since_edp_poweroff_ms =
943 div64_u64(dm_get_elapse_time_in_ns(
944 ctx,
945 current_ts,
946 dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
947
948 t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
949
950 if (time_since_edp_poweroff_ms < t12_duration)
951 msleep(t12_duration - time_since_edp_poweroff_ms);
952 }
953 }
954
955 /*todo: cloned in stream enc, fix*/
956 /*
957 * @brief
958 * eDP only. Control the backlight of the eDP panel
959 */
dce110_edp_backlight_control(struct dc_link * link,bool enable)960 void dce110_edp_backlight_control(
961 struct dc_link *link,
962 bool enable)
963 {
964 struct dc_context *ctx = link->ctx;
965 struct bp_transmitter_control cntl = { 0 };
966 uint8_t panel_instance;
967 unsigned int pre_T11_delay = OLED_PRE_T11_DELAY;
968 unsigned int post_T7_delay = OLED_POST_T7_DELAY;
969
970 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
971 != CONNECTOR_ID_EDP) {
972 BREAK_TO_DEBUGGER();
973 return;
974 }
975
976 if (link->panel_cntl) {
977 bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
978
979 if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
980 DC_LOG_HW_RESUME_S3(
981 "%s: panel already powered up/off. Do nothing.\n",
982 __func__);
983 return;
984 }
985 }
986
987 /* Send VBIOS command to control eDP panel backlight */
988
989 DC_LOG_HW_RESUME_S3(
990 "%s: backlight action: %s\n",
991 __func__, (enable ? "On":"Off"));
992
993 cntl.action = enable ?
994 TRANSMITTER_CONTROL_BACKLIGHT_ON :
995 TRANSMITTER_CONTROL_BACKLIGHT_OFF;
996
997 /*cntl.engine_id = ctx->engine;*/
998 cntl.transmitter = link->link_enc->transmitter;
999 cntl.connector_obj_id = link->link_enc->connector;
1000 /*todo: unhardcode*/
1001 cntl.lanes_number = LANE_COUNT_FOUR;
1002 cntl.hpd_sel = link->link_enc->hpd_source;
1003 cntl.signal = SIGNAL_TYPE_EDP;
1004
1005 /* For eDP, the following delays might need to be considered
1006 * after link training completed:
1007 * idle period - min. accounts for required BS-Idle pattern,
1008 * max. allows for source frame synchronization);
1009 * 50 msec max. delay from valid video data from source
1010 * to video on dislpay or backlight enable.
1011 *
1012 * Disable the delay for now.
1013 * Enable it in the future if necessary.
1014 */
1015 /* dc_service_sleep_in_milliseconds(50); */
1016 /*edp 1.2*/
1017 panel_instance = link->panel_cntl->inst;
1018
1019 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1020 if (!link->dc->config.edp_no_power_sequencing)
1021 /*
1022 * Sometimes, DP receiver chip power-controlled externally by an
1023 * Embedded Controller could be treated and used as eDP,
1024 * if it drives mobile display. In this case,
1025 * we shouldn't be doing power-sequencing, hence we can skip
1026 * waiting for T7-ready.
1027 */
1028 edp_receiver_ready_T7(link);
1029 else
1030 DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1031 }
1032
1033 if (ctx->dc->ctx->dmub_srv &&
1034 ctx->dc->debug.dmub_command_table) {
1035 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1036 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1037 LVTMA_CONTROL_LCD_BLON,
1038 panel_instance);
1039 else
1040 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1041 LVTMA_CONTROL_LCD_BLOFF,
1042 panel_instance);
1043 }
1044
1045 link_transmitter_control(ctx->dc_bios, &cntl);
1046
1047 if (enable && link->dpcd_sink_ext_caps.bits.oled) {
1048 post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1049 msleep(post_T7_delay);
1050 }
1051
1052 if (link->dpcd_sink_ext_caps.bits.oled ||
1053 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1054 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1055 dc_link_backlight_enable_aux(link, enable);
1056
1057 /*edp 1.2*/
1058 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1059 if (!link->dc->config.edp_no_power_sequencing)
1060 /*
1061 * Sometimes, DP receiver chip power-controlled externally by an
1062 * Embedded Controller could be treated and used as eDP,
1063 * if it drives mobile display. In this case,
1064 * we shouldn't be doing power-sequencing, hence we can skip
1065 * waiting for T9-ready.
1066 */
1067 edp_add_delay_for_T9(link);
1068 else
1069 DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1070 }
1071
1072 if (!enable && link->dpcd_sink_ext_caps.bits.oled) {
1073 pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1074 msleep(pre_T11_delay);
1075 }
1076 }
1077
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1078 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1079 {
1080 /* notify audio driver for audio modes of monitor */
1081 struct dc *dc;
1082 struct clk_mgr *clk_mgr;
1083 unsigned int i, num_audio = 1;
1084
1085 if (!pipe_ctx->stream)
1086 return;
1087
1088 dc = pipe_ctx->stream->ctx->dc;
1089 clk_mgr = dc->clk_mgr;
1090
1091 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1092 return;
1093
1094 if (pipe_ctx->stream_res.audio) {
1095 for (i = 0; i < MAX_PIPES; i++) {
1096 /*current_state not updated yet*/
1097 if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1098 num_audio++;
1099 }
1100
1101 pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1102
1103 if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1104 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1105 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1106 /* un-mute audio */
1107 /* TODO: audio should be per stream rather than per link */
1108 if (is_dp_128b_132b_signal(pipe_ctx))
1109 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1110 pipe_ctx->stream_res.hpo_dp_stream_enc, false);
1111 else
1112 pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1113 pipe_ctx->stream_res.stream_enc, false);
1114 if (pipe_ctx->stream_res.audio)
1115 pipe_ctx->stream_res.audio->enabled = true;
1116 }
1117
1118 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1119 dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_ENABLE_AUDIO_STREAM);
1120 }
1121
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1122 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1123 {
1124 struct dc *dc;
1125 struct clk_mgr *clk_mgr;
1126
1127 if (!pipe_ctx || !pipe_ctx->stream)
1128 return;
1129
1130 dc = pipe_ctx->stream->ctx->dc;
1131 clk_mgr = dc->clk_mgr;
1132
1133 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1134 return;
1135
1136 if (is_dp_128b_132b_signal(pipe_ctx))
1137 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1138 pipe_ctx->stream_res.hpo_dp_stream_enc, true);
1139 else
1140 pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1141 pipe_ctx->stream_res.stream_enc, true);
1142 if (pipe_ctx->stream_res.audio) {
1143 pipe_ctx->stream_res.audio->enabled = false;
1144
1145 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1146 if (is_dp_128b_132b_signal(pipe_ctx))
1147 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_disable(
1148 pipe_ctx->stream_res.hpo_dp_stream_enc);
1149 else
1150 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1151 pipe_ctx->stream_res.stream_enc);
1152 else
1153 pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1154 pipe_ctx->stream_res.stream_enc);
1155
1156 if (clk_mgr->funcs->enable_pme_wa)
1157 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1158 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1159
1160 /* TODO: notify audio driver for if audio modes list changed
1161 * add audio mode list change flag */
1162 /* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1163 * stream->stream_engine_id);
1164 */
1165 }
1166
1167 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1168 dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_DISABLE_AUDIO_STREAM);
1169 }
1170
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1171 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1172 {
1173 struct dc_stream_state *stream = pipe_ctx->stream;
1174 struct dc_link *link = stream->link;
1175 struct dc *dc = pipe_ctx->stream->ctx->dc;
1176 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1177
1178 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1179 pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1180 pipe_ctx->stream_res.stream_enc);
1181 pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1182 pipe_ctx->stream_res.stream_enc);
1183 }
1184
1185 if (is_dp_128b_132b_signal(pipe_ctx)) {
1186 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1187 pipe_ctx->stream_res.hpo_dp_stream_enc);
1188 } else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1189 pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1190 pipe_ctx->stream_res.stream_enc);
1191
1192 dc->hwss.disable_audio_stream(pipe_ctx);
1193
1194 link_hwss->reset_stream_encoder(pipe_ctx);
1195
1196 if (is_dp_128b_132b_signal(pipe_ctx)) {
1197 /* TODO: This looks like a bug to me as we are disabling HPO IO when
1198 * we are just disabling a single HPO stream. Shouldn't we disable HPO
1199 * HW control only when HPOs for all streams are disabled?
1200 */
1201 if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
1202 pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
1203 pipe_ctx->stream->ctx->dc->hwseq, false);
1204 }
1205 }
1206
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1207 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1208 struct dc_link_settings *link_settings)
1209 {
1210 struct encoder_unblank_param params = { { 0 } };
1211 struct dc_stream_state *stream = pipe_ctx->stream;
1212 struct dc_link *link = stream->link;
1213 struct dce_hwseq *hws = link->dc->hwseq;
1214
1215 /* only 3 items below are used by unblank */
1216 params.timing = pipe_ctx->stream->timing;
1217 params.link_settings.link_rate = link_settings->link_rate;
1218
1219 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1220 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms);
1221
1222 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1223 hws->funcs.edp_backlight_control(link, true);
1224 }
1225 }
1226
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1227 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1228 {
1229 struct dc_stream_state *stream = pipe_ctx->stream;
1230 struct dc_link *link = stream->link;
1231 struct dce_hwseq *hws = link->dc->hwseq;
1232
1233 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1234 hws->funcs.edp_backlight_control(link, false);
1235 link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1236 }
1237
1238 if (is_dp_128b_132b_signal(pipe_ctx)) {
1239 /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1240 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1241 pipe_ctx->stream_res.hpo_dp_stream_enc);
1242 } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1243 pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1244
1245 if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1246 /*
1247 * After output is idle pattern some sinks need time to recognize the stream
1248 * has changed or they enter protection state and hang.
1249 */
1250 msleep(60);
1251 } else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
1252 if (!link->dc->config.edp_no_power_sequencing) {
1253 /*
1254 * Sometimes, DP receiver chip power-controlled externally by an
1255 * Embedded Controller could be treated and used as eDP,
1256 * if it drives mobile display. In this case,
1257 * we shouldn't be doing power-sequencing, hence we can skip
1258 * waiting for T9-ready.
1259 */
1260 edp_receiver_ready_T9(link);
1261 }
1262 }
1263 }
1264
1265 }
1266
1267
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1268 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1269 {
1270 if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1271 pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1272 }
1273
translate_to_dto_source(enum controller_id crtc_id)1274 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1275 {
1276 switch (crtc_id) {
1277 case CONTROLLER_ID_D0:
1278 return DTO_SOURCE_ID0;
1279 case CONTROLLER_ID_D1:
1280 return DTO_SOURCE_ID1;
1281 case CONTROLLER_ID_D2:
1282 return DTO_SOURCE_ID2;
1283 case CONTROLLER_ID_D3:
1284 return DTO_SOURCE_ID3;
1285 case CONTROLLER_ID_D4:
1286 return DTO_SOURCE_ID4;
1287 case CONTROLLER_ID_D5:
1288 return DTO_SOURCE_ID5;
1289 default:
1290 return DTO_SOURCE_UNKNOWN;
1291 }
1292 }
1293
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1294 static void build_audio_output(
1295 struct dc_state *state,
1296 const struct pipe_ctx *pipe_ctx,
1297 struct audio_output *audio_output)
1298 {
1299 const struct dc_stream_state *stream = pipe_ctx->stream;
1300 audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1301
1302 audio_output->signal = pipe_ctx->stream->signal;
1303
1304 /* audio_crtc_info */
1305
1306 audio_output->crtc_info.h_total =
1307 stream->timing.h_total;
1308
1309 /*
1310 * Audio packets are sent during actual CRTC blank physical signal, we
1311 * need to specify actual active signal portion
1312 */
1313 audio_output->crtc_info.h_active =
1314 stream->timing.h_addressable
1315 + stream->timing.h_border_left
1316 + stream->timing.h_border_right;
1317
1318 audio_output->crtc_info.v_active =
1319 stream->timing.v_addressable
1320 + stream->timing.v_border_top
1321 + stream->timing.v_border_bottom;
1322
1323 audio_output->crtc_info.pixel_repetition = 1;
1324
1325 audio_output->crtc_info.interlaced =
1326 stream->timing.flags.INTERLACE;
1327
1328 audio_output->crtc_info.refresh_rate =
1329 (stream->timing.pix_clk_100hz*100)/
1330 (stream->timing.h_total*stream->timing.v_total);
1331
1332 audio_output->crtc_info.color_depth =
1333 stream->timing.display_color_depth;
1334
1335 audio_output->crtc_info.requested_pixel_clock_100Hz =
1336 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1337
1338 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1339 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1340
1341 /*for HDMI, audio ACR is with deep color ratio factor*/
1342 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1343 audio_output->crtc_info.requested_pixel_clock_100Hz ==
1344 (stream->timing.pix_clk_100hz)) {
1345 if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1346 audio_output->crtc_info.requested_pixel_clock_100Hz =
1347 audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1348 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1349 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1350
1351 }
1352 }
1353
1354 if (state->clk_mgr &&
1355 (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1356 pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1357 audio_output->pll_info.dp_dto_source_clock_in_khz =
1358 state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1359 state->clk_mgr);
1360 }
1361
1362 audio_output->pll_info.feed_back_divider =
1363 pipe_ctx->pll_settings.feedback_divider;
1364
1365 audio_output->pll_info.dto_source =
1366 translate_to_dto_source(
1367 pipe_ctx->stream_res.tg->inst + 1);
1368
1369 /* TODO hard code to enable for now. Need get from stream */
1370 audio_output->pll_info.ss_enabled = true;
1371
1372 audio_output->pll_info.ss_percentage =
1373 pipe_ctx->pll_settings.ss_percentage;
1374 }
1375
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1376 static void program_scaler(const struct dc *dc,
1377 const struct pipe_ctx *pipe_ctx)
1378 {
1379 struct tg_color color = {0};
1380
1381 /* TOFPGA */
1382 if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1383 return;
1384
1385 if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1386 get_surface_visual_confirm_color(pipe_ctx, &color);
1387 else
1388 color_space_to_black_color(dc,
1389 pipe_ctx->stream->output_color_space,
1390 &color);
1391
1392 pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1393 pipe_ctx->plane_res.xfm,
1394 pipe_ctx->plane_res.scl_data.lb_params.depth,
1395 &pipe_ctx->stream->bit_depth_params);
1396
1397 if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1398 /*
1399 * The way 420 is packed, 2 channels carry Y component, 1 channel
1400 * alternate between Cb and Cr, so both channels need the pixel
1401 * value for Y
1402 */
1403 if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1404 color.color_r_cr = color.color_g_y;
1405
1406 pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1407 pipe_ctx->stream_res.tg,
1408 &color);
1409 }
1410
1411 pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1412 &pipe_ctx->plane_res.scl_data);
1413 }
1414
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1415 static enum dc_status dce110_enable_stream_timing(
1416 struct pipe_ctx *pipe_ctx,
1417 struct dc_state *context,
1418 struct dc *dc)
1419 {
1420 struct dc_stream_state *stream = pipe_ctx->stream;
1421 struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1422 pipe_ctx[pipe_ctx->pipe_idx];
1423 struct tg_color black_color = {0};
1424
1425 if (!pipe_ctx_old->stream) {
1426
1427 /* program blank color */
1428 color_space_to_black_color(dc,
1429 stream->output_color_space, &black_color);
1430 pipe_ctx->stream_res.tg->funcs->set_blank_color(
1431 pipe_ctx->stream_res.tg,
1432 &black_color);
1433
1434 /*
1435 * Must blank CRTC after disabling power gating and before any
1436 * programming, otherwise CRTC will be hung in bad state
1437 */
1438 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1439
1440 if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1441 pipe_ctx->clock_source,
1442 &pipe_ctx->stream_res.pix_clk_params,
1443 dp_get_link_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1444 &pipe_ctx->pll_settings)) {
1445 BREAK_TO_DEBUGGER();
1446 return DC_ERROR_UNEXPECTED;
1447 }
1448
1449 if (dc_is_hdmi_tmds_signal(stream->signal)) {
1450 stream->link->phy_state.symclk_ref_cnts.otg = 1;
1451 if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1452 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1453 else
1454 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1455 }
1456
1457 pipe_ctx->stream_res.tg->funcs->program_timing(
1458 pipe_ctx->stream_res.tg,
1459 &stream->timing,
1460 0,
1461 0,
1462 0,
1463 0,
1464 pipe_ctx->stream->signal,
1465 true);
1466 }
1467
1468 if (!pipe_ctx_old->stream) {
1469 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1470 pipe_ctx->stream_res.tg)) {
1471 BREAK_TO_DEBUGGER();
1472 return DC_ERROR_UNEXPECTED;
1473 }
1474 }
1475
1476 return DC_OK;
1477 }
1478
apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1479 static enum dc_status apply_single_controller_ctx_to_hw(
1480 struct pipe_ctx *pipe_ctx,
1481 struct dc_state *context,
1482 struct dc *dc)
1483 {
1484 struct dc_stream_state *stream = pipe_ctx->stream;
1485 struct dc_link *link = stream->link;
1486 struct drr_params params = {0};
1487 unsigned int event_triggers = 0;
1488 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1489 struct dce_hwseq *hws = dc->hwseq;
1490
1491 if (hws->funcs.disable_stream_gating) {
1492 hws->funcs.disable_stream_gating(dc, pipe_ctx);
1493 }
1494
1495 if (pipe_ctx->stream_res.audio != NULL) {
1496 struct audio_output audio_output;
1497
1498 build_audio_output(context, pipe_ctx, &audio_output);
1499
1500 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1501 if (is_dp_128b_132b_signal(pipe_ctx))
1502 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_setup(
1503 pipe_ctx->stream_res.hpo_dp_stream_enc,
1504 pipe_ctx->stream_res.audio->inst,
1505 &pipe_ctx->stream->audio_info);
1506 else
1507 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1508 pipe_ctx->stream_res.stream_enc,
1509 pipe_ctx->stream_res.audio->inst,
1510 &pipe_ctx->stream->audio_info);
1511 else
1512 pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1513 pipe_ctx->stream_res.stream_enc,
1514 pipe_ctx->stream_res.audio->inst,
1515 &pipe_ctx->stream->audio_info,
1516 &audio_output.crtc_info);
1517
1518 pipe_ctx->stream_res.audio->funcs->az_configure(
1519 pipe_ctx->stream_res.audio,
1520 pipe_ctx->stream->signal,
1521 &audio_output.crtc_info,
1522 &pipe_ctx->stream->audio_info);
1523 }
1524
1525 /* make sure no pipes syncd to the pipe being enabled */
1526 if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1527 check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1528
1529 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1530 pipe_ctx->stream_res.opp,
1531 &stream->bit_depth_params,
1532 &stream->clamping);
1533
1534 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1535 pipe_ctx->stream_res.opp,
1536 COLOR_SPACE_YCBCR601,
1537 stream->timing.display_color_depth,
1538 stream->signal);
1539
1540 while (odm_pipe) {
1541 odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1542 odm_pipe->stream_res.opp,
1543 COLOR_SPACE_YCBCR601,
1544 stream->timing.display_color_depth,
1545 stream->signal);
1546
1547 odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1548 odm_pipe->stream_res.opp,
1549 &stream->bit_depth_params,
1550 &stream->clamping);
1551 odm_pipe = odm_pipe->next_odm_pipe;
1552 }
1553
1554 /* DCN3.1 FPGA Workaround
1555 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1556 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1557 * function core_link_enable_stream
1558 */
1559 if (!(hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)))
1560 /* */
1561 /* Do not touch stream timing on seamless boot optimization. */
1562 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1563 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1564
1565 if (hws->funcs.setup_vupdate_interrupt)
1566 hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1567
1568 params.vertical_total_min = stream->adjust.v_total_min;
1569 params.vertical_total_max = stream->adjust.v_total_max;
1570 if (pipe_ctx->stream_res.tg->funcs->set_drr)
1571 pipe_ctx->stream_res.tg->funcs->set_drr(
1572 pipe_ctx->stream_res.tg, ¶ms);
1573
1574 // DRR should set trigger event to monitor surface update event
1575 if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1576 event_triggers = 0x80;
1577 /* Event triggers and num frames initialized for DRR, but can be
1578 * later updated for PSR use. Note DRR trigger events are generated
1579 * regardless of whether num frames met.
1580 */
1581 if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1582 pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1583 pipe_ctx->stream_res.tg, event_triggers, 2);
1584
1585 if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1586 pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1587 pipe_ctx->stream_res.stream_enc,
1588 pipe_ctx->stream_res.tg->inst);
1589
1590 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1591 dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1592
1593 if (!stream->dpms_off)
1594 core_link_enable_stream(context, pipe_ctx);
1595
1596 /* DCN3.1 FPGA Workaround
1597 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1598 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1599 * function core_link_enable_stream
1600 */
1601 if (hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)) {
1602 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1603 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1604 }
1605
1606 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1607
1608 pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1609
1610 return DC_OK;
1611 }
1612
1613 /******************************************************************************/
1614
power_down_encoders(struct dc * dc)1615 static void power_down_encoders(struct dc *dc)
1616 {
1617 int i;
1618
1619 for (i = 0; i < dc->link_count; i++) {
1620 enum signal_type signal = dc->links[i]->connector_signal;
1621
1622 dc_link_blank_dp_stream(dc->links[i], false);
1623
1624 if (signal != SIGNAL_TYPE_EDP)
1625 signal = SIGNAL_TYPE_NONE;
1626
1627 if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1628 dc->links[i]->link_enc->funcs->disable_output(
1629 dc->links[i]->link_enc, signal);
1630
1631 dc->links[i]->link_status.link_active = false;
1632 memset(&dc->links[i]->cur_link_settings, 0,
1633 sizeof(dc->links[i]->cur_link_settings));
1634 }
1635 }
1636
power_down_controllers(struct dc * dc)1637 static void power_down_controllers(struct dc *dc)
1638 {
1639 int i;
1640
1641 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1642 dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1643 dc->res_pool->timing_generators[i]);
1644 }
1645 }
1646
power_down_clock_sources(struct dc * dc)1647 static void power_down_clock_sources(struct dc *dc)
1648 {
1649 int i;
1650
1651 if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1652 dc->res_pool->dp_clock_source) == false)
1653 dm_error("Failed to power down pll! (dp clk src)\n");
1654
1655 for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1656 if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1657 dc->res_pool->clock_sources[i]) == false)
1658 dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1659 }
1660 }
1661
power_down_all_hw_blocks(struct dc * dc)1662 static void power_down_all_hw_blocks(struct dc *dc)
1663 {
1664 power_down_encoders(dc);
1665
1666 power_down_controllers(dc);
1667
1668 power_down_clock_sources(dc);
1669
1670 if (dc->fbc_compressor)
1671 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1672 }
1673
disable_vga_and_power_gate_all_controllers(struct dc * dc)1674 static void disable_vga_and_power_gate_all_controllers(
1675 struct dc *dc)
1676 {
1677 int i;
1678 struct timing_generator *tg;
1679 struct dc_context *ctx = dc->ctx;
1680
1681 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1682 tg = dc->res_pool->timing_generators[i];
1683
1684 if (tg->funcs->disable_vga)
1685 tg->funcs->disable_vga(tg);
1686 }
1687 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1688 /* Enable CLOCK gating for each pipe BEFORE controller
1689 * powergating. */
1690 enable_display_pipe_clock_gating(ctx,
1691 true);
1692
1693 dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1694 dc->hwss.disable_plane(dc,
1695 &dc->current_state->res_ctx.pipe_ctx[i]);
1696 }
1697 }
1698
1699
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1700 static void get_edp_streams(struct dc_state *context,
1701 struct dc_stream_state **edp_streams,
1702 int *edp_stream_num)
1703 {
1704 int i;
1705
1706 *edp_stream_num = 0;
1707 for (i = 0; i < context->stream_count; i++) {
1708 if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1709 edp_streams[*edp_stream_num] = context->streams[i];
1710 if (++(*edp_stream_num) == MAX_NUM_EDP)
1711 return;
1712 }
1713 }
1714 }
1715
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1716 static void get_edp_links_with_sink(
1717 struct dc *dc,
1718 struct dc_link **edp_links_with_sink,
1719 int *edp_with_sink_num)
1720 {
1721 int i;
1722
1723 /* check if there is an eDP panel not in use */
1724 *edp_with_sink_num = 0;
1725 for (i = 0; i < dc->link_count; i++) {
1726 if (dc->links[i]->local_sink &&
1727 dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1728 edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1729 if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1730 return;
1731 }
1732 }
1733 }
1734
1735 /*
1736 * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1737 * 1. Power down all DC HW blocks
1738 * 2. Disable VGA engine on all controllers
1739 * 3. Enable power gating for controller
1740 * 4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1741 */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1742 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1743 {
1744 struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1745 struct dc_link *edp_links[MAX_NUM_EDP];
1746 struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1747 struct dc_link *edp_link_with_sink = NULL;
1748 struct dc_link *edp_link = NULL;
1749 struct dce_hwseq *hws = dc->hwseq;
1750 int edp_with_sink_num;
1751 int edp_num;
1752 int edp_stream_num;
1753 int i;
1754 bool can_apply_edp_fast_boot = false;
1755 bool can_apply_seamless_boot = false;
1756 bool keep_edp_vdd_on = false;
1757 DC_LOGGER_INIT();
1758
1759
1760 get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1761 get_edp_links(dc, edp_links, &edp_num);
1762
1763 if (hws->funcs.init_pipes)
1764 hws->funcs.init_pipes(dc, context);
1765
1766 get_edp_streams(context, edp_streams, &edp_stream_num);
1767
1768 // Check fastboot support, disable on DCE8 because of blank screens
1769 if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1770 dc->ctx->dce_version != DCE_VERSION_8_1 &&
1771 dc->ctx->dce_version != DCE_VERSION_8_3) {
1772 for (i = 0; i < edp_num; i++) {
1773 edp_link = edp_links[i];
1774 if (edp_link != edp_streams[0]->link)
1775 continue;
1776 // enable fastboot if backend is enabled on eDP
1777 if (edp_link->link_enc->funcs->is_dig_enabled &&
1778 edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1779 edp_link->link_status.link_active) {
1780 struct dc_stream_state *edp_stream = edp_streams[0];
1781
1782 can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1783 edp_stream->sink, &edp_stream->timing);
1784 edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1785 if (can_apply_edp_fast_boot)
1786 DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1787
1788 break;
1789 }
1790 }
1791 // We are trying to enable eDP, don't power down VDD
1792 if (can_apply_edp_fast_boot)
1793 keep_edp_vdd_on = true;
1794 }
1795
1796 // Check seamless boot support
1797 for (i = 0; i < context->stream_count; i++) {
1798 if (context->streams[i]->apply_seamless_boot_optimization) {
1799 can_apply_seamless_boot = true;
1800 break;
1801 }
1802 }
1803
1804 /* eDP should not have stream in resume from S4 and so even with VBios post
1805 * it should get turned off
1806 */
1807 if (edp_with_sink_num)
1808 edp_link_with_sink = edp_links_with_sink[0];
1809
1810 if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1811 if (edp_link_with_sink && !keep_edp_vdd_on) {
1812 /*turn off backlight before DP_blank and encoder powered down*/
1813 hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1814 }
1815 /*resume from S3, no vbios posting, no need to power down again*/
1816 power_down_all_hw_blocks(dc);
1817 disable_vga_and_power_gate_all_controllers(dc);
1818 if (edp_link_with_sink && !keep_edp_vdd_on)
1819 dc->hwss.edp_power_control(edp_link_with_sink, false);
1820 }
1821 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1822 }
1823
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1824 static uint32_t compute_pstate_blackout_duration(
1825 struct bw_fixed blackout_duration,
1826 const struct dc_stream_state *stream)
1827 {
1828 uint32_t total_dest_line_time_ns;
1829 uint32_t pstate_blackout_duration_ns;
1830
1831 pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1832
1833 total_dest_line_time_ns = 1000000UL *
1834 (stream->timing.h_total * 10) /
1835 stream->timing.pix_clk_100hz +
1836 pstate_blackout_duration_ns;
1837
1838 return total_dest_line_time_ns;
1839 }
1840
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)1841 static void dce110_set_displaymarks(
1842 const struct dc *dc,
1843 struct dc_state *context)
1844 {
1845 uint8_t i, num_pipes;
1846 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1847
1848 for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1849 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1850 uint32_t total_dest_line_time_ns;
1851
1852 if (pipe_ctx->stream == NULL)
1853 continue;
1854
1855 total_dest_line_time_ns = compute_pstate_blackout_duration(
1856 dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1857 pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1858 pipe_ctx->plane_res.mi,
1859 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1860 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1861 context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1862 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1863 total_dest_line_time_ns);
1864 if (i == underlay_idx) {
1865 num_pipes++;
1866 pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1867 pipe_ctx->plane_res.mi,
1868 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1869 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1870 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1871 total_dest_line_time_ns);
1872 }
1873 num_pipes++;
1874 }
1875 }
1876
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)1877 void dce110_set_safe_displaymarks(
1878 struct resource_context *res_ctx,
1879 const struct resource_pool *pool)
1880 {
1881 int i;
1882 int underlay_idx = pool->underlay_pipe_index;
1883 struct dce_watermarks max_marks = {
1884 MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1885 struct dce_watermarks nbp_marks = {
1886 SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1887 struct dce_watermarks min_marks = { 0, 0, 0, 0};
1888
1889 for (i = 0; i < MAX_PIPES; i++) {
1890 if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1891 continue;
1892
1893 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1894 res_ctx->pipe_ctx[i].plane_res.mi,
1895 nbp_marks,
1896 max_marks,
1897 min_marks,
1898 max_marks,
1899 MAX_WATERMARK);
1900
1901 if (i == underlay_idx)
1902 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1903 res_ctx->pipe_ctx[i].plane_res.mi,
1904 nbp_marks,
1905 max_marks,
1906 max_marks,
1907 MAX_WATERMARK);
1908
1909 }
1910 }
1911
1912 /*******************************************************************************
1913 * Public functions
1914 ******************************************************************************/
1915
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)1916 static void set_drr(struct pipe_ctx **pipe_ctx,
1917 int num_pipes, struct dc_crtc_timing_adjust adjust)
1918 {
1919 int i = 0;
1920 struct drr_params params = {0};
1921 // DRR should set trigger event to monitor surface update event
1922 unsigned int event_triggers = 0x80;
1923 // Note DRR trigger events are generated regardless of whether num frames met.
1924 unsigned int num_frames = 2;
1925
1926 params.vertical_total_max = adjust.v_total_max;
1927 params.vertical_total_min = adjust.v_total_min;
1928
1929 /* TODO: If multiple pipes are to be supported, you need
1930 * some GSL stuff. Static screen triggers may be programmed differently
1931 * as well.
1932 */
1933 for (i = 0; i < num_pipes; i++) {
1934 pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1935 pipe_ctx[i]->stream_res.tg, ¶ms);
1936
1937 if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1938 pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1939 pipe_ctx[i]->stream_res.tg,
1940 event_triggers, num_frames);
1941 }
1942 }
1943
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)1944 static void get_position(struct pipe_ctx **pipe_ctx,
1945 int num_pipes,
1946 struct crtc_position *position)
1947 {
1948 int i = 0;
1949
1950 /* TODO: handle pipes > 1
1951 */
1952 for (i = 0; i < num_pipes; i++)
1953 pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1954 }
1955
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)1956 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1957 int num_pipes, const struct dc_static_screen_params *params)
1958 {
1959 unsigned int i;
1960 unsigned int triggers = 0;
1961
1962 if (params->triggers.overlay_update)
1963 triggers |= 0x100;
1964 if (params->triggers.surface_update)
1965 triggers |= 0x80;
1966 if (params->triggers.cursor_update)
1967 triggers |= 0x2;
1968 if (params->triggers.force_trigger)
1969 triggers |= 0x1;
1970
1971 if (num_pipes) {
1972 struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1973
1974 if (dc->fbc_compressor)
1975 triggers |= 0x84;
1976 }
1977
1978 for (i = 0; i < num_pipes; i++)
1979 pipe_ctx[i]->stream_res.tg->funcs->
1980 set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1981 triggers, params->num_frames);
1982 }
1983
1984 /*
1985 * Check if FBC can be enabled
1986 */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)1987 static bool should_enable_fbc(struct dc *dc,
1988 struct dc_state *context,
1989 uint32_t *pipe_idx)
1990 {
1991 uint32_t i;
1992 struct pipe_ctx *pipe_ctx = NULL;
1993 struct resource_context *res_ctx = &context->res_ctx;
1994 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1995
1996
1997 ASSERT(dc->fbc_compressor);
1998
1999 /* FBC memory should be allocated */
2000 if (!dc->ctx->fbc_gpu_addr)
2001 return false;
2002
2003 /* Only supports single display */
2004 if (context->stream_count != 1)
2005 return false;
2006
2007 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2008 if (res_ctx->pipe_ctx[i].stream) {
2009
2010 pipe_ctx = &res_ctx->pipe_ctx[i];
2011
2012 if (!pipe_ctx)
2013 continue;
2014
2015 /* fbc not applicable on underlay pipe */
2016 if (pipe_ctx->pipe_idx != underlay_idx) {
2017 *pipe_idx = i;
2018 break;
2019 }
2020 }
2021 }
2022
2023 if (i == dc->res_pool->pipe_count)
2024 return false;
2025
2026 if (!pipe_ctx->stream->link)
2027 return false;
2028
2029 /* Only supports eDP */
2030 if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2031 return false;
2032
2033 /* PSR should not be enabled */
2034 if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2035 return false;
2036
2037 /* Nothing to compress */
2038 if (!pipe_ctx->plane_state)
2039 return false;
2040
2041 /* Only for non-linear tiling */
2042 if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2043 return false;
2044
2045 return true;
2046 }
2047
2048 /*
2049 * Enable FBC
2050 */
enable_fbc(struct dc * dc,struct dc_state * context)2051 static void enable_fbc(
2052 struct dc *dc,
2053 struct dc_state *context)
2054 {
2055 uint32_t pipe_idx = 0;
2056
2057 if (should_enable_fbc(dc, context, &pipe_idx)) {
2058 /* Program GRPH COMPRESSED ADDRESS and PITCH */
2059 struct compr_addr_and_pitch_params params = {0, 0, 0};
2060 struct compressor *compr = dc->fbc_compressor;
2061 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2062
2063 params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2064 params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2065 params.inst = pipe_ctx->stream_res.tg->inst;
2066 compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2067
2068 compr->funcs->surface_address_and_pitch(compr, ¶ms);
2069 compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2070
2071 compr->funcs->enable_fbc(compr, ¶ms);
2072 }
2073 }
2074
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2075 static void dce110_reset_hw_ctx_wrap(
2076 struct dc *dc,
2077 struct dc_state *context)
2078 {
2079 int i;
2080
2081 /* Reset old context */
2082 /* look up the targets that have been removed since last commit */
2083 for (i = 0; i < MAX_PIPES; i++) {
2084 struct pipe_ctx *pipe_ctx_old =
2085 &dc->current_state->res_ctx.pipe_ctx[i];
2086 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2087
2088 /* Note: We need to disable output if clock sources change,
2089 * since bios does optimization and doesn't apply if changing
2090 * PHY when not already disabled.
2091 */
2092
2093 /* Skip underlay pipe since it will be handled in commit surface*/
2094 if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2095 continue;
2096
2097 if (!pipe_ctx->stream ||
2098 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2099 struct clock_source *old_clk = pipe_ctx_old->clock_source;
2100
2101 /* Disable if new stream is null. O/w, if stream is
2102 * disabled already, no need to disable again.
2103 */
2104 if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2105 core_link_disable_stream(pipe_ctx_old);
2106
2107 /* free acquired resources*/
2108 if (pipe_ctx_old->stream_res.audio) {
2109 /*disable az_endpoint*/
2110 pipe_ctx_old->stream_res.audio->funcs->
2111 az_disable(pipe_ctx_old->stream_res.audio);
2112
2113 /*free audio*/
2114 if (dc->caps.dynamic_audio == true) {
2115 /*we have to dynamic arbitrate the audio endpoints*/
2116 /*we free the resource, need reset is_audio_acquired*/
2117 update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2118 pipe_ctx_old->stream_res.audio, false);
2119 pipe_ctx_old->stream_res.audio = NULL;
2120 }
2121 }
2122 }
2123
2124 pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2125 if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2126 dm_error("DC: failed to blank crtc!\n");
2127 BREAK_TO_DEBUGGER();
2128 }
2129 pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2130 pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2131 pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2132 pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2133
2134 if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2135 dc->res_pool,
2136 old_clk))
2137 old_clk->funcs->cs_power_down(old_clk);
2138
2139 dc->hwss.disable_plane(dc, pipe_ctx_old);
2140
2141 pipe_ctx_old->stream = NULL;
2142 }
2143 }
2144 }
2145
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2146 static void dce110_setup_audio_dto(
2147 struct dc *dc,
2148 struct dc_state *context)
2149 {
2150 int i;
2151
2152 /* program audio wall clock. use HDMI as clock source if HDMI
2153 * audio active. Otherwise, use DP as clock source
2154 * first, loop to find any HDMI audio, if not, loop find DP audio
2155 */
2156 /* Setup audio rate clock source */
2157 /* Issue:
2158 * Audio lag happened on DP monitor when unplug a HDMI monitor
2159 *
2160 * Cause:
2161 * In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2162 * is set to either dto0 or dto1, audio should work fine.
2163 * In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2164 * set to dto0 will cause audio lag.
2165 *
2166 * Solution:
2167 * Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2168 * find first available pipe with audio, setup audio wall DTO per topology
2169 * instead of per pipe.
2170 */
2171 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2172 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2173
2174 if (pipe_ctx->stream == NULL)
2175 continue;
2176
2177 if (pipe_ctx->top_pipe)
2178 continue;
2179 if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2180 continue;
2181 if (pipe_ctx->stream_res.audio != NULL) {
2182 struct audio_output audio_output;
2183
2184 build_audio_output(context, pipe_ctx, &audio_output);
2185
2186 if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2187 struct dtbclk_dto_params dto_params = {0};
2188
2189 dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2190 dc->res_pool->dccg, &dto_params);
2191
2192 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2193 pipe_ctx->stream_res.audio,
2194 pipe_ctx->stream->signal,
2195 &audio_output.crtc_info,
2196 &audio_output.pll_info);
2197 } else
2198 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2199 pipe_ctx->stream_res.audio,
2200 pipe_ctx->stream->signal,
2201 &audio_output.crtc_info,
2202 &audio_output.pll_info);
2203 break;
2204 }
2205 }
2206
2207 /* no HDMI audio is found, try DP audio */
2208 if (i == dc->res_pool->pipe_count) {
2209 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2210 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2211
2212 if (pipe_ctx->stream == NULL)
2213 continue;
2214
2215 if (pipe_ctx->top_pipe)
2216 continue;
2217
2218 if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2219 continue;
2220
2221 if (pipe_ctx->stream_res.audio != NULL) {
2222 struct audio_output audio_output;
2223
2224 build_audio_output(context, pipe_ctx, &audio_output);
2225
2226 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2227 pipe_ctx->stream_res.audio,
2228 pipe_ctx->stream->signal,
2229 &audio_output.crtc_info,
2230 &audio_output.pll_info);
2231 break;
2232 }
2233 }
2234 }
2235 }
2236
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2237 enum dc_status dce110_apply_ctx_to_hw(
2238 struct dc *dc,
2239 struct dc_state *context)
2240 {
2241 struct dce_hwseq *hws = dc->hwseq;
2242 struct dc_bios *dcb = dc->ctx->dc_bios;
2243 enum dc_status status;
2244 int i;
2245
2246 /* reset syncd pipes from disabled pipes */
2247 if (dc->config.use_pipe_ctx_sync_logic)
2248 reset_syncd_pipes_from_disabled_pipes(dc, context);
2249
2250 /* Reset old context */
2251 /* look up the targets that have been removed since last commit */
2252 hws->funcs.reset_hw_ctx_wrap(dc, context);
2253
2254 /* Skip applying if no targets */
2255 if (context->stream_count <= 0)
2256 return DC_OK;
2257
2258 /* Apply new context */
2259 dcb->funcs->set_scratch_critical_state(dcb, true);
2260
2261 /* below is for real asic only */
2262 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2263 struct pipe_ctx *pipe_ctx_old =
2264 &dc->current_state->res_ctx.pipe_ctx[i];
2265 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2266
2267 if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2268 continue;
2269
2270 if (pipe_ctx->stream == pipe_ctx_old->stream) {
2271 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2272 dce_crtc_switch_to_clk_src(dc->hwseq,
2273 pipe_ctx->clock_source, i);
2274 continue;
2275 }
2276
2277 hws->funcs.enable_display_power_gating(
2278 dc, i, dc->ctx->dc_bios,
2279 PIPE_GATING_CONTROL_DISABLE);
2280 }
2281
2282 if (dc->fbc_compressor)
2283 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2284
2285 dce110_setup_audio_dto(dc, context);
2286
2287 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2288 struct pipe_ctx *pipe_ctx_old =
2289 &dc->current_state->res_ctx.pipe_ctx[i];
2290 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2291
2292 if (pipe_ctx->stream == NULL)
2293 continue;
2294
2295 if (pipe_ctx->stream == pipe_ctx_old->stream &&
2296 pipe_ctx->stream->link->link_state_valid) {
2297 continue;
2298 }
2299
2300 if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2301 continue;
2302
2303 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2304 continue;
2305
2306 status = apply_single_controller_ctx_to_hw(
2307 pipe_ctx,
2308 context,
2309 dc);
2310
2311 if (DC_OK != status)
2312 return status;
2313 }
2314
2315 if (dc->fbc_compressor)
2316 enable_fbc(dc, dc->current_state);
2317
2318 dcb->funcs->set_scratch_critical_state(dcb, false);
2319
2320 return DC_OK;
2321 }
2322
2323 /*******************************************************************************
2324 * Front End programming
2325 ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2326 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2327 {
2328 struct default_adjustment default_adjust = { 0 };
2329
2330 default_adjust.force_hw_default = false;
2331 default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2332 default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2333 default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2334 default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2335
2336 /* display color depth */
2337 default_adjust.color_depth =
2338 pipe_ctx->stream->timing.display_color_depth;
2339
2340 /* Lb color depth */
2341 default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2342
2343 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2344 pipe_ctx->plane_res.xfm, &default_adjust);
2345 }
2346
2347
2348 /*******************************************************************************
2349 * In order to turn on/off specific surface we will program
2350 * Blender + CRTC
2351 *
2352 * In case that we have two surfaces and they have a different visibility
2353 * we can't turn off the CRTC since it will turn off the entire display
2354 *
2355 * |----------------------------------------------- |
2356 * |bottom pipe|curr pipe | | |
2357 * |Surface |Surface | Blender | CRCT |
2358 * |visibility |visibility | Configuration| |
2359 * |------------------------------------------------|
2360 * | off | off | CURRENT_PIPE | blank |
2361 * | off | on | CURRENT_PIPE | unblank |
2362 * | on | off | OTHER_PIPE | unblank |
2363 * | on | on | BLENDING | unblank |
2364 * -------------------------------------------------|
2365 *
2366 ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2367 static void program_surface_visibility(const struct dc *dc,
2368 struct pipe_ctx *pipe_ctx)
2369 {
2370 enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2371 bool blank_target = false;
2372
2373 if (pipe_ctx->bottom_pipe) {
2374
2375 /* For now we are supporting only two pipes */
2376 ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2377
2378 if (pipe_ctx->bottom_pipe->plane_state->visible) {
2379 if (pipe_ctx->plane_state->visible)
2380 blender_mode = BLND_MODE_BLENDING;
2381 else
2382 blender_mode = BLND_MODE_OTHER_PIPE;
2383
2384 } else if (!pipe_ctx->plane_state->visible)
2385 blank_target = true;
2386
2387 } else if (!pipe_ctx->plane_state->visible)
2388 blank_target = true;
2389
2390 dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2391 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2392
2393 }
2394
program_gamut_remap(struct pipe_ctx * pipe_ctx)2395 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2396 {
2397 int i = 0;
2398 struct xfm_grph_csc_adjustment adjust;
2399 memset(&adjust, 0, sizeof(adjust));
2400 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2401
2402
2403 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2404 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2405
2406 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2407 adjust.temperature_matrix[i] =
2408 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2409 }
2410
2411 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2412 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2413 static void update_plane_addr(const struct dc *dc,
2414 struct pipe_ctx *pipe_ctx)
2415 {
2416 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2417
2418 if (plane_state == NULL)
2419 return;
2420
2421 pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2422 pipe_ctx->plane_res.mi,
2423 &plane_state->address,
2424 plane_state->flip_immediate);
2425
2426 plane_state->status.requested_address = plane_state->address;
2427 }
2428
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2429 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2430 {
2431 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2432
2433 if (plane_state == NULL)
2434 return;
2435
2436 plane_state->status.is_flip_pending =
2437 pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2438 pipe_ctx->plane_res.mi);
2439
2440 if (plane_state->status.is_flip_pending && !plane_state->visible)
2441 pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2442
2443 plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2444 if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2445 pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2446 plane_state->status.is_right_eye =\
2447 !pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2448 }
2449 }
2450
dce110_power_down(struct dc * dc)2451 void dce110_power_down(struct dc *dc)
2452 {
2453 power_down_all_hw_blocks(dc);
2454 disable_vga_and_power_gate_all_controllers(dc);
2455 }
2456
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2457 static bool wait_for_reset_trigger_to_occur(
2458 struct dc_context *dc_ctx,
2459 struct timing_generator *tg)
2460 {
2461 bool rc = false;
2462
2463 /* To avoid endless loop we wait at most
2464 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2465 const uint32_t frames_to_wait_on_triggered_reset = 10;
2466 uint32_t i;
2467
2468 for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2469
2470 if (!tg->funcs->is_counter_moving(tg)) {
2471 DC_ERROR("TG counter is not moving!\n");
2472 break;
2473 }
2474
2475 if (tg->funcs->did_triggered_reset_occur(tg)) {
2476 rc = true;
2477 /* usually occurs at i=1 */
2478 DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2479 i);
2480 break;
2481 }
2482
2483 /* Wait for one frame. */
2484 tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2485 tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2486 }
2487
2488 if (false == rc)
2489 DC_ERROR("GSL: Timeout on reset trigger!\n");
2490
2491 return rc;
2492 }
2493
2494 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2495 static void dce110_enable_timing_synchronization(
2496 struct dc *dc,
2497 int group_index,
2498 int group_size,
2499 struct pipe_ctx *grouped_pipes[])
2500 {
2501 struct dc_context *dc_ctx = dc->ctx;
2502 struct dcp_gsl_params gsl_params = { 0 };
2503 int i;
2504
2505 DC_SYNC_INFO("GSL: Setting-up...\n");
2506
2507 /* Designate a single TG in the group as a master.
2508 * Since HW doesn't care which one, we always assign
2509 * the 1st one in the group. */
2510 gsl_params.gsl_group = 0;
2511 gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2512
2513 for (i = 0; i < group_size; i++)
2514 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2515 grouped_pipes[i]->stream_res.tg, &gsl_params);
2516
2517 /* Reset slave controllers on master VSync */
2518 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2519
2520 for (i = 1 /* skip the master */; i < group_size; i++)
2521 grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2522 grouped_pipes[i]->stream_res.tg,
2523 gsl_params.gsl_group);
2524
2525 for (i = 1 /* skip the master */; i < group_size; i++) {
2526 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2527 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2528 grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2529 grouped_pipes[i]->stream_res.tg);
2530 }
2531
2532 /* GSL Vblank synchronization is a one time sync mechanism, assumption
2533 * is that the sync'ed displays will not drift out of sync over time*/
2534 DC_SYNC_INFO("GSL: Restoring register states.\n");
2535 for (i = 0; i < group_size; i++)
2536 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2537
2538 DC_SYNC_INFO("GSL: Set-up complete.\n");
2539 }
2540
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2541 static void dce110_enable_per_frame_crtc_position_reset(
2542 struct dc *dc,
2543 int group_size,
2544 struct pipe_ctx *grouped_pipes[])
2545 {
2546 struct dc_context *dc_ctx = dc->ctx;
2547 struct dcp_gsl_params gsl_params = { 0 };
2548 int i;
2549
2550 gsl_params.gsl_group = 0;
2551 gsl_params.gsl_master = 0;
2552
2553 for (i = 0; i < group_size; i++)
2554 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2555 grouped_pipes[i]->stream_res.tg, &gsl_params);
2556
2557 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2558
2559 for (i = 1; i < group_size; i++)
2560 grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2561 grouped_pipes[i]->stream_res.tg,
2562 gsl_params.gsl_master,
2563 &grouped_pipes[i]->stream->triggered_crtc_reset);
2564
2565 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2566 for (i = 1; i < group_size; i++)
2567 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2568
2569 for (i = 0; i < group_size; i++)
2570 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2571
2572 }
2573
init_pipes(struct dc * dc,struct dc_state * context)2574 static void init_pipes(struct dc *dc, struct dc_state *context)
2575 {
2576 // Do nothing
2577 }
2578
init_hw(struct dc * dc)2579 static void init_hw(struct dc *dc)
2580 {
2581 int i;
2582 struct dc_bios *bp;
2583 struct transform *xfm;
2584 struct abm *abm;
2585 struct dmcu *dmcu;
2586 struct dce_hwseq *hws = dc->hwseq;
2587 uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2588
2589 bp = dc->ctx->dc_bios;
2590 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2591 xfm = dc->res_pool->transforms[i];
2592 xfm->funcs->transform_reset(xfm);
2593
2594 hws->funcs.enable_display_power_gating(
2595 dc, i, bp,
2596 PIPE_GATING_CONTROL_INIT);
2597 hws->funcs.enable_display_power_gating(
2598 dc, i, bp,
2599 PIPE_GATING_CONTROL_DISABLE);
2600 hws->funcs.enable_display_pipe_clock_gating(
2601 dc->ctx,
2602 true);
2603 }
2604
2605 dce_clock_gating_power_up(dc->hwseq, false);
2606 /***************************************/
2607
2608 for (i = 0; i < dc->link_count; i++) {
2609 /****************************************/
2610 /* Power up AND update implementation according to the
2611 * required signal (which may be different from the
2612 * default signal on connector). */
2613 struct dc_link *link = dc->links[i];
2614
2615 link->link_enc->funcs->hw_init(link->link_enc);
2616 }
2617
2618 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2619 struct timing_generator *tg = dc->res_pool->timing_generators[i];
2620
2621 tg->funcs->disable_vga(tg);
2622
2623 /* Blank controller using driver code instead of
2624 * command table. */
2625 tg->funcs->set_blank(tg, true);
2626 hwss_wait_for_blank_complete(tg);
2627 }
2628
2629 for (i = 0; i < dc->res_pool->audio_count; i++) {
2630 struct audio *audio = dc->res_pool->audios[i];
2631 audio->funcs->hw_init(audio);
2632 }
2633
2634 for (i = 0; i < dc->link_count; i++) {
2635 struct dc_link *link = dc->links[i];
2636
2637 if (link->panel_cntl)
2638 backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2639 }
2640
2641 abm = dc->res_pool->abm;
2642 if (abm != NULL)
2643 abm->funcs->abm_init(abm, backlight);
2644
2645 dmcu = dc->res_pool->dmcu;
2646 if (dmcu != NULL && abm != NULL)
2647 abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2648
2649 if (dc->fbc_compressor)
2650 dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2651
2652 }
2653
2654
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2655 void dce110_prepare_bandwidth(
2656 struct dc *dc,
2657 struct dc_state *context)
2658 {
2659 struct clk_mgr *dccg = dc->clk_mgr;
2660
2661 dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2662
2663 dccg->funcs->update_clocks(
2664 dccg,
2665 context,
2666 false);
2667 }
2668
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2669 void dce110_optimize_bandwidth(
2670 struct dc *dc,
2671 struct dc_state *context)
2672 {
2673 struct clk_mgr *dccg = dc->clk_mgr;
2674
2675 dce110_set_displaymarks(dc, context);
2676
2677 dccg->funcs->update_clocks(
2678 dccg,
2679 context,
2680 true);
2681 }
2682
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2683 static void dce110_program_front_end_for_pipe(
2684 struct dc *dc, struct pipe_ctx *pipe_ctx)
2685 {
2686 struct mem_input *mi = pipe_ctx->plane_res.mi;
2687 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2688 struct xfm_grph_csc_adjustment adjust;
2689 struct out_csc_color_matrix tbl_entry;
2690 unsigned int i;
2691 struct dce_hwseq *hws = dc->hwseq;
2692
2693 DC_LOGGER_INIT();
2694 memset(&tbl_entry, 0, sizeof(tbl_entry));
2695
2696 memset(&adjust, 0, sizeof(adjust));
2697 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2698
2699 dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2700
2701 set_default_colors(pipe_ctx);
2702 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2703 == true) {
2704 tbl_entry.color_space =
2705 pipe_ctx->stream->output_color_space;
2706
2707 for (i = 0; i < 12; i++)
2708 tbl_entry.regval[i] =
2709 pipe_ctx->stream->csc_color_matrix.matrix[i];
2710
2711 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2712 (pipe_ctx->plane_res.xfm, &tbl_entry);
2713 }
2714
2715 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2716 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2717
2718 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2719 adjust.temperature_matrix[i] =
2720 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2721 }
2722
2723 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2724
2725 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2726
2727 program_scaler(dc, pipe_ctx);
2728
2729 mi->funcs->mem_input_program_surface_config(
2730 mi,
2731 plane_state->format,
2732 &plane_state->tiling_info,
2733 &plane_state->plane_size,
2734 plane_state->rotation,
2735 NULL,
2736 false);
2737 if (mi->funcs->set_blank)
2738 mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2739
2740 if (dc->config.gpu_vm_support)
2741 mi->funcs->mem_input_program_pte_vm(
2742 pipe_ctx->plane_res.mi,
2743 plane_state->format,
2744 &plane_state->tiling_info,
2745 plane_state->rotation);
2746
2747 /* Moved programming gamma from dc to hwss */
2748 if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2749 pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2750 pipe_ctx->plane_state->update_flags.bits.gamma_change)
2751 hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2752
2753 if (pipe_ctx->plane_state->update_flags.bits.full_update)
2754 hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2755
2756 DC_LOG_SURFACE(
2757 "Pipe:%d %p: addr hi:0x%x, "
2758 "addr low:0x%x, "
2759 "src: %d, %d, %d,"
2760 " %d; dst: %d, %d, %d, %d;"
2761 "clip: %d, %d, %d, %d\n",
2762 pipe_ctx->pipe_idx,
2763 (void *) pipe_ctx->plane_state,
2764 pipe_ctx->plane_state->address.grph.addr.high_part,
2765 pipe_ctx->plane_state->address.grph.addr.low_part,
2766 pipe_ctx->plane_state->src_rect.x,
2767 pipe_ctx->plane_state->src_rect.y,
2768 pipe_ctx->plane_state->src_rect.width,
2769 pipe_ctx->plane_state->src_rect.height,
2770 pipe_ctx->plane_state->dst_rect.x,
2771 pipe_ctx->plane_state->dst_rect.y,
2772 pipe_ctx->plane_state->dst_rect.width,
2773 pipe_ctx->plane_state->dst_rect.height,
2774 pipe_ctx->plane_state->clip_rect.x,
2775 pipe_ctx->plane_state->clip_rect.y,
2776 pipe_ctx->plane_state->clip_rect.width,
2777 pipe_ctx->plane_state->clip_rect.height);
2778
2779 DC_LOG_SURFACE(
2780 "Pipe %d: width, height, x, y\n"
2781 "viewport:%d, %d, %d, %d\n"
2782 "recout: %d, %d, %d, %d\n",
2783 pipe_ctx->pipe_idx,
2784 pipe_ctx->plane_res.scl_data.viewport.width,
2785 pipe_ctx->plane_res.scl_data.viewport.height,
2786 pipe_ctx->plane_res.scl_data.viewport.x,
2787 pipe_ctx->plane_res.scl_data.viewport.y,
2788 pipe_ctx->plane_res.scl_data.recout.width,
2789 pipe_ctx->plane_res.scl_data.recout.height,
2790 pipe_ctx->plane_res.scl_data.recout.x,
2791 pipe_ctx->plane_res.scl_data.recout.y);
2792 }
2793
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2794 static void dce110_apply_ctx_for_surface(
2795 struct dc *dc,
2796 const struct dc_stream_state *stream,
2797 int num_planes,
2798 struct dc_state *context)
2799 {
2800 int i;
2801
2802 if (num_planes == 0)
2803 return;
2804
2805 if (dc->fbc_compressor)
2806 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2807
2808 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2809 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2810
2811 if (pipe_ctx->stream != stream)
2812 continue;
2813
2814 /* Need to allocate mem before program front end for Fiji */
2815 pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2816 pipe_ctx->plane_res.mi,
2817 pipe_ctx->stream->timing.h_total,
2818 pipe_ctx->stream->timing.v_total,
2819 pipe_ctx->stream->timing.pix_clk_100hz / 10,
2820 context->stream_count);
2821
2822 dce110_program_front_end_for_pipe(dc, pipe_ctx);
2823
2824 dc->hwss.update_plane_addr(dc, pipe_ctx);
2825
2826 program_surface_visibility(dc, pipe_ctx);
2827
2828 }
2829
2830 if (dc->fbc_compressor)
2831 enable_fbc(dc, context);
2832 }
2833
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)2834 static void dce110_post_unlock_program_front_end(
2835 struct dc *dc,
2836 struct dc_state *context)
2837 {
2838 }
2839
dce110_power_down_fe(struct dc * dc,struct pipe_ctx * pipe_ctx)2840 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2841 {
2842 struct dce_hwseq *hws = dc->hwseq;
2843 int fe_idx = pipe_ctx->plane_res.mi ?
2844 pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2845
2846 /* Do not power down fe when stream is active on dce*/
2847 if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2848 return;
2849
2850 hws->funcs.enable_display_power_gating(
2851 dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2852
2853 dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2854 dc->res_pool->transforms[fe_idx]);
2855 }
2856
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)2857 static void dce110_wait_for_mpcc_disconnect(
2858 struct dc *dc,
2859 struct resource_pool *res_pool,
2860 struct pipe_ctx *pipe_ctx)
2861 {
2862 /* do nothing*/
2863 }
2864
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2865 static void program_output_csc(struct dc *dc,
2866 struct pipe_ctx *pipe_ctx,
2867 enum dc_color_space colorspace,
2868 uint16_t *matrix,
2869 int opp_id)
2870 {
2871 int i;
2872 struct out_csc_color_matrix tbl_entry;
2873
2874 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2875 enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2876
2877 for (i = 0; i < 12; i++)
2878 tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2879
2880 tbl_entry.color_space = color_space;
2881
2882 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2883 pipe_ctx->plane_res.xfm, &tbl_entry);
2884 }
2885 }
2886
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)2887 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2888 {
2889 struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2890 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2891 struct mem_input *mi = pipe_ctx->plane_res.mi;
2892 struct dc_cursor_mi_param param = {
2893 .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2894 .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2895 .viewport = pipe_ctx->plane_res.scl_data.viewport,
2896 .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2897 .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2898 .rotation = pipe_ctx->plane_state->rotation,
2899 .mirror = pipe_ctx->plane_state->horizontal_mirror
2900 };
2901
2902 /**
2903 * If the cursor's source viewport is clipped then we need to
2904 * translate the cursor to appear in the correct position on
2905 * the screen.
2906 *
2907 * This translation isn't affected by scaling so it needs to be
2908 * done *after* we adjust the position for the scale factor.
2909 *
2910 * This is only done by opt-in for now since there are still
2911 * some usecases like tiled display that might enable the
2912 * cursor on both streams while expecting dc to clip it.
2913 */
2914 if (pos_cpy.translate_by_source) {
2915 pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2916 pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2917 }
2918
2919 if (pipe_ctx->plane_state->address.type
2920 == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2921 pos_cpy.enable = false;
2922
2923 if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2924 pos_cpy.enable = false;
2925
2926 if (ipp->funcs->ipp_cursor_set_position)
2927 ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, ¶m);
2928 if (mi->funcs->set_cursor_position)
2929 mi->funcs->set_cursor_position(mi, &pos_cpy, ¶m);
2930 }
2931
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)2932 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2933 {
2934 struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2935
2936 if (pipe_ctx->plane_res.ipp &&
2937 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2938 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2939 pipe_ctx->plane_res.ipp, attributes);
2940
2941 if (pipe_ctx->plane_res.mi &&
2942 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2943 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2944 pipe_ctx->plane_res.mi, attributes);
2945
2946 if (pipe_ctx->plane_res.xfm &&
2947 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2948 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2949 pipe_ctx->plane_res.xfm, attributes);
2950 }
2951
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,uint32_t backlight_pwm_u16_16,uint32_t frame_ramp)2952 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2953 uint32_t backlight_pwm_u16_16,
2954 uint32_t frame_ramp)
2955 {
2956 struct dc_link *link = pipe_ctx->stream->link;
2957 struct dc *dc = link->ctx->dc;
2958 struct abm *abm = pipe_ctx->stream_res.abm;
2959 struct panel_cntl *panel_cntl = link->panel_cntl;
2960 struct dmcu *dmcu = dc->res_pool->dmcu;
2961 bool fw_set_brightness = true;
2962 /* DMCU -1 for all controller id values,
2963 * therefore +1 here
2964 */
2965 uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2966
2967 if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2968 return false;
2969
2970 if (dmcu)
2971 fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2972
2973 if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2974 panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2975 else
2976 abm->funcs->set_backlight_level_pwm(
2977 abm,
2978 backlight_pwm_u16_16,
2979 frame_ramp,
2980 controller_id,
2981 link->panel_cntl->inst);
2982
2983 return true;
2984 }
2985
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)2986 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2987 {
2988 struct abm *abm = pipe_ctx->stream_res.abm;
2989 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2990
2991 if (abm)
2992 abm->funcs->set_abm_immediate_disable(abm,
2993 pipe_ctx->stream->link->panel_cntl->inst);
2994
2995 if (panel_cntl)
2996 panel_cntl->funcs->store_backlight_level(panel_cntl);
2997 }
2998
dce110_set_pipe(struct pipe_ctx * pipe_ctx)2999 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3000 {
3001 struct abm *abm = pipe_ctx->stream_res.abm;
3002 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3003 uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3004
3005 if (abm && panel_cntl)
3006 abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3007 }
3008
dce110_enable_lvds_link_output(struct dc_link * link,const struct link_resource * link_res,enum clock_source_id clock_source,uint32_t pixel_clock)3009 void dce110_enable_lvds_link_output(struct dc_link *link,
3010 const struct link_resource *link_res,
3011 enum clock_source_id clock_source,
3012 uint32_t pixel_clock)
3013 {
3014 link->link_enc->funcs->enable_lvds_output(
3015 link->link_enc,
3016 clock_source,
3017 pixel_clock);
3018 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3019 }
3020
dce110_enable_tmds_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,enum dc_color_depth color_depth,uint32_t pixel_clock)3021 void dce110_enable_tmds_link_output(struct dc_link *link,
3022 const struct link_resource *link_res,
3023 enum signal_type signal,
3024 enum clock_source_id clock_source,
3025 enum dc_color_depth color_depth,
3026 uint32_t pixel_clock)
3027 {
3028 link->link_enc->funcs->enable_tmds_output(
3029 link->link_enc,
3030 clock_source,
3031 color_depth,
3032 signal,
3033 pixel_clock);
3034 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3035 }
3036
dce110_enable_dp_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,const struct dc_link_settings * link_settings)3037 void dce110_enable_dp_link_output(
3038 struct dc_link *link,
3039 const struct link_resource *link_res,
3040 enum signal_type signal,
3041 enum clock_source_id clock_source,
3042 const struct dc_link_settings *link_settings)
3043 {
3044 struct dc *dc = link->ctx->dc;
3045 struct dmcu *dmcu = dc->res_pool->dmcu;
3046 struct pipe_ctx *pipes =
3047 link->dc->current_state->res_ctx.pipe_ctx;
3048 struct clock_source *dp_cs =
3049 link->dc->res_pool->dp_clock_source;
3050 const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3051 unsigned int i;
3052
3053
3054 if (link->connector_signal == SIGNAL_TYPE_EDP) {
3055 if (!link->dc->config.edp_no_power_sequencing)
3056 link->dc->hwss.edp_power_control(link, true);
3057 link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3058 }
3059
3060 /* If the current pixel clock source is not DTO(happens after
3061 * switching from HDMI passive dongle to DP on the same connector),
3062 * switch the pixel clock source to DTO.
3063 */
3064
3065 for (i = 0; i < MAX_PIPES; i++) {
3066 if (pipes[i].stream != NULL &&
3067 pipes[i].stream->link == link) {
3068 if (pipes[i].clock_source != NULL &&
3069 pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3070 pipes[i].clock_source = dp_cs;
3071 pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3072 pipes[i].stream->timing.pix_clk_100hz;
3073 pipes[i].clock_source->funcs->program_pix_clk(
3074 pipes[i].clock_source,
3075 &pipes[i].stream_res.pix_clk_params,
3076 dp_get_link_encoding_format(link_settings),
3077 &pipes[i].pll_settings);
3078 }
3079 }
3080 }
3081
3082 if (dp_get_link_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3083 if (dc->clk_mgr->funcs->notify_link_rate_change)
3084 dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3085 }
3086
3087 if (dmcu != NULL && dmcu->funcs->lock_phy)
3088 dmcu->funcs->lock_phy(dmcu);
3089
3090 if (link_hwss->ext.enable_dp_link_output)
3091 link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3092 clock_source, link_settings);
3093
3094 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3095
3096 if (dmcu != NULL && dmcu->funcs->unlock_phy)
3097 dmcu->funcs->unlock_phy(dmcu);
3098
3099 dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3100 }
3101
dce110_disable_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal)3102 void dce110_disable_link_output(struct dc_link *link,
3103 const struct link_resource *link_res,
3104 enum signal_type signal)
3105 {
3106 struct dc *dc = link->ctx->dc;
3107 const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3108 struct dmcu *dmcu = dc->res_pool->dmcu;
3109
3110 if (signal == SIGNAL_TYPE_EDP &&
3111 link->dc->hwss.edp_backlight_control)
3112 link->dc->hwss.edp_backlight_control(link, false);
3113 else if (dmcu != NULL && dmcu->funcs->lock_phy)
3114 dmcu->funcs->lock_phy(dmcu);
3115
3116 link_hwss->disable_link_output(link, link_res, signal);
3117 link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3118
3119 if (signal == SIGNAL_TYPE_EDP &&
3120 link->dc->hwss.edp_backlight_control)
3121 link->dc->hwss.edp_power_control(link, false);
3122 else if (dmcu != NULL && dmcu->funcs->lock_phy)
3123 dmcu->funcs->unlock_phy(dmcu);
3124 dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3125 }
3126
3127 static const struct hw_sequencer_funcs dce110_funcs = {
3128 .program_gamut_remap = program_gamut_remap,
3129 .program_output_csc = program_output_csc,
3130 .init_hw = init_hw,
3131 .apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3132 .apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3133 .post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3134 .update_plane_addr = update_plane_addr,
3135 .update_pending_status = dce110_update_pending_status,
3136 .enable_accelerated_mode = dce110_enable_accelerated_mode,
3137 .enable_timing_synchronization = dce110_enable_timing_synchronization,
3138 .enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3139 .update_info_frame = dce110_update_info_frame,
3140 .enable_stream = dce110_enable_stream,
3141 .disable_stream = dce110_disable_stream,
3142 .unblank_stream = dce110_unblank_stream,
3143 .blank_stream = dce110_blank_stream,
3144 .enable_audio_stream = dce110_enable_audio_stream,
3145 .disable_audio_stream = dce110_disable_audio_stream,
3146 .disable_plane = dce110_power_down_fe,
3147 .pipe_control_lock = dce_pipe_control_lock,
3148 .interdependent_update_lock = NULL,
3149 .cursor_lock = dce_pipe_control_lock,
3150 .prepare_bandwidth = dce110_prepare_bandwidth,
3151 .optimize_bandwidth = dce110_optimize_bandwidth,
3152 .set_drr = set_drr,
3153 .get_position = get_position,
3154 .set_static_screen_control = set_static_screen_control,
3155 .setup_stereo = NULL,
3156 .set_avmute = dce110_set_avmute,
3157 .wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3158 .edp_backlight_control = dce110_edp_backlight_control,
3159 .edp_power_control = dce110_edp_power_control,
3160 .edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3161 .set_cursor_position = dce110_set_cursor_position,
3162 .set_cursor_attribute = dce110_set_cursor_attribute,
3163 .set_backlight_level = dce110_set_backlight_level,
3164 .set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3165 .set_pipe = dce110_set_pipe,
3166 .enable_lvds_link_output = dce110_enable_lvds_link_output,
3167 .enable_tmds_link_output = dce110_enable_tmds_link_output,
3168 .enable_dp_link_output = dce110_enable_dp_link_output,
3169 .disable_link_output = dce110_disable_link_output,
3170 };
3171
3172 static const struct hwseq_private_funcs dce110_private_funcs = {
3173 .init_pipes = init_pipes,
3174 .update_plane_addr = update_plane_addr,
3175 .set_input_transfer_func = dce110_set_input_transfer_func,
3176 .set_output_transfer_func = dce110_set_output_transfer_func,
3177 .power_down = dce110_power_down,
3178 .enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3179 .enable_display_power_gating = dce110_enable_display_power_gating,
3180 .reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3181 .enable_stream_timing = dce110_enable_stream_timing,
3182 .disable_stream_gating = NULL,
3183 .enable_stream_gating = NULL,
3184 .edp_backlight_control = dce110_edp_backlight_control,
3185 };
3186
dce110_hw_sequencer_construct(struct dc * dc)3187 void dce110_hw_sequencer_construct(struct dc *dc)
3188 {
3189 dc->hwss = dce110_funcs;
3190 dc->hwseq->funcs = dce110_private_funcs;
3191 }
3192
3193