1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_timing_generator.h"
34 #include "dce/dce_hwseq.h"
35 #include "gpio_service_interface.h"
36 
37 #include "dce110_compressor.h"
38 
39 #include "bios/bios_parser_helper.h"
40 #include "timing_generator.h"
41 #include "mem_input.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "transform.h"
45 #include "stream_encoder.h"
46 #include "link_encoder.h"
47 #include "link_enc_cfg.h"
48 #include "link_hwss.h"
49 #include "dc_link_dp.h"
50 #include "dccg.h"
51 #include "clock_source.h"
52 #include "clk_mgr.h"
53 #include "abm.h"
54 #include "audio.h"
55 #include "reg_helper.h"
56 #include "panel_cntl.h"
57 #include "inc/link_dpcd.h"
58 #include "dpcd_defs.h"
59 /* include DCE11 register header files */
60 #include "dce/dce_11_0_d.h"
61 #include "dce/dce_11_0_sh_mask.h"
62 #include "custom_float.h"
63 
64 #include "atomfirmware.h"
65 
66 #include "dcn10/dcn10_hw_sequencer.h"
67 
68 #include "link/link_dp_trace.h"
69 #include "dce110_hw_sequencer.h"
70 
71 #define GAMMA_HW_POINTS_NUM 256
72 
73 /*
74  * All values are in milliseconds;
75  * For eDP, after power-up/power/down,
76  * 300/500 msec max. delay from LCDVCC to black video generation
77  */
78 #define PANEL_POWER_UP_TIMEOUT 300
79 #define PANEL_POWER_DOWN_TIMEOUT 500
80 #define HPD_CHECK_INTERVAL 10
81 #define OLED_POST_T7_DELAY 100
82 #define OLED_PRE_T11_DELAY 150
83 
84 #define CTX \
85 	hws->ctx
86 
87 #define DC_LOGGER_INIT()
88 
89 #define REG(reg)\
90 	hws->regs->reg
91 
92 #undef FN
93 #define FN(reg_name, field_name) \
94 	hws->shifts->field_name, hws->masks->field_name
95 
96 struct dce110_hw_seq_reg_offsets {
97 	uint32_t crtc;
98 };
99 
100 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
101 {
102 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
103 },
104 {
105 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
106 },
107 {
108 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
109 },
110 {
111 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
112 }
113 };
114 
115 #define HW_REG_BLND(reg, id)\
116 	(reg + reg_offsets[id].blnd)
117 
118 #define HW_REG_CRTC(reg, id)\
119 	(reg + reg_offsets[id].crtc)
120 
121 #define MAX_WATERMARK 0xFFFF
122 #define SAFE_NBP_MARK 0x7FFF
123 
124 /*******************************************************************************
125  * Private definitions
126  ******************************************************************************/
127 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)128 static void dce110_init_pte(struct dc_context *ctx)
129 {
130 	uint32_t addr;
131 	uint32_t value = 0;
132 	uint32_t chunk_int = 0;
133 	uint32_t chunk_mul = 0;
134 
135 	addr = mmUNP_DVMM_PTE_CONTROL;
136 	value = dm_read_reg(ctx, addr);
137 
138 	set_reg_field_value(
139 		value,
140 		0,
141 		DVMM_PTE_CONTROL,
142 		DVMM_USE_SINGLE_PTE);
143 
144 	set_reg_field_value(
145 		value,
146 		1,
147 		DVMM_PTE_CONTROL,
148 		DVMM_PTE_BUFFER_MODE0);
149 
150 	set_reg_field_value(
151 		value,
152 		1,
153 		DVMM_PTE_CONTROL,
154 		DVMM_PTE_BUFFER_MODE1);
155 
156 	dm_write_reg(ctx, addr, value);
157 
158 	addr = mmDVMM_PTE_REQ;
159 	value = dm_read_reg(ctx, addr);
160 
161 	chunk_int = get_reg_field_value(
162 		value,
163 		DVMM_PTE_REQ,
164 		HFLIP_PTEREQ_PER_CHUNK_INT);
165 
166 	chunk_mul = get_reg_field_value(
167 		value,
168 		DVMM_PTE_REQ,
169 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
170 
171 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
172 
173 		set_reg_field_value(
174 			value,
175 			255,
176 			DVMM_PTE_REQ,
177 			MAX_PTEREQ_TO_ISSUE);
178 
179 		set_reg_field_value(
180 			value,
181 			4,
182 			DVMM_PTE_REQ,
183 			HFLIP_PTEREQ_PER_CHUNK_INT);
184 
185 		set_reg_field_value(
186 			value,
187 			4,
188 			DVMM_PTE_REQ,
189 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
190 
191 		dm_write_reg(ctx, addr, value);
192 	}
193 }
194 /**************************************************************************/
195 
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)196 static void enable_display_pipe_clock_gating(
197 	struct dc_context *ctx,
198 	bool clock_gating)
199 {
200 	/*TODO*/
201 }
202 
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)203 static bool dce110_enable_display_power_gating(
204 	struct dc *dc,
205 	uint8_t controller_id,
206 	struct dc_bios *dcb,
207 	enum pipe_gating_control power_gating)
208 {
209 	enum bp_result bp_result = BP_RESULT_OK;
210 	enum bp_pipe_control_action cntl;
211 	struct dc_context *ctx = dc->ctx;
212 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
213 
214 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
215 		return true;
216 
217 	if (power_gating == PIPE_GATING_CONTROL_INIT)
218 		cntl = ASIC_PIPE_INIT;
219 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
220 		cntl = ASIC_PIPE_ENABLE;
221 	else
222 		cntl = ASIC_PIPE_DISABLE;
223 
224 	if (controller_id == underlay_idx)
225 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
226 
227 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
228 
229 		bp_result = dcb->funcs->enable_disp_power_gating(
230 						dcb, controller_id + 1, cntl);
231 
232 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
233 		 * by default when command table is called
234 		 *
235 		 * Bios parser accepts controller_id = 6 as indicative of
236 		 * underlay pipe in dce110. But we do not support more
237 		 * than 3.
238 		 */
239 		if (controller_id < CONTROLLER_ID_MAX - 1)
240 			dm_write_reg(ctx,
241 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
242 				0);
243 	}
244 
245 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
246 		dce110_init_pte(ctx);
247 
248 	if (bp_result == BP_RESULT_OK)
249 		return true;
250 	else
251 		return false;
252 }
253 
build_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)254 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
255 		const struct dc_plane_state *plane_state)
256 {
257 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
258 
259 	switch (plane_state->format) {
260 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
261 		prescale_params->scale = 0x2082;
262 		break;
263 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
264 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
265 		prescale_params->scale = 0x2020;
266 		break;
267 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
268 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
269 		prescale_params->scale = 0x2008;
270 		break;
271 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
272 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
273 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
274 		prescale_params->scale = 0x2000;
275 		break;
276 	default:
277 		ASSERT(false);
278 		break;
279 	}
280 }
281 
282 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)283 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
284 			       const struct dc_plane_state *plane_state)
285 {
286 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
287 	const struct dc_transfer_func *tf = NULL;
288 	struct ipp_prescale_params prescale_params = { 0 };
289 	bool result = true;
290 
291 	if (ipp == NULL)
292 		return false;
293 
294 	if (plane_state->in_transfer_func)
295 		tf = plane_state->in_transfer_func;
296 
297 	build_prescale_params(&prescale_params, plane_state);
298 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
299 
300 	if (plane_state->gamma_correction &&
301 			!plane_state->gamma_correction->is_identity &&
302 			dce_use_lut(plane_state->format))
303 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
304 
305 	if (tf == NULL) {
306 		/* Default case if no input transfer function specified */
307 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
308 	} else if (tf->type == TF_TYPE_PREDEFINED) {
309 		switch (tf->tf) {
310 		case TRANSFER_FUNCTION_SRGB:
311 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
312 			break;
313 		case TRANSFER_FUNCTION_BT709:
314 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
315 			break;
316 		case TRANSFER_FUNCTION_LINEAR:
317 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
318 			break;
319 		case TRANSFER_FUNCTION_PQ:
320 		default:
321 			result = false;
322 			break;
323 		}
324 	} else if (tf->type == TF_TYPE_BYPASS) {
325 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
326 	} else {
327 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
328 		result = false;
329 	}
330 
331 	return result;
332 }
333 
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)334 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
335 				    struct curve_points *arr_points,
336 				    uint32_t hw_points_num)
337 {
338 	struct custom_float_format fmt;
339 
340 	struct pwl_result_data *rgb = rgb_resulted;
341 
342 	uint32_t i = 0;
343 
344 	fmt.exponenta_bits = 6;
345 	fmt.mantissa_bits = 12;
346 	fmt.sign = true;
347 
348 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
349 					    &arr_points[0].custom_float_x)) {
350 		BREAK_TO_DEBUGGER();
351 		return false;
352 	}
353 
354 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
355 					    &arr_points[0].custom_float_offset)) {
356 		BREAK_TO_DEBUGGER();
357 		return false;
358 	}
359 
360 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
361 					    &arr_points[0].custom_float_slope)) {
362 		BREAK_TO_DEBUGGER();
363 		return false;
364 	}
365 
366 	fmt.mantissa_bits = 10;
367 	fmt.sign = false;
368 
369 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
370 					    &arr_points[1].custom_float_x)) {
371 		BREAK_TO_DEBUGGER();
372 		return false;
373 	}
374 
375 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
376 					    &arr_points[1].custom_float_y)) {
377 		BREAK_TO_DEBUGGER();
378 		return false;
379 	}
380 
381 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
382 					    &arr_points[1].custom_float_slope)) {
383 		BREAK_TO_DEBUGGER();
384 		return false;
385 	}
386 
387 	fmt.mantissa_bits = 12;
388 	fmt.sign = true;
389 
390 	while (i != hw_points_num) {
391 		if (!convert_to_custom_float_format(rgb->red, &fmt,
392 						    &rgb->red_reg)) {
393 			BREAK_TO_DEBUGGER();
394 			return false;
395 		}
396 
397 		if (!convert_to_custom_float_format(rgb->green, &fmt,
398 						    &rgb->green_reg)) {
399 			BREAK_TO_DEBUGGER();
400 			return false;
401 		}
402 
403 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
404 						    &rgb->blue_reg)) {
405 			BREAK_TO_DEBUGGER();
406 			return false;
407 		}
408 
409 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
410 						    &rgb->delta_red_reg)) {
411 			BREAK_TO_DEBUGGER();
412 			return false;
413 		}
414 
415 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
416 						    &rgb->delta_green_reg)) {
417 			BREAK_TO_DEBUGGER();
418 			return false;
419 		}
420 
421 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
422 						    &rgb->delta_blue_reg)) {
423 			BREAK_TO_DEBUGGER();
424 			return false;
425 		}
426 
427 		++rgb;
428 		++i;
429 	}
430 
431 	return true;
432 }
433 
434 #define MAX_LOW_POINT      25
435 #define NUMBER_REGIONS     16
436 #define NUMBER_SW_SEGMENTS 16
437 
438 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)439 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
440 				      struct pwl_params *regamma_params)
441 {
442 	struct curve_points *arr_points;
443 	struct pwl_result_data *rgb_resulted;
444 	struct pwl_result_data *rgb;
445 	struct pwl_result_data *rgb_plus_1;
446 	struct fixed31_32 y_r;
447 	struct fixed31_32 y_g;
448 	struct fixed31_32 y_b;
449 	struct fixed31_32 y1_min;
450 	struct fixed31_32 y3_max;
451 
452 	int32_t region_start, region_end;
453 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
454 
455 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
456 		return false;
457 
458 	arr_points = regamma_params->arr_points;
459 	rgb_resulted = regamma_params->rgb_resulted;
460 	hw_points = 0;
461 
462 	memset(regamma_params, 0, sizeof(struct pwl_params));
463 
464 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
465 		/* 16 segments
466 		 * segments are from 2^-11 to 2^5
467 		 */
468 		region_start = -11;
469 		region_end = region_start + NUMBER_REGIONS;
470 
471 		for (i = 0; i < NUMBER_REGIONS; i++)
472 			seg_distr[i] = 4;
473 
474 	} else {
475 		/* 10 segments
476 		 * segment is from 2^-10 to 2^1
477 		 * We include an extra segment for range [2^0, 2^1). This is to
478 		 * ensure that colors with normalized values of 1 don't miss the
479 		 * LUT.
480 		 */
481 		region_start = -10;
482 		region_end = 1;
483 
484 		seg_distr[0] = 4;
485 		seg_distr[1] = 4;
486 		seg_distr[2] = 4;
487 		seg_distr[3] = 4;
488 		seg_distr[4] = 4;
489 		seg_distr[5] = 4;
490 		seg_distr[6] = 4;
491 		seg_distr[7] = 4;
492 		seg_distr[8] = 4;
493 		seg_distr[9] = 4;
494 		seg_distr[10] = 0;
495 		seg_distr[11] = -1;
496 		seg_distr[12] = -1;
497 		seg_distr[13] = -1;
498 		seg_distr[14] = -1;
499 		seg_distr[15] = -1;
500 	}
501 
502 	for (k = 0; k < 16; k++) {
503 		if (seg_distr[k] != -1)
504 			hw_points += (1 << seg_distr[k]);
505 	}
506 
507 	j = 0;
508 	for (k = 0; k < (region_end - region_start); k++) {
509 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
510 		start_index = (region_start + k + MAX_LOW_POINT) *
511 				NUMBER_SW_SEGMENTS;
512 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
513 				i += increment) {
514 			if (j == hw_points - 1)
515 				break;
516 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
517 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
518 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
519 			j++;
520 		}
521 	}
522 
523 	/* last point */
524 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
525 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
526 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
527 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
528 
529 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
530 					     dc_fixpt_from_int(region_start));
531 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
532 					     dc_fixpt_from_int(region_end));
533 
534 	y_r = rgb_resulted[0].red;
535 	y_g = rgb_resulted[0].green;
536 	y_b = rgb_resulted[0].blue;
537 
538 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
539 
540 	arr_points[0].y = y1_min;
541 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
542 						 arr_points[0].x);
543 
544 	y_r = rgb_resulted[hw_points - 1].red;
545 	y_g = rgb_resulted[hw_points - 1].green;
546 	y_b = rgb_resulted[hw_points - 1].blue;
547 
548 	/* see comment above, m_arrPoints[1].y should be the Y value for the
549 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
550 	 */
551 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
552 
553 	arr_points[1].y = y3_max;
554 
555 	arr_points[1].slope = dc_fixpt_zero;
556 
557 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
558 		/* for PQ, we want to have a straight line from last HW X point,
559 		 * and the slope to be such that we hit 1.0 at 10000 nits.
560 		 */
561 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
562 
563 		arr_points[1].slope = dc_fixpt_div(
564 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
565 				dc_fixpt_sub(end_value, arr_points[1].x));
566 	}
567 
568 	regamma_params->hw_points_num = hw_points;
569 
570 	k = 0;
571 	for (i = 1; i < 16; i++) {
572 		if (seg_distr[k] != -1) {
573 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
574 			regamma_params->arr_curve_points[i].offset =
575 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
576 		}
577 		k++;
578 	}
579 
580 	if (seg_distr[k] != -1)
581 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
582 
583 	rgb = rgb_resulted;
584 	rgb_plus_1 = rgb_resulted + 1;
585 
586 	i = 1;
587 
588 	while (i != hw_points + 1) {
589 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
590 			rgb_plus_1->red = rgb->red;
591 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
592 			rgb_plus_1->green = rgb->green;
593 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
594 			rgb_plus_1->blue = rgb->blue;
595 
596 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
597 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
598 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
599 
600 		++rgb_plus_1;
601 		++rgb;
602 		++i;
603 	}
604 
605 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
606 
607 	return true;
608 }
609 
610 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)611 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
612 				const struct dc_stream_state *stream)
613 {
614 	struct transform *xfm = pipe_ctx->plane_res.xfm;
615 
616 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
617 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
618 
619 	if (stream->out_transfer_func &&
620 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
621 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
622 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
623 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
624 							 &xfm->regamma_params)) {
625 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
626 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
627 	} else {
628 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
629 	}
630 
631 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
632 
633 	return true;
634 }
635 
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)636 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
637 {
638 	bool is_hdmi_tmds;
639 	bool is_dp;
640 
641 	ASSERT(pipe_ctx->stream);
642 
643 	if (pipe_ctx->stream_res.stream_enc == NULL)
644 		return;  /* this is not root pipe */
645 
646 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
647 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
648 
649 	if (!is_hdmi_tmds && !is_dp)
650 		return;
651 
652 	if (is_hdmi_tmds)
653 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
654 			pipe_ctx->stream_res.stream_enc,
655 			&pipe_ctx->stream_res.encoder_info_frame);
656 	else
657 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
658 			pipe_ctx->stream_res.stream_enc,
659 			&pipe_ctx->stream_res.encoder_info_frame);
660 }
661 
dce110_enable_stream(struct pipe_ctx * pipe_ctx)662 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
663 {
664 	enum dc_lane_count lane_count =
665 		pipe_ctx->stream->link->cur_link_settings.lane_count;
666 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
667 	struct dc_link *link = pipe_ctx->stream->link;
668 	const struct dc *dc = link->dc;
669 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
670 	uint32_t active_total_with_borders;
671 	uint32_t early_control = 0;
672 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
673 
674 	link_hwss->setup_stream_encoder(pipe_ctx);
675 
676 	dc->hwss.update_info_frame(pipe_ctx);
677 
678 	/* enable early control to avoid corruption on DP monitor*/
679 	active_total_with_borders =
680 			timing->h_addressable
681 				+ timing->h_border_left
682 				+ timing->h_border_right;
683 
684 	if (lane_count != 0)
685 		early_control = active_total_with_borders % lane_count;
686 
687 	if (early_control == 0)
688 		early_control = lane_count;
689 
690 	tg->funcs->set_early_control(tg, early_control);
691 
692 	/* enable audio only within mode set */
693 	if (pipe_ctx->stream_res.audio != NULL) {
694 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
695 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
696 	}
697 
698 
699 
700 
701 }
702 
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)703 static enum bp_result link_transmitter_control(
704 		struct dc_bios *bios,
705 	struct bp_transmitter_control *cntl)
706 {
707 	enum bp_result result;
708 
709 	result = bios->funcs->transmitter_control(bios, cntl);
710 
711 	return result;
712 }
713 
714 /*
715  * @brief
716  * eDP only.
717  */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)718 void dce110_edp_wait_for_hpd_ready(
719 		struct dc_link *link,
720 		bool power_up)
721 {
722 	struct dc_context *ctx = link->ctx;
723 	struct graphics_object_id connector = link->link_enc->connector;
724 	struct gpio *hpd;
725 	bool edp_hpd_high = false;
726 	uint32_t time_elapsed = 0;
727 	uint32_t timeout = power_up ?
728 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
729 
730 	if (dal_graphics_object_id_get_connector_id(connector)
731 			!= CONNECTOR_ID_EDP) {
732 		BREAK_TO_DEBUGGER();
733 		return;
734 	}
735 
736 	if (!power_up)
737 		/*
738 		 * From KV, we will not HPD low after turning off VCC -
739 		 * instead, we will check the SW timer in power_up().
740 		 */
741 		return;
742 
743 	/*
744 	 * When we power on/off the eDP panel,
745 	 * we need to wait until SENSE bit is high/low.
746 	 */
747 
748 	/* obtain HPD */
749 	/* TODO what to do with this? */
750 	hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
751 
752 	if (!hpd) {
753 		BREAK_TO_DEBUGGER();
754 		return;
755 	}
756 
757 	if (link != NULL) {
758 		if (link->panel_config.pps.extra_t3_ms > 0) {
759 			int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
760 
761 			msleep(extra_t3_in_ms);
762 		}
763 	}
764 
765 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
766 
767 	/* wait until timeout or panel detected */
768 
769 	do {
770 		uint32_t detected = 0;
771 
772 		dal_gpio_get_value(hpd, &detected);
773 
774 		if (!(detected ^ power_up)) {
775 			edp_hpd_high = true;
776 			break;
777 		}
778 
779 		msleep(HPD_CHECK_INTERVAL);
780 
781 		time_elapsed += HPD_CHECK_INTERVAL;
782 	} while (time_elapsed < timeout);
783 
784 	dal_gpio_close(hpd);
785 
786 	dal_gpio_destroy_irq(&hpd);
787 
788 	if (false == edp_hpd_high) {
789 		DC_LOG_WARNING(
790 				"%s: wait timed out!\n", __func__);
791 	}
792 }
793 
dce110_edp_power_control(struct dc_link * link,bool power_up)794 void dce110_edp_power_control(
795 		struct dc_link *link,
796 		bool power_up)
797 {
798 	struct dc_context *ctx = link->ctx;
799 	struct bp_transmitter_control cntl = { 0 };
800 	enum bp_result bp_result;
801 	uint8_t panel_instance;
802 
803 
804 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
805 			!= CONNECTOR_ID_EDP) {
806 		BREAK_TO_DEBUGGER();
807 		return;
808 	}
809 
810 	if (!link->panel_cntl)
811 		return;
812 	if (power_up !=
813 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
814 
815 		unsigned long long current_ts = dm_get_timestamp(ctx);
816 		unsigned long long time_since_edp_poweroff_ms =
817 				div64_u64(dm_get_elapse_time_in_ns(
818 						ctx,
819 						current_ts,
820 						dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
821 		unsigned long long time_since_edp_poweron_ms =
822 				div64_u64(dm_get_elapse_time_in_ns(
823 						ctx,
824 						current_ts,
825 						dp_trace_get_edp_poweron_timestamp(link)), 1000000);
826 		DC_LOG_HW_RESUME_S3(
827 				"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
828 				__func__,
829 				power_up,
830 				current_ts,
831 				dp_trace_get_edp_poweroff_timestamp(link),
832 				dp_trace_get_edp_poweron_timestamp(link),
833 				time_since_edp_poweroff_ms,
834 				time_since_edp_poweron_ms);
835 
836 		/* Send VBIOS command to prompt eDP panel power */
837 		if (power_up) {
838 			/* edp requires a min of 500ms from LCDVDD off to on */
839 			unsigned long long remaining_min_edp_poweroff_time_ms = 500;
840 
841 			/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
842 			if (link->local_sink != NULL)
843 				remaining_min_edp_poweroff_time_ms +=
844 					link->panel_config.pps.extra_t12_ms;
845 
846 			/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
847 			if (dp_trace_get_edp_poweroff_timestamp(link) != 0) {
848 				if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
849 					remaining_min_edp_poweroff_time_ms =
850 						remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
851 				else
852 					remaining_min_edp_poweroff_time_ms = 0;
853 			}
854 
855 			if (remaining_min_edp_poweroff_time_ms) {
856 				DC_LOG_HW_RESUME_S3(
857 						"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
858 						__func__, remaining_min_edp_poweroff_time_ms);
859 				msleep(remaining_min_edp_poweroff_time_ms);
860 				DC_LOG_HW_RESUME_S3(
861 						"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
862 						__func__, remaining_min_edp_poweroff_time_ms);
863 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
864 						__func__, remaining_min_edp_poweroff_time_ms);
865 			} else {
866 				DC_LOG_HW_RESUME_S3(
867 						"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
868 						__func__, remaining_min_edp_poweroff_time_ms);
869 			}
870 		}
871 
872 		DC_LOG_HW_RESUME_S3(
873 				"%s: BEGIN: Panel Power action: %s\n",
874 				__func__, (power_up ? "On":"Off"));
875 
876 		cntl.action = power_up ?
877 			TRANSMITTER_CONTROL_POWER_ON :
878 			TRANSMITTER_CONTROL_POWER_OFF;
879 		cntl.transmitter = link->link_enc->transmitter;
880 		cntl.connector_obj_id = link->link_enc->connector;
881 		cntl.coherent = false;
882 		cntl.lanes_number = LANE_COUNT_FOUR;
883 		cntl.hpd_sel = link->link_enc->hpd_source;
884 		panel_instance = link->panel_cntl->inst;
885 
886 		if (ctx->dc->ctx->dmub_srv &&
887 				ctx->dc->debug.dmub_command_table) {
888 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON)
889 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
890 						LVTMA_CONTROL_POWER_ON,
891 						panel_instance);
892 			else
893 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
894 						LVTMA_CONTROL_POWER_OFF,
895 						panel_instance);
896 		}
897 
898 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
899 
900 		DC_LOG_HW_RESUME_S3(
901 				"%s: END: Panel Power action: %s bp_result=%u\n",
902 				__func__, (power_up ? "On":"Off"),
903 				bp_result);
904 
905 		dp_trace_set_edp_power_timestamp(link, power_up);
906 
907 		DC_LOG_HW_RESUME_S3(
908 				"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
909 				__func__,
910 				dp_trace_get_edp_poweroff_timestamp(link),
911 				dp_trace_get_edp_poweron_timestamp(link));
912 
913 		if (bp_result != BP_RESULT_OK)
914 			DC_LOG_ERROR(
915 					"%s: Panel Power bp_result: %d\n",
916 					__func__, bp_result);
917 	} else {
918 		DC_LOG_HW_RESUME_S3(
919 				"%s: Skipping Panel Power action: %s\n",
920 				__func__, (power_up ? "On":"Off"));
921 	}
922 }
923 
dce110_edp_wait_for_T12(struct dc_link * link)924 void dce110_edp_wait_for_T12(
925 		struct dc_link *link)
926 {
927 	struct dc_context *ctx = link->ctx;
928 
929 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
930 			!= CONNECTOR_ID_EDP) {
931 		BREAK_TO_DEBUGGER();
932 		return;
933 	}
934 
935 	if (!link->panel_cntl)
936 		return;
937 
938 	if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
939 			dp_trace_get_edp_poweroff_timestamp(link) != 0) {
940 		unsigned int t12_duration = 500; // Default T12 as per spec
941 		unsigned long long current_ts = dm_get_timestamp(ctx);
942 		unsigned long long time_since_edp_poweroff_ms =
943 				div64_u64(dm_get_elapse_time_in_ns(
944 						ctx,
945 						current_ts,
946 						dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
947 
948 		t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
949 
950 		if (time_since_edp_poweroff_ms < t12_duration)
951 			msleep(t12_duration - time_since_edp_poweroff_ms);
952 	}
953 }
954 
955 /*todo: cloned in stream enc, fix*/
956 /*
957  * @brief
958  * eDP only. Control the backlight of the eDP panel
959  */
dce110_edp_backlight_control(struct dc_link * link,bool enable)960 void dce110_edp_backlight_control(
961 		struct dc_link *link,
962 		bool enable)
963 {
964 	struct dc_context *ctx = link->ctx;
965 	struct bp_transmitter_control cntl = { 0 };
966 	uint8_t panel_instance;
967 	unsigned int pre_T11_delay = OLED_PRE_T11_DELAY;
968 	unsigned int post_T7_delay = OLED_POST_T7_DELAY;
969 
970 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
971 		!= CONNECTOR_ID_EDP) {
972 		BREAK_TO_DEBUGGER();
973 		return;
974 	}
975 
976 	if (link->panel_cntl) {
977 		bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
978 
979 		if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
980 			DC_LOG_HW_RESUME_S3(
981 				"%s: panel already powered up/off. Do nothing.\n",
982 				__func__);
983 			return;
984 		}
985 	}
986 
987 	/* Send VBIOS command to control eDP panel backlight */
988 
989 	DC_LOG_HW_RESUME_S3(
990 			"%s: backlight action: %s\n",
991 			__func__, (enable ? "On":"Off"));
992 
993 	cntl.action = enable ?
994 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
995 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
996 
997 	/*cntl.engine_id = ctx->engine;*/
998 	cntl.transmitter = link->link_enc->transmitter;
999 	cntl.connector_obj_id = link->link_enc->connector;
1000 	/*todo: unhardcode*/
1001 	cntl.lanes_number = LANE_COUNT_FOUR;
1002 	cntl.hpd_sel = link->link_enc->hpd_source;
1003 	cntl.signal = SIGNAL_TYPE_EDP;
1004 
1005 	/* For eDP, the following delays might need to be considered
1006 	 * after link training completed:
1007 	 * idle period - min. accounts for required BS-Idle pattern,
1008 	 * max. allows for source frame synchronization);
1009 	 * 50 msec max. delay from valid video data from source
1010 	 * to video on dislpay or backlight enable.
1011 	 *
1012 	 * Disable the delay for now.
1013 	 * Enable it in the future if necessary.
1014 	 */
1015 	/* dc_service_sleep_in_milliseconds(50); */
1016 		/*edp 1.2*/
1017 	panel_instance = link->panel_cntl->inst;
1018 
1019 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1020 		if (!link->dc->config.edp_no_power_sequencing)
1021 		/*
1022 		 * Sometimes, DP receiver chip power-controlled externally by an
1023 		 * Embedded Controller could be treated and used as eDP,
1024 		 * if it drives mobile display. In this case,
1025 		 * we shouldn't be doing power-sequencing, hence we can skip
1026 		 * waiting for T7-ready.
1027 		 */
1028 			edp_receiver_ready_T7(link);
1029 		else
1030 			DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1031 	}
1032 
1033 	if (ctx->dc->ctx->dmub_srv &&
1034 			ctx->dc->debug.dmub_command_table) {
1035 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1036 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1037 					LVTMA_CONTROL_LCD_BLON,
1038 					panel_instance);
1039 		else
1040 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1041 					LVTMA_CONTROL_LCD_BLOFF,
1042 					panel_instance);
1043 	}
1044 
1045 	link_transmitter_control(ctx->dc_bios, &cntl);
1046 
1047 	if (enable && link->dpcd_sink_ext_caps.bits.oled) {
1048 		post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1049 		msleep(post_T7_delay);
1050 	}
1051 
1052 	if (link->dpcd_sink_ext_caps.bits.oled ||
1053 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1054 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1055 		dc_link_backlight_enable_aux(link, enable);
1056 
1057 	/*edp 1.2*/
1058 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1059 		if (!link->dc->config.edp_no_power_sequencing)
1060 		/*
1061 		 * Sometimes, DP receiver chip power-controlled externally by an
1062 		 * Embedded Controller could be treated and used as eDP,
1063 		 * if it drives mobile display. In this case,
1064 		 * we shouldn't be doing power-sequencing, hence we can skip
1065 		 * waiting for T9-ready.
1066 		 */
1067 			edp_add_delay_for_T9(link);
1068 		else
1069 			DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1070 	}
1071 
1072 	if (!enable && link->dpcd_sink_ext_caps.bits.oled) {
1073 		pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1074 		msleep(pre_T11_delay);
1075 	}
1076 }
1077 
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1078 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1079 {
1080 	/* notify audio driver for audio modes of monitor */
1081 	struct dc *dc;
1082 	struct clk_mgr *clk_mgr;
1083 	unsigned int i, num_audio = 1;
1084 
1085 	if (!pipe_ctx->stream)
1086 		return;
1087 
1088 	dc = pipe_ctx->stream->ctx->dc;
1089 	clk_mgr = dc->clk_mgr;
1090 
1091 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1092 		return;
1093 
1094 	if (pipe_ctx->stream_res.audio) {
1095 		for (i = 0; i < MAX_PIPES; i++) {
1096 			/*current_state not updated yet*/
1097 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1098 				num_audio++;
1099 		}
1100 
1101 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1102 
1103 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1104 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1105 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1106 		/* un-mute audio */
1107 		/* TODO: audio should be per stream rather than per link */
1108 		if (is_dp_128b_132b_signal(pipe_ctx))
1109 			pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1110 					pipe_ctx->stream_res.hpo_dp_stream_enc, false);
1111 		else
1112 			pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1113 					pipe_ctx->stream_res.stream_enc, false);
1114 		if (pipe_ctx->stream_res.audio)
1115 			pipe_ctx->stream_res.audio->enabled = true;
1116 	}
1117 
1118 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1119 		dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_ENABLE_AUDIO_STREAM);
1120 }
1121 
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1122 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1123 {
1124 	struct dc *dc;
1125 	struct clk_mgr *clk_mgr;
1126 
1127 	if (!pipe_ctx || !pipe_ctx->stream)
1128 		return;
1129 
1130 	dc = pipe_ctx->stream->ctx->dc;
1131 	clk_mgr = dc->clk_mgr;
1132 
1133 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1134 		return;
1135 
1136 	if (is_dp_128b_132b_signal(pipe_ctx))
1137 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1138 				pipe_ctx->stream_res.hpo_dp_stream_enc, true);
1139 	else
1140 		pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1141 				pipe_ctx->stream_res.stream_enc, true);
1142 	if (pipe_ctx->stream_res.audio) {
1143 		pipe_ctx->stream_res.audio->enabled = false;
1144 
1145 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1146 			if (is_dp_128b_132b_signal(pipe_ctx))
1147 				pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_disable(
1148 						pipe_ctx->stream_res.hpo_dp_stream_enc);
1149 			else
1150 				pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1151 						pipe_ctx->stream_res.stream_enc);
1152 		else
1153 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1154 					pipe_ctx->stream_res.stream_enc);
1155 
1156 		if (clk_mgr->funcs->enable_pme_wa)
1157 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1158 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1159 
1160 		/* TODO: notify audio driver for if audio modes list changed
1161 		 * add audio mode list change flag */
1162 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1163 		 * stream->stream_engine_id);
1164 		 */
1165 	}
1166 
1167 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1168 		dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_DISABLE_AUDIO_STREAM);
1169 }
1170 
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1171 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1172 {
1173 	struct dc_stream_state *stream = pipe_ctx->stream;
1174 	struct dc_link *link = stream->link;
1175 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1176 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1177 
1178 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1179 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1180 			pipe_ctx->stream_res.stream_enc);
1181 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1182 			pipe_ctx->stream_res.stream_enc);
1183 	}
1184 
1185 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1186 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1187 					pipe_ctx->stream_res.hpo_dp_stream_enc);
1188 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1189 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1190 			pipe_ctx->stream_res.stream_enc);
1191 
1192 	dc->hwss.disable_audio_stream(pipe_ctx);
1193 
1194 	link_hwss->reset_stream_encoder(pipe_ctx);
1195 
1196 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1197 		/* TODO: This looks like a bug to me as we are disabling HPO IO when
1198 		 * we are just disabling a single HPO stream. Shouldn't we disable HPO
1199 		 * HW control only when HPOs for all streams are disabled?
1200 		 */
1201 		if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
1202 			pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
1203 					pipe_ctx->stream->ctx->dc->hwseq, false);
1204 	}
1205 }
1206 
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1207 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1208 		struct dc_link_settings *link_settings)
1209 {
1210 	struct encoder_unblank_param params = { { 0 } };
1211 	struct dc_stream_state *stream = pipe_ctx->stream;
1212 	struct dc_link *link = stream->link;
1213 	struct dce_hwseq *hws = link->dc->hwseq;
1214 
1215 	/* only 3 items below are used by unblank */
1216 	params.timing = pipe_ctx->stream->timing;
1217 	params.link_settings.link_rate = link_settings->link_rate;
1218 
1219 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1220 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1221 
1222 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1223 		hws->funcs.edp_backlight_control(link, true);
1224 	}
1225 }
1226 
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1227 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1228 {
1229 	struct dc_stream_state *stream = pipe_ctx->stream;
1230 	struct dc_link *link = stream->link;
1231 	struct dce_hwseq *hws = link->dc->hwseq;
1232 
1233 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1234 		hws->funcs.edp_backlight_control(link, false);
1235 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1236 	}
1237 
1238 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1239 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1240 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1241 				pipe_ctx->stream_res.hpo_dp_stream_enc);
1242 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1243 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1244 
1245 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1246 			/*
1247 			 * After output is idle pattern some sinks need time to recognize the stream
1248 			 * has changed or they enter protection state and hang.
1249 			 */
1250 			msleep(60);
1251 		} else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
1252 			if (!link->dc->config.edp_no_power_sequencing) {
1253 				/*
1254 				 * Sometimes, DP receiver chip power-controlled externally by an
1255 				 * Embedded Controller could be treated and used as eDP,
1256 				 * if it drives mobile display. In this case,
1257 				 * we shouldn't be doing power-sequencing, hence we can skip
1258 				 * waiting for T9-ready.
1259 				 */
1260 				edp_receiver_ready_T9(link);
1261 			}
1262 		}
1263 	}
1264 
1265 }
1266 
1267 
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1268 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1269 {
1270 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1271 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1272 }
1273 
translate_to_dto_source(enum controller_id crtc_id)1274 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1275 {
1276 	switch (crtc_id) {
1277 	case CONTROLLER_ID_D0:
1278 		return DTO_SOURCE_ID0;
1279 	case CONTROLLER_ID_D1:
1280 		return DTO_SOURCE_ID1;
1281 	case CONTROLLER_ID_D2:
1282 		return DTO_SOURCE_ID2;
1283 	case CONTROLLER_ID_D3:
1284 		return DTO_SOURCE_ID3;
1285 	case CONTROLLER_ID_D4:
1286 		return DTO_SOURCE_ID4;
1287 	case CONTROLLER_ID_D5:
1288 		return DTO_SOURCE_ID5;
1289 	default:
1290 		return DTO_SOURCE_UNKNOWN;
1291 	}
1292 }
1293 
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1294 static void build_audio_output(
1295 	struct dc_state *state,
1296 	const struct pipe_ctx *pipe_ctx,
1297 	struct audio_output *audio_output)
1298 {
1299 	const struct dc_stream_state *stream = pipe_ctx->stream;
1300 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1301 
1302 	audio_output->signal = pipe_ctx->stream->signal;
1303 
1304 	/* audio_crtc_info  */
1305 
1306 	audio_output->crtc_info.h_total =
1307 		stream->timing.h_total;
1308 
1309 	/*
1310 	 * Audio packets are sent during actual CRTC blank physical signal, we
1311 	 * need to specify actual active signal portion
1312 	 */
1313 	audio_output->crtc_info.h_active =
1314 			stream->timing.h_addressable
1315 			+ stream->timing.h_border_left
1316 			+ stream->timing.h_border_right;
1317 
1318 	audio_output->crtc_info.v_active =
1319 			stream->timing.v_addressable
1320 			+ stream->timing.v_border_top
1321 			+ stream->timing.v_border_bottom;
1322 
1323 	audio_output->crtc_info.pixel_repetition = 1;
1324 
1325 	audio_output->crtc_info.interlaced =
1326 			stream->timing.flags.INTERLACE;
1327 
1328 	audio_output->crtc_info.refresh_rate =
1329 		(stream->timing.pix_clk_100hz*100)/
1330 		(stream->timing.h_total*stream->timing.v_total);
1331 
1332 	audio_output->crtc_info.color_depth =
1333 		stream->timing.display_color_depth;
1334 
1335 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1336 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1337 
1338 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1339 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1340 
1341 /*for HDMI, audio ACR is with deep color ratio factor*/
1342 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1343 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1344 				(stream->timing.pix_clk_100hz)) {
1345 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1346 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1347 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1348 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1349 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1350 
1351 		}
1352 	}
1353 
1354 	if (state->clk_mgr &&
1355 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1356 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1357 		audio_output->pll_info.dp_dto_source_clock_in_khz =
1358 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1359 						state->clk_mgr);
1360 	}
1361 
1362 	audio_output->pll_info.feed_back_divider =
1363 			pipe_ctx->pll_settings.feedback_divider;
1364 
1365 	audio_output->pll_info.dto_source =
1366 		translate_to_dto_source(
1367 			pipe_ctx->stream_res.tg->inst + 1);
1368 
1369 	/* TODO hard code to enable for now. Need get from stream */
1370 	audio_output->pll_info.ss_enabled = true;
1371 
1372 	audio_output->pll_info.ss_percentage =
1373 			pipe_ctx->pll_settings.ss_percentage;
1374 }
1375 
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1376 static void program_scaler(const struct dc *dc,
1377 		const struct pipe_ctx *pipe_ctx)
1378 {
1379 	struct tg_color color = {0};
1380 
1381 	/* TOFPGA */
1382 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1383 		return;
1384 
1385 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1386 		get_surface_visual_confirm_color(pipe_ctx, &color);
1387 	else
1388 		color_space_to_black_color(dc,
1389 				pipe_ctx->stream->output_color_space,
1390 				&color);
1391 
1392 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1393 		pipe_ctx->plane_res.xfm,
1394 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1395 		&pipe_ctx->stream->bit_depth_params);
1396 
1397 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1398 		/*
1399 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1400 		 * alternate between Cb and Cr, so both channels need the pixel
1401 		 * value for Y
1402 		 */
1403 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1404 			color.color_r_cr = color.color_g_y;
1405 
1406 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1407 				pipe_ctx->stream_res.tg,
1408 				&color);
1409 	}
1410 
1411 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1412 		&pipe_ctx->plane_res.scl_data);
1413 }
1414 
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1415 static enum dc_status dce110_enable_stream_timing(
1416 		struct pipe_ctx *pipe_ctx,
1417 		struct dc_state *context,
1418 		struct dc *dc)
1419 {
1420 	struct dc_stream_state *stream = pipe_ctx->stream;
1421 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1422 			pipe_ctx[pipe_ctx->pipe_idx];
1423 	struct tg_color black_color = {0};
1424 
1425 	if (!pipe_ctx_old->stream) {
1426 
1427 		/* program blank color */
1428 		color_space_to_black_color(dc,
1429 				stream->output_color_space, &black_color);
1430 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1431 				pipe_ctx->stream_res.tg,
1432 				&black_color);
1433 
1434 		/*
1435 		 * Must blank CRTC after disabling power gating and before any
1436 		 * programming, otherwise CRTC will be hung in bad state
1437 		 */
1438 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1439 
1440 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1441 				pipe_ctx->clock_source,
1442 				&pipe_ctx->stream_res.pix_clk_params,
1443 				dp_get_link_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1444 				&pipe_ctx->pll_settings)) {
1445 			BREAK_TO_DEBUGGER();
1446 			return DC_ERROR_UNEXPECTED;
1447 		}
1448 
1449 		if (dc_is_hdmi_tmds_signal(stream->signal)) {
1450 			stream->link->phy_state.symclk_ref_cnts.otg = 1;
1451 			if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1452 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1453 			else
1454 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1455 		}
1456 
1457 		pipe_ctx->stream_res.tg->funcs->program_timing(
1458 				pipe_ctx->stream_res.tg,
1459 				&stream->timing,
1460 				0,
1461 				0,
1462 				0,
1463 				0,
1464 				pipe_ctx->stream->signal,
1465 				true);
1466 	}
1467 
1468 	if (!pipe_ctx_old->stream) {
1469 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1470 				pipe_ctx->stream_res.tg)) {
1471 			BREAK_TO_DEBUGGER();
1472 			return DC_ERROR_UNEXPECTED;
1473 		}
1474 	}
1475 
1476 	return DC_OK;
1477 }
1478 
apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1479 static enum dc_status apply_single_controller_ctx_to_hw(
1480 		struct pipe_ctx *pipe_ctx,
1481 		struct dc_state *context,
1482 		struct dc *dc)
1483 {
1484 	struct dc_stream_state *stream = pipe_ctx->stream;
1485 	struct dc_link *link = stream->link;
1486 	struct drr_params params = {0};
1487 	unsigned int event_triggers = 0;
1488 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1489 	struct dce_hwseq *hws = dc->hwseq;
1490 
1491 	if (hws->funcs.disable_stream_gating) {
1492 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1493 	}
1494 
1495 	if (pipe_ctx->stream_res.audio != NULL) {
1496 		struct audio_output audio_output;
1497 
1498 		build_audio_output(context, pipe_ctx, &audio_output);
1499 
1500 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1501 			if (is_dp_128b_132b_signal(pipe_ctx))
1502 				pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_setup(
1503 						pipe_ctx->stream_res.hpo_dp_stream_enc,
1504 						pipe_ctx->stream_res.audio->inst,
1505 						&pipe_ctx->stream->audio_info);
1506 			else
1507 				pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1508 						pipe_ctx->stream_res.stream_enc,
1509 						pipe_ctx->stream_res.audio->inst,
1510 						&pipe_ctx->stream->audio_info);
1511 		else
1512 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1513 					pipe_ctx->stream_res.stream_enc,
1514 					pipe_ctx->stream_res.audio->inst,
1515 					&pipe_ctx->stream->audio_info,
1516 					&audio_output.crtc_info);
1517 
1518 		pipe_ctx->stream_res.audio->funcs->az_configure(
1519 				pipe_ctx->stream_res.audio,
1520 				pipe_ctx->stream->signal,
1521 				&audio_output.crtc_info,
1522 				&pipe_ctx->stream->audio_info);
1523 	}
1524 
1525 	/* make sure no pipes syncd to the pipe being enabled */
1526 	if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1527 		check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1528 
1529 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1530 		pipe_ctx->stream_res.opp,
1531 		&stream->bit_depth_params,
1532 		&stream->clamping);
1533 
1534 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1535 			pipe_ctx->stream_res.opp,
1536 			COLOR_SPACE_YCBCR601,
1537 			stream->timing.display_color_depth,
1538 			stream->signal);
1539 
1540 	while (odm_pipe) {
1541 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1542 				odm_pipe->stream_res.opp,
1543 				COLOR_SPACE_YCBCR601,
1544 				stream->timing.display_color_depth,
1545 				stream->signal);
1546 
1547 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1548 				odm_pipe->stream_res.opp,
1549 				&stream->bit_depth_params,
1550 				&stream->clamping);
1551 		odm_pipe = odm_pipe->next_odm_pipe;
1552 	}
1553 
1554 	/* DCN3.1 FPGA Workaround
1555 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1556 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1557 	 * function core_link_enable_stream
1558 	 */
1559 	if (!(hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)))
1560 		/*  */
1561 		/* Do not touch stream timing on seamless boot optimization. */
1562 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1563 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1564 
1565 	if (hws->funcs.setup_vupdate_interrupt)
1566 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1567 
1568 	params.vertical_total_min = stream->adjust.v_total_min;
1569 	params.vertical_total_max = stream->adjust.v_total_max;
1570 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
1571 		pipe_ctx->stream_res.tg->funcs->set_drr(
1572 			pipe_ctx->stream_res.tg, &params);
1573 
1574 	// DRR should set trigger event to monitor surface update event
1575 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1576 		event_triggers = 0x80;
1577 	/* Event triggers and num frames initialized for DRR, but can be
1578 	 * later updated for PSR use. Note DRR trigger events are generated
1579 	 * regardless of whether num frames met.
1580 	 */
1581 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1582 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1583 				pipe_ctx->stream_res.tg, event_triggers, 2);
1584 
1585 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1586 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1587 			pipe_ctx->stream_res.stream_enc,
1588 			pipe_ctx->stream_res.tg->inst);
1589 
1590 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1591 		dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1592 
1593 	if (!stream->dpms_off)
1594 		core_link_enable_stream(context, pipe_ctx);
1595 
1596 	/* DCN3.1 FPGA Workaround
1597 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1598 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1599 	 * function core_link_enable_stream
1600 	 */
1601 	if (hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)) {
1602 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1603 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1604 	}
1605 
1606 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1607 
1608 	pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1609 
1610 	return DC_OK;
1611 }
1612 
1613 /******************************************************************************/
1614 
power_down_encoders(struct dc * dc)1615 static void power_down_encoders(struct dc *dc)
1616 {
1617 	int i;
1618 
1619 	for (i = 0; i < dc->link_count; i++) {
1620 		enum signal_type signal = dc->links[i]->connector_signal;
1621 
1622 		dc_link_blank_dp_stream(dc->links[i], false);
1623 
1624 		if (signal != SIGNAL_TYPE_EDP)
1625 			signal = SIGNAL_TYPE_NONE;
1626 
1627 		if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1628 			dc->links[i]->link_enc->funcs->disable_output(
1629 					dc->links[i]->link_enc, signal);
1630 
1631 		dc->links[i]->link_status.link_active = false;
1632 		memset(&dc->links[i]->cur_link_settings, 0,
1633 				sizeof(dc->links[i]->cur_link_settings));
1634 	}
1635 }
1636 
power_down_controllers(struct dc * dc)1637 static void power_down_controllers(struct dc *dc)
1638 {
1639 	int i;
1640 
1641 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1642 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1643 				dc->res_pool->timing_generators[i]);
1644 	}
1645 }
1646 
power_down_clock_sources(struct dc * dc)1647 static void power_down_clock_sources(struct dc *dc)
1648 {
1649 	int i;
1650 
1651 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1652 		dc->res_pool->dp_clock_source) == false)
1653 		dm_error("Failed to power down pll! (dp clk src)\n");
1654 
1655 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1656 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1657 				dc->res_pool->clock_sources[i]) == false)
1658 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1659 	}
1660 }
1661 
power_down_all_hw_blocks(struct dc * dc)1662 static void power_down_all_hw_blocks(struct dc *dc)
1663 {
1664 	power_down_encoders(dc);
1665 
1666 	power_down_controllers(dc);
1667 
1668 	power_down_clock_sources(dc);
1669 
1670 	if (dc->fbc_compressor)
1671 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1672 }
1673 
disable_vga_and_power_gate_all_controllers(struct dc * dc)1674 static void disable_vga_and_power_gate_all_controllers(
1675 		struct dc *dc)
1676 {
1677 	int i;
1678 	struct timing_generator *tg;
1679 	struct dc_context *ctx = dc->ctx;
1680 
1681 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1682 		tg = dc->res_pool->timing_generators[i];
1683 
1684 		if (tg->funcs->disable_vga)
1685 			tg->funcs->disable_vga(tg);
1686 	}
1687 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1688 		/* Enable CLOCK gating for each pipe BEFORE controller
1689 		 * powergating. */
1690 		enable_display_pipe_clock_gating(ctx,
1691 				true);
1692 
1693 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1694 		dc->hwss.disable_plane(dc,
1695 			&dc->current_state->res_ctx.pipe_ctx[i]);
1696 	}
1697 }
1698 
1699 
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1700 static void get_edp_streams(struct dc_state *context,
1701 		struct dc_stream_state **edp_streams,
1702 		int *edp_stream_num)
1703 {
1704 	int i;
1705 
1706 	*edp_stream_num = 0;
1707 	for (i = 0; i < context->stream_count; i++) {
1708 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1709 			edp_streams[*edp_stream_num] = context->streams[i];
1710 			if (++(*edp_stream_num) == MAX_NUM_EDP)
1711 				return;
1712 		}
1713 	}
1714 }
1715 
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1716 static void get_edp_links_with_sink(
1717 		struct dc *dc,
1718 		struct dc_link **edp_links_with_sink,
1719 		int *edp_with_sink_num)
1720 {
1721 	int i;
1722 
1723 	/* check if there is an eDP panel not in use */
1724 	*edp_with_sink_num = 0;
1725 	for (i = 0; i < dc->link_count; i++) {
1726 		if (dc->links[i]->local_sink &&
1727 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1728 			edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1729 			if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1730 				return;
1731 		}
1732 	}
1733 }
1734 
1735 /*
1736  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1737  *  1. Power down all DC HW blocks
1738  *  2. Disable VGA engine on all controllers
1739  *  3. Enable power gating for controller
1740  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1741  */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1742 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1743 {
1744 	struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1745 	struct dc_link *edp_links[MAX_NUM_EDP];
1746 	struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1747 	struct dc_link *edp_link_with_sink = NULL;
1748 	struct dc_link *edp_link = NULL;
1749 	struct dce_hwseq *hws = dc->hwseq;
1750 	int edp_with_sink_num;
1751 	int edp_num;
1752 	int edp_stream_num;
1753 	int i;
1754 	bool can_apply_edp_fast_boot = false;
1755 	bool can_apply_seamless_boot = false;
1756 	bool keep_edp_vdd_on = false;
1757 	DC_LOGGER_INIT();
1758 
1759 
1760 	get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1761 	get_edp_links(dc, edp_links, &edp_num);
1762 
1763 	if (hws->funcs.init_pipes)
1764 		hws->funcs.init_pipes(dc, context);
1765 
1766 	get_edp_streams(context, edp_streams, &edp_stream_num);
1767 
1768 	// Check fastboot support, disable on DCE8 because of blank screens
1769 	if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1770 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1771 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1772 		for (i = 0; i < edp_num; i++) {
1773 			edp_link = edp_links[i];
1774 			if (edp_link != edp_streams[0]->link)
1775 				continue;
1776 			// enable fastboot if backend is enabled on eDP
1777 			if (edp_link->link_enc->funcs->is_dig_enabled &&
1778 			    edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1779 			    edp_link->link_status.link_active) {
1780 				struct dc_stream_state *edp_stream = edp_streams[0];
1781 
1782 				can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1783 					edp_stream->sink, &edp_stream->timing);
1784 				edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1785 				if (can_apply_edp_fast_boot)
1786 					DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1787 
1788 				break;
1789 			}
1790 		}
1791 		// We are trying to enable eDP, don't power down VDD
1792 		if (can_apply_edp_fast_boot)
1793 			keep_edp_vdd_on = true;
1794 	}
1795 
1796 	// Check seamless boot support
1797 	for (i = 0; i < context->stream_count; i++) {
1798 		if (context->streams[i]->apply_seamless_boot_optimization) {
1799 			can_apply_seamless_boot = true;
1800 			break;
1801 		}
1802 	}
1803 
1804 	/* eDP should not have stream in resume from S4 and so even with VBios post
1805 	 * it should get turned off
1806 	 */
1807 	if (edp_with_sink_num)
1808 		edp_link_with_sink = edp_links_with_sink[0];
1809 
1810 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1811 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1812 			/*turn off backlight before DP_blank and encoder powered down*/
1813 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1814 		}
1815 		/*resume from S3, no vbios posting, no need to power down again*/
1816 		power_down_all_hw_blocks(dc);
1817 		disable_vga_and_power_gate_all_controllers(dc);
1818 		if (edp_link_with_sink && !keep_edp_vdd_on)
1819 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1820 	}
1821 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1822 }
1823 
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1824 static uint32_t compute_pstate_blackout_duration(
1825 	struct bw_fixed blackout_duration,
1826 	const struct dc_stream_state *stream)
1827 {
1828 	uint32_t total_dest_line_time_ns;
1829 	uint32_t pstate_blackout_duration_ns;
1830 
1831 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1832 
1833 	total_dest_line_time_ns = 1000000UL *
1834 		(stream->timing.h_total * 10) /
1835 		stream->timing.pix_clk_100hz +
1836 		pstate_blackout_duration_ns;
1837 
1838 	return total_dest_line_time_ns;
1839 }
1840 
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)1841 static void dce110_set_displaymarks(
1842 	const struct dc *dc,
1843 	struct dc_state *context)
1844 {
1845 	uint8_t i, num_pipes;
1846 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1847 
1848 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1849 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1850 		uint32_t total_dest_line_time_ns;
1851 
1852 		if (pipe_ctx->stream == NULL)
1853 			continue;
1854 
1855 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1856 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1857 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1858 			pipe_ctx->plane_res.mi,
1859 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1860 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1861 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1862 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1863 			total_dest_line_time_ns);
1864 		if (i == underlay_idx) {
1865 			num_pipes++;
1866 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1867 				pipe_ctx->plane_res.mi,
1868 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1869 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1870 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1871 				total_dest_line_time_ns);
1872 		}
1873 		num_pipes++;
1874 	}
1875 }
1876 
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)1877 void dce110_set_safe_displaymarks(
1878 		struct resource_context *res_ctx,
1879 		const struct resource_pool *pool)
1880 {
1881 	int i;
1882 	int underlay_idx = pool->underlay_pipe_index;
1883 	struct dce_watermarks max_marks = {
1884 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1885 	struct dce_watermarks nbp_marks = {
1886 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1887 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1888 
1889 	for (i = 0; i < MAX_PIPES; i++) {
1890 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1891 			continue;
1892 
1893 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1894 				res_ctx->pipe_ctx[i].plane_res.mi,
1895 				nbp_marks,
1896 				max_marks,
1897 				min_marks,
1898 				max_marks,
1899 				MAX_WATERMARK);
1900 
1901 		if (i == underlay_idx)
1902 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1903 				res_ctx->pipe_ctx[i].plane_res.mi,
1904 				nbp_marks,
1905 				max_marks,
1906 				max_marks,
1907 				MAX_WATERMARK);
1908 
1909 	}
1910 }
1911 
1912 /*******************************************************************************
1913  * Public functions
1914  ******************************************************************************/
1915 
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)1916 static void set_drr(struct pipe_ctx **pipe_ctx,
1917 		int num_pipes, struct dc_crtc_timing_adjust adjust)
1918 {
1919 	int i = 0;
1920 	struct drr_params params = {0};
1921 	// DRR should set trigger event to monitor surface update event
1922 	unsigned int event_triggers = 0x80;
1923 	// Note DRR trigger events are generated regardless of whether num frames met.
1924 	unsigned int num_frames = 2;
1925 
1926 	params.vertical_total_max = adjust.v_total_max;
1927 	params.vertical_total_min = adjust.v_total_min;
1928 
1929 	/* TODO: If multiple pipes are to be supported, you need
1930 	 * some GSL stuff. Static screen triggers may be programmed differently
1931 	 * as well.
1932 	 */
1933 	for (i = 0; i < num_pipes; i++) {
1934 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1935 			pipe_ctx[i]->stream_res.tg, &params);
1936 
1937 		if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1938 			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1939 					pipe_ctx[i]->stream_res.tg,
1940 					event_triggers, num_frames);
1941 	}
1942 }
1943 
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)1944 static void get_position(struct pipe_ctx **pipe_ctx,
1945 		int num_pipes,
1946 		struct crtc_position *position)
1947 {
1948 	int i = 0;
1949 
1950 	/* TODO: handle pipes > 1
1951 	 */
1952 	for (i = 0; i < num_pipes; i++)
1953 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1954 }
1955 
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)1956 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1957 		int num_pipes, const struct dc_static_screen_params *params)
1958 {
1959 	unsigned int i;
1960 	unsigned int triggers = 0;
1961 
1962 	if (params->triggers.overlay_update)
1963 		triggers |= 0x100;
1964 	if (params->triggers.surface_update)
1965 		triggers |= 0x80;
1966 	if (params->triggers.cursor_update)
1967 		triggers |= 0x2;
1968 	if (params->triggers.force_trigger)
1969 		triggers |= 0x1;
1970 
1971 	if (num_pipes) {
1972 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1973 
1974 		if (dc->fbc_compressor)
1975 			triggers |= 0x84;
1976 	}
1977 
1978 	for (i = 0; i < num_pipes; i++)
1979 		pipe_ctx[i]->stream_res.tg->funcs->
1980 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1981 					triggers, params->num_frames);
1982 }
1983 
1984 /*
1985  *  Check if FBC can be enabled
1986  */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)1987 static bool should_enable_fbc(struct dc *dc,
1988 		struct dc_state *context,
1989 		uint32_t *pipe_idx)
1990 {
1991 	uint32_t i;
1992 	struct pipe_ctx *pipe_ctx = NULL;
1993 	struct resource_context *res_ctx = &context->res_ctx;
1994 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1995 
1996 
1997 	ASSERT(dc->fbc_compressor);
1998 
1999 	/* FBC memory should be allocated */
2000 	if (!dc->ctx->fbc_gpu_addr)
2001 		return false;
2002 
2003 	/* Only supports single display */
2004 	if (context->stream_count != 1)
2005 		return false;
2006 
2007 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2008 		if (res_ctx->pipe_ctx[i].stream) {
2009 
2010 			pipe_ctx = &res_ctx->pipe_ctx[i];
2011 
2012 			if (!pipe_ctx)
2013 				continue;
2014 
2015 			/* fbc not applicable on underlay pipe */
2016 			if (pipe_ctx->pipe_idx != underlay_idx) {
2017 				*pipe_idx = i;
2018 				break;
2019 			}
2020 		}
2021 	}
2022 
2023 	if (i == dc->res_pool->pipe_count)
2024 		return false;
2025 
2026 	if (!pipe_ctx->stream->link)
2027 		return false;
2028 
2029 	/* Only supports eDP */
2030 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2031 		return false;
2032 
2033 	/* PSR should not be enabled */
2034 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2035 		return false;
2036 
2037 	/* Nothing to compress */
2038 	if (!pipe_ctx->plane_state)
2039 		return false;
2040 
2041 	/* Only for non-linear tiling */
2042 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2043 		return false;
2044 
2045 	return true;
2046 }
2047 
2048 /*
2049  *  Enable FBC
2050  */
enable_fbc(struct dc * dc,struct dc_state * context)2051 static void enable_fbc(
2052 		struct dc *dc,
2053 		struct dc_state *context)
2054 {
2055 	uint32_t pipe_idx = 0;
2056 
2057 	if (should_enable_fbc(dc, context, &pipe_idx)) {
2058 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
2059 		struct compr_addr_and_pitch_params params = {0, 0, 0};
2060 		struct compressor *compr = dc->fbc_compressor;
2061 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2062 
2063 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2064 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2065 		params.inst = pipe_ctx->stream_res.tg->inst;
2066 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2067 
2068 		compr->funcs->surface_address_and_pitch(compr, &params);
2069 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2070 
2071 		compr->funcs->enable_fbc(compr, &params);
2072 	}
2073 }
2074 
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2075 static void dce110_reset_hw_ctx_wrap(
2076 		struct dc *dc,
2077 		struct dc_state *context)
2078 {
2079 	int i;
2080 
2081 	/* Reset old context */
2082 	/* look up the targets that have been removed since last commit */
2083 	for (i = 0; i < MAX_PIPES; i++) {
2084 		struct pipe_ctx *pipe_ctx_old =
2085 			&dc->current_state->res_ctx.pipe_ctx[i];
2086 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2087 
2088 		/* Note: We need to disable output if clock sources change,
2089 		 * since bios does optimization and doesn't apply if changing
2090 		 * PHY when not already disabled.
2091 		 */
2092 
2093 		/* Skip underlay pipe since it will be handled in commit surface*/
2094 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2095 			continue;
2096 
2097 		if (!pipe_ctx->stream ||
2098 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2099 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2100 
2101 			/* Disable if new stream is null. O/w, if stream is
2102 			 * disabled already, no need to disable again.
2103 			 */
2104 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2105 				core_link_disable_stream(pipe_ctx_old);
2106 
2107 				/* free acquired resources*/
2108 				if (pipe_ctx_old->stream_res.audio) {
2109 					/*disable az_endpoint*/
2110 					pipe_ctx_old->stream_res.audio->funcs->
2111 							az_disable(pipe_ctx_old->stream_res.audio);
2112 
2113 					/*free audio*/
2114 					if (dc->caps.dynamic_audio == true) {
2115 						/*we have to dynamic arbitrate the audio endpoints*/
2116 						/*we free the resource, need reset is_audio_acquired*/
2117 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2118 								pipe_ctx_old->stream_res.audio, false);
2119 						pipe_ctx_old->stream_res.audio = NULL;
2120 					}
2121 				}
2122 			}
2123 
2124 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2125 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2126 				dm_error("DC: failed to blank crtc!\n");
2127 				BREAK_TO_DEBUGGER();
2128 			}
2129 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2130 			pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2131 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2132 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2133 
2134 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2135 										dc->res_pool,
2136 										old_clk))
2137 				old_clk->funcs->cs_power_down(old_clk);
2138 
2139 			dc->hwss.disable_plane(dc, pipe_ctx_old);
2140 
2141 			pipe_ctx_old->stream = NULL;
2142 		}
2143 	}
2144 }
2145 
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2146 static void dce110_setup_audio_dto(
2147 		struct dc *dc,
2148 		struct dc_state *context)
2149 {
2150 	int i;
2151 
2152 	/* program audio wall clock. use HDMI as clock source if HDMI
2153 	 * audio active. Otherwise, use DP as clock source
2154 	 * first, loop to find any HDMI audio, if not, loop find DP audio
2155 	 */
2156 	/* Setup audio rate clock source */
2157 	/* Issue:
2158 	* Audio lag happened on DP monitor when unplug a HDMI monitor
2159 	*
2160 	* Cause:
2161 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2162 	* is set to either dto0 or dto1, audio should work fine.
2163 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2164 	* set to dto0 will cause audio lag.
2165 	*
2166 	* Solution:
2167 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2168 	* find first available pipe with audio, setup audio wall DTO per topology
2169 	* instead of per pipe.
2170 	*/
2171 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2172 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2173 
2174 		if (pipe_ctx->stream == NULL)
2175 			continue;
2176 
2177 		if (pipe_ctx->top_pipe)
2178 			continue;
2179 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2180 			continue;
2181 		if (pipe_ctx->stream_res.audio != NULL) {
2182 			struct audio_output audio_output;
2183 
2184 			build_audio_output(context, pipe_ctx, &audio_output);
2185 
2186 			if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2187 				struct dtbclk_dto_params dto_params = {0};
2188 
2189 				dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2190 					dc->res_pool->dccg, &dto_params);
2191 
2192 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2193 						pipe_ctx->stream_res.audio,
2194 						pipe_ctx->stream->signal,
2195 						&audio_output.crtc_info,
2196 						&audio_output.pll_info);
2197 			} else
2198 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2199 					pipe_ctx->stream_res.audio,
2200 					pipe_ctx->stream->signal,
2201 					&audio_output.crtc_info,
2202 					&audio_output.pll_info);
2203 			break;
2204 		}
2205 	}
2206 
2207 	/* no HDMI audio is found, try DP audio */
2208 	if (i == dc->res_pool->pipe_count) {
2209 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2210 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2211 
2212 			if (pipe_ctx->stream == NULL)
2213 				continue;
2214 
2215 			if (pipe_ctx->top_pipe)
2216 				continue;
2217 
2218 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2219 				continue;
2220 
2221 			if (pipe_ctx->stream_res.audio != NULL) {
2222 				struct audio_output audio_output;
2223 
2224 				build_audio_output(context, pipe_ctx, &audio_output);
2225 
2226 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2227 					pipe_ctx->stream_res.audio,
2228 					pipe_ctx->stream->signal,
2229 					&audio_output.crtc_info,
2230 					&audio_output.pll_info);
2231 				break;
2232 			}
2233 		}
2234 	}
2235 }
2236 
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2237 enum dc_status dce110_apply_ctx_to_hw(
2238 		struct dc *dc,
2239 		struct dc_state *context)
2240 {
2241 	struct dce_hwseq *hws = dc->hwseq;
2242 	struct dc_bios *dcb = dc->ctx->dc_bios;
2243 	enum dc_status status;
2244 	int i;
2245 
2246 	/* reset syncd pipes from disabled pipes */
2247 	if (dc->config.use_pipe_ctx_sync_logic)
2248 		reset_syncd_pipes_from_disabled_pipes(dc, context);
2249 
2250 	/* Reset old context */
2251 	/* look up the targets that have been removed since last commit */
2252 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2253 
2254 	/* Skip applying if no targets */
2255 	if (context->stream_count <= 0)
2256 		return DC_OK;
2257 
2258 	/* Apply new context */
2259 	dcb->funcs->set_scratch_critical_state(dcb, true);
2260 
2261 	/* below is for real asic only */
2262 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2263 		struct pipe_ctx *pipe_ctx_old =
2264 					&dc->current_state->res_ctx.pipe_ctx[i];
2265 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2266 
2267 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2268 			continue;
2269 
2270 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2271 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2272 				dce_crtc_switch_to_clk_src(dc->hwseq,
2273 						pipe_ctx->clock_source, i);
2274 			continue;
2275 		}
2276 
2277 		hws->funcs.enable_display_power_gating(
2278 				dc, i, dc->ctx->dc_bios,
2279 				PIPE_GATING_CONTROL_DISABLE);
2280 	}
2281 
2282 	if (dc->fbc_compressor)
2283 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2284 
2285 	dce110_setup_audio_dto(dc, context);
2286 
2287 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2288 		struct pipe_ctx *pipe_ctx_old =
2289 					&dc->current_state->res_ctx.pipe_ctx[i];
2290 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2291 
2292 		if (pipe_ctx->stream == NULL)
2293 			continue;
2294 
2295 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2296 			pipe_ctx->stream->link->link_state_valid) {
2297 			continue;
2298 		}
2299 
2300 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2301 			continue;
2302 
2303 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2304 			continue;
2305 
2306 		status = apply_single_controller_ctx_to_hw(
2307 				pipe_ctx,
2308 				context,
2309 				dc);
2310 
2311 		if (DC_OK != status)
2312 			return status;
2313 	}
2314 
2315 	if (dc->fbc_compressor)
2316 		enable_fbc(dc, dc->current_state);
2317 
2318 	dcb->funcs->set_scratch_critical_state(dcb, false);
2319 
2320 	return DC_OK;
2321 }
2322 
2323 /*******************************************************************************
2324  * Front End programming
2325  ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2326 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2327 {
2328 	struct default_adjustment default_adjust = { 0 };
2329 
2330 	default_adjust.force_hw_default = false;
2331 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2332 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2333 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2334 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2335 
2336 	/* display color depth */
2337 	default_adjust.color_depth =
2338 		pipe_ctx->stream->timing.display_color_depth;
2339 
2340 	/* Lb color depth */
2341 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2342 
2343 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2344 					pipe_ctx->plane_res.xfm, &default_adjust);
2345 }
2346 
2347 
2348 /*******************************************************************************
2349  * In order to turn on/off specific surface we will program
2350  * Blender + CRTC
2351  *
2352  * In case that we have two surfaces and they have a different visibility
2353  * we can't turn off the CRTC since it will turn off the entire display
2354  *
2355  * |----------------------------------------------- |
2356  * |bottom pipe|curr pipe  |              |         |
2357  * |Surface    |Surface    | Blender      |  CRCT   |
2358  * |visibility |visibility | Configuration|         |
2359  * |------------------------------------------------|
2360  * |   off     |    off    | CURRENT_PIPE | blank   |
2361  * |   off     |    on     | CURRENT_PIPE | unblank |
2362  * |   on      |    off    | OTHER_PIPE   | unblank |
2363  * |   on      |    on     | BLENDING     | unblank |
2364  * -------------------------------------------------|
2365  *
2366  ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2367 static void program_surface_visibility(const struct dc *dc,
2368 		struct pipe_ctx *pipe_ctx)
2369 {
2370 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2371 	bool blank_target = false;
2372 
2373 	if (pipe_ctx->bottom_pipe) {
2374 
2375 		/* For now we are supporting only two pipes */
2376 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2377 
2378 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2379 			if (pipe_ctx->plane_state->visible)
2380 				blender_mode = BLND_MODE_BLENDING;
2381 			else
2382 				blender_mode = BLND_MODE_OTHER_PIPE;
2383 
2384 		} else if (!pipe_ctx->plane_state->visible)
2385 			blank_target = true;
2386 
2387 	} else if (!pipe_ctx->plane_state->visible)
2388 		blank_target = true;
2389 
2390 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2391 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2392 
2393 }
2394 
program_gamut_remap(struct pipe_ctx * pipe_ctx)2395 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2396 {
2397 	int i = 0;
2398 	struct xfm_grph_csc_adjustment adjust;
2399 	memset(&adjust, 0, sizeof(adjust));
2400 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2401 
2402 
2403 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2404 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2405 
2406 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2407 			adjust.temperature_matrix[i] =
2408 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2409 	}
2410 
2411 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2412 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2413 static void update_plane_addr(const struct dc *dc,
2414 		struct pipe_ctx *pipe_ctx)
2415 {
2416 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2417 
2418 	if (plane_state == NULL)
2419 		return;
2420 
2421 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2422 			pipe_ctx->plane_res.mi,
2423 			&plane_state->address,
2424 			plane_state->flip_immediate);
2425 
2426 	plane_state->status.requested_address = plane_state->address;
2427 }
2428 
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2429 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2430 {
2431 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2432 
2433 	if (plane_state == NULL)
2434 		return;
2435 
2436 	plane_state->status.is_flip_pending =
2437 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2438 					pipe_ctx->plane_res.mi);
2439 
2440 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2441 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2442 
2443 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2444 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2445 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2446 		plane_state->status.is_right_eye =\
2447 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2448 	}
2449 }
2450 
dce110_power_down(struct dc * dc)2451 void dce110_power_down(struct dc *dc)
2452 {
2453 	power_down_all_hw_blocks(dc);
2454 	disable_vga_and_power_gate_all_controllers(dc);
2455 }
2456 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2457 static bool wait_for_reset_trigger_to_occur(
2458 	struct dc_context *dc_ctx,
2459 	struct timing_generator *tg)
2460 {
2461 	bool rc = false;
2462 
2463 	/* To avoid endless loop we wait at most
2464 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2465 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2466 	uint32_t i;
2467 
2468 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2469 
2470 		if (!tg->funcs->is_counter_moving(tg)) {
2471 			DC_ERROR("TG counter is not moving!\n");
2472 			break;
2473 		}
2474 
2475 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2476 			rc = true;
2477 			/* usually occurs at i=1 */
2478 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2479 					i);
2480 			break;
2481 		}
2482 
2483 		/* Wait for one frame. */
2484 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2485 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2486 	}
2487 
2488 	if (false == rc)
2489 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2490 
2491 	return rc;
2492 }
2493 
2494 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2495 static void dce110_enable_timing_synchronization(
2496 		struct dc *dc,
2497 		int group_index,
2498 		int group_size,
2499 		struct pipe_ctx *grouped_pipes[])
2500 {
2501 	struct dc_context *dc_ctx = dc->ctx;
2502 	struct dcp_gsl_params gsl_params = { 0 };
2503 	int i;
2504 
2505 	DC_SYNC_INFO("GSL: Setting-up...\n");
2506 
2507 	/* Designate a single TG in the group as a master.
2508 	 * Since HW doesn't care which one, we always assign
2509 	 * the 1st one in the group. */
2510 	gsl_params.gsl_group = 0;
2511 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2512 
2513 	for (i = 0; i < group_size; i++)
2514 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2515 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2516 
2517 	/* Reset slave controllers on master VSync */
2518 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2519 
2520 	for (i = 1 /* skip the master */; i < group_size; i++)
2521 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2522 				grouped_pipes[i]->stream_res.tg,
2523 				gsl_params.gsl_group);
2524 
2525 	for (i = 1 /* skip the master */; i < group_size; i++) {
2526 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2527 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2528 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2529 				grouped_pipes[i]->stream_res.tg);
2530 	}
2531 
2532 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2533 	 * is that the sync'ed displays will not drift out of sync over time*/
2534 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2535 	for (i = 0; i < group_size; i++)
2536 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2537 
2538 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2539 }
2540 
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2541 static void dce110_enable_per_frame_crtc_position_reset(
2542 		struct dc *dc,
2543 		int group_size,
2544 		struct pipe_ctx *grouped_pipes[])
2545 {
2546 	struct dc_context *dc_ctx = dc->ctx;
2547 	struct dcp_gsl_params gsl_params = { 0 };
2548 	int i;
2549 
2550 	gsl_params.gsl_group = 0;
2551 	gsl_params.gsl_master = 0;
2552 
2553 	for (i = 0; i < group_size; i++)
2554 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2555 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2556 
2557 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2558 
2559 	for (i = 1; i < group_size; i++)
2560 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2561 				grouped_pipes[i]->stream_res.tg,
2562 				gsl_params.gsl_master,
2563 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2564 
2565 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2566 	for (i = 1; i < group_size; i++)
2567 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2568 
2569 	for (i = 0; i < group_size; i++)
2570 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2571 
2572 }
2573 
init_pipes(struct dc * dc,struct dc_state * context)2574 static void init_pipes(struct dc *dc, struct dc_state *context)
2575 {
2576 	// Do nothing
2577 }
2578 
init_hw(struct dc * dc)2579 static void init_hw(struct dc *dc)
2580 {
2581 	int i;
2582 	struct dc_bios *bp;
2583 	struct transform *xfm;
2584 	struct abm *abm;
2585 	struct dmcu *dmcu;
2586 	struct dce_hwseq *hws = dc->hwseq;
2587 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2588 
2589 	bp = dc->ctx->dc_bios;
2590 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2591 		xfm = dc->res_pool->transforms[i];
2592 		xfm->funcs->transform_reset(xfm);
2593 
2594 		hws->funcs.enable_display_power_gating(
2595 				dc, i, bp,
2596 				PIPE_GATING_CONTROL_INIT);
2597 		hws->funcs.enable_display_power_gating(
2598 				dc, i, bp,
2599 				PIPE_GATING_CONTROL_DISABLE);
2600 		hws->funcs.enable_display_pipe_clock_gating(
2601 			dc->ctx,
2602 			true);
2603 	}
2604 
2605 	dce_clock_gating_power_up(dc->hwseq, false);
2606 	/***************************************/
2607 
2608 	for (i = 0; i < dc->link_count; i++) {
2609 		/****************************************/
2610 		/* Power up AND update implementation according to the
2611 		 * required signal (which may be different from the
2612 		 * default signal on connector). */
2613 		struct dc_link *link = dc->links[i];
2614 
2615 		link->link_enc->funcs->hw_init(link->link_enc);
2616 	}
2617 
2618 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2619 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2620 
2621 		tg->funcs->disable_vga(tg);
2622 
2623 		/* Blank controller using driver code instead of
2624 		 * command table. */
2625 		tg->funcs->set_blank(tg, true);
2626 		hwss_wait_for_blank_complete(tg);
2627 	}
2628 
2629 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2630 		struct audio *audio = dc->res_pool->audios[i];
2631 		audio->funcs->hw_init(audio);
2632 	}
2633 
2634 	for (i = 0; i < dc->link_count; i++) {
2635 		struct dc_link *link = dc->links[i];
2636 
2637 		if (link->panel_cntl)
2638 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2639 	}
2640 
2641 	abm = dc->res_pool->abm;
2642 	if (abm != NULL)
2643 		abm->funcs->abm_init(abm, backlight);
2644 
2645 	dmcu = dc->res_pool->dmcu;
2646 	if (dmcu != NULL && abm != NULL)
2647 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2648 
2649 	if (dc->fbc_compressor)
2650 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2651 
2652 }
2653 
2654 
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2655 void dce110_prepare_bandwidth(
2656 		struct dc *dc,
2657 		struct dc_state *context)
2658 {
2659 	struct clk_mgr *dccg = dc->clk_mgr;
2660 
2661 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2662 
2663 	dccg->funcs->update_clocks(
2664 			dccg,
2665 			context,
2666 			false);
2667 }
2668 
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2669 void dce110_optimize_bandwidth(
2670 		struct dc *dc,
2671 		struct dc_state *context)
2672 {
2673 	struct clk_mgr *dccg = dc->clk_mgr;
2674 
2675 	dce110_set_displaymarks(dc, context);
2676 
2677 	dccg->funcs->update_clocks(
2678 			dccg,
2679 			context,
2680 			true);
2681 }
2682 
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2683 static void dce110_program_front_end_for_pipe(
2684 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2685 {
2686 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2687 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2688 	struct xfm_grph_csc_adjustment adjust;
2689 	struct out_csc_color_matrix tbl_entry;
2690 	unsigned int i;
2691 	struct dce_hwseq *hws = dc->hwseq;
2692 
2693 	DC_LOGGER_INIT();
2694 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2695 
2696 	memset(&adjust, 0, sizeof(adjust));
2697 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2698 
2699 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2700 
2701 	set_default_colors(pipe_ctx);
2702 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2703 			== true) {
2704 		tbl_entry.color_space =
2705 			pipe_ctx->stream->output_color_space;
2706 
2707 		for (i = 0; i < 12; i++)
2708 			tbl_entry.regval[i] =
2709 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2710 
2711 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2712 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2713 	}
2714 
2715 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2716 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2717 
2718 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2719 			adjust.temperature_matrix[i] =
2720 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2721 	}
2722 
2723 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2724 
2725 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2726 
2727 	program_scaler(dc, pipe_ctx);
2728 
2729 	mi->funcs->mem_input_program_surface_config(
2730 			mi,
2731 			plane_state->format,
2732 			&plane_state->tiling_info,
2733 			&plane_state->plane_size,
2734 			plane_state->rotation,
2735 			NULL,
2736 			false);
2737 	if (mi->funcs->set_blank)
2738 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2739 
2740 	if (dc->config.gpu_vm_support)
2741 		mi->funcs->mem_input_program_pte_vm(
2742 				pipe_ctx->plane_res.mi,
2743 				plane_state->format,
2744 				&plane_state->tiling_info,
2745 				plane_state->rotation);
2746 
2747 	/* Moved programming gamma from dc to hwss */
2748 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2749 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2750 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2751 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2752 
2753 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2754 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2755 
2756 	DC_LOG_SURFACE(
2757 			"Pipe:%d %p: addr hi:0x%x, "
2758 			"addr low:0x%x, "
2759 			"src: %d, %d, %d,"
2760 			" %d; dst: %d, %d, %d, %d;"
2761 			"clip: %d, %d, %d, %d\n",
2762 			pipe_ctx->pipe_idx,
2763 			(void *) pipe_ctx->plane_state,
2764 			pipe_ctx->plane_state->address.grph.addr.high_part,
2765 			pipe_ctx->plane_state->address.grph.addr.low_part,
2766 			pipe_ctx->plane_state->src_rect.x,
2767 			pipe_ctx->plane_state->src_rect.y,
2768 			pipe_ctx->plane_state->src_rect.width,
2769 			pipe_ctx->plane_state->src_rect.height,
2770 			pipe_ctx->plane_state->dst_rect.x,
2771 			pipe_ctx->plane_state->dst_rect.y,
2772 			pipe_ctx->plane_state->dst_rect.width,
2773 			pipe_ctx->plane_state->dst_rect.height,
2774 			pipe_ctx->plane_state->clip_rect.x,
2775 			pipe_ctx->plane_state->clip_rect.y,
2776 			pipe_ctx->plane_state->clip_rect.width,
2777 			pipe_ctx->plane_state->clip_rect.height);
2778 
2779 	DC_LOG_SURFACE(
2780 			"Pipe %d: width, height, x, y\n"
2781 			"viewport:%d, %d, %d, %d\n"
2782 			"recout:  %d, %d, %d, %d\n",
2783 			pipe_ctx->pipe_idx,
2784 			pipe_ctx->plane_res.scl_data.viewport.width,
2785 			pipe_ctx->plane_res.scl_data.viewport.height,
2786 			pipe_ctx->plane_res.scl_data.viewport.x,
2787 			pipe_ctx->plane_res.scl_data.viewport.y,
2788 			pipe_ctx->plane_res.scl_data.recout.width,
2789 			pipe_ctx->plane_res.scl_data.recout.height,
2790 			pipe_ctx->plane_res.scl_data.recout.x,
2791 			pipe_ctx->plane_res.scl_data.recout.y);
2792 }
2793 
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2794 static void dce110_apply_ctx_for_surface(
2795 		struct dc *dc,
2796 		const struct dc_stream_state *stream,
2797 		int num_planes,
2798 		struct dc_state *context)
2799 {
2800 	int i;
2801 
2802 	if (num_planes == 0)
2803 		return;
2804 
2805 	if (dc->fbc_compressor)
2806 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2807 
2808 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2809 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2810 
2811 		if (pipe_ctx->stream != stream)
2812 			continue;
2813 
2814 		/* Need to allocate mem before program front end for Fiji */
2815 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2816 				pipe_ctx->plane_res.mi,
2817 				pipe_ctx->stream->timing.h_total,
2818 				pipe_ctx->stream->timing.v_total,
2819 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
2820 				context->stream_count);
2821 
2822 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2823 
2824 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2825 
2826 		program_surface_visibility(dc, pipe_ctx);
2827 
2828 	}
2829 
2830 	if (dc->fbc_compressor)
2831 		enable_fbc(dc, context);
2832 }
2833 
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)2834 static void dce110_post_unlock_program_front_end(
2835 		struct dc *dc,
2836 		struct dc_state *context)
2837 {
2838 }
2839 
dce110_power_down_fe(struct dc * dc,struct pipe_ctx * pipe_ctx)2840 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2841 {
2842 	struct dce_hwseq *hws = dc->hwseq;
2843 	int fe_idx = pipe_ctx->plane_res.mi ?
2844 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2845 
2846 	/* Do not power down fe when stream is active on dce*/
2847 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2848 		return;
2849 
2850 	hws->funcs.enable_display_power_gating(
2851 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2852 
2853 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2854 				dc->res_pool->transforms[fe_idx]);
2855 }
2856 
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)2857 static void dce110_wait_for_mpcc_disconnect(
2858 		struct dc *dc,
2859 		struct resource_pool *res_pool,
2860 		struct pipe_ctx *pipe_ctx)
2861 {
2862 	/* do nothing*/
2863 }
2864 
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2865 static void program_output_csc(struct dc *dc,
2866 		struct pipe_ctx *pipe_ctx,
2867 		enum dc_color_space colorspace,
2868 		uint16_t *matrix,
2869 		int opp_id)
2870 {
2871 	int i;
2872 	struct out_csc_color_matrix tbl_entry;
2873 
2874 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2875 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2876 
2877 		for (i = 0; i < 12; i++)
2878 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2879 
2880 		tbl_entry.color_space = color_space;
2881 
2882 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2883 				pipe_ctx->plane_res.xfm, &tbl_entry);
2884 	}
2885 }
2886 
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)2887 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2888 {
2889 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2890 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2891 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2892 	struct dc_cursor_mi_param param = {
2893 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2894 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2895 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2896 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2897 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2898 		.rotation = pipe_ctx->plane_state->rotation,
2899 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2900 	};
2901 
2902 	/**
2903 	 * If the cursor's source viewport is clipped then we need to
2904 	 * translate the cursor to appear in the correct position on
2905 	 * the screen.
2906 	 *
2907 	 * This translation isn't affected by scaling so it needs to be
2908 	 * done *after* we adjust the position for the scale factor.
2909 	 *
2910 	 * This is only done by opt-in for now since there are still
2911 	 * some usecases like tiled display that might enable the
2912 	 * cursor on both streams while expecting dc to clip it.
2913 	 */
2914 	if (pos_cpy.translate_by_source) {
2915 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2916 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2917 	}
2918 
2919 	if (pipe_ctx->plane_state->address.type
2920 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2921 		pos_cpy.enable = false;
2922 
2923 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2924 		pos_cpy.enable = false;
2925 
2926 	if (ipp->funcs->ipp_cursor_set_position)
2927 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2928 	if (mi->funcs->set_cursor_position)
2929 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2930 }
2931 
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)2932 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2933 {
2934 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2935 
2936 	if (pipe_ctx->plane_res.ipp &&
2937 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2938 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2939 				pipe_ctx->plane_res.ipp, attributes);
2940 
2941 	if (pipe_ctx->plane_res.mi &&
2942 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2943 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2944 				pipe_ctx->plane_res.mi, attributes);
2945 
2946 	if (pipe_ctx->plane_res.xfm &&
2947 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2948 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2949 				pipe_ctx->plane_res.xfm, attributes);
2950 }
2951 
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,uint32_t backlight_pwm_u16_16,uint32_t frame_ramp)2952 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2953 		uint32_t backlight_pwm_u16_16,
2954 		uint32_t frame_ramp)
2955 {
2956 	struct dc_link *link = pipe_ctx->stream->link;
2957 	struct dc  *dc = link->ctx->dc;
2958 	struct abm *abm = pipe_ctx->stream_res.abm;
2959 	struct panel_cntl *panel_cntl = link->panel_cntl;
2960 	struct dmcu *dmcu = dc->res_pool->dmcu;
2961 	bool fw_set_brightness = true;
2962 	/* DMCU -1 for all controller id values,
2963 	 * therefore +1 here
2964 	 */
2965 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2966 
2967 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2968 		return false;
2969 
2970 	if (dmcu)
2971 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2972 
2973 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2974 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2975 	else
2976 		abm->funcs->set_backlight_level_pwm(
2977 				abm,
2978 				backlight_pwm_u16_16,
2979 				frame_ramp,
2980 				controller_id,
2981 				link->panel_cntl->inst);
2982 
2983 	return true;
2984 }
2985 
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)2986 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2987 {
2988 	struct abm *abm = pipe_ctx->stream_res.abm;
2989 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2990 
2991 	if (abm)
2992 		abm->funcs->set_abm_immediate_disable(abm,
2993 				pipe_ctx->stream->link->panel_cntl->inst);
2994 
2995 	if (panel_cntl)
2996 		panel_cntl->funcs->store_backlight_level(panel_cntl);
2997 }
2998 
dce110_set_pipe(struct pipe_ctx * pipe_ctx)2999 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3000 {
3001 	struct abm *abm = pipe_ctx->stream_res.abm;
3002 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3003 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3004 
3005 	if (abm && panel_cntl)
3006 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3007 }
3008 
dce110_enable_lvds_link_output(struct dc_link * link,const struct link_resource * link_res,enum clock_source_id clock_source,uint32_t pixel_clock)3009 void dce110_enable_lvds_link_output(struct dc_link *link,
3010 		const struct link_resource *link_res,
3011 		enum clock_source_id clock_source,
3012 		uint32_t pixel_clock)
3013 {
3014 	link->link_enc->funcs->enable_lvds_output(
3015 			link->link_enc,
3016 			clock_source,
3017 			pixel_clock);
3018 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3019 }
3020 
dce110_enable_tmds_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,enum dc_color_depth color_depth,uint32_t pixel_clock)3021 void dce110_enable_tmds_link_output(struct dc_link *link,
3022 		const struct link_resource *link_res,
3023 		enum signal_type signal,
3024 		enum clock_source_id clock_source,
3025 		enum dc_color_depth color_depth,
3026 		uint32_t pixel_clock)
3027 {
3028 	link->link_enc->funcs->enable_tmds_output(
3029 			link->link_enc,
3030 			clock_source,
3031 			color_depth,
3032 			signal,
3033 			pixel_clock);
3034 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3035 }
3036 
dce110_enable_dp_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,const struct dc_link_settings * link_settings)3037 void dce110_enable_dp_link_output(
3038 		struct dc_link *link,
3039 		const struct link_resource *link_res,
3040 		enum signal_type signal,
3041 		enum clock_source_id clock_source,
3042 		const struct dc_link_settings *link_settings)
3043 {
3044 	struct dc  *dc = link->ctx->dc;
3045 	struct dmcu *dmcu = dc->res_pool->dmcu;
3046 	struct pipe_ctx *pipes =
3047 			link->dc->current_state->res_ctx.pipe_ctx;
3048 	struct clock_source *dp_cs =
3049 			link->dc->res_pool->dp_clock_source;
3050 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3051 	unsigned int i;
3052 
3053 
3054 	if (link->connector_signal == SIGNAL_TYPE_EDP) {
3055 		if (!link->dc->config.edp_no_power_sequencing)
3056 			link->dc->hwss.edp_power_control(link, true);
3057 		link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3058 	}
3059 
3060 	/* If the current pixel clock source is not DTO(happens after
3061 	 * switching from HDMI passive dongle to DP on the same connector),
3062 	 * switch the pixel clock source to DTO.
3063 	 */
3064 
3065 	for (i = 0; i < MAX_PIPES; i++) {
3066 		if (pipes[i].stream != NULL &&
3067 				pipes[i].stream->link == link) {
3068 			if (pipes[i].clock_source != NULL &&
3069 					pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3070 				pipes[i].clock_source = dp_cs;
3071 				pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3072 						pipes[i].stream->timing.pix_clk_100hz;
3073 				pipes[i].clock_source->funcs->program_pix_clk(
3074 						pipes[i].clock_source,
3075 						&pipes[i].stream_res.pix_clk_params,
3076 						dp_get_link_encoding_format(link_settings),
3077 						&pipes[i].pll_settings);
3078 			}
3079 		}
3080 	}
3081 
3082 	if (dp_get_link_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3083 		if (dc->clk_mgr->funcs->notify_link_rate_change)
3084 			dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3085 	}
3086 
3087 	if (dmcu != NULL && dmcu->funcs->lock_phy)
3088 		dmcu->funcs->lock_phy(dmcu);
3089 
3090 	if (link_hwss->ext.enable_dp_link_output)
3091 		link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3092 				clock_source, link_settings);
3093 
3094 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3095 
3096 	if (dmcu != NULL && dmcu->funcs->unlock_phy)
3097 		dmcu->funcs->unlock_phy(dmcu);
3098 
3099 	dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3100 }
3101 
dce110_disable_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal)3102 void dce110_disable_link_output(struct dc_link *link,
3103 		const struct link_resource *link_res,
3104 		enum signal_type signal)
3105 {
3106 	struct dc *dc = link->ctx->dc;
3107 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3108 	struct dmcu *dmcu = dc->res_pool->dmcu;
3109 
3110 	if (signal == SIGNAL_TYPE_EDP &&
3111 			link->dc->hwss.edp_backlight_control)
3112 		link->dc->hwss.edp_backlight_control(link, false);
3113 	else if (dmcu != NULL && dmcu->funcs->lock_phy)
3114 		dmcu->funcs->lock_phy(dmcu);
3115 
3116 	link_hwss->disable_link_output(link, link_res, signal);
3117 	link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3118 
3119 	if (signal == SIGNAL_TYPE_EDP &&
3120 			link->dc->hwss.edp_backlight_control)
3121 		link->dc->hwss.edp_power_control(link, false);
3122 	else if (dmcu != NULL && dmcu->funcs->lock_phy)
3123 		dmcu->funcs->unlock_phy(dmcu);
3124 	dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3125 }
3126 
3127 static const struct hw_sequencer_funcs dce110_funcs = {
3128 	.program_gamut_remap = program_gamut_remap,
3129 	.program_output_csc = program_output_csc,
3130 	.init_hw = init_hw,
3131 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3132 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3133 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3134 	.update_plane_addr = update_plane_addr,
3135 	.update_pending_status = dce110_update_pending_status,
3136 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
3137 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
3138 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3139 	.update_info_frame = dce110_update_info_frame,
3140 	.enable_stream = dce110_enable_stream,
3141 	.disable_stream = dce110_disable_stream,
3142 	.unblank_stream = dce110_unblank_stream,
3143 	.blank_stream = dce110_blank_stream,
3144 	.enable_audio_stream = dce110_enable_audio_stream,
3145 	.disable_audio_stream = dce110_disable_audio_stream,
3146 	.disable_plane = dce110_power_down_fe,
3147 	.pipe_control_lock = dce_pipe_control_lock,
3148 	.interdependent_update_lock = NULL,
3149 	.cursor_lock = dce_pipe_control_lock,
3150 	.prepare_bandwidth = dce110_prepare_bandwidth,
3151 	.optimize_bandwidth = dce110_optimize_bandwidth,
3152 	.set_drr = set_drr,
3153 	.get_position = get_position,
3154 	.set_static_screen_control = set_static_screen_control,
3155 	.setup_stereo = NULL,
3156 	.set_avmute = dce110_set_avmute,
3157 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3158 	.edp_backlight_control = dce110_edp_backlight_control,
3159 	.edp_power_control = dce110_edp_power_control,
3160 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3161 	.set_cursor_position = dce110_set_cursor_position,
3162 	.set_cursor_attribute = dce110_set_cursor_attribute,
3163 	.set_backlight_level = dce110_set_backlight_level,
3164 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3165 	.set_pipe = dce110_set_pipe,
3166 	.enable_lvds_link_output = dce110_enable_lvds_link_output,
3167 	.enable_tmds_link_output = dce110_enable_tmds_link_output,
3168 	.enable_dp_link_output = dce110_enable_dp_link_output,
3169 	.disable_link_output = dce110_disable_link_output,
3170 };
3171 
3172 static const struct hwseq_private_funcs dce110_private_funcs = {
3173 	.init_pipes = init_pipes,
3174 	.update_plane_addr = update_plane_addr,
3175 	.set_input_transfer_func = dce110_set_input_transfer_func,
3176 	.set_output_transfer_func = dce110_set_output_transfer_func,
3177 	.power_down = dce110_power_down,
3178 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3179 	.enable_display_power_gating = dce110_enable_display_power_gating,
3180 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3181 	.enable_stream_timing = dce110_enable_stream_timing,
3182 	.disable_stream_gating = NULL,
3183 	.enable_stream_gating = NULL,
3184 	.edp_backlight_control = dce110_edp_backlight_control,
3185 };
3186 
dce110_hw_sequencer_construct(struct dc * dc)3187 void dce110_hw_sequencer_construct(struct dc *dc)
3188 {
3189 	dc->hwss = dce110_funcs;
3190 	dc->hwseq->funcs = dce110_private_funcs;
3191 }
3192 
3193