1 /*
2 * Copyright 2005-2006 Erik Waling
3 * Copyright 2006 Stephane Marchesin
4 * Copyright 2007-2009 Stuart Bennett
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
20 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
21 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "drmP.h"
26 #define NV_DEBUG_NOTRACE
27 #include "nouveau_drv.h"
28 #include "nouveau_hw.h"
29 #include "nouveau_encoder.h"
30 #include "nouveau_gpio.h"
31
32 #include <linux/io-mapping.h>
33
34 /* these defines are made up */
35 #define NV_CIO_CRE_44_HEADA 0x0
36 #define NV_CIO_CRE_44_HEADB 0x3
37 #define FEATURE_MOBILE 0x10 /* also FEATURE_QUADRO for BMP */
38
39 #define EDID1_LEN 128
40
41 #define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg)
42 #define LOG_OLD_VALUE(x)
43
44 struct init_exec {
45 bool execute;
46 bool repeat;
47 };
48
nv_cksum(const uint8_t * data,unsigned int length)49 static bool nv_cksum(const uint8_t *data, unsigned int length)
50 {
51 /*
52 * There's a few checksums in the BIOS, so here's a generic checking
53 * function.
54 */
55 int i;
56 uint8_t sum = 0;
57
58 for (i = 0; i < length; i++)
59 sum += data[i];
60
61 if (sum)
62 return true;
63
64 return false;
65 }
66
67 static int
score_vbios(struct nvbios * bios,const bool writeable)68 score_vbios(struct nvbios *bios, const bool writeable)
69 {
70 if (!bios->data || bios->data[0] != 0x55 || bios->data[1] != 0xAA) {
71 NV_TRACEWARN(bios->dev, "... BIOS signature not found\n");
72 return 0;
73 }
74
75 if (nv_cksum(bios->data, bios->data[2] * 512)) {
76 NV_TRACEWARN(bios->dev, "... BIOS checksum invalid\n");
77 /* if a ro image is somewhat bad, it's probably all rubbish */
78 return writeable ? 2 : 1;
79 }
80
81 NV_TRACE(bios->dev, "... appears to be valid\n");
82 return 3;
83 }
84
85 static void
bios_shadow_prom(struct nvbios * bios)86 bios_shadow_prom(struct nvbios *bios)
87 {
88 struct drm_device *dev = bios->dev;
89 struct drm_nouveau_private *dev_priv = dev->dev_private;
90 u32 pcireg, access;
91 u16 pcir;
92 int i;
93
94 /* enable access to rom */
95 if (dev_priv->card_type >= NV_50)
96 pcireg = 0x088050;
97 else
98 pcireg = NV_PBUS_PCI_NV_20;
99 access = nv_mask(dev, pcireg, 0x00000001, 0x00000000);
100
101 /* bail if no rom signature, with a workaround for a PROM reading
102 * issue on some chipsets. the first read after a period of
103 * inactivity returns the wrong result, so retry the first header
104 * byte a few times before giving up as a workaround
105 */
106 i = 16;
107 do {
108 if (nv_rd08(dev, NV_PROM_OFFSET + 0) == 0x55)
109 break;
110 } while (i--);
111
112 if (!i || nv_rd08(dev, NV_PROM_OFFSET + 1) != 0xaa)
113 goto out;
114
115 /* additional check (see note below) - read PCI record header */
116 pcir = nv_rd08(dev, NV_PROM_OFFSET + 0x18) |
117 nv_rd08(dev, NV_PROM_OFFSET + 0x19) << 8;
118 if (nv_rd08(dev, NV_PROM_OFFSET + pcir + 0) != 'P' ||
119 nv_rd08(dev, NV_PROM_OFFSET + pcir + 1) != 'C' ||
120 nv_rd08(dev, NV_PROM_OFFSET + pcir + 2) != 'I' ||
121 nv_rd08(dev, NV_PROM_OFFSET + pcir + 3) != 'R')
122 goto out;
123
124 /* read entire bios image to system memory */
125 bios->length = nv_rd08(dev, NV_PROM_OFFSET + 2) * 512;
126 bios->data = kmalloc(bios->length, GFP_KERNEL);
127 if (bios->data) {
128 for (i = 0; i < bios->length; i++)
129 bios->data[i] = nv_rd08(dev, NV_PROM_OFFSET + i);
130 }
131
132 out:
133 /* disable access to rom */
134 nv_wr32(dev, pcireg, access);
135 }
136
137 static void
bios_shadow_pramin(struct nvbios * bios)138 bios_shadow_pramin(struct nvbios *bios)
139 {
140 struct drm_device *dev = bios->dev;
141 struct drm_nouveau_private *dev_priv = dev->dev_private;
142 u32 bar0 = 0;
143 int i;
144
145 if (dev_priv->card_type >= NV_50) {
146 u64 addr = (u64)(nv_rd32(dev, 0x619f04) & 0xffffff00) << 8;
147 if (!addr) {
148 addr = (u64)nv_rd32(dev, 0x001700) << 16;
149 addr += 0xf0000;
150 }
151
152 bar0 = nv_mask(dev, 0x001700, 0xffffffff, addr >> 16);
153 }
154
155 /* bail if no rom signature */
156 if (nv_rd08(dev, NV_PRAMIN_OFFSET + 0) != 0x55 ||
157 nv_rd08(dev, NV_PRAMIN_OFFSET + 1) != 0xaa)
158 goto out;
159
160 bios->length = nv_rd08(dev, NV_PRAMIN_OFFSET + 2) * 512;
161 bios->data = kmalloc(bios->length, GFP_KERNEL);
162 if (bios->data) {
163 for (i = 0; i < bios->length; i++)
164 bios->data[i] = nv_rd08(dev, NV_PRAMIN_OFFSET + i);
165 }
166
167 out:
168 if (dev_priv->card_type >= NV_50)
169 nv_wr32(dev, 0x001700, bar0);
170 }
171
172 static void
bios_shadow_pci(struct nvbios * bios)173 bios_shadow_pci(struct nvbios *bios)
174 {
175 struct pci_dev *pdev = bios->dev->pdev;
176 size_t length;
177
178 if (!pci_enable_rom(pdev)) {
179 void __iomem *rom = pci_map_rom(pdev, &length);
180 if (rom && length) {
181 bios->data = kmalloc(length, GFP_KERNEL);
182 if (bios->data) {
183 memcpy_fromio(bios->data, rom, length);
184 bios->length = length;
185 }
186 }
187 if (rom)
188 pci_unmap_rom(pdev, rom);
189
190 pci_disable_rom(pdev);
191 }
192 }
193
194 static void
bios_shadow_acpi(struct nvbios * bios)195 bios_shadow_acpi(struct nvbios *bios)
196 {
197 struct pci_dev *pdev = bios->dev->pdev;
198 int ptr, len, ret;
199 u8 data[3];
200
201 if (!nouveau_acpi_rom_supported(pdev))
202 return;
203
204 ret = nouveau_acpi_get_bios_chunk(data, 0, sizeof(data));
205 if (ret != sizeof(data))
206 return;
207
208 bios->length = min(data[2] * 512, 65536);
209 bios->data = kmalloc(bios->length, GFP_KERNEL);
210 if (!bios->data)
211 return;
212
213 len = bios->length;
214 ptr = 0;
215 while (len) {
216 int size = (len > ROM_BIOS_PAGE) ? ROM_BIOS_PAGE : len;
217
218 ret = nouveau_acpi_get_bios_chunk(bios->data, ptr, size);
219 if (ret != size) {
220 kfree(bios->data);
221 bios->data = NULL;
222 return;
223 }
224
225 len -= size;
226 ptr += size;
227 }
228 }
229
230 struct methods {
231 const char desc[8];
232 void (*shadow)(struct nvbios *);
233 const bool rw;
234 int score;
235 u32 size;
236 u8 *data;
237 };
238
239 static bool
bios_shadow(struct drm_device * dev)240 bios_shadow(struct drm_device *dev)
241 {
242 struct methods shadow_methods[] = {
243 { "PRAMIN", bios_shadow_pramin, true, 0, 0, NULL },
244 { "PROM", bios_shadow_prom, false, 0, 0, NULL },
245 { "ACPI", bios_shadow_acpi, true, 0, 0, NULL },
246 { "PCIROM", bios_shadow_pci, true, 0, 0, NULL },
247 {}
248 };
249 struct drm_nouveau_private *dev_priv = dev->dev_private;
250 struct nvbios *bios = &dev_priv->vbios;
251 struct methods *mthd, *best;
252
253 if (nouveau_vbios) {
254 mthd = shadow_methods;
255 do {
256 if (strcasecmp(nouveau_vbios, mthd->desc))
257 continue;
258 NV_INFO(dev, "VBIOS source: %s\n", mthd->desc);
259
260 mthd->shadow(bios);
261 mthd->score = score_vbios(bios, mthd->rw);
262 if (mthd->score)
263 return true;
264 } while ((++mthd)->shadow);
265
266 NV_ERROR(dev, "VBIOS source \'%s\' invalid\n", nouveau_vbios);
267 }
268
269 mthd = shadow_methods;
270 do {
271 NV_TRACE(dev, "Checking %s for VBIOS\n", mthd->desc);
272 mthd->shadow(bios);
273 mthd->score = score_vbios(bios, mthd->rw);
274 mthd->size = bios->length;
275 mthd->data = bios->data;
276 } while (mthd->score != 3 && (++mthd)->shadow);
277
278 mthd = shadow_methods;
279 best = mthd;
280 do {
281 if (mthd->score > best->score) {
282 kfree(best->data);
283 best = mthd;
284 }
285 } while ((++mthd)->shadow);
286
287 if (best->score) {
288 NV_TRACE(dev, "Using VBIOS from %s\n", best->desc);
289 bios->length = best->size;
290 bios->data = best->data;
291 return true;
292 }
293
294 NV_ERROR(dev, "No valid VBIOS image found\n");
295 return false;
296 }
297
298 struct init_tbl_entry {
299 char *name;
300 uint8_t id;
301 /* Return:
302 * > 0: success, length of opcode
303 * 0: success, but abort further parsing of table (INIT_DONE etc)
304 * < 0: failure, table parsing will be aborted
305 */
306 int (*handler)(struct nvbios *, uint16_t, struct init_exec *);
307 };
308
309 static int parse_init_table(struct nvbios *, uint16_t, struct init_exec *);
310
311 #define MACRO_INDEX_SIZE 2
312 #define MACRO_SIZE 8
313 #define CONDITION_SIZE 12
314 #define IO_FLAG_CONDITION_SIZE 9
315 #define IO_CONDITION_SIZE 5
316 #define MEM_INIT_SIZE 66
317
still_alive(void)318 static void still_alive(void)
319 {
320 #if 0
321 sync();
322 mdelay(2);
323 #endif
324 }
325
326 static uint32_t
munge_reg(struct nvbios * bios,uint32_t reg)327 munge_reg(struct nvbios *bios, uint32_t reg)
328 {
329 struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
330 struct dcb_entry *dcbent = bios->display.output;
331
332 if (dev_priv->card_type < NV_50)
333 return reg;
334
335 if (reg & 0x80000000) {
336 BUG_ON(bios->display.crtc < 0);
337 reg += bios->display.crtc * 0x800;
338 }
339
340 if (reg & 0x40000000) {
341 BUG_ON(!dcbent);
342
343 reg += (ffs(dcbent->or) - 1) * 0x800;
344 if ((reg & 0x20000000) && !(dcbent->sorconf.link & 1))
345 reg += 0x00000080;
346 }
347
348 reg &= ~0xe0000000;
349 return reg;
350 }
351
352 static int
valid_reg(struct nvbios * bios,uint32_t reg)353 valid_reg(struct nvbios *bios, uint32_t reg)
354 {
355 struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
356 struct drm_device *dev = bios->dev;
357
358 /* C51 has misaligned regs on purpose. Marvellous */
359 if (reg & 0x2 ||
360 (reg & 0x1 && dev_priv->vbios.chip_version != 0x51))
361 NV_ERROR(dev, "======= misaligned reg 0x%08X =======\n", reg);
362
363 /* warn on C51 regs that haven't been verified accessible in tracing */
364 if (reg & 0x1 && dev_priv->vbios.chip_version == 0x51 &&
365 reg != 0x130d && reg != 0x1311 && reg != 0x60081d)
366 NV_WARN(dev, "=== C51 misaligned reg 0x%08X not verified ===\n",
367 reg);
368
369 if (reg >= (8*1024*1024)) {
370 NV_ERROR(dev, "=== reg 0x%08x out of mapped bounds ===\n", reg);
371 return 0;
372 }
373
374 return 1;
375 }
376
377 static bool
valid_idx_port(struct nvbios * bios,uint16_t port)378 valid_idx_port(struct nvbios *bios, uint16_t port)
379 {
380 struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
381 struct drm_device *dev = bios->dev;
382
383 /*
384 * If adding more ports here, the read/write functions below will need
385 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
386 * used for the port in question
387 */
388 if (dev_priv->card_type < NV_50) {
389 if (port == NV_CIO_CRX__COLOR)
390 return true;
391 if (port == NV_VIO_SRX)
392 return true;
393 } else {
394 if (port == NV_CIO_CRX__COLOR)
395 return true;
396 }
397
398 NV_ERROR(dev, "========== unknown indexed io port 0x%04X ==========\n",
399 port);
400
401 return false;
402 }
403
404 static bool
valid_port(struct nvbios * bios,uint16_t port)405 valid_port(struct nvbios *bios, uint16_t port)
406 {
407 struct drm_device *dev = bios->dev;
408
409 /*
410 * If adding more ports here, the read/write functions below will need
411 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
412 * used for the port in question
413 */
414 if (port == NV_VIO_VSE2)
415 return true;
416
417 NV_ERROR(dev, "========== unknown io port 0x%04X ==========\n", port);
418
419 return false;
420 }
421
422 static uint32_t
bios_rd32(struct nvbios * bios,uint32_t reg)423 bios_rd32(struct nvbios *bios, uint32_t reg)
424 {
425 uint32_t data;
426
427 reg = munge_reg(bios, reg);
428 if (!valid_reg(bios, reg))
429 return 0;
430
431 /*
432 * C51 sometimes uses regs with bit0 set in the address. For these
433 * cases there should exist a translation in a BIOS table to an IO
434 * port address which the BIOS uses for accessing the reg
435 *
436 * These only seem to appear for the power control regs to a flat panel,
437 * and the GPIO regs at 0x60081*. In C51 mmio traces the normal regs
438 * for 0x1308 and 0x1310 are used - hence the mask below. An S3
439 * suspend-resume mmio trace from a C51 will be required to see if this
440 * is true for the power microcode in 0x14.., or whether the direct IO
441 * port access method is needed
442 */
443 if (reg & 0x1)
444 reg &= ~0x1;
445
446 data = nv_rd32(bios->dev, reg);
447
448 BIOSLOG(bios, " Read: Reg: 0x%08X, Data: 0x%08X\n", reg, data);
449
450 return data;
451 }
452
453 static void
bios_wr32(struct nvbios * bios,uint32_t reg,uint32_t data)454 bios_wr32(struct nvbios *bios, uint32_t reg, uint32_t data)
455 {
456 struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
457
458 reg = munge_reg(bios, reg);
459 if (!valid_reg(bios, reg))
460 return;
461
462 /* see note in bios_rd32 */
463 if (reg & 0x1)
464 reg &= 0xfffffffe;
465
466 LOG_OLD_VALUE(bios_rd32(bios, reg));
467 BIOSLOG(bios, " Write: Reg: 0x%08X, Data: 0x%08X\n", reg, data);
468
469 if (dev_priv->vbios.execute) {
470 still_alive();
471 nv_wr32(bios->dev, reg, data);
472 }
473 }
474
475 static uint8_t
bios_idxprt_rd(struct nvbios * bios,uint16_t port,uint8_t index)476 bios_idxprt_rd(struct nvbios *bios, uint16_t port, uint8_t index)
477 {
478 struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
479 struct drm_device *dev = bios->dev;
480 uint8_t data;
481
482 if (!valid_idx_port(bios, port))
483 return 0;
484
485 if (dev_priv->card_type < NV_50) {
486 if (port == NV_VIO_SRX)
487 data = NVReadVgaSeq(dev, bios->state.crtchead, index);
488 else /* assume NV_CIO_CRX__COLOR */
489 data = NVReadVgaCrtc(dev, bios->state.crtchead, index);
490 } else {
491 uint32_t data32;
492
493 data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
494 data = (data32 >> ((index & 3) << 3)) & 0xff;
495 }
496
497 BIOSLOG(bios, " Indexed IO read: Port: 0x%04X, Index: 0x%02X, "
498 "Head: 0x%02X, Data: 0x%02X\n",
499 port, index, bios->state.crtchead, data);
500 return data;
501 }
502
503 static void
bios_idxprt_wr(struct nvbios * bios,uint16_t port,uint8_t index,uint8_t data)504 bios_idxprt_wr(struct nvbios *bios, uint16_t port, uint8_t index, uint8_t data)
505 {
506 struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
507 struct drm_device *dev = bios->dev;
508
509 if (!valid_idx_port(bios, port))
510 return;
511
512 /*
513 * The current head is maintained in the nvbios member state.crtchead.
514 * We trap changes to CR44 and update the head variable and hence the
515 * register set written.
516 * As CR44 only exists on CRTC0, we update crtchead to head0 in advance
517 * of the write, and to head1 after the write
518 */
519 if (port == NV_CIO_CRX__COLOR && index == NV_CIO_CRE_44 &&
520 data != NV_CIO_CRE_44_HEADB)
521 bios->state.crtchead = 0;
522
523 LOG_OLD_VALUE(bios_idxprt_rd(bios, port, index));
524 BIOSLOG(bios, " Indexed IO write: Port: 0x%04X, Index: 0x%02X, "
525 "Head: 0x%02X, Data: 0x%02X\n",
526 port, index, bios->state.crtchead, data);
527
528 if (bios->execute && dev_priv->card_type < NV_50) {
529 still_alive();
530 if (port == NV_VIO_SRX)
531 NVWriteVgaSeq(dev, bios->state.crtchead, index, data);
532 else /* assume NV_CIO_CRX__COLOR */
533 NVWriteVgaCrtc(dev, bios->state.crtchead, index, data);
534 } else
535 if (bios->execute) {
536 uint32_t data32, shift = (index & 3) << 3;
537
538 still_alive();
539
540 data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
541 data32 &= ~(0xff << shift);
542 data32 |= (data << shift);
543 bios_wr32(bios, NV50_PDISPLAY_VGACRTC(index & ~3), data32);
544 }
545
546 if (port == NV_CIO_CRX__COLOR &&
547 index == NV_CIO_CRE_44 && data == NV_CIO_CRE_44_HEADB)
548 bios->state.crtchead = 1;
549 }
550
551 static uint8_t
bios_port_rd(struct nvbios * bios,uint16_t port)552 bios_port_rd(struct nvbios *bios, uint16_t port)
553 {
554 uint8_t data, head = bios->state.crtchead;
555
556 if (!valid_port(bios, port))
557 return 0;
558
559 data = NVReadPRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port);
560
561 BIOSLOG(bios, " IO read: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
562 port, head, data);
563
564 return data;
565 }
566
567 static void
bios_port_wr(struct nvbios * bios,uint16_t port,uint8_t data)568 bios_port_wr(struct nvbios *bios, uint16_t port, uint8_t data)
569 {
570 int head = bios->state.crtchead;
571
572 if (!valid_port(bios, port))
573 return;
574
575 LOG_OLD_VALUE(bios_port_rd(bios, port));
576 BIOSLOG(bios, " IO write: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
577 port, head, data);
578
579 if (!bios->execute)
580 return;
581
582 still_alive();
583 NVWritePRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port, data);
584 }
585
586 static bool
io_flag_condition_met(struct nvbios * bios,uint16_t offset,uint8_t cond)587 io_flag_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
588 {
589 /*
590 * The IO flag condition entry has 2 bytes for the CRTC port; 1 byte
591 * for the CRTC index; 1 byte for the mask to apply to the value
592 * retrieved from the CRTC; 1 byte for the shift right to apply to the
593 * masked CRTC value; 2 bytes for the offset to the flag array, to
594 * which the shifted value is added; 1 byte for the mask applied to the
595 * value read from the flag array; and 1 byte for the value to compare
596 * against the masked byte from the flag table.
597 */
598
599 uint16_t condptr = bios->io_flag_condition_tbl_ptr + cond * IO_FLAG_CONDITION_SIZE;
600 uint16_t crtcport = ROM16(bios->data[condptr]);
601 uint8_t crtcindex = bios->data[condptr + 2];
602 uint8_t mask = bios->data[condptr + 3];
603 uint8_t shift = bios->data[condptr + 4];
604 uint16_t flagarray = ROM16(bios->data[condptr + 5]);
605 uint8_t flagarraymask = bios->data[condptr + 7];
606 uint8_t cmpval = bios->data[condptr + 8];
607 uint8_t data;
608
609 BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
610 "Shift: 0x%02X, FlagArray: 0x%04X, FAMask: 0x%02X, "
611 "Cmpval: 0x%02X\n",
612 offset, crtcport, crtcindex, mask, shift, flagarray, flagarraymask, cmpval);
613
614 data = bios_idxprt_rd(bios, crtcport, crtcindex);
615
616 data = bios->data[flagarray + ((data & mask) >> shift)];
617 data &= flagarraymask;
618
619 BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
620 offset, data, cmpval);
621
622 return (data == cmpval);
623 }
624
625 static bool
bios_condition_met(struct nvbios * bios,uint16_t offset,uint8_t cond)626 bios_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
627 {
628 /*
629 * The condition table entry has 4 bytes for the address of the
630 * register to check, 4 bytes for a mask to apply to the register and
631 * 4 for a test comparison value
632 */
633
634 uint16_t condptr = bios->condition_tbl_ptr + cond * CONDITION_SIZE;
635 uint32_t reg = ROM32(bios->data[condptr]);
636 uint32_t mask = ROM32(bios->data[condptr + 4]);
637 uint32_t cmpval = ROM32(bios->data[condptr + 8]);
638 uint32_t data;
639
640 BIOSLOG(bios, "0x%04X: Cond: 0x%02X, Reg: 0x%08X, Mask: 0x%08X\n",
641 offset, cond, reg, mask);
642
643 data = bios_rd32(bios, reg) & mask;
644
645 BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
646 offset, data, cmpval);
647
648 return (data == cmpval);
649 }
650
651 static bool
io_condition_met(struct nvbios * bios,uint16_t offset,uint8_t cond)652 io_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
653 {
654 /*
655 * The IO condition entry has 2 bytes for the IO port address; 1 byte
656 * for the index to write to io_port; 1 byte for the mask to apply to
657 * the byte read from io_port+1; and 1 byte for the value to compare
658 * against the masked byte.
659 */
660
661 uint16_t condptr = bios->io_condition_tbl_ptr + cond * IO_CONDITION_SIZE;
662 uint16_t io_port = ROM16(bios->data[condptr]);
663 uint8_t port_index = bios->data[condptr + 2];
664 uint8_t mask = bios->data[condptr + 3];
665 uint8_t cmpval = bios->data[condptr + 4];
666
667 uint8_t data = bios_idxprt_rd(bios, io_port, port_index) & mask;
668
669 BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
670 offset, data, cmpval);
671
672 return (data == cmpval);
673 }
674
675 static int
nv50_pll_set(struct drm_device * dev,uint32_t reg,uint32_t clk)676 nv50_pll_set(struct drm_device *dev, uint32_t reg, uint32_t clk)
677 {
678 struct drm_nouveau_private *dev_priv = dev->dev_private;
679 struct nouveau_pll_vals pll;
680 struct pll_lims pll_limits;
681 u32 ctrl, mask, coef;
682 int ret;
683
684 ret = get_pll_limits(dev, reg, &pll_limits);
685 if (ret)
686 return ret;
687
688 clk = nouveau_calc_pll_mnp(dev, &pll_limits, clk, &pll);
689 if (!clk)
690 return -ERANGE;
691
692 coef = pll.N1 << 8 | pll.M1;
693 ctrl = pll.log2P << 16;
694 mask = 0x00070000;
695 if (reg == 0x004008) {
696 mask |= 0x01f80000;
697 ctrl |= (pll_limits.log2p_bias << 19);
698 ctrl |= (pll.log2P << 22);
699 }
700
701 if (!dev_priv->vbios.execute)
702 return 0;
703
704 nv_mask(dev, reg + 0, mask, ctrl);
705 nv_wr32(dev, reg + 4, coef);
706 return 0;
707 }
708
709 static int
setPLL(struct nvbios * bios,uint32_t reg,uint32_t clk)710 setPLL(struct nvbios *bios, uint32_t reg, uint32_t clk)
711 {
712 struct drm_device *dev = bios->dev;
713 struct drm_nouveau_private *dev_priv = dev->dev_private;
714 /* clk in kHz */
715 struct pll_lims pll_lim;
716 struct nouveau_pll_vals pllvals;
717 int ret;
718
719 if (dev_priv->card_type >= NV_50)
720 return nv50_pll_set(dev, reg, clk);
721
722 /* high regs (such as in the mac g5 table) are not -= 4 */
723 ret = get_pll_limits(dev, reg > 0x405c ? reg : reg - 4, &pll_lim);
724 if (ret)
725 return ret;
726
727 clk = nouveau_calc_pll_mnp(dev, &pll_lim, clk, &pllvals);
728 if (!clk)
729 return -ERANGE;
730
731 if (bios->execute) {
732 still_alive();
733 nouveau_hw_setpll(dev, reg, &pllvals);
734 }
735
736 return 0;
737 }
738
dcb_entry_idx_from_crtchead(struct drm_device * dev)739 static int dcb_entry_idx_from_crtchead(struct drm_device *dev)
740 {
741 struct drm_nouveau_private *dev_priv = dev->dev_private;
742 struct nvbios *bios = &dev_priv->vbios;
743
744 /*
745 * For the results of this function to be correct, CR44 must have been
746 * set (using bios_idxprt_wr to set crtchead), CR58 set for CR57 = 0,
747 * and the DCB table parsed, before the script calling the function is
748 * run. run_digital_op_script is example of how to do such setup
749 */
750
751 uint8_t dcb_entry = NVReadVgaCrtc5758(dev, bios->state.crtchead, 0);
752
753 if (dcb_entry > bios->dcb.entries) {
754 NV_ERROR(dev, "CR58 doesn't have a valid DCB entry currently "
755 "(%02X)\n", dcb_entry);
756 dcb_entry = 0x7f; /* unused / invalid marker */
757 }
758
759 return dcb_entry;
760 }
761
762 static struct nouveau_i2c_chan *
init_i2c_device_find(struct drm_device * dev,int i2c_index)763 init_i2c_device_find(struct drm_device *dev, int i2c_index)
764 {
765 if (i2c_index == 0xff) {
766 struct drm_nouveau_private *dev_priv = dev->dev_private;
767 struct dcb_table *dcb = &dev_priv->vbios.dcb;
768 /* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
769 int idx = dcb_entry_idx_from_crtchead(dev);
770
771 i2c_index = NV_I2C_DEFAULT(0);
772 if (idx != 0x7f && dcb->entry[idx].i2c_upper_default)
773 i2c_index = NV_I2C_DEFAULT(1);
774 }
775
776 return nouveau_i2c_find(dev, i2c_index);
777 }
778
779 static uint32_t
get_tmds_index_reg(struct drm_device * dev,uint8_t mlv)780 get_tmds_index_reg(struct drm_device *dev, uint8_t mlv)
781 {
782 /*
783 * For mlv < 0x80, it is an index into a table of TMDS base addresses.
784 * For mlv == 0x80 use the "or" value of the dcb_entry indexed by
785 * CR58 for CR57 = 0 to index a table of offsets to the basic
786 * 0x6808b0 address.
787 * For mlv == 0x81 use the "or" value of the dcb_entry indexed by
788 * CR58 for CR57 = 0 to index a table of offsets to the basic
789 * 0x6808b0 address, and then flip the offset by 8.
790 */
791
792 struct drm_nouveau_private *dev_priv = dev->dev_private;
793 struct nvbios *bios = &dev_priv->vbios;
794 const int pramdac_offset[13] = {
795 0, 0, 0x8, 0, 0x2000, 0, 0, 0, 0x2008, 0, 0, 0, 0x2000 };
796 const uint32_t pramdac_table[4] = {
797 0x6808b0, 0x6808b8, 0x6828b0, 0x6828b8 };
798
799 if (mlv >= 0x80) {
800 int dcb_entry, dacoffset;
801
802 /* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
803 dcb_entry = dcb_entry_idx_from_crtchead(dev);
804 if (dcb_entry == 0x7f)
805 return 0;
806 dacoffset = pramdac_offset[bios->dcb.entry[dcb_entry].or];
807 if (mlv == 0x81)
808 dacoffset ^= 8;
809 return 0x6808b0 + dacoffset;
810 } else {
811 if (mlv >= ARRAY_SIZE(pramdac_table)) {
812 NV_ERROR(dev, "Magic Lookup Value too big (%02X)\n",
813 mlv);
814 return 0;
815 }
816 return pramdac_table[mlv];
817 }
818 }
819
820 static int
init_io_restrict_prog(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)821 init_io_restrict_prog(struct nvbios *bios, uint16_t offset,
822 struct init_exec *iexec)
823 {
824 /*
825 * INIT_IO_RESTRICT_PROG opcode: 0x32 ('2')
826 *
827 * offset (8 bit): opcode
828 * offset + 1 (16 bit): CRTC port
829 * offset + 3 (8 bit): CRTC index
830 * offset + 4 (8 bit): mask
831 * offset + 5 (8 bit): shift
832 * offset + 6 (8 bit): count
833 * offset + 7 (32 bit): register
834 * offset + 11 (32 bit): configuration 1
835 * ...
836 *
837 * Starting at offset + 11 there are "count" 32 bit values.
838 * To find out which value to use read index "CRTC index" on "CRTC
839 * port", AND this value with "mask" and then bit shift right "shift"
840 * bits. Read the appropriate value using this index and write to
841 * "register"
842 */
843
844 uint16_t crtcport = ROM16(bios->data[offset + 1]);
845 uint8_t crtcindex = bios->data[offset + 3];
846 uint8_t mask = bios->data[offset + 4];
847 uint8_t shift = bios->data[offset + 5];
848 uint8_t count = bios->data[offset + 6];
849 uint32_t reg = ROM32(bios->data[offset + 7]);
850 uint8_t config;
851 uint32_t configval;
852 int len = 11 + count * 4;
853
854 if (!iexec->execute)
855 return len;
856
857 BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
858 "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
859 offset, crtcport, crtcindex, mask, shift, count, reg);
860
861 config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
862 if (config > count) {
863 NV_ERROR(bios->dev,
864 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
865 offset, config, count);
866 return len;
867 }
868
869 configval = ROM32(bios->data[offset + 11 + config * 4]);
870
871 BIOSLOG(bios, "0x%04X: Writing config %02X\n", offset, config);
872
873 bios_wr32(bios, reg, configval);
874
875 return len;
876 }
877
878 static int
init_repeat(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)879 init_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
880 {
881 /*
882 * INIT_REPEAT opcode: 0x33 ('3')
883 *
884 * offset (8 bit): opcode
885 * offset + 1 (8 bit): count
886 *
887 * Execute script following this opcode up to INIT_REPEAT_END
888 * "count" times
889 */
890
891 uint8_t count = bios->data[offset + 1];
892 uint8_t i;
893
894 /* no iexec->execute check by design */
895
896 BIOSLOG(bios, "0x%04X: Repeating following segment %d times\n",
897 offset, count);
898
899 iexec->repeat = true;
900
901 /*
902 * count - 1, as the script block will execute once when we leave this
903 * opcode -- this is compatible with bios behaviour as:
904 * a) the block is always executed at least once, even if count == 0
905 * b) the bios interpreter skips to the op following INIT_END_REPEAT,
906 * while we don't
907 */
908 for (i = 0; i < count - 1; i++)
909 parse_init_table(bios, offset + 2, iexec);
910
911 iexec->repeat = false;
912
913 return 2;
914 }
915
916 static int
init_io_restrict_pll(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)917 init_io_restrict_pll(struct nvbios *bios, uint16_t offset,
918 struct init_exec *iexec)
919 {
920 /*
921 * INIT_IO_RESTRICT_PLL opcode: 0x34 ('4')
922 *
923 * offset (8 bit): opcode
924 * offset + 1 (16 bit): CRTC port
925 * offset + 3 (8 bit): CRTC index
926 * offset + 4 (8 bit): mask
927 * offset + 5 (8 bit): shift
928 * offset + 6 (8 bit): IO flag condition index
929 * offset + 7 (8 bit): count
930 * offset + 8 (32 bit): register
931 * offset + 12 (16 bit): frequency 1
932 * ...
933 *
934 * Starting at offset + 12 there are "count" 16 bit frequencies (10kHz).
935 * Set PLL register "register" to coefficients for frequency n,
936 * selected by reading index "CRTC index" of "CRTC port" ANDed with
937 * "mask" and shifted right by "shift".
938 *
939 * If "IO flag condition index" > 0, and condition met, double
940 * frequency before setting it.
941 */
942
943 uint16_t crtcport = ROM16(bios->data[offset + 1]);
944 uint8_t crtcindex = bios->data[offset + 3];
945 uint8_t mask = bios->data[offset + 4];
946 uint8_t shift = bios->data[offset + 5];
947 int8_t io_flag_condition_idx = bios->data[offset + 6];
948 uint8_t count = bios->data[offset + 7];
949 uint32_t reg = ROM32(bios->data[offset + 8]);
950 uint8_t config;
951 uint16_t freq;
952 int len = 12 + count * 2;
953
954 if (!iexec->execute)
955 return len;
956
957 BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
958 "Shift: 0x%02X, IO Flag Condition: 0x%02X, "
959 "Count: 0x%02X, Reg: 0x%08X\n",
960 offset, crtcport, crtcindex, mask, shift,
961 io_flag_condition_idx, count, reg);
962
963 config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
964 if (config > count) {
965 NV_ERROR(bios->dev,
966 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
967 offset, config, count);
968 return len;
969 }
970
971 freq = ROM16(bios->data[offset + 12 + config * 2]);
972
973 if (io_flag_condition_idx > 0) {
974 if (io_flag_condition_met(bios, offset, io_flag_condition_idx)) {
975 BIOSLOG(bios, "0x%04X: Condition fulfilled -- "
976 "frequency doubled\n", offset);
977 freq *= 2;
978 } else
979 BIOSLOG(bios, "0x%04X: Condition not fulfilled -- "
980 "frequency unchanged\n", offset);
981 }
982
983 BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %d0kHz\n",
984 offset, reg, config, freq);
985
986 setPLL(bios, reg, freq * 10);
987
988 return len;
989 }
990
991 static int
init_end_repeat(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)992 init_end_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
993 {
994 /*
995 * INIT_END_REPEAT opcode: 0x36 ('6')
996 *
997 * offset (8 bit): opcode
998 *
999 * Marks the end of the block for INIT_REPEAT to repeat
1000 */
1001
1002 /* no iexec->execute check by design */
1003
1004 /*
1005 * iexec->repeat flag necessary to go past INIT_END_REPEAT opcode when
1006 * we're not in repeat mode
1007 */
1008 if (iexec->repeat)
1009 return 0;
1010
1011 return 1;
1012 }
1013
1014 static int
init_copy(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1015 init_copy(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1016 {
1017 /*
1018 * INIT_COPY opcode: 0x37 ('7')
1019 *
1020 * offset (8 bit): opcode
1021 * offset + 1 (32 bit): register
1022 * offset + 5 (8 bit): shift
1023 * offset + 6 (8 bit): srcmask
1024 * offset + 7 (16 bit): CRTC port
1025 * offset + 9 (8 bit): CRTC index
1026 * offset + 10 (8 bit): mask
1027 *
1028 * Read index "CRTC index" on "CRTC port", AND with "mask", OR with
1029 * (REGVAL("register") >> "shift" & "srcmask") and write-back to CRTC
1030 * port
1031 */
1032
1033 uint32_t reg = ROM32(bios->data[offset + 1]);
1034 uint8_t shift = bios->data[offset + 5];
1035 uint8_t srcmask = bios->data[offset + 6];
1036 uint16_t crtcport = ROM16(bios->data[offset + 7]);
1037 uint8_t crtcindex = bios->data[offset + 9];
1038 uint8_t mask = bios->data[offset + 10];
1039 uint32_t data;
1040 uint8_t crtcdata;
1041
1042 if (!iexec->execute)
1043 return 11;
1044
1045 BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%02X, "
1046 "Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X\n",
1047 offset, reg, shift, srcmask, crtcport, crtcindex, mask);
1048
1049 data = bios_rd32(bios, reg);
1050
1051 if (shift < 0x80)
1052 data >>= shift;
1053 else
1054 data <<= (0x100 - shift);
1055
1056 data &= srcmask;
1057
1058 crtcdata = bios_idxprt_rd(bios, crtcport, crtcindex) & mask;
1059 crtcdata |= (uint8_t)data;
1060 bios_idxprt_wr(bios, crtcport, crtcindex, crtcdata);
1061
1062 return 11;
1063 }
1064
1065 static int
init_not(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1066 init_not(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1067 {
1068 /*
1069 * INIT_NOT opcode: 0x38 ('8')
1070 *
1071 * offset (8 bit): opcode
1072 *
1073 * Invert the current execute / no-execute condition (i.e. "else")
1074 */
1075 if (iexec->execute)
1076 BIOSLOG(bios, "0x%04X: ------ Skipping following commands ------\n", offset);
1077 else
1078 BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", offset);
1079
1080 iexec->execute = !iexec->execute;
1081 return 1;
1082 }
1083
1084 static int
init_io_flag_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1085 init_io_flag_condition(struct nvbios *bios, uint16_t offset,
1086 struct init_exec *iexec)
1087 {
1088 /*
1089 * INIT_IO_FLAG_CONDITION opcode: 0x39 ('9')
1090 *
1091 * offset (8 bit): opcode
1092 * offset + 1 (8 bit): condition number
1093 *
1094 * Check condition "condition number" in the IO flag condition table.
1095 * If condition not met skip subsequent opcodes until condition is
1096 * inverted (INIT_NOT), or we hit INIT_RESUME
1097 */
1098
1099 uint8_t cond = bios->data[offset + 1];
1100
1101 if (!iexec->execute)
1102 return 2;
1103
1104 if (io_flag_condition_met(bios, offset, cond))
1105 BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
1106 else {
1107 BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
1108 iexec->execute = false;
1109 }
1110
1111 return 2;
1112 }
1113
1114 static int
init_dp_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1115 init_dp_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1116 {
1117 /*
1118 * INIT_DP_CONDITION opcode: 0x3A ('')
1119 *
1120 * offset (8 bit): opcode
1121 * offset + 1 (8 bit): "sub" opcode
1122 * offset + 2 (8 bit): unknown
1123 *
1124 */
1125
1126 struct dcb_entry *dcb = bios->display.output;
1127 struct drm_device *dev = bios->dev;
1128 uint8_t cond = bios->data[offset + 1];
1129 uint8_t *table, *entry;
1130
1131 BIOSLOG(bios, "0x%04X: subop 0x%02X\n", offset, cond);
1132
1133 if (!iexec->execute)
1134 return 3;
1135
1136 table = nouveau_dp_bios_data(dev, dcb, &entry);
1137 if (!table)
1138 return 3;
1139
1140 switch (cond) {
1141 case 0:
1142 entry = dcb_conn(dev, dcb->connector);
1143 if (!entry || entry[0] != DCB_CONNECTOR_eDP)
1144 iexec->execute = false;
1145 break;
1146 case 1:
1147 case 2:
1148 if ((table[0] < 0x40 && !(entry[5] & cond)) ||
1149 (table[0] == 0x40 && !(entry[4] & cond)))
1150 iexec->execute = false;
1151 break;
1152 case 5:
1153 {
1154 struct nouveau_i2c_chan *auxch;
1155 int ret;
1156
1157 auxch = nouveau_i2c_find(dev, bios->display.output->i2c_index);
1158 if (!auxch) {
1159 NV_ERROR(dev, "0x%04X: couldn't get auxch\n", offset);
1160 return 3;
1161 }
1162
1163 ret = nouveau_dp_auxch(auxch, 9, 0xd, &cond, 1);
1164 if (ret) {
1165 NV_ERROR(dev, "0x%04X: auxch rd fail: %d\n", offset, ret);
1166 return 3;
1167 }
1168
1169 if (!(cond & 1))
1170 iexec->execute = false;
1171 }
1172 break;
1173 default:
1174 NV_WARN(dev, "0x%04X: unknown INIT_3A op: %d\n", offset, cond);
1175 break;
1176 }
1177
1178 if (iexec->execute)
1179 BIOSLOG(bios, "0x%04X: continuing to execute\n", offset);
1180 else
1181 BIOSLOG(bios, "0x%04X: skipping following commands\n", offset);
1182
1183 return 3;
1184 }
1185
1186 static int
init_op_3b(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1187 init_op_3b(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1188 {
1189 /*
1190 * INIT_3B opcode: 0x3B ('')
1191 *
1192 * offset (8 bit): opcode
1193 * offset + 1 (8 bit): crtc index
1194 *
1195 */
1196
1197 uint8_t or = ffs(bios->display.output->or) - 1;
1198 uint8_t index = bios->data[offset + 1];
1199 uint8_t data;
1200
1201 if (!iexec->execute)
1202 return 2;
1203
1204 data = bios_idxprt_rd(bios, 0x3d4, index);
1205 bios_idxprt_wr(bios, 0x3d4, index, data & ~(1 << or));
1206 return 2;
1207 }
1208
1209 static int
init_op_3c(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1210 init_op_3c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1211 {
1212 /*
1213 * INIT_3C opcode: 0x3C ('')
1214 *
1215 * offset (8 bit): opcode
1216 * offset + 1 (8 bit): crtc index
1217 *
1218 */
1219
1220 uint8_t or = ffs(bios->display.output->or) - 1;
1221 uint8_t index = bios->data[offset + 1];
1222 uint8_t data;
1223
1224 if (!iexec->execute)
1225 return 2;
1226
1227 data = bios_idxprt_rd(bios, 0x3d4, index);
1228 bios_idxprt_wr(bios, 0x3d4, index, data | (1 << or));
1229 return 2;
1230 }
1231
1232 static int
init_idx_addr_latched(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1233 init_idx_addr_latched(struct nvbios *bios, uint16_t offset,
1234 struct init_exec *iexec)
1235 {
1236 /*
1237 * INIT_INDEX_ADDRESS_LATCHED opcode: 0x49 ('I')
1238 *
1239 * offset (8 bit): opcode
1240 * offset + 1 (32 bit): control register
1241 * offset + 5 (32 bit): data register
1242 * offset + 9 (32 bit): mask
1243 * offset + 13 (32 bit): data
1244 * offset + 17 (8 bit): count
1245 * offset + 18 (8 bit): address 1
1246 * offset + 19 (8 bit): data 1
1247 * ...
1248 *
1249 * For each of "count" address and data pairs, write "data n" to
1250 * "data register", read the current value of "control register",
1251 * and write it back once ANDed with "mask", ORed with "data",
1252 * and ORed with "address n"
1253 */
1254
1255 uint32_t controlreg = ROM32(bios->data[offset + 1]);
1256 uint32_t datareg = ROM32(bios->data[offset + 5]);
1257 uint32_t mask = ROM32(bios->data[offset + 9]);
1258 uint32_t data = ROM32(bios->data[offset + 13]);
1259 uint8_t count = bios->data[offset + 17];
1260 int len = 18 + count * 2;
1261 uint32_t value;
1262 int i;
1263
1264 if (!iexec->execute)
1265 return len;
1266
1267 BIOSLOG(bios, "0x%04X: ControlReg: 0x%08X, DataReg: 0x%08X, "
1268 "Mask: 0x%08X, Data: 0x%08X, Count: 0x%02X\n",
1269 offset, controlreg, datareg, mask, data, count);
1270
1271 for (i = 0; i < count; i++) {
1272 uint8_t instaddress = bios->data[offset + 18 + i * 2];
1273 uint8_t instdata = bios->data[offset + 19 + i * 2];
1274
1275 BIOSLOG(bios, "0x%04X: Address: 0x%02X, Data: 0x%02X\n",
1276 offset, instaddress, instdata);
1277
1278 bios_wr32(bios, datareg, instdata);
1279 value = bios_rd32(bios, controlreg) & mask;
1280 value |= data;
1281 value |= instaddress;
1282 bios_wr32(bios, controlreg, value);
1283 }
1284
1285 return len;
1286 }
1287
1288 static int
init_io_restrict_pll2(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1289 init_io_restrict_pll2(struct nvbios *bios, uint16_t offset,
1290 struct init_exec *iexec)
1291 {
1292 /*
1293 * INIT_IO_RESTRICT_PLL2 opcode: 0x4A ('J')
1294 *
1295 * offset (8 bit): opcode
1296 * offset + 1 (16 bit): CRTC port
1297 * offset + 3 (8 bit): CRTC index
1298 * offset + 4 (8 bit): mask
1299 * offset + 5 (8 bit): shift
1300 * offset + 6 (8 bit): count
1301 * offset + 7 (32 bit): register
1302 * offset + 11 (32 bit): frequency 1
1303 * ...
1304 *
1305 * Starting at offset + 11 there are "count" 32 bit frequencies (kHz).
1306 * Set PLL register "register" to coefficients for frequency n,
1307 * selected by reading index "CRTC index" of "CRTC port" ANDed with
1308 * "mask" and shifted right by "shift".
1309 */
1310
1311 uint16_t crtcport = ROM16(bios->data[offset + 1]);
1312 uint8_t crtcindex = bios->data[offset + 3];
1313 uint8_t mask = bios->data[offset + 4];
1314 uint8_t shift = bios->data[offset + 5];
1315 uint8_t count = bios->data[offset + 6];
1316 uint32_t reg = ROM32(bios->data[offset + 7]);
1317 int len = 11 + count * 4;
1318 uint8_t config;
1319 uint32_t freq;
1320
1321 if (!iexec->execute)
1322 return len;
1323
1324 BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
1325 "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
1326 offset, crtcport, crtcindex, mask, shift, count, reg);
1327
1328 if (!reg)
1329 return len;
1330
1331 config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
1332 if (config > count) {
1333 NV_ERROR(bios->dev,
1334 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
1335 offset, config, count);
1336 return len;
1337 }
1338
1339 freq = ROM32(bios->data[offset + 11 + config * 4]);
1340
1341 BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %dkHz\n",
1342 offset, reg, config, freq);
1343
1344 setPLL(bios, reg, freq);
1345
1346 return len;
1347 }
1348
1349 static int
init_pll2(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1350 init_pll2(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1351 {
1352 /*
1353 * INIT_PLL2 opcode: 0x4B ('K')
1354 *
1355 * offset (8 bit): opcode
1356 * offset + 1 (32 bit): register
1357 * offset + 5 (32 bit): freq
1358 *
1359 * Set PLL register "register" to coefficients for frequency "freq"
1360 */
1361
1362 uint32_t reg = ROM32(bios->data[offset + 1]);
1363 uint32_t freq = ROM32(bios->data[offset + 5]);
1364
1365 if (!iexec->execute)
1366 return 9;
1367
1368 BIOSLOG(bios, "0x%04X: Reg: 0x%04X, Freq: %dkHz\n",
1369 offset, reg, freq);
1370
1371 setPLL(bios, reg, freq);
1372 return 9;
1373 }
1374
1375 static int
init_i2c_byte(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1376 init_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1377 {
1378 /*
1379 * INIT_I2C_BYTE opcode: 0x4C ('L')
1380 *
1381 * offset (8 bit): opcode
1382 * offset + 1 (8 bit): DCB I2C table entry index
1383 * offset + 2 (8 bit): I2C slave address
1384 * offset + 3 (8 bit): count
1385 * offset + 4 (8 bit): I2C register 1
1386 * offset + 5 (8 bit): mask 1
1387 * offset + 6 (8 bit): data 1
1388 * ...
1389 *
1390 * For each of "count" registers given by "I2C register n" on the device
1391 * addressed by "I2C slave address" on the I2C bus given by
1392 * "DCB I2C table entry index", read the register, AND the result with
1393 * "mask n" and OR it with "data n" before writing it back to the device
1394 */
1395
1396 struct drm_device *dev = bios->dev;
1397 uint8_t i2c_index = bios->data[offset + 1];
1398 uint8_t i2c_address = bios->data[offset + 2] >> 1;
1399 uint8_t count = bios->data[offset + 3];
1400 struct nouveau_i2c_chan *chan;
1401 int len = 4 + count * 3;
1402 int ret, i;
1403
1404 if (!iexec->execute)
1405 return len;
1406
1407 BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1408 "Count: 0x%02X\n",
1409 offset, i2c_index, i2c_address, count);
1410
1411 chan = init_i2c_device_find(dev, i2c_index);
1412 if (!chan) {
1413 NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1414 return len;
1415 }
1416
1417 for (i = 0; i < count; i++) {
1418 uint8_t reg = bios->data[offset + 4 + i * 3];
1419 uint8_t mask = bios->data[offset + 5 + i * 3];
1420 uint8_t data = bios->data[offset + 6 + i * 3];
1421 union i2c_smbus_data val;
1422
1423 ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1424 I2C_SMBUS_READ, reg,
1425 I2C_SMBUS_BYTE_DATA, &val);
1426 if (ret < 0) {
1427 NV_ERROR(dev, "0x%04X: i2c rd fail: %d\n", offset, ret);
1428 return len;
1429 }
1430
1431 BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
1432 "Mask: 0x%02X, Data: 0x%02X\n",
1433 offset, reg, val.byte, mask, data);
1434
1435 if (!bios->execute)
1436 continue;
1437
1438 val.byte &= mask;
1439 val.byte |= data;
1440 ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1441 I2C_SMBUS_WRITE, reg,
1442 I2C_SMBUS_BYTE_DATA, &val);
1443 if (ret < 0) {
1444 NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1445 return len;
1446 }
1447 }
1448
1449 return len;
1450 }
1451
1452 static int
init_zm_i2c_byte(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1453 init_zm_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1454 {
1455 /*
1456 * INIT_ZM_I2C_BYTE opcode: 0x4D ('M')
1457 *
1458 * offset (8 bit): opcode
1459 * offset + 1 (8 bit): DCB I2C table entry index
1460 * offset + 2 (8 bit): I2C slave address
1461 * offset + 3 (8 bit): count
1462 * offset + 4 (8 bit): I2C register 1
1463 * offset + 5 (8 bit): data 1
1464 * ...
1465 *
1466 * For each of "count" registers given by "I2C register n" on the device
1467 * addressed by "I2C slave address" on the I2C bus given by
1468 * "DCB I2C table entry index", set the register to "data n"
1469 */
1470
1471 struct drm_device *dev = bios->dev;
1472 uint8_t i2c_index = bios->data[offset + 1];
1473 uint8_t i2c_address = bios->data[offset + 2] >> 1;
1474 uint8_t count = bios->data[offset + 3];
1475 struct nouveau_i2c_chan *chan;
1476 int len = 4 + count * 2;
1477 int ret, i;
1478
1479 if (!iexec->execute)
1480 return len;
1481
1482 BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1483 "Count: 0x%02X\n",
1484 offset, i2c_index, i2c_address, count);
1485
1486 chan = init_i2c_device_find(dev, i2c_index);
1487 if (!chan) {
1488 NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1489 return len;
1490 }
1491
1492 for (i = 0; i < count; i++) {
1493 uint8_t reg = bios->data[offset + 4 + i * 2];
1494 union i2c_smbus_data val;
1495
1496 val.byte = bios->data[offset + 5 + i * 2];
1497
1498 BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Data: 0x%02X\n",
1499 offset, reg, val.byte);
1500
1501 if (!bios->execute)
1502 continue;
1503
1504 ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
1505 I2C_SMBUS_WRITE, reg,
1506 I2C_SMBUS_BYTE_DATA, &val);
1507 if (ret < 0) {
1508 NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1509 return len;
1510 }
1511 }
1512
1513 return len;
1514 }
1515
1516 static int
init_zm_i2c(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1517 init_zm_i2c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1518 {
1519 /*
1520 * INIT_ZM_I2C opcode: 0x4E ('N')
1521 *
1522 * offset (8 bit): opcode
1523 * offset + 1 (8 bit): DCB I2C table entry index
1524 * offset + 2 (8 bit): I2C slave address
1525 * offset + 3 (8 bit): count
1526 * offset + 4 (8 bit): data 1
1527 * ...
1528 *
1529 * Send "count" bytes ("data n") to the device addressed by "I2C slave
1530 * address" on the I2C bus given by "DCB I2C table entry index"
1531 */
1532
1533 struct drm_device *dev = bios->dev;
1534 uint8_t i2c_index = bios->data[offset + 1];
1535 uint8_t i2c_address = bios->data[offset + 2] >> 1;
1536 uint8_t count = bios->data[offset + 3];
1537 int len = 4 + count;
1538 struct nouveau_i2c_chan *chan;
1539 struct i2c_msg msg;
1540 uint8_t data[256];
1541 int ret, i;
1542
1543 if (!iexec->execute)
1544 return len;
1545
1546 BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
1547 "Count: 0x%02X\n",
1548 offset, i2c_index, i2c_address, count);
1549
1550 chan = init_i2c_device_find(dev, i2c_index);
1551 if (!chan) {
1552 NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
1553 return len;
1554 }
1555
1556 for (i = 0; i < count; i++) {
1557 data[i] = bios->data[offset + 4 + i];
1558
1559 BIOSLOG(bios, "0x%04X: Data: 0x%02X\n", offset, data[i]);
1560 }
1561
1562 if (bios->execute) {
1563 msg.addr = i2c_address;
1564 msg.flags = 0;
1565 msg.len = count;
1566 msg.buf = data;
1567 ret = i2c_transfer(&chan->adapter, &msg, 1);
1568 if (ret != 1) {
1569 NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
1570 return len;
1571 }
1572 }
1573
1574 return len;
1575 }
1576
1577 static int
init_tmds(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1578 init_tmds(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1579 {
1580 /*
1581 * INIT_TMDS opcode: 0x4F ('O') (non-canon name)
1582 *
1583 * offset (8 bit): opcode
1584 * offset + 1 (8 bit): magic lookup value
1585 * offset + 2 (8 bit): TMDS address
1586 * offset + 3 (8 bit): mask
1587 * offset + 4 (8 bit): data
1588 *
1589 * Read the data reg for TMDS address "TMDS address", AND it with mask
1590 * and OR it with data, then write it back
1591 * "magic lookup value" determines which TMDS base address register is
1592 * used -- see get_tmds_index_reg()
1593 */
1594
1595 struct drm_device *dev = bios->dev;
1596 uint8_t mlv = bios->data[offset + 1];
1597 uint32_t tmdsaddr = bios->data[offset + 2];
1598 uint8_t mask = bios->data[offset + 3];
1599 uint8_t data = bios->data[offset + 4];
1600 uint32_t reg, value;
1601
1602 if (!iexec->execute)
1603 return 5;
1604
1605 BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, TMDSAddr: 0x%02X, "
1606 "Mask: 0x%02X, Data: 0x%02X\n",
1607 offset, mlv, tmdsaddr, mask, data);
1608
1609 reg = get_tmds_index_reg(bios->dev, mlv);
1610 if (!reg) {
1611 NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
1612 return 5;
1613 }
1614
1615 bios_wr32(bios, reg,
1616 tmdsaddr | NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE);
1617 value = (bios_rd32(bios, reg + 4) & mask) | data;
1618 bios_wr32(bios, reg + 4, value);
1619 bios_wr32(bios, reg, tmdsaddr);
1620
1621 return 5;
1622 }
1623
1624 static int
init_zm_tmds_group(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1625 init_zm_tmds_group(struct nvbios *bios, uint16_t offset,
1626 struct init_exec *iexec)
1627 {
1628 /*
1629 * INIT_ZM_TMDS_GROUP opcode: 0x50 ('P') (non-canon name)
1630 *
1631 * offset (8 bit): opcode
1632 * offset + 1 (8 bit): magic lookup value
1633 * offset + 2 (8 bit): count
1634 * offset + 3 (8 bit): addr 1
1635 * offset + 4 (8 bit): data 1
1636 * ...
1637 *
1638 * For each of "count" TMDS address and data pairs write "data n" to
1639 * "addr n". "magic lookup value" determines which TMDS base address
1640 * register is used -- see get_tmds_index_reg()
1641 */
1642
1643 struct drm_device *dev = bios->dev;
1644 uint8_t mlv = bios->data[offset + 1];
1645 uint8_t count = bios->data[offset + 2];
1646 int len = 3 + count * 2;
1647 uint32_t reg;
1648 int i;
1649
1650 if (!iexec->execute)
1651 return len;
1652
1653 BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, Count: 0x%02X\n",
1654 offset, mlv, count);
1655
1656 reg = get_tmds_index_reg(bios->dev, mlv);
1657 if (!reg) {
1658 NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
1659 return len;
1660 }
1661
1662 for (i = 0; i < count; i++) {
1663 uint8_t tmdsaddr = bios->data[offset + 3 + i * 2];
1664 uint8_t tmdsdata = bios->data[offset + 4 + i * 2];
1665
1666 bios_wr32(bios, reg + 4, tmdsdata);
1667 bios_wr32(bios, reg, tmdsaddr);
1668 }
1669
1670 return len;
1671 }
1672
1673 static int
init_cr_idx_adr_latch(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1674 init_cr_idx_adr_latch(struct nvbios *bios, uint16_t offset,
1675 struct init_exec *iexec)
1676 {
1677 /*
1678 * INIT_CR_INDEX_ADDRESS_LATCHED opcode: 0x51 ('Q')
1679 *
1680 * offset (8 bit): opcode
1681 * offset + 1 (8 bit): CRTC index1
1682 * offset + 2 (8 bit): CRTC index2
1683 * offset + 3 (8 bit): baseaddr
1684 * offset + 4 (8 bit): count
1685 * offset + 5 (8 bit): data 1
1686 * ...
1687 *
1688 * For each of "count" address and data pairs, write "baseaddr + n" to
1689 * "CRTC index1" and "data n" to "CRTC index2"
1690 * Once complete, restore initial value read from "CRTC index1"
1691 */
1692 uint8_t crtcindex1 = bios->data[offset + 1];
1693 uint8_t crtcindex2 = bios->data[offset + 2];
1694 uint8_t baseaddr = bios->data[offset + 3];
1695 uint8_t count = bios->data[offset + 4];
1696 int len = 5 + count;
1697 uint8_t oldaddr, data;
1698 int i;
1699
1700 if (!iexec->execute)
1701 return len;
1702
1703 BIOSLOG(bios, "0x%04X: Index1: 0x%02X, Index2: 0x%02X, "
1704 "BaseAddr: 0x%02X, Count: 0x%02X\n",
1705 offset, crtcindex1, crtcindex2, baseaddr, count);
1706
1707 oldaddr = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex1);
1708
1709 for (i = 0; i < count; i++) {
1710 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1,
1711 baseaddr + i);
1712 data = bios->data[offset + 5 + i];
1713 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex2, data);
1714 }
1715
1716 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, oldaddr);
1717
1718 return len;
1719 }
1720
1721 static int
init_cr(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1722 init_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1723 {
1724 /*
1725 * INIT_CR opcode: 0x52 ('R')
1726 *
1727 * offset (8 bit): opcode
1728 * offset + 1 (8 bit): CRTC index
1729 * offset + 2 (8 bit): mask
1730 * offset + 3 (8 bit): data
1731 *
1732 * Assign the value of at "CRTC index" ANDed with mask and ORed with
1733 * data back to "CRTC index"
1734 */
1735
1736 uint8_t crtcindex = bios->data[offset + 1];
1737 uint8_t mask = bios->data[offset + 2];
1738 uint8_t data = bios->data[offset + 3];
1739 uint8_t value;
1740
1741 if (!iexec->execute)
1742 return 4;
1743
1744 BIOSLOG(bios, "0x%04X: Index: 0x%02X, Mask: 0x%02X, Data: 0x%02X\n",
1745 offset, crtcindex, mask, data);
1746
1747 value = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex) & mask;
1748 value |= data;
1749 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, value);
1750
1751 return 4;
1752 }
1753
1754 static int
init_zm_cr(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1755 init_zm_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1756 {
1757 /*
1758 * INIT_ZM_CR opcode: 0x53 ('S')
1759 *
1760 * offset (8 bit): opcode
1761 * offset + 1 (8 bit): CRTC index
1762 * offset + 2 (8 bit): value
1763 *
1764 * Assign "value" to CRTC register with index "CRTC index".
1765 */
1766
1767 uint8_t crtcindex = ROM32(bios->data[offset + 1]);
1768 uint8_t data = bios->data[offset + 2];
1769
1770 if (!iexec->execute)
1771 return 3;
1772
1773 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, data);
1774
1775 return 3;
1776 }
1777
1778 static int
init_zm_cr_group(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1779 init_zm_cr_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1780 {
1781 /*
1782 * INIT_ZM_CR_GROUP opcode: 0x54 ('T')
1783 *
1784 * offset (8 bit): opcode
1785 * offset + 1 (8 bit): count
1786 * offset + 2 (8 bit): CRTC index 1
1787 * offset + 3 (8 bit): value 1
1788 * ...
1789 *
1790 * For "count", assign "value n" to CRTC register with index
1791 * "CRTC index n".
1792 */
1793
1794 uint8_t count = bios->data[offset + 1];
1795 int len = 2 + count * 2;
1796 int i;
1797
1798 if (!iexec->execute)
1799 return len;
1800
1801 for (i = 0; i < count; i++)
1802 init_zm_cr(bios, offset + 2 + 2 * i - 1, iexec);
1803
1804 return len;
1805 }
1806
1807 static int
init_condition_time(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1808 init_condition_time(struct nvbios *bios, uint16_t offset,
1809 struct init_exec *iexec)
1810 {
1811 /*
1812 * INIT_CONDITION_TIME opcode: 0x56 ('V')
1813 *
1814 * offset (8 bit): opcode
1815 * offset + 1 (8 bit): condition number
1816 * offset + 2 (8 bit): retries / 50
1817 *
1818 * Check condition "condition number" in the condition table.
1819 * Bios code then sleeps for 2ms if the condition is not met, and
1820 * repeats up to "retries" times, but on one C51 this has proved
1821 * insufficient. In mmiotraces the driver sleeps for 20ms, so we do
1822 * this, and bail after "retries" times, or 2s, whichever is less.
1823 * If still not met after retries, clear execution flag for this table.
1824 */
1825
1826 uint8_t cond = bios->data[offset + 1];
1827 uint16_t retries = bios->data[offset + 2] * 50;
1828 unsigned cnt;
1829
1830 if (!iexec->execute)
1831 return 3;
1832
1833 if (retries > 100)
1834 retries = 100;
1835
1836 BIOSLOG(bios, "0x%04X: Condition: 0x%02X, Retries: 0x%02X\n",
1837 offset, cond, retries);
1838
1839 if (!bios->execute) /* avoid 2s delays when "faking" execution */
1840 retries = 1;
1841
1842 for (cnt = 0; cnt < retries; cnt++) {
1843 if (bios_condition_met(bios, offset, cond)) {
1844 BIOSLOG(bios, "0x%04X: Condition met, continuing\n",
1845 offset);
1846 break;
1847 } else {
1848 BIOSLOG(bios, "0x%04X: "
1849 "Condition not met, sleeping for 20ms\n",
1850 offset);
1851 mdelay(20);
1852 }
1853 }
1854
1855 if (!bios_condition_met(bios, offset, cond)) {
1856 NV_WARN(bios->dev,
1857 "0x%04X: Condition still not met after %dms, "
1858 "skipping following opcodes\n", offset, 20 * retries);
1859 iexec->execute = false;
1860 }
1861
1862 return 3;
1863 }
1864
1865 static int
init_ltime(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1866 init_ltime(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1867 {
1868 /*
1869 * INIT_LTIME opcode: 0x57 ('V')
1870 *
1871 * offset (8 bit): opcode
1872 * offset + 1 (16 bit): time
1873 *
1874 * Sleep for "time" milliseconds.
1875 */
1876
1877 unsigned time = ROM16(bios->data[offset + 1]);
1878
1879 if (!iexec->execute)
1880 return 3;
1881
1882 BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X milliseconds\n",
1883 offset, time);
1884
1885 mdelay(time);
1886
1887 return 3;
1888 }
1889
1890 static int
init_zm_reg_sequence(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1891 init_zm_reg_sequence(struct nvbios *bios, uint16_t offset,
1892 struct init_exec *iexec)
1893 {
1894 /*
1895 * INIT_ZM_REG_SEQUENCE opcode: 0x58 ('X')
1896 *
1897 * offset (8 bit): opcode
1898 * offset + 1 (32 bit): base register
1899 * offset + 5 (8 bit): count
1900 * offset + 6 (32 bit): value 1
1901 * ...
1902 *
1903 * Starting at offset + 6 there are "count" 32 bit values.
1904 * For "count" iterations set "base register" + 4 * current_iteration
1905 * to "value current_iteration"
1906 */
1907
1908 uint32_t basereg = ROM32(bios->data[offset + 1]);
1909 uint32_t count = bios->data[offset + 5];
1910 int len = 6 + count * 4;
1911 int i;
1912
1913 if (!iexec->execute)
1914 return len;
1915
1916 BIOSLOG(bios, "0x%04X: BaseReg: 0x%08X, Count: 0x%02X\n",
1917 offset, basereg, count);
1918
1919 for (i = 0; i < count; i++) {
1920 uint32_t reg = basereg + i * 4;
1921 uint32_t data = ROM32(bios->data[offset + 6 + i * 4]);
1922
1923 bios_wr32(bios, reg, data);
1924 }
1925
1926 return len;
1927 }
1928
1929 static int
init_sub_direct(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1930 init_sub_direct(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1931 {
1932 /*
1933 * INIT_SUB_DIRECT opcode: 0x5B ('[')
1934 *
1935 * offset (8 bit): opcode
1936 * offset + 1 (16 bit): subroutine offset (in bios)
1937 *
1938 * Calls a subroutine that will execute commands until INIT_DONE
1939 * is found.
1940 */
1941
1942 uint16_t sub_offset = ROM16(bios->data[offset + 1]);
1943
1944 if (!iexec->execute)
1945 return 3;
1946
1947 BIOSLOG(bios, "0x%04X: Executing subroutine at 0x%04X\n",
1948 offset, sub_offset);
1949
1950 parse_init_table(bios, sub_offset, iexec);
1951
1952 BIOSLOG(bios, "0x%04X: End of 0x%04X subroutine\n", offset, sub_offset);
1953
1954 return 3;
1955 }
1956
1957 static int
init_jump(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1958 init_jump(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1959 {
1960 /*
1961 * INIT_JUMP opcode: 0x5C ('\')
1962 *
1963 * offset (8 bit): opcode
1964 * offset + 1 (16 bit): offset (in bios)
1965 *
1966 * Continue execution of init table from 'offset'
1967 */
1968
1969 uint16_t jmp_offset = ROM16(bios->data[offset + 1]);
1970
1971 if (!iexec->execute)
1972 return 3;
1973
1974 BIOSLOG(bios, "0x%04X: Jump to 0x%04X\n", offset, jmp_offset);
1975 return jmp_offset - offset;
1976 }
1977
1978 static int
init_i2c_if(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)1979 init_i2c_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
1980 {
1981 /*
1982 * INIT_I2C_IF opcode: 0x5E ('^')
1983 *
1984 * offset (8 bit): opcode
1985 * offset + 1 (8 bit): DCB I2C table entry index
1986 * offset + 2 (8 bit): I2C slave address
1987 * offset + 3 (8 bit): I2C register
1988 * offset + 4 (8 bit): mask
1989 * offset + 5 (8 bit): data
1990 *
1991 * Read the register given by "I2C register" on the device addressed
1992 * by "I2C slave address" on the I2C bus given by "DCB I2C table
1993 * entry index". Compare the result AND "mask" to "data".
1994 * If they're not equal, skip subsequent opcodes until condition is
1995 * inverted (INIT_NOT), or we hit INIT_RESUME
1996 */
1997
1998 uint8_t i2c_index = bios->data[offset + 1];
1999 uint8_t i2c_address = bios->data[offset + 2] >> 1;
2000 uint8_t reg = bios->data[offset + 3];
2001 uint8_t mask = bios->data[offset + 4];
2002 uint8_t data = bios->data[offset + 5];
2003 struct nouveau_i2c_chan *chan;
2004 union i2c_smbus_data val;
2005 int ret;
2006
2007 /* no execute check by design */
2008
2009 BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
2010 offset, i2c_index, i2c_address);
2011
2012 chan = init_i2c_device_find(bios->dev, i2c_index);
2013 if (!chan)
2014 return -ENODEV;
2015
2016 ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
2017 I2C_SMBUS_READ, reg,
2018 I2C_SMBUS_BYTE_DATA, &val);
2019 if (ret < 0) {
2020 BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: [no device], "
2021 "Mask: 0x%02X, Data: 0x%02X\n",
2022 offset, reg, mask, data);
2023 iexec->execute = 0;
2024 return 6;
2025 }
2026
2027 BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
2028 "Mask: 0x%02X, Data: 0x%02X\n",
2029 offset, reg, val.byte, mask, data);
2030
2031 iexec->execute = ((val.byte & mask) == data);
2032
2033 return 6;
2034 }
2035
2036 static int
init_copy_nv_reg(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2037 init_copy_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2038 {
2039 /*
2040 * INIT_COPY_NV_REG opcode: 0x5F ('_')
2041 *
2042 * offset (8 bit): opcode
2043 * offset + 1 (32 bit): src reg
2044 * offset + 5 (8 bit): shift
2045 * offset + 6 (32 bit): src mask
2046 * offset + 10 (32 bit): xor
2047 * offset + 14 (32 bit): dst reg
2048 * offset + 18 (32 bit): dst mask
2049 *
2050 * Shift REGVAL("src reg") right by (signed) "shift", AND result with
2051 * "src mask", then XOR with "xor". Write this OR'd with
2052 * (REGVAL("dst reg") AND'd with "dst mask") to "dst reg"
2053 */
2054
2055 uint32_t srcreg = *((uint32_t *)(&bios->data[offset + 1]));
2056 uint8_t shift = bios->data[offset + 5];
2057 uint32_t srcmask = *((uint32_t *)(&bios->data[offset + 6]));
2058 uint32_t xor = *((uint32_t *)(&bios->data[offset + 10]));
2059 uint32_t dstreg = *((uint32_t *)(&bios->data[offset + 14]));
2060 uint32_t dstmask = *((uint32_t *)(&bios->data[offset + 18]));
2061 uint32_t srcvalue, dstvalue;
2062
2063 if (!iexec->execute)
2064 return 22;
2065
2066 BIOSLOG(bios, "0x%04X: SrcReg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%08X, "
2067 "Xor: 0x%08X, DstReg: 0x%08X, DstMask: 0x%08X\n",
2068 offset, srcreg, shift, srcmask, xor, dstreg, dstmask);
2069
2070 srcvalue = bios_rd32(bios, srcreg);
2071
2072 if (shift < 0x80)
2073 srcvalue >>= shift;
2074 else
2075 srcvalue <<= (0x100 - shift);
2076
2077 srcvalue = (srcvalue & srcmask) ^ xor;
2078
2079 dstvalue = bios_rd32(bios, dstreg) & dstmask;
2080
2081 bios_wr32(bios, dstreg, dstvalue | srcvalue);
2082
2083 return 22;
2084 }
2085
2086 static int
init_zm_index_io(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2087 init_zm_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2088 {
2089 /*
2090 * INIT_ZM_INDEX_IO opcode: 0x62 ('b')
2091 *
2092 * offset (8 bit): opcode
2093 * offset + 1 (16 bit): CRTC port
2094 * offset + 3 (8 bit): CRTC index
2095 * offset + 4 (8 bit): data
2096 *
2097 * Write "data" to index "CRTC index" of "CRTC port"
2098 */
2099 uint16_t crtcport = ROM16(bios->data[offset + 1]);
2100 uint8_t crtcindex = bios->data[offset + 3];
2101 uint8_t data = bios->data[offset + 4];
2102
2103 if (!iexec->execute)
2104 return 5;
2105
2106 bios_idxprt_wr(bios, crtcport, crtcindex, data);
2107
2108 return 5;
2109 }
2110
2111 static inline void
bios_md32(struct nvbios * bios,uint32_t reg,uint32_t mask,uint32_t val)2112 bios_md32(struct nvbios *bios, uint32_t reg,
2113 uint32_t mask, uint32_t val)
2114 {
2115 bios_wr32(bios, reg, (bios_rd32(bios, reg) & ~mask) | val);
2116 }
2117
2118 static uint32_t
peek_fb(struct drm_device * dev,struct io_mapping * fb,uint32_t off)2119 peek_fb(struct drm_device *dev, struct io_mapping *fb,
2120 uint32_t off)
2121 {
2122 uint32_t val = 0;
2123
2124 if (off < pci_resource_len(dev->pdev, 1)) {
2125 uint8_t __iomem *p =
2126 io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
2127
2128 val = ioread32(p + (off & ~PAGE_MASK));
2129
2130 io_mapping_unmap_atomic(p);
2131 }
2132
2133 return val;
2134 }
2135
2136 static void
poke_fb(struct drm_device * dev,struct io_mapping * fb,uint32_t off,uint32_t val)2137 poke_fb(struct drm_device *dev, struct io_mapping *fb,
2138 uint32_t off, uint32_t val)
2139 {
2140 if (off < pci_resource_len(dev->pdev, 1)) {
2141 uint8_t __iomem *p =
2142 io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
2143
2144 iowrite32(val, p + (off & ~PAGE_MASK));
2145 wmb();
2146
2147 io_mapping_unmap_atomic(p);
2148 }
2149 }
2150
2151 static inline bool
read_back_fb(struct drm_device * dev,struct io_mapping * fb,uint32_t off,uint32_t val)2152 read_back_fb(struct drm_device *dev, struct io_mapping *fb,
2153 uint32_t off, uint32_t val)
2154 {
2155 poke_fb(dev, fb, off, val);
2156 return val == peek_fb(dev, fb, off);
2157 }
2158
2159 static int
nv04_init_compute_mem(struct nvbios * bios)2160 nv04_init_compute_mem(struct nvbios *bios)
2161 {
2162 struct drm_device *dev = bios->dev;
2163 uint32_t patt = 0xdeadbeef;
2164 struct io_mapping *fb;
2165 int i;
2166
2167 /* Map the framebuffer aperture */
2168 fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2169 pci_resource_len(dev->pdev, 1));
2170 if (!fb)
2171 return -ENOMEM;
2172
2173 /* Sequencer and refresh off */
2174 NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);
2175 bios_md32(bios, NV04_PFB_DEBUG_0, 0, NV04_PFB_DEBUG_0_REFRESH_OFF);
2176
2177 bios_md32(bios, NV04_PFB_BOOT_0, ~0,
2178 NV04_PFB_BOOT_0_RAM_AMOUNT_16MB |
2179 NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2180 NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_16MBIT);
2181
2182 for (i = 0; i < 4; i++)
2183 poke_fb(dev, fb, 4 * i, patt);
2184
2185 poke_fb(dev, fb, 0x400000, patt + 1);
2186
2187 if (peek_fb(dev, fb, 0) == patt + 1) {
2188 bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
2189 NV04_PFB_BOOT_0_RAM_TYPE_SDRAM_16MBIT);
2190 bios_md32(bios, NV04_PFB_DEBUG_0,
2191 NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2192
2193 for (i = 0; i < 4; i++)
2194 poke_fb(dev, fb, 4 * i, patt);
2195
2196 if ((peek_fb(dev, fb, 0xc) & 0xffff) != (patt & 0xffff))
2197 bios_md32(bios, NV04_PFB_BOOT_0,
2198 NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2199 NV04_PFB_BOOT_0_RAM_AMOUNT,
2200 NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2201
2202 } else if ((peek_fb(dev, fb, 0xc) & 0xffff0000) !=
2203 (patt & 0xffff0000)) {
2204 bios_md32(bios, NV04_PFB_BOOT_0,
2205 NV04_PFB_BOOT_0_RAM_WIDTH_128 |
2206 NV04_PFB_BOOT_0_RAM_AMOUNT,
2207 NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2208
2209 } else if (peek_fb(dev, fb, 0) != patt) {
2210 if (read_back_fb(dev, fb, 0x800000, patt))
2211 bios_md32(bios, NV04_PFB_BOOT_0,
2212 NV04_PFB_BOOT_0_RAM_AMOUNT,
2213 NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2214 else
2215 bios_md32(bios, NV04_PFB_BOOT_0,
2216 NV04_PFB_BOOT_0_RAM_AMOUNT,
2217 NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2218
2219 bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
2220 NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_8MBIT);
2221
2222 } else if (!read_back_fb(dev, fb, 0x800000, patt)) {
2223 bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2224 NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2225
2226 }
2227
2228 /* Refresh on, sequencer on */
2229 bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2230 NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);
2231
2232 io_mapping_free(fb);
2233 return 0;
2234 }
2235
2236 static const uint8_t *
nv05_memory_config(struct nvbios * bios)2237 nv05_memory_config(struct nvbios *bios)
2238 {
2239 /* Defaults for BIOSes lacking a memory config table */
2240 static const uint8_t default_config_tab[][2] = {
2241 { 0x24, 0x00 },
2242 { 0x28, 0x00 },
2243 { 0x24, 0x01 },
2244 { 0x1f, 0x00 },
2245 { 0x0f, 0x00 },
2246 { 0x17, 0x00 },
2247 { 0x06, 0x00 },
2248 { 0x00, 0x00 }
2249 };
2250 int i = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) &
2251 NV_PEXTDEV_BOOT_0_RAMCFG) >> 2;
2252
2253 if (bios->legacy.mem_init_tbl_ptr)
2254 return &bios->data[bios->legacy.mem_init_tbl_ptr + 2 * i];
2255 else
2256 return default_config_tab[i];
2257 }
2258
2259 static int
nv05_init_compute_mem(struct nvbios * bios)2260 nv05_init_compute_mem(struct nvbios *bios)
2261 {
2262 struct drm_device *dev = bios->dev;
2263 const uint8_t *ramcfg = nv05_memory_config(bios);
2264 uint32_t patt = 0xdeadbeef;
2265 struct io_mapping *fb;
2266 int i, v;
2267
2268 /* Map the framebuffer aperture */
2269 fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2270 pci_resource_len(dev->pdev, 1));
2271 if (!fb)
2272 return -ENOMEM;
2273
2274 /* Sequencer off */
2275 NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);
2276
2277 if (bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_UMA_ENABLE)
2278 goto out;
2279
2280 bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
2281
2282 /* If present load the hardcoded scrambling table */
2283 if (bios->legacy.mem_init_tbl_ptr) {
2284 uint32_t *scramble_tab = (uint32_t *)&bios->data[
2285 bios->legacy.mem_init_tbl_ptr + 0x10];
2286
2287 for (i = 0; i < 8; i++)
2288 bios_wr32(bios, NV04_PFB_SCRAMBLE(i),
2289 ROM32(scramble_tab[i]));
2290 }
2291
2292 /* Set memory type/width/length defaults depending on the straps */
2293 bios_md32(bios, NV04_PFB_BOOT_0, 0x3f, ramcfg[0]);
2294
2295 if (ramcfg[1] & 0x80)
2296 bios_md32(bios, NV04_PFB_CFG0, 0, NV04_PFB_CFG0_SCRAMBLE);
2297
2298 bios_md32(bios, NV04_PFB_CFG1, 0x700001, (ramcfg[1] & 1) << 20);
2299 bios_md32(bios, NV04_PFB_CFG1, 0, 1);
2300
2301 /* Probe memory bus width */
2302 for (i = 0; i < 4; i++)
2303 poke_fb(dev, fb, 4 * i, patt);
2304
2305 if (peek_fb(dev, fb, 0xc) != patt)
2306 bios_md32(bios, NV04_PFB_BOOT_0,
2307 NV04_PFB_BOOT_0_RAM_WIDTH_128, 0);
2308
2309 /* Probe memory length */
2310 v = bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_RAM_AMOUNT;
2311
2312 if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_32MB &&
2313 (!read_back_fb(dev, fb, 0x1000000, ++patt) ||
2314 !read_back_fb(dev, fb, 0, ++patt)))
2315 bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2316 NV04_PFB_BOOT_0_RAM_AMOUNT_16MB);
2317
2318 if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_16MB &&
2319 !read_back_fb(dev, fb, 0x800000, ++patt))
2320 bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2321 NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
2322
2323 if (!read_back_fb(dev, fb, 0x400000, ++patt))
2324 bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
2325 NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);
2326
2327 out:
2328 /* Sequencer on */
2329 NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);
2330
2331 io_mapping_free(fb);
2332 return 0;
2333 }
2334
2335 static int
nv10_init_compute_mem(struct nvbios * bios)2336 nv10_init_compute_mem(struct nvbios *bios)
2337 {
2338 struct drm_device *dev = bios->dev;
2339 struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2340 const int mem_width[] = { 0x10, 0x00, 0x20 };
2341 const int mem_width_count = (dev_priv->chipset >= 0x17 ? 3 : 2);
2342 uint32_t patt = 0xdeadbeef;
2343 struct io_mapping *fb;
2344 int i, j, k;
2345
2346 /* Map the framebuffer aperture */
2347 fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2348 pci_resource_len(dev->pdev, 1));
2349 if (!fb)
2350 return -ENOMEM;
2351
2352 bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);
2353
2354 /* Probe memory bus width */
2355 for (i = 0; i < mem_width_count; i++) {
2356 bios_md32(bios, NV04_PFB_CFG0, 0x30, mem_width[i]);
2357
2358 for (j = 0; j < 4; j++) {
2359 for (k = 0; k < 4; k++)
2360 poke_fb(dev, fb, 0x1c, 0);
2361
2362 poke_fb(dev, fb, 0x1c, patt);
2363 poke_fb(dev, fb, 0x3c, 0);
2364
2365 if (peek_fb(dev, fb, 0x1c) == patt)
2366 goto mem_width_found;
2367 }
2368 }
2369
2370 mem_width_found:
2371 patt <<= 1;
2372
2373 /* Probe amount of installed memory */
2374 for (i = 0; i < 4; i++) {
2375 int off = bios_rd32(bios, NV04_PFB_FIFO_DATA) - 0x100000;
2376
2377 poke_fb(dev, fb, off, patt);
2378 poke_fb(dev, fb, 0, 0);
2379
2380 peek_fb(dev, fb, 0);
2381 peek_fb(dev, fb, 0);
2382 peek_fb(dev, fb, 0);
2383 peek_fb(dev, fb, 0);
2384
2385 if (peek_fb(dev, fb, off) == patt)
2386 goto amount_found;
2387 }
2388
2389 /* IC missing - disable the upper half memory space. */
2390 bios_md32(bios, NV04_PFB_CFG0, 0x1000, 0);
2391
2392 amount_found:
2393 io_mapping_free(fb);
2394 return 0;
2395 }
2396
2397 static int
nv20_init_compute_mem(struct nvbios * bios)2398 nv20_init_compute_mem(struct nvbios *bios)
2399 {
2400 struct drm_device *dev = bios->dev;
2401 struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2402 uint32_t mask = (dev_priv->chipset >= 0x25 ? 0x300 : 0x900);
2403 uint32_t amount, off;
2404 struct io_mapping *fb;
2405
2406 /* Map the framebuffer aperture */
2407 fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
2408 pci_resource_len(dev->pdev, 1));
2409 if (!fb)
2410 return -ENOMEM;
2411
2412 bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);
2413
2414 /* Allow full addressing */
2415 bios_md32(bios, NV04_PFB_CFG0, 0, mask);
2416
2417 amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
2418 for (off = amount; off > 0x2000000; off -= 0x2000000)
2419 poke_fb(dev, fb, off - 4, off);
2420
2421 amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
2422 if (amount != peek_fb(dev, fb, amount - 4))
2423 /* IC missing - disable the upper half memory space. */
2424 bios_md32(bios, NV04_PFB_CFG0, mask, 0);
2425
2426 io_mapping_free(fb);
2427 return 0;
2428 }
2429
2430 static int
init_compute_mem(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2431 init_compute_mem(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2432 {
2433 /*
2434 * INIT_COMPUTE_MEM opcode: 0x63 ('c')
2435 *
2436 * offset (8 bit): opcode
2437 *
2438 * This opcode is meant to set the PFB memory config registers
2439 * appropriately so that we can correctly calculate how much VRAM it
2440 * has (on nv10 and better chipsets the amount of installed VRAM is
2441 * subsequently reported in NV_PFB_CSTATUS (0x10020C)).
2442 *
2443 * The implementation of this opcode in general consists of several
2444 * parts:
2445 *
2446 * 1) Determination of memory type and density. Only necessary for
2447 * really old chipsets, the memory type reported by the strap bits
2448 * (0x101000) is assumed to be accurate on nv05 and newer.
2449 *
2450 * 2) Determination of the memory bus width. Usually done by a cunning
2451 * combination of writes to offsets 0x1c and 0x3c in the fb, and
2452 * seeing whether the written values are read back correctly.
2453 *
2454 * Only necessary on nv0x-nv1x and nv34, on the other cards we can
2455 * trust the straps.
2456 *
2457 * 3) Determination of how many of the card's RAM pads have ICs
2458 * attached, usually done by a cunning combination of writes to an
2459 * offset slightly less than the maximum memory reported by
2460 * NV_PFB_CSTATUS, then seeing if the test pattern can be read back.
2461 *
2462 * This appears to be a NOP on IGPs and NV4x or newer chipsets, both io
2463 * logs of the VBIOS and kmmio traces of the binary driver POSTing the
2464 * card show nothing being done for this opcode. Why is it still listed
2465 * in the table?!
2466 */
2467
2468 /* no iexec->execute check by design */
2469
2470 struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2471 int ret;
2472
2473 if (dev_priv->chipset >= 0x40 ||
2474 dev_priv->chipset == 0x1a ||
2475 dev_priv->chipset == 0x1f)
2476 ret = 0;
2477 else if (dev_priv->chipset >= 0x20 &&
2478 dev_priv->chipset != 0x34)
2479 ret = nv20_init_compute_mem(bios);
2480 else if (dev_priv->chipset >= 0x10)
2481 ret = nv10_init_compute_mem(bios);
2482 else if (dev_priv->chipset >= 0x5)
2483 ret = nv05_init_compute_mem(bios);
2484 else
2485 ret = nv04_init_compute_mem(bios);
2486
2487 if (ret)
2488 return ret;
2489
2490 return 1;
2491 }
2492
2493 static int
init_reset(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2494 init_reset(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2495 {
2496 /*
2497 * INIT_RESET opcode: 0x65 ('e')
2498 *
2499 * offset (8 bit): opcode
2500 * offset + 1 (32 bit): register
2501 * offset + 5 (32 bit): value1
2502 * offset + 9 (32 bit): value2
2503 *
2504 * Assign "value1" to "register", then assign "value2" to "register"
2505 */
2506
2507 uint32_t reg = ROM32(bios->data[offset + 1]);
2508 uint32_t value1 = ROM32(bios->data[offset + 5]);
2509 uint32_t value2 = ROM32(bios->data[offset + 9]);
2510 uint32_t pci_nv_19, pci_nv_20;
2511
2512 /* no iexec->execute check by design */
2513
2514 pci_nv_19 = bios_rd32(bios, NV_PBUS_PCI_NV_19);
2515 bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19 & ~0xf00);
2516
2517 bios_wr32(bios, reg, value1);
2518
2519 udelay(10);
2520
2521 bios_wr32(bios, reg, value2);
2522 bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19);
2523
2524 pci_nv_20 = bios_rd32(bios, NV_PBUS_PCI_NV_20);
2525 pci_nv_20 &= ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED; /* 0xfffffffe */
2526 bios_wr32(bios, NV_PBUS_PCI_NV_20, pci_nv_20);
2527
2528 return 13;
2529 }
2530
2531 static int
init_configure_mem(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2532 init_configure_mem(struct nvbios *bios, uint16_t offset,
2533 struct init_exec *iexec)
2534 {
2535 /*
2536 * INIT_CONFIGURE_MEM opcode: 0x66 ('f')
2537 *
2538 * offset (8 bit): opcode
2539 *
2540 * Equivalent to INIT_DONE on bios version 3 or greater.
2541 * For early bios versions, sets up the memory registers, using values
2542 * taken from the memory init table
2543 */
2544
2545 /* no iexec->execute check by design */
2546
2547 uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
2548 uint16_t seqtbloffs = bios->legacy.sdr_seq_tbl_ptr, meminitdata = meminitoffs + 6;
2549 uint32_t reg, data;
2550
2551 if (bios->major_version > 2)
2552 return 0;
2553
2554 bios_idxprt_wr(bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX, bios_idxprt_rd(
2555 bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX) | 0x20);
2556
2557 if (bios->data[meminitoffs] & 1)
2558 seqtbloffs = bios->legacy.ddr_seq_tbl_ptr;
2559
2560 for (reg = ROM32(bios->data[seqtbloffs]);
2561 reg != 0xffffffff;
2562 reg = ROM32(bios->data[seqtbloffs += 4])) {
2563
2564 switch (reg) {
2565 case NV04_PFB_PRE:
2566 data = NV04_PFB_PRE_CMD_PRECHARGE;
2567 break;
2568 case NV04_PFB_PAD:
2569 data = NV04_PFB_PAD_CKE_NORMAL;
2570 break;
2571 case NV04_PFB_REF:
2572 data = NV04_PFB_REF_CMD_REFRESH;
2573 break;
2574 default:
2575 data = ROM32(bios->data[meminitdata]);
2576 meminitdata += 4;
2577 if (data == 0xffffffff)
2578 continue;
2579 }
2580
2581 bios_wr32(bios, reg, data);
2582 }
2583
2584 return 1;
2585 }
2586
2587 static int
init_configure_clk(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2588 init_configure_clk(struct nvbios *bios, uint16_t offset,
2589 struct init_exec *iexec)
2590 {
2591 /*
2592 * INIT_CONFIGURE_CLK opcode: 0x67 ('g')
2593 *
2594 * offset (8 bit): opcode
2595 *
2596 * Equivalent to INIT_DONE on bios version 3 or greater.
2597 * For early bios versions, sets up the NVClk and MClk PLLs, using
2598 * values taken from the memory init table
2599 */
2600
2601 /* no iexec->execute check by design */
2602
2603 uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
2604 int clock;
2605
2606 if (bios->major_version > 2)
2607 return 0;
2608
2609 clock = ROM16(bios->data[meminitoffs + 4]) * 10;
2610 setPLL(bios, NV_PRAMDAC_NVPLL_COEFF, clock);
2611
2612 clock = ROM16(bios->data[meminitoffs + 2]) * 10;
2613 if (bios->data[meminitoffs] & 1) /* DDR */
2614 clock *= 2;
2615 setPLL(bios, NV_PRAMDAC_MPLL_COEFF, clock);
2616
2617 return 1;
2618 }
2619
2620 static int
init_configure_preinit(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2621 init_configure_preinit(struct nvbios *bios, uint16_t offset,
2622 struct init_exec *iexec)
2623 {
2624 /*
2625 * INIT_CONFIGURE_PREINIT opcode: 0x68 ('h')
2626 *
2627 * offset (8 bit): opcode
2628 *
2629 * Equivalent to INIT_DONE on bios version 3 or greater.
2630 * For early bios versions, does early init, loading ram and crystal
2631 * configuration from straps into CR3C
2632 */
2633
2634 /* no iexec->execute check by design */
2635
2636 uint32_t straps = bios_rd32(bios, NV_PEXTDEV_BOOT_0);
2637 uint8_t cr3c = ((straps << 2) & 0xf0) | (straps & 0x40) >> 6;
2638
2639 if (bios->major_version > 2)
2640 return 0;
2641
2642 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR,
2643 NV_CIO_CRE_SCRATCH4__INDEX, cr3c);
2644
2645 return 1;
2646 }
2647
2648 static int
init_io(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2649 init_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2650 {
2651 /*
2652 * INIT_IO opcode: 0x69 ('i')
2653 *
2654 * offset (8 bit): opcode
2655 * offset + 1 (16 bit): CRTC port
2656 * offset + 3 (8 bit): mask
2657 * offset + 4 (8 bit): data
2658 *
2659 * Assign ((IOVAL("crtc port") & "mask") | "data") to "crtc port"
2660 */
2661
2662 struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2663 uint16_t crtcport = ROM16(bios->data[offset + 1]);
2664 uint8_t mask = bios->data[offset + 3];
2665 uint8_t data = bios->data[offset + 4];
2666
2667 if (!iexec->execute)
2668 return 5;
2669
2670 BIOSLOG(bios, "0x%04X: Port: 0x%04X, Mask: 0x%02X, Data: 0x%02X\n",
2671 offset, crtcport, mask, data);
2672
2673 /*
2674 * I have no idea what this does, but NVIDIA do this magic sequence
2675 * in the places where this INIT_IO happens..
2676 */
2677 if (dev_priv->card_type >= NV_50 && crtcport == 0x3c3 && data == 1) {
2678 int i;
2679
2680 bios_wr32(bios, 0x614100, (bios_rd32(
2681 bios, 0x614100) & 0x0fffffff) | 0x00800000);
2682
2683 bios_wr32(bios, 0x00e18c, bios_rd32(
2684 bios, 0x00e18c) | 0x00020000);
2685
2686 bios_wr32(bios, 0x614900, (bios_rd32(
2687 bios, 0x614900) & 0x0fffffff) | 0x00800000);
2688
2689 bios_wr32(bios, 0x000200, bios_rd32(
2690 bios, 0x000200) & ~0x40000000);
2691
2692 mdelay(10);
2693
2694 bios_wr32(bios, 0x00e18c, bios_rd32(
2695 bios, 0x00e18c) & ~0x00020000);
2696
2697 bios_wr32(bios, 0x000200, bios_rd32(
2698 bios, 0x000200) | 0x40000000);
2699
2700 bios_wr32(bios, 0x614100, 0x00800018);
2701 bios_wr32(bios, 0x614900, 0x00800018);
2702
2703 mdelay(10);
2704
2705 bios_wr32(bios, 0x614100, 0x10000018);
2706 bios_wr32(bios, 0x614900, 0x10000018);
2707
2708 for (i = 0; i < 3; i++)
2709 bios_wr32(bios, 0x614280 + (i*0x800), bios_rd32(
2710 bios, 0x614280 + (i*0x800)) & 0xf0f0f0f0);
2711
2712 for (i = 0; i < 2; i++)
2713 bios_wr32(bios, 0x614300 + (i*0x800), bios_rd32(
2714 bios, 0x614300 + (i*0x800)) & 0xfffff0f0);
2715
2716 for (i = 0; i < 3; i++)
2717 bios_wr32(bios, 0x614380 + (i*0x800), bios_rd32(
2718 bios, 0x614380 + (i*0x800)) & 0xfffff0f0);
2719
2720 for (i = 0; i < 2; i++)
2721 bios_wr32(bios, 0x614200 + (i*0x800), bios_rd32(
2722 bios, 0x614200 + (i*0x800)) & 0xfffffff0);
2723
2724 for (i = 0; i < 2; i++)
2725 bios_wr32(bios, 0x614108 + (i*0x800), bios_rd32(
2726 bios, 0x614108 + (i*0x800)) & 0x0fffffff);
2727 return 5;
2728 }
2729
2730 bios_port_wr(bios, crtcport, (bios_port_rd(bios, crtcport) & mask) |
2731 data);
2732 return 5;
2733 }
2734
2735 static int
init_sub(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2736 init_sub(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2737 {
2738 /*
2739 * INIT_SUB opcode: 0x6B ('k')
2740 *
2741 * offset (8 bit): opcode
2742 * offset + 1 (8 bit): script number
2743 *
2744 * Execute script number "script number", as a subroutine
2745 */
2746
2747 uint8_t sub = bios->data[offset + 1];
2748
2749 if (!iexec->execute)
2750 return 2;
2751
2752 BIOSLOG(bios, "0x%04X: Calling script %d\n", offset, sub);
2753
2754 parse_init_table(bios,
2755 ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]),
2756 iexec);
2757
2758 BIOSLOG(bios, "0x%04X: End of script %d\n", offset, sub);
2759
2760 return 2;
2761 }
2762
2763 static int
init_ram_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2764 init_ram_condition(struct nvbios *bios, uint16_t offset,
2765 struct init_exec *iexec)
2766 {
2767 /*
2768 * INIT_RAM_CONDITION opcode: 0x6D ('m')
2769 *
2770 * offset (8 bit): opcode
2771 * offset + 1 (8 bit): mask
2772 * offset + 2 (8 bit): cmpval
2773 *
2774 * Test if (NV04_PFB_BOOT_0 & "mask") equals "cmpval".
2775 * If condition not met skip subsequent opcodes until condition is
2776 * inverted (INIT_NOT), or we hit INIT_RESUME
2777 */
2778
2779 uint8_t mask = bios->data[offset + 1];
2780 uint8_t cmpval = bios->data[offset + 2];
2781 uint8_t data;
2782
2783 if (!iexec->execute)
2784 return 3;
2785
2786 data = bios_rd32(bios, NV04_PFB_BOOT_0) & mask;
2787
2788 BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
2789 offset, data, cmpval);
2790
2791 if (data == cmpval)
2792 BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
2793 else {
2794 BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
2795 iexec->execute = false;
2796 }
2797
2798 return 3;
2799 }
2800
2801 static int
init_nv_reg(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2802 init_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2803 {
2804 /*
2805 * INIT_NV_REG opcode: 0x6E ('n')
2806 *
2807 * offset (8 bit): opcode
2808 * offset + 1 (32 bit): register
2809 * offset + 5 (32 bit): mask
2810 * offset + 9 (32 bit): data
2811 *
2812 * Assign ((REGVAL("register") & "mask") | "data") to "register"
2813 */
2814
2815 uint32_t reg = ROM32(bios->data[offset + 1]);
2816 uint32_t mask = ROM32(bios->data[offset + 5]);
2817 uint32_t data = ROM32(bios->data[offset + 9]);
2818
2819 if (!iexec->execute)
2820 return 13;
2821
2822 BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Mask: 0x%08X, Data: 0x%08X\n",
2823 offset, reg, mask, data);
2824
2825 bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | data);
2826
2827 return 13;
2828 }
2829
2830 static int
init_macro(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2831 init_macro(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2832 {
2833 /*
2834 * INIT_MACRO opcode: 0x6F ('o')
2835 *
2836 * offset (8 bit): opcode
2837 * offset + 1 (8 bit): macro number
2838 *
2839 * Look up macro index "macro number" in the macro index table.
2840 * The macro index table entry has 1 byte for the index in the macro
2841 * table, and 1 byte for the number of times to repeat the macro.
2842 * The macro table entry has 4 bytes for the register address and
2843 * 4 bytes for the value to write to that register
2844 */
2845
2846 uint8_t macro_index_tbl_idx = bios->data[offset + 1];
2847 uint16_t tmp = bios->macro_index_tbl_ptr + (macro_index_tbl_idx * MACRO_INDEX_SIZE);
2848 uint8_t macro_tbl_idx = bios->data[tmp];
2849 uint8_t count = bios->data[tmp + 1];
2850 uint32_t reg, data;
2851 int i;
2852
2853 if (!iexec->execute)
2854 return 2;
2855
2856 BIOSLOG(bios, "0x%04X: Macro: 0x%02X, MacroTableIndex: 0x%02X, "
2857 "Count: 0x%02X\n",
2858 offset, macro_index_tbl_idx, macro_tbl_idx, count);
2859
2860 for (i = 0; i < count; i++) {
2861 uint16_t macroentryptr = bios->macro_tbl_ptr + (macro_tbl_idx + i) * MACRO_SIZE;
2862
2863 reg = ROM32(bios->data[macroentryptr]);
2864 data = ROM32(bios->data[macroentryptr + 4]);
2865
2866 bios_wr32(bios, reg, data);
2867 }
2868
2869 return 2;
2870 }
2871
2872 static int
init_done(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2873 init_done(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2874 {
2875 /*
2876 * INIT_DONE opcode: 0x71 ('q')
2877 *
2878 * offset (8 bit): opcode
2879 *
2880 * End the current script
2881 */
2882
2883 /* mild retval abuse to stop parsing this table */
2884 return 0;
2885 }
2886
2887 static int
init_resume(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2888 init_resume(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2889 {
2890 /*
2891 * INIT_RESUME opcode: 0x72 ('r')
2892 *
2893 * offset (8 bit): opcode
2894 *
2895 * End the current execute / no-execute condition
2896 */
2897
2898 if (iexec->execute)
2899 return 1;
2900
2901 iexec->execute = true;
2902 BIOSLOG(bios, "0x%04X: ---- Executing following commands ----\n", offset);
2903
2904 return 1;
2905 }
2906
2907 static int
init_time(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2908 init_time(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2909 {
2910 /*
2911 * INIT_TIME opcode: 0x74 ('t')
2912 *
2913 * offset (8 bit): opcode
2914 * offset + 1 (16 bit): time
2915 *
2916 * Sleep for "time" microseconds.
2917 */
2918
2919 unsigned time = ROM16(bios->data[offset + 1]);
2920
2921 if (!iexec->execute)
2922 return 3;
2923
2924 BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X microseconds\n",
2925 offset, time);
2926
2927 if (time < 1000)
2928 udelay(time);
2929 else
2930 mdelay((time + 900) / 1000);
2931
2932 return 3;
2933 }
2934
2935 static int
init_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2936 init_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2937 {
2938 /*
2939 * INIT_CONDITION opcode: 0x75 ('u')
2940 *
2941 * offset (8 bit): opcode
2942 * offset + 1 (8 bit): condition number
2943 *
2944 * Check condition "condition number" in the condition table.
2945 * If condition not met skip subsequent opcodes until condition is
2946 * inverted (INIT_NOT), or we hit INIT_RESUME
2947 */
2948
2949 uint8_t cond = bios->data[offset + 1];
2950
2951 if (!iexec->execute)
2952 return 2;
2953
2954 BIOSLOG(bios, "0x%04X: Condition: 0x%02X\n", offset, cond);
2955
2956 if (bios_condition_met(bios, offset, cond))
2957 BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
2958 else {
2959 BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
2960 iexec->execute = false;
2961 }
2962
2963 return 2;
2964 }
2965
2966 static int
init_io_condition(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2967 init_io_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2968 {
2969 /*
2970 * INIT_IO_CONDITION opcode: 0x76
2971 *
2972 * offset (8 bit): opcode
2973 * offset + 1 (8 bit): condition number
2974 *
2975 * Check condition "condition number" in the io condition table.
2976 * If condition not met skip subsequent opcodes until condition is
2977 * inverted (INIT_NOT), or we hit INIT_RESUME
2978 */
2979
2980 uint8_t cond = bios->data[offset + 1];
2981
2982 if (!iexec->execute)
2983 return 2;
2984
2985 BIOSLOG(bios, "0x%04X: IO condition: 0x%02X\n", offset, cond);
2986
2987 if (io_condition_met(bios, offset, cond))
2988 BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
2989 else {
2990 BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
2991 iexec->execute = false;
2992 }
2993
2994 return 2;
2995 }
2996
2997 static int
init_index_io(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)2998 init_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
2999 {
3000 /*
3001 * INIT_INDEX_IO opcode: 0x78 ('x')
3002 *
3003 * offset (8 bit): opcode
3004 * offset + 1 (16 bit): CRTC port
3005 * offset + 3 (8 bit): CRTC index
3006 * offset + 4 (8 bit): mask
3007 * offset + 5 (8 bit): data
3008 *
3009 * Read value at index "CRTC index" on "CRTC port", AND with "mask",
3010 * OR with "data", write-back
3011 */
3012
3013 uint16_t crtcport = ROM16(bios->data[offset + 1]);
3014 uint8_t crtcindex = bios->data[offset + 3];
3015 uint8_t mask = bios->data[offset + 4];
3016 uint8_t data = bios->data[offset + 5];
3017 uint8_t value;
3018
3019 if (!iexec->execute)
3020 return 6;
3021
3022 BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
3023 "Data: 0x%02X\n",
3024 offset, crtcport, crtcindex, mask, data);
3025
3026 value = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) | data;
3027 bios_idxprt_wr(bios, crtcport, crtcindex, value);
3028
3029 return 6;
3030 }
3031
3032 static int
init_pll(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3033 init_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3034 {
3035 /*
3036 * INIT_PLL opcode: 0x79 ('y')
3037 *
3038 * offset (8 bit): opcode
3039 * offset + 1 (32 bit): register
3040 * offset + 5 (16 bit): freq
3041 *
3042 * Set PLL register "register" to coefficients for frequency (10kHz)
3043 * "freq"
3044 */
3045
3046 uint32_t reg = ROM32(bios->data[offset + 1]);
3047 uint16_t freq = ROM16(bios->data[offset + 5]);
3048
3049 if (!iexec->execute)
3050 return 7;
3051
3052 BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Freq: %d0kHz\n", offset, reg, freq);
3053
3054 setPLL(bios, reg, freq * 10);
3055
3056 return 7;
3057 }
3058
3059 static int
init_zm_reg(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3060 init_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3061 {
3062 /*
3063 * INIT_ZM_REG opcode: 0x7A ('z')
3064 *
3065 * offset (8 bit): opcode
3066 * offset + 1 (32 bit): register
3067 * offset + 5 (32 bit): value
3068 *
3069 * Assign "value" to "register"
3070 */
3071
3072 uint32_t reg = ROM32(bios->data[offset + 1]);
3073 uint32_t value = ROM32(bios->data[offset + 5]);
3074
3075 if (!iexec->execute)
3076 return 9;
3077
3078 if (reg == 0x000200)
3079 value |= 1;
3080
3081 bios_wr32(bios, reg, value);
3082
3083 return 9;
3084 }
3085
3086 static int
init_ram_restrict_pll(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3087 init_ram_restrict_pll(struct nvbios *bios, uint16_t offset,
3088 struct init_exec *iexec)
3089 {
3090 /*
3091 * INIT_RAM_RESTRICT_PLL opcode: 0x87 ('')
3092 *
3093 * offset (8 bit): opcode
3094 * offset + 1 (8 bit): PLL type
3095 * offset + 2 (32 bit): frequency 0
3096 *
3097 * Uses the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
3098 * ram_restrict_table_ptr. The value read from there is used to select
3099 * a frequency from the table starting at 'frequency 0' to be
3100 * programmed into the PLL corresponding to 'type'.
3101 *
3102 * The PLL limits table on cards using this opcode has a mapping of
3103 * 'type' to the relevant registers.
3104 */
3105
3106 struct drm_device *dev = bios->dev;
3107 uint32_t strap = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & 0x0000003c) >> 2;
3108 uint8_t index = bios->data[bios->ram_restrict_tbl_ptr + strap];
3109 uint8_t type = bios->data[offset + 1];
3110 uint32_t freq = ROM32(bios->data[offset + 2 + (index * 4)]);
3111 uint8_t *pll_limits = &bios->data[bios->pll_limit_tbl_ptr], *entry;
3112 int len = 2 + bios->ram_restrict_group_count * 4;
3113 int i;
3114
3115 if (!iexec->execute)
3116 return len;
3117
3118 if (!bios->pll_limit_tbl_ptr || (pll_limits[0] & 0xf0) != 0x30) {
3119 NV_ERROR(dev, "PLL limits table not version 3.x\n");
3120 return len; /* deliberate, allow default clocks to remain */
3121 }
3122
3123 entry = pll_limits + pll_limits[1];
3124 for (i = 0; i < pll_limits[3]; i++, entry += pll_limits[2]) {
3125 if (entry[0] == type) {
3126 uint32_t reg = ROM32(entry[3]);
3127
3128 BIOSLOG(bios, "0x%04X: "
3129 "Type %02x Reg 0x%08x Freq %dKHz\n",
3130 offset, type, reg, freq);
3131
3132 setPLL(bios, reg, freq);
3133 return len;
3134 }
3135 }
3136
3137 NV_ERROR(dev, "PLL type 0x%02x not found in PLL limits table", type);
3138 return len;
3139 }
3140
3141 static int
init_8c(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3142 init_8c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3143 {
3144 /*
3145 * INIT_8C opcode: 0x8C ('')
3146 *
3147 * NOP so far....
3148 *
3149 */
3150
3151 return 1;
3152 }
3153
3154 static int
init_8d(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3155 init_8d(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3156 {
3157 /*
3158 * INIT_8D opcode: 0x8D ('')
3159 *
3160 * NOP so far....
3161 *
3162 */
3163
3164 return 1;
3165 }
3166
3167 static int
init_gpio(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3168 init_gpio(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3169 {
3170 /*
3171 * INIT_GPIO opcode: 0x8E ('')
3172 *
3173 * offset (8 bit): opcode
3174 *
3175 * Loop over all entries in the DCB GPIO table, and initialise
3176 * each GPIO according to various values listed in each entry
3177 */
3178
3179 if (iexec->execute && bios->execute)
3180 nouveau_gpio_reset(bios->dev);
3181
3182 return 1;
3183 }
3184
3185 static int
init_ram_restrict_zm_reg_group(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3186 init_ram_restrict_zm_reg_group(struct nvbios *bios, uint16_t offset,
3187 struct init_exec *iexec)
3188 {
3189 /*
3190 * INIT_RAM_RESTRICT_ZM_REG_GROUP opcode: 0x8F ('')
3191 *
3192 * offset (8 bit): opcode
3193 * offset + 1 (32 bit): reg
3194 * offset + 5 (8 bit): regincrement
3195 * offset + 6 (8 bit): count
3196 * offset + 7 (32 bit): value 1,1
3197 * ...
3198 *
3199 * Use the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
3200 * ram_restrict_table_ptr. The value read from here is 'n', and
3201 * "value 1,n" gets written to "reg". This repeats "count" times and on
3202 * each iteration 'm', "reg" increases by "regincrement" and
3203 * "value m,n" is used. The extent of n is limited by a number read
3204 * from the 'M' BIT table, herein called "blocklen"
3205 */
3206
3207 uint32_t reg = ROM32(bios->data[offset + 1]);
3208 uint8_t regincrement = bios->data[offset + 5];
3209 uint8_t count = bios->data[offset + 6];
3210 uint32_t strap_ramcfg, data;
3211 /* previously set by 'M' BIT table */
3212 uint16_t blocklen = bios->ram_restrict_group_count * 4;
3213 int len = 7 + count * blocklen;
3214 uint8_t index;
3215 int i;
3216
3217 /* critical! to know the length of the opcode */;
3218 if (!blocklen) {
3219 NV_ERROR(bios->dev,
3220 "0x%04X: Zero block length - has the M table "
3221 "been parsed?\n", offset);
3222 return -EINVAL;
3223 }
3224
3225 if (!iexec->execute)
3226 return len;
3227
3228 strap_ramcfg = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 2) & 0xf;
3229 index = bios->data[bios->ram_restrict_tbl_ptr + strap_ramcfg];
3230
3231 BIOSLOG(bios, "0x%04X: Reg: 0x%08X, RegIncrement: 0x%02X, "
3232 "Count: 0x%02X, StrapRamCfg: 0x%02X, Index: 0x%02X\n",
3233 offset, reg, regincrement, count, strap_ramcfg, index);
3234
3235 for (i = 0; i < count; i++) {
3236 data = ROM32(bios->data[offset + 7 + index * 4 + blocklen * i]);
3237
3238 bios_wr32(bios, reg, data);
3239
3240 reg += regincrement;
3241 }
3242
3243 return len;
3244 }
3245
3246 static int
init_copy_zm_reg(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3247 init_copy_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3248 {
3249 /*
3250 * INIT_COPY_ZM_REG opcode: 0x90 ('')
3251 *
3252 * offset (8 bit): opcode
3253 * offset + 1 (32 bit): src reg
3254 * offset + 5 (32 bit): dst reg
3255 *
3256 * Put contents of "src reg" into "dst reg"
3257 */
3258
3259 uint32_t srcreg = ROM32(bios->data[offset + 1]);
3260 uint32_t dstreg = ROM32(bios->data[offset + 5]);
3261
3262 if (!iexec->execute)
3263 return 9;
3264
3265 bios_wr32(bios, dstreg, bios_rd32(bios, srcreg));
3266
3267 return 9;
3268 }
3269
3270 static int
init_zm_reg_group_addr_latched(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3271 init_zm_reg_group_addr_latched(struct nvbios *bios, uint16_t offset,
3272 struct init_exec *iexec)
3273 {
3274 /*
3275 * INIT_ZM_REG_GROUP_ADDRESS_LATCHED opcode: 0x91 ('')
3276 *
3277 * offset (8 bit): opcode
3278 * offset + 1 (32 bit): dst reg
3279 * offset + 5 (8 bit): count
3280 * offset + 6 (32 bit): data 1
3281 * ...
3282 *
3283 * For each of "count" values write "data n" to "dst reg"
3284 */
3285
3286 uint32_t reg = ROM32(bios->data[offset + 1]);
3287 uint8_t count = bios->data[offset + 5];
3288 int len = 6 + count * 4;
3289 int i;
3290
3291 if (!iexec->execute)
3292 return len;
3293
3294 for (i = 0; i < count; i++) {
3295 uint32_t data = ROM32(bios->data[offset + 6 + 4 * i]);
3296 bios_wr32(bios, reg, data);
3297 }
3298
3299 return len;
3300 }
3301
3302 static int
init_reserved(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3303 init_reserved(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3304 {
3305 /*
3306 * INIT_RESERVED opcode: 0x92 ('')
3307 *
3308 * offset (8 bit): opcode
3309 *
3310 * Seemingly does nothing
3311 */
3312
3313 return 1;
3314 }
3315
3316 static int
init_96(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3317 init_96(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3318 {
3319 /*
3320 * INIT_96 opcode: 0x96 ('')
3321 *
3322 * offset (8 bit): opcode
3323 * offset + 1 (32 bit): sreg
3324 * offset + 5 (8 bit): sshift
3325 * offset + 6 (8 bit): smask
3326 * offset + 7 (8 bit): index
3327 * offset + 8 (32 bit): reg
3328 * offset + 12 (32 bit): mask
3329 * offset + 16 (8 bit): shift
3330 *
3331 */
3332
3333 uint16_t xlatptr = bios->init96_tbl_ptr + (bios->data[offset + 7] * 2);
3334 uint32_t reg = ROM32(bios->data[offset + 8]);
3335 uint32_t mask = ROM32(bios->data[offset + 12]);
3336 uint32_t val;
3337
3338 val = bios_rd32(bios, ROM32(bios->data[offset + 1]));
3339 if (bios->data[offset + 5] < 0x80)
3340 val >>= bios->data[offset + 5];
3341 else
3342 val <<= (0x100 - bios->data[offset + 5]);
3343 val &= bios->data[offset + 6];
3344
3345 val = bios->data[ROM16(bios->data[xlatptr]) + val];
3346 val <<= bios->data[offset + 16];
3347
3348 if (!iexec->execute)
3349 return 17;
3350
3351 bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | val);
3352 return 17;
3353 }
3354
3355 static int
init_97(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3356 init_97(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3357 {
3358 /*
3359 * INIT_97 opcode: 0x97 ('')
3360 *
3361 * offset (8 bit): opcode
3362 * offset + 1 (32 bit): register
3363 * offset + 5 (32 bit): mask
3364 * offset + 9 (32 bit): value
3365 *
3366 * Adds "value" to "register" preserving the fields specified
3367 * by "mask"
3368 */
3369
3370 uint32_t reg = ROM32(bios->data[offset + 1]);
3371 uint32_t mask = ROM32(bios->data[offset + 5]);
3372 uint32_t add = ROM32(bios->data[offset + 9]);
3373 uint32_t val;
3374
3375 val = bios_rd32(bios, reg);
3376 val = (val & mask) | ((val + add) & ~mask);
3377
3378 if (!iexec->execute)
3379 return 13;
3380
3381 bios_wr32(bios, reg, val);
3382 return 13;
3383 }
3384
3385 static int
init_auxch(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3386 init_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3387 {
3388 /*
3389 * INIT_AUXCH opcode: 0x98 ('')
3390 *
3391 * offset (8 bit): opcode
3392 * offset + 1 (32 bit): address
3393 * offset + 5 (8 bit): count
3394 * offset + 6 (8 bit): mask 0
3395 * offset + 7 (8 bit): data 0
3396 * ...
3397 *
3398 */
3399
3400 struct drm_device *dev = bios->dev;
3401 struct nouveau_i2c_chan *auxch;
3402 uint32_t addr = ROM32(bios->data[offset + 1]);
3403 uint8_t count = bios->data[offset + 5];
3404 int len = 6 + count * 2;
3405 int ret, i;
3406
3407 if (!bios->display.output) {
3408 NV_ERROR(dev, "INIT_AUXCH: no active output\n");
3409 return len;
3410 }
3411
3412 auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
3413 if (!auxch) {
3414 NV_ERROR(dev, "INIT_AUXCH: couldn't get auxch %d\n",
3415 bios->display.output->i2c_index);
3416 return len;
3417 }
3418
3419 if (!iexec->execute)
3420 return len;
3421
3422 offset += 6;
3423 for (i = 0; i < count; i++, offset += 2) {
3424 uint8_t data;
3425
3426 ret = nouveau_dp_auxch(auxch, 9, addr, &data, 1);
3427 if (ret) {
3428 NV_ERROR(dev, "INIT_AUXCH: rd auxch fail %d\n", ret);
3429 return len;
3430 }
3431
3432 data &= bios->data[offset + 0];
3433 data |= bios->data[offset + 1];
3434
3435 ret = nouveau_dp_auxch(auxch, 8, addr, &data, 1);
3436 if (ret) {
3437 NV_ERROR(dev, "INIT_AUXCH: wr auxch fail %d\n", ret);
3438 return len;
3439 }
3440 }
3441
3442 return len;
3443 }
3444
3445 static int
init_zm_auxch(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3446 init_zm_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3447 {
3448 /*
3449 * INIT_ZM_AUXCH opcode: 0x99 ('')
3450 *
3451 * offset (8 bit): opcode
3452 * offset + 1 (32 bit): address
3453 * offset + 5 (8 bit): count
3454 * offset + 6 (8 bit): data 0
3455 * ...
3456 *
3457 */
3458
3459 struct drm_device *dev = bios->dev;
3460 struct nouveau_i2c_chan *auxch;
3461 uint32_t addr = ROM32(bios->data[offset + 1]);
3462 uint8_t count = bios->data[offset + 5];
3463 int len = 6 + count;
3464 int ret, i;
3465
3466 if (!bios->display.output) {
3467 NV_ERROR(dev, "INIT_ZM_AUXCH: no active output\n");
3468 return len;
3469 }
3470
3471 auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
3472 if (!auxch) {
3473 NV_ERROR(dev, "INIT_ZM_AUXCH: couldn't get auxch %d\n",
3474 bios->display.output->i2c_index);
3475 return len;
3476 }
3477
3478 if (!iexec->execute)
3479 return len;
3480
3481 offset += 6;
3482 for (i = 0; i < count; i++, offset++) {
3483 ret = nouveau_dp_auxch(auxch, 8, addr, &bios->data[offset], 1);
3484 if (ret) {
3485 NV_ERROR(dev, "INIT_ZM_AUXCH: wr auxch fail %d\n", ret);
3486 return len;
3487 }
3488 }
3489
3490 return len;
3491 }
3492
3493 static int
init_i2c_long_if(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3494 init_i2c_long_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3495 {
3496 /*
3497 * INIT_I2C_LONG_IF opcode: 0x9A ('')
3498 *
3499 * offset (8 bit): opcode
3500 * offset + 1 (8 bit): DCB I2C table entry index
3501 * offset + 2 (8 bit): I2C slave address
3502 * offset + 3 (16 bit): I2C register
3503 * offset + 5 (8 bit): mask
3504 * offset + 6 (8 bit): data
3505 *
3506 * Read the register given by "I2C register" on the device addressed
3507 * by "I2C slave address" on the I2C bus given by "DCB I2C table
3508 * entry index". Compare the result AND "mask" to "data".
3509 * If they're not equal, skip subsequent opcodes until condition is
3510 * inverted (INIT_NOT), or we hit INIT_RESUME
3511 */
3512
3513 uint8_t i2c_index = bios->data[offset + 1];
3514 uint8_t i2c_address = bios->data[offset + 2] >> 1;
3515 uint8_t reglo = bios->data[offset + 3];
3516 uint8_t reghi = bios->data[offset + 4];
3517 uint8_t mask = bios->data[offset + 5];
3518 uint8_t data = bios->data[offset + 6];
3519 struct nouveau_i2c_chan *chan;
3520 uint8_t buf0[2] = { reghi, reglo };
3521 uint8_t buf1[1];
3522 struct i2c_msg msg[2] = {
3523 { i2c_address, 0, 1, buf0 },
3524 { i2c_address, I2C_M_RD, 1, buf1 },
3525 };
3526 int ret;
3527
3528 /* no execute check by design */
3529
3530 BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
3531 offset, i2c_index, i2c_address);
3532
3533 chan = init_i2c_device_find(bios->dev, i2c_index);
3534 if (!chan)
3535 return -ENODEV;
3536
3537
3538 ret = i2c_transfer(&chan->adapter, msg, 2);
3539 if (ret < 0) {
3540 BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: [no device], "
3541 "Mask: 0x%02X, Data: 0x%02X\n",
3542 offset, reghi, reglo, mask, data);
3543 iexec->execute = 0;
3544 return 7;
3545 }
3546
3547 BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: 0x%02X, "
3548 "Mask: 0x%02X, Data: 0x%02X\n",
3549 offset, reghi, reglo, buf1[0], mask, data);
3550
3551 iexec->execute = ((buf1[0] & mask) == data);
3552
3553 return 7;
3554 }
3555
3556 static struct init_tbl_entry itbl_entry[] = {
3557 /* command name , id , length , offset , mult , command handler */
3558 /* INIT_PROG (0x31, 15, 10, 4) removed due to no example of use */
3559 { "INIT_IO_RESTRICT_PROG" , 0x32, init_io_restrict_prog },
3560 { "INIT_REPEAT" , 0x33, init_repeat },
3561 { "INIT_IO_RESTRICT_PLL" , 0x34, init_io_restrict_pll },
3562 { "INIT_END_REPEAT" , 0x36, init_end_repeat },
3563 { "INIT_COPY" , 0x37, init_copy },
3564 { "INIT_NOT" , 0x38, init_not },
3565 { "INIT_IO_FLAG_CONDITION" , 0x39, init_io_flag_condition },
3566 { "INIT_DP_CONDITION" , 0x3A, init_dp_condition },
3567 { "INIT_OP_3B" , 0x3B, init_op_3b },
3568 { "INIT_OP_3C" , 0x3C, init_op_3c },
3569 { "INIT_INDEX_ADDRESS_LATCHED" , 0x49, init_idx_addr_latched },
3570 { "INIT_IO_RESTRICT_PLL2" , 0x4A, init_io_restrict_pll2 },
3571 { "INIT_PLL2" , 0x4B, init_pll2 },
3572 { "INIT_I2C_BYTE" , 0x4C, init_i2c_byte },
3573 { "INIT_ZM_I2C_BYTE" , 0x4D, init_zm_i2c_byte },
3574 { "INIT_ZM_I2C" , 0x4E, init_zm_i2c },
3575 { "INIT_TMDS" , 0x4F, init_tmds },
3576 { "INIT_ZM_TMDS_GROUP" , 0x50, init_zm_tmds_group },
3577 { "INIT_CR_INDEX_ADDRESS_LATCHED" , 0x51, init_cr_idx_adr_latch },
3578 { "INIT_CR" , 0x52, init_cr },
3579 { "INIT_ZM_CR" , 0x53, init_zm_cr },
3580 { "INIT_ZM_CR_GROUP" , 0x54, init_zm_cr_group },
3581 { "INIT_CONDITION_TIME" , 0x56, init_condition_time },
3582 { "INIT_LTIME" , 0x57, init_ltime },
3583 { "INIT_ZM_REG_SEQUENCE" , 0x58, init_zm_reg_sequence },
3584 /* INIT_INDIRECT_REG (0x5A, 7, 0, 0) removed due to no example of use */
3585 { "INIT_SUB_DIRECT" , 0x5B, init_sub_direct },
3586 { "INIT_JUMP" , 0x5C, init_jump },
3587 { "INIT_I2C_IF" , 0x5E, init_i2c_if },
3588 { "INIT_COPY_NV_REG" , 0x5F, init_copy_nv_reg },
3589 { "INIT_ZM_INDEX_IO" , 0x62, init_zm_index_io },
3590 { "INIT_COMPUTE_MEM" , 0x63, init_compute_mem },
3591 { "INIT_RESET" , 0x65, init_reset },
3592 { "INIT_CONFIGURE_MEM" , 0x66, init_configure_mem },
3593 { "INIT_CONFIGURE_CLK" , 0x67, init_configure_clk },
3594 { "INIT_CONFIGURE_PREINIT" , 0x68, init_configure_preinit },
3595 { "INIT_IO" , 0x69, init_io },
3596 { "INIT_SUB" , 0x6B, init_sub },
3597 { "INIT_RAM_CONDITION" , 0x6D, init_ram_condition },
3598 { "INIT_NV_REG" , 0x6E, init_nv_reg },
3599 { "INIT_MACRO" , 0x6F, init_macro },
3600 { "INIT_DONE" , 0x71, init_done },
3601 { "INIT_RESUME" , 0x72, init_resume },
3602 /* INIT_RAM_CONDITION2 (0x73, 9, 0, 0) removed due to no example of use */
3603 { "INIT_TIME" , 0x74, init_time },
3604 { "INIT_CONDITION" , 0x75, init_condition },
3605 { "INIT_IO_CONDITION" , 0x76, init_io_condition },
3606 { "INIT_INDEX_IO" , 0x78, init_index_io },
3607 { "INIT_PLL" , 0x79, init_pll },
3608 { "INIT_ZM_REG" , 0x7A, init_zm_reg },
3609 { "INIT_RAM_RESTRICT_PLL" , 0x87, init_ram_restrict_pll },
3610 { "INIT_8C" , 0x8C, init_8c },
3611 { "INIT_8D" , 0x8D, init_8d },
3612 { "INIT_GPIO" , 0x8E, init_gpio },
3613 { "INIT_RAM_RESTRICT_ZM_REG_GROUP" , 0x8F, init_ram_restrict_zm_reg_group },
3614 { "INIT_COPY_ZM_REG" , 0x90, init_copy_zm_reg },
3615 { "INIT_ZM_REG_GROUP_ADDRESS_LATCHED" , 0x91, init_zm_reg_group_addr_latched },
3616 { "INIT_RESERVED" , 0x92, init_reserved },
3617 { "INIT_96" , 0x96, init_96 },
3618 { "INIT_97" , 0x97, init_97 },
3619 { "INIT_AUXCH" , 0x98, init_auxch },
3620 { "INIT_ZM_AUXCH" , 0x99, init_zm_auxch },
3621 { "INIT_I2C_LONG_IF" , 0x9A, init_i2c_long_if },
3622 { NULL , 0 , NULL }
3623 };
3624
3625 #define MAX_TABLE_OPS 1000
3626
3627 static int
parse_init_table(struct nvbios * bios,uint16_t offset,struct init_exec * iexec)3628 parse_init_table(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3629 {
3630 /*
3631 * Parses all commands in an init table.
3632 *
3633 * We start out executing all commands found in the init table. Some
3634 * opcodes may change the status of iexec->execute to SKIP, which will
3635 * cause the following opcodes to perform no operation until the value
3636 * is changed back to EXECUTE.
3637 */
3638
3639 int count = 0, i, ret;
3640 uint8_t id;
3641
3642 /* catch NULL script pointers */
3643 if (offset == 0)
3644 return 0;
3645
3646 /*
3647 * Loop until INIT_DONE causes us to break out of the loop
3648 * (or until offset > bios length just in case... )
3649 * (and no more than MAX_TABLE_OPS iterations, just in case... )
3650 */
3651 while ((offset < bios->length) && (count++ < MAX_TABLE_OPS)) {
3652 id = bios->data[offset];
3653
3654 /* Find matching id in itbl_entry */
3655 for (i = 0; itbl_entry[i].name && (itbl_entry[i].id != id); i++)
3656 ;
3657
3658 if (!itbl_entry[i].name) {
3659 NV_ERROR(bios->dev,
3660 "0x%04X: Init table command not found: "
3661 "0x%02X\n", offset, id);
3662 return -ENOENT;
3663 }
3664
3665 BIOSLOG(bios, "0x%04X: [ (0x%02X) - %s ]\n", offset,
3666 itbl_entry[i].id, itbl_entry[i].name);
3667
3668 /* execute eventual command handler */
3669 ret = (*itbl_entry[i].handler)(bios, offset, iexec);
3670 if (ret < 0) {
3671 NV_ERROR(bios->dev, "0x%04X: Failed parsing init "
3672 "table opcode: %s %d\n", offset,
3673 itbl_entry[i].name, ret);
3674 }
3675
3676 if (ret <= 0)
3677 break;
3678
3679 /*
3680 * Add the offset of the current command including all data
3681 * of that command. The offset will then be pointing on the
3682 * next op code.
3683 */
3684 offset += ret;
3685 }
3686
3687 if (offset >= bios->length)
3688 NV_WARN(bios->dev,
3689 "Offset 0x%04X greater than known bios image length. "
3690 "Corrupt image?\n", offset);
3691 if (count >= MAX_TABLE_OPS)
3692 NV_WARN(bios->dev,
3693 "More than %d opcodes to a table is unlikely, "
3694 "is the bios image corrupt?\n", MAX_TABLE_OPS);
3695
3696 return 0;
3697 }
3698
3699 static void
parse_init_tables(struct nvbios * bios)3700 parse_init_tables(struct nvbios *bios)
3701 {
3702 /* Loops and calls parse_init_table() for each present table. */
3703
3704 int i = 0;
3705 uint16_t table;
3706 struct init_exec iexec = {true, false};
3707
3708 if (bios->old_style_init) {
3709 if (bios->init_script_tbls_ptr)
3710 parse_init_table(bios, bios->init_script_tbls_ptr, &iexec);
3711 if (bios->extra_init_script_tbl_ptr)
3712 parse_init_table(bios, bios->extra_init_script_tbl_ptr, &iexec);
3713
3714 return;
3715 }
3716
3717 while ((table = ROM16(bios->data[bios->init_script_tbls_ptr + i]))) {
3718 NV_INFO(bios->dev,
3719 "Parsing VBIOS init table %d at offset 0x%04X\n",
3720 i / 2, table);
3721 BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", table);
3722
3723 parse_init_table(bios, table, &iexec);
3724 i += 2;
3725 }
3726 }
3727
clkcmptable(struct nvbios * bios,uint16_t clktable,int pxclk)3728 static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk)
3729 {
3730 int compare_record_len, i = 0;
3731 uint16_t compareclk, scriptptr = 0;
3732
3733 if (bios->major_version < 5) /* pre BIT */
3734 compare_record_len = 3;
3735 else
3736 compare_record_len = 4;
3737
3738 do {
3739 compareclk = ROM16(bios->data[clktable + compare_record_len * i]);
3740 if (pxclk >= compareclk * 10) {
3741 if (bios->major_version < 5) {
3742 uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i];
3743 scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]);
3744 } else
3745 scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]);
3746 break;
3747 }
3748 i++;
3749 } while (compareclk);
3750
3751 return scriptptr;
3752 }
3753
3754 static void
run_digital_op_script(struct drm_device * dev,uint16_t scriptptr,struct dcb_entry * dcbent,int head,bool dl)3755 run_digital_op_script(struct drm_device *dev, uint16_t scriptptr,
3756 struct dcb_entry *dcbent, int head, bool dl)
3757 {
3758 struct drm_nouveau_private *dev_priv = dev->dev_private;
3759 struct nvbios *bios = &dev_priv->vbios;
3760 struct init_exec iexec = {true, false};
3761
3762 NV_TRACE(dev, "0x%04X: Parsing digital output script table\n",
3763 scriptptr);
3764 bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_44,
3765 head ? NV_CIO_CRE_44_HEADB : NV_CIO_CRE_44_HEADA);
3766 /* note: if dcb entries have been merged, index may be misleading */
3767 NVWriteVgaCrtc5758(dev, head, 0, dcbent->index);
3768 parse_init_table(bios, scriptptr, &iexec);
3769
3770 nv04_dfp_bind_head(dev, dcbent, head, dl);
3771 }
3772
call_lvds_manufacturer_script(struct drm_device * dev,struct dcb_entry * dcbent,int head,enum LVDS_script script)3773 static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script)
3774 {
3775 struct drm_nouveau_private *dev_priv = dev->dev_private;
3776 struct nvbios *bios = &dev_priv->vbios;
3777 uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & OUTPUT_C ? 1 : 0);
3778 uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]);
3779
3780 if (!bios->fp.xlated_entry || !sub || !scriptofs)
3781 return -EINVAL;
3782
3783 run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link);
3784
3785 if (script == LVDS_PANEL_OFF) {
3786 /* off-on delay in ms */
3787 mdelay(ROM16(bios->data[bios->fp.xlated_entry + 7]));
3788 }
3789 #ifdef __powerpc__
3790 /* Powerbook specific quirks */
3791 if (script == LVDS_RESET &&
3792 (dev->pci_device == 0x0179 || dev->pci_device == 0x0189 ||
3793 dev->pci_device == 0x0329))
3794 nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72);
3795 #endif
3796
3797 return 0;
3798 }
3799
run_lvds_table(struct drm_device * dev,struct dcb_entry * dcbent,int head,enum LVDS_script script,int pxclk)3800 static int run_lvds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
3801 {
3802 /*
3803 * The BIT LVDS table's header has the information to setup the
3804 * necessary registers. Following the standard 4 byte header are:
3805 * A bitmask byte and a dual-link transition pxclk value for use in
3806 * selecting the init script when not using straps; 4 script pointers
3807 * for panel power, selected by output and on/off; and 8 table pointers
3808 * for panel init, the needed one determined by output, and bits in the
3809 * conf byte. These tables are similar to the TMDS tables, consisting
3810 * of a list of pxclks and script pointers.
3811 */
3812 struct drm_nouveau_private *dev_priv = dev->dev_private;
3813 struct nvbios *bios = &dev_priv->vbios;
3814 unsigned int outputset = (dcbent->or == 4) ? 1 : 0;
3815 uint16_t scriptptr = 0, clktable;
3816
3817 /*
3818 * For now we assume version 3.0 table - g80 support will need some
3819 * changes
3820 */
3821
3822 switch (script) {
3823 case LVDS_INIT:
3824 return -ENOSYS;
3825 case LVDS_BACKLIGHT_ON:
3826 case LVDS_PANEL_ON:
3827 scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]);
3828 break;
3829 case LVDS_BACKLIGHT_OFF:
3830 case LVDS_PANEL_OFF:
3831 scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]);
3832 break;
3833 case LVDS_RESET:
3834 clktable = bios->fp.lvdsmanufacturerpointer + 15;
3835 if (dcbent->or == 4)
3836 clktable += 8;
3837
3838 if (dcbent->lvdsconf.use_straps_for_mode) {
3839 if (bios->fp.dual_link)
3840 clktable += 4;
3841 if (bios->fp.if_is_24bit)
3842 clktable += 2;
3843 } else {
3844 /* using EDID */
3845 int cmpval_24bit = (dcbent->or == 4) ? 4 : 1;
3846
3847 if (bios->fp.dual_link) {
3848 clktable += 4;
3849 cmpval_24bit <<= 1;
3850 }
3851
3852 if (bios->fp.strapless_is_24bit & cmpval_24bit)
3853 clktable += 2;
3854 }
3855
3856 clktable = ROM16(bios->data[clktable]);
3857 if (!clktable) {
3858 NV_ERROR(dev, "Pixel clock comparison table not found\n");
3859 return -ENOENT;
3860 }
3861 scriptptr = clkcmptable(bios, clktable, pxclk);
3862 }
3863
3864 if (!scriptptr) {
3865 NV_ERROR(dev, "LVDS output init script not found\n");
3866 return -ENOENT;
3867 }
3868 run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link);
3869
3870 return 0;
3871 }
3872
call_lvds_script(struct drm_device * dev,struct dcb_entry * dcbent,int head,enum LVDS_script script,int pxclk)3873 int call_lvds_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
3874 {
3875 /*
3876 * LVDS operations are multiplexed in an effort to present a single API
3877 * which works with two vastly differing underlying structures.
3878 * This acts as the demux
3879 */
3880
3881 struct drm_nouveau_private *dev_priv = dev->dev_private;
3882 struct nvbios *bios = &dev_priv->vbios;
3883 uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
3884 uint32_t sel_clk_binding, sel_clk;
3885 int ret;
3886
3887 if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver ||
3888 (lvds_ver >= 0x30 && script == LVDS_INIT))
3889 return 0;
3890
3891 if (!bios->fp.lvds_init_run) {
3892 bios->fp.lvds_init_run = true;
3893 call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk);
3894 }
3895
3896 if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change)
3897 call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk);
3898 if (script == LVDS_RESET && bios->fp.power_off_for_reset)
3899 call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk);
3900
3901 NV_TRACE(dev, "Calling LVDS script %d:\n", script);
3902
3903 /* don't let script change pll->head binding */
3904 sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
3905
3906 if (lvds_ver < 0x30)
3907 ret = call_lvds_manufacturer_script(dev, dcbent, head, script);
3908 else
3909 ret = run_lvds_table(dev, dcbent, head, script, pxclk);
3910
3911 bios->fp.last_script_invoc = (script << 1 | head);
3912
3913 sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
3914 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
3915 /* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */
3916 nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0);
3917
3918 return ret;
3919 }
3920
3921 struct lvdstableheader {
3922 uint8_t lvds_ver, headerlen, recordlen;
3923 };
3924
parse_lvds_manufacturer_table_header(struct drm_device * dev,struct nvbios * bios,struct lvdstableheader * lth)3925 static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth)
3926 {
3927 /*
3928 * BMP version (0xa) LVDS table has a simple header of version and
3929 * record length. The BIT LVDS table has the typical BIT table header:
3930 * version byte, header length byte, record length byte, and a byte for
3931 * the maximum number of records that can be held in the table.
3932 */
3933
3934 uint8_t lvds_ver, headerlen, recordlen;
3935
3936 memset(lth, 0, sizeof(struct lvdstableheader));
3937
3938 if (bios->fp.lvdsmanufacturerpointer == 0x0) {
3939 NV_ERROR(dev, "Pointer to LVDS manufacturer table invalid\n");
3940 return -EINVAL;
3941 }
3942
3943 lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
3944
3945 switch (lvds_ver) {
3946 case 0x0a: /* pre NV40 */
3947 headerlen = 2;
3948 recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
3949 break;
3950 case 0x30: /* NV4x */
3951 headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
3952 if (headerlen < 0x1f) {
3953 NV_ERROR(dev, "LVDS table header not understood\n");
3954 return -EINVAL;
3955 }
3956 recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
3957 break;
3958 case 0x40: /* G80/G90 */
3959 headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
3960 if (headerlen < 0x7) {
3961 NV_ERROR(dev, "LVDS table header not understood\n");
3962 return -EINVAL;
3963 }
3964 recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
3965 break;
3966 default:
3967 NV_ERROR(dev,
3968 "LVDS table revision %d.%d not currently supported\n",
3969 lvds_ver >> 4, lvds_ver & 0xf);
3970 return -ENOSYS;
3971 }
3972
3973 lth->lvds_ver = lvds_ver;
3974 lth->headerlen = headerlen;
3975 lth->recordlen = recordlen;
3976
3977 return 0;
3978 }
3979
3980 static int
get_fp_strap(struct drm_device * dev,struct nvbios * bios)3981 get_fp_strap(struct drm_device *dev, struct nvbios *bios)
3982 {
3983 struct drm_nouveau_private *dev_priv = dev->dev_private;
3984
3985 /*
3986 * The fp strap is normally dictated by the "User Strap" in
3987 * PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the
3988 * Internal_Flags struct at 0x48 is set, the user strap gets overriden
3989 * by the PCI subsystem ID during POST, but not before the previous user
3990 * strap has been committed to CR58 for CR57=0xf on head A, which may be
3991 * read and used instead
3992 */
3993
3994 if (bios->major_version < 5 && bios->data[0x48] & 0x4)
3995 return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf;
3996
3997 if (dev_priv->card_type >= NV_50)
3998 return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 24) & 0xf;
3999 else
4000 return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 16) & 0xf;
4001 }
4002
parse_fp_mode_table(struct drm_device * dev,struct nvbios * bios)4003 static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios)
4004 {
4005 uint8_t *fptable;
4006 uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex;
4007 int ret, ofs, fpstrapping;
4008 struct lvdstableheader lth;
4009
4010 if (bios->fp.fptablepointer == 0x0) {
4011 /* Apple cards don't have the fp table; the laptops use DDC */
4012 /* The table is also missing on some x86 IGPs */
4013 #ifndef __powerpc__
4014 NV_ERROR(dev, "Pointer to flat panel table invalid\n");
4015 #endif
4016 bios->digital_min_front_porch = 0x4b;
4017 return 0;
4018 }
4019
4020 fptable = &bios->data[bios->fp.fptablepointer];
4021 fptable_ver = fptable[0];
4022
4023 switch (fptable_ver) {
4024 /*
4025 * BMP version 0x5.0x11 BIOSen have version 1 like tables, but no
4026 * version field, and miss one of the spread spectrum/PWM bytes.
4027 * This could affect early GF2Go parts (not seen any appropriate ROMs
4028 * though). Here we assume that a version of 0x05 matches this case
4029 * (combining with a BMP version check would be better), as the
4030 * common case for the panel type field is 0x0005, and that is in
4031 * fact what we are reading the first byte of.
4032 */
4033 case 0x05: /* some NV10, 11, 15, 16 */
4034 recordlen = 42;
4035 ofs = -1;
4036 break;
4037 case 0x10: /* some NV15/16, and NV11+ */
4038 recordlen = 44;
4039 ofs = 0;
4040 break;
4041 case 0x20: /* NV40+ */
4042 headerlen = fptable[1];
4043 recordlen = fptable[2];
4044 fpentries = fptable[3];
4045 /*
4046 * fptable[4] is the minimum
4047 * RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap
4048 */
4049 bios->digital_min_front_porch = fptable[4];
4050 ofs = -7;
4051 break;
4052 default:
4053 NV_ERROR(dev,
4054 "FP table revision %d.%d not currently supported\n",
4055 fptable_ver >> 4, fptable_ver & 0xf);
4056 return -ENOSYS;
4057 }
4058
4059 if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */
4060 return 0;
4061
4062 ret = parse_lvds_manufacturer_table_header(dev, bios, <h);
4063 if (ret)
4064 return ret;
4065
4066 if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) {
4067 bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer +
4068 lth.headerlen + 1;
4069 bios->fp.xlatwidth = lth.recordlen;
4070 }
4071 if (bios->fp.fpxlatetableptr == 0x0) {
4072 NV_ERROR(dev, "Pointer to flat panel xlat table invalid\n");
4073 return -EINVAL;
4074 }
4075
4076 fpstrapping = get_fp_strap(dev, bios);
4077
4078 fpindex = bios->data[bios->fp.fpxlatetableptr +
4079 fpstrapping * bios->fp.xlatwidth];
4080
4081 if (fpindex > fpentries) {
4082 NV_ERROR(dev, "Bad flat panel table index\n");
4083 return -ENOENT;
4084 }
4085
4086 /* nv4x cards need both a strap value and fpindex of 0xf to use DDC */
4087 if (lth.lvds_ver > 0x10)
4088 bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf;
4089
4090 /*
4091 * If either the strap or xlated fpindex value are 0xf there is no
4092 * panel using a strap-derived bios mode present. this condition
4093 * includes, but is different from, the DDC panel indicator above
4094 */
4095 if (fpstrapping == 0xf || fpindex == 0xf)
4096 return 0;
4097
4098 bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen +
4099 recordlen * fpindex + ofs;
4100
4101 NV_TRACE(dev, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n",
4102 ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1,
4103 ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1,
4104 ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10);
4105
4106 return 0;
4107 }
4108
nouveau_bios_fp_mode(struct drm_device * dev,struct drm_display_mode * mode)4109 bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode)
4110 {
4111 struct drm_nouveau_private *dev_priv = dev->dev_private;
4112 struct nvbios *bios = &dev_priv->vbios;
4113 uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr];
4114
4115 if (!mode) /* just checking whether we can produce a mode */
4116 return bios->fp.mode_ptr;
4117
4118 memset(mode, 0, sizeof(struct drm_display_mode));
4119 /*
4120 * For version 1.0 (version in byte 0):
4121 * bytes 1-2 are "panel type", including bits on whether Colour/mono,
4122 * single/dual link, and type (TFT etc.)
4123 * bytes 3-6 are bits per colour in RGBX
4124 */
4125 mode->clock = ROM16(mode_entry[7]) * 10;
4126 /* bytes 9-10 is HActive */
4127 mode->hdisplay = ROM16(mode_entry[11]) + 1;
4128 /*
4129 * bytes 13-14 is HValid Start
4130 * bytes 15-16 is HValid End
4131 */
4132 mode->hsync_start = ROM16(mode_entry[17]) + 1;
4133 mode->hsync_end = ROM16(mode_entry[19]) + 1;
4134 mode->htotal = ROM16(mode_entry[21]) + 1;
4135 /* bytes 23-24, 27-30 similarly, but vertical */
4136 mode->vdisplay = ROM16(mode_entry[25]) + 1;
4137 mode->vsync_start = ROM16(mode_entry[31]) + 1;
4138 mode->vsync_end = ROM16(mode_entry[33]) + 1;
4139 mode->vtotal = ROM16(mode_entry[35]) + 1;
4140 mode->flags |= (mode_entry[37] & 0x10) ?
4141 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4142 mode->flags |= (mode_entry[37] & 0x1) ?
4143 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4144 /*
4145 * bytes 38-39 relate to spread spectrum settings
4146 * bytes 40-43 are something to do with PWM
4147 */
4148
4149 mode->status = MODE_OK;
4150 mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED;
4151 drm_mode_set_name(mode);
4152 return bios->fp.mode_ptr;
4153 }
4154
nouveau_bios_parse_lvds_table(struct drm_device * dev,int pxclk,bool * dl,bool * if_is_24bit)4155 int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit)
4156 {
4157 /*
4158 * The LVDS table header is (mostly) described in
4159 * parse_lvds_manufacturer_table_header(): the BIT header additionally
4160 * contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if
4161 * straps are not being used for the panel, this specifies the frequency
4162 * at which modes should be set up in the dual link style.
4163 *
4164 * Following the header, the BMP (ver 0xa) table has several records,
4165 * indexed by a separate xlat table, indexed in turn by the fp strap in
4166 * EXTDEV_BOOT. Each record had a config byte, followed by 6 script
4167 * numbers for use by INIT_SUB which controlled panel init and power,
4168 * and finally a dword of ms to sleep between power off and on
4169 * operations.
4170 *
4171 * In the BIT versions, the table following the header serves as an
4172 * integrated config and xlat table: the records in the table are
4173 * indexed by the FP strap nibble in EXTDEV_BOOT, and each record has
4174 * two bytes - the first as a config byte, the second for indexing the
4175 * fp mode table pointed to by the BIT 'D' table
4176 *
4177 * DDC is not used until after card init, so selecting the correct table
4178 * entry and setting the dual link flag for EDID equipped panels,
4179 * requiring tests against the native-mode pixel clock, cannot be done
4180 * until later, when this function should be called with non-zero pxclk
4181 */
4182 struct drm_nouveau_private *dev_priv = dev->dev_private;
4183 struct nvbios *bios = &dev_priv->vbios;
4184 int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0;
4185 struct lvdstableheader lth;
4186 uint16_t lvdsofs;
4187 int ret, chip_version = bios->chip_version;
4188
4189 ret = parse_lvds_manufacturer_table_header(dev, bios, <h);
4190 if (ret)
4191 return ret;
4192
4193 switch (lth.lvds_ver) {
4194 case 0x0a: /* pre NV40 */
4195 lvdsmanufacturerindex = bios->data[
4196 bios->fp.fpxlatemanufacturertableptr +
4197 fpstrapping];
4198
4199 /* we're done if this isn't the EDID panel case */
4200 if (!pxclk)
4201 break;
4202
4203 if (chip_version < 0x25) {
4204 /* nv17 behaviour
4205 *
4206 * It seems the old style lvds script pointer is reused
4207 * to select 18/24 bit colour depth for EDID panels.
4208 */
4209 lvdsmanufacturerindex =
4210 (bios->legacy.lvds_single_a_script_ptr & 1) ?
4211 2 : 0;
4212 if (pxclk >= bios->fp.duallink_transition_clk)
4213 lvdsmanufacturerindex++;
4214 } else if (chip_version < 0x30) {
4215 /* nv28 behaviour (off-chip encoder)
4216 *
4217 * nv28 does a complex dance of first using byte 121 of
4218 * the EDID to choose the lvdsmanufacturerindex, then
4219 * later attempting to match the EDID manufacturer and
4220 * product IDs in a table (signature 'pidt' (panel id
4221 * table?)), setting an lvdsmanufacturerindex of 0 and
4222 * an fp strap of the match index (or 0xf if none)
4223 */
4224 lvdsmanufacturerindex = 0;
4225 } else {
4226 /* nv31, nv34 behaviour */
4227 lvdsmanufacturerindex = 0;
4228 if (pxclk >= bios->fp.duallink_transition_clk)
4229 lvdsmanufacturerindex = 2;
4230 if (pxclk >= 140000)
4231 lvdsmanufacturerindex = 3;
4232 }
4233
4234 /*
4235 * nvidia set the high nibble of (cr57=f, cr58) to
4236 * lvdsmanufacturerindex in this case; we don't
4237 */
4238 break;
4239 case 0x30: /* NV4x */
4240 case 0x40: /* G80/G90 */
4241 lvdsmanufacturerindex = fpstrapping;
4242 break;
4243 default:
4244 NV_ERROR(dev, "LVDS table revision not currently supported\n");
4245 return -ENOSYS;
4246 }
4247
4248 lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex;
4249 switch (lth.lvds_ver) {
4250 case 0x0a:
4251 bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1;
4252 bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2;
4253 bios->fp.dual_link = bios->data[lvdsofs] & 4;
4254 bios->fp.link_c_increment = bios->data[lvdsofs] & 8;
4255 *if_is_24bit = bios->data[lvdsofs] & 16;
4256 break;
4257 case 0x30:
4258 case 0x40:
4259 /*
4260 * No sign of the "power off for reset" or "reset for panel
4261 * on" bits, but it's safer to assume we should
4262 */
4263 bios->fp.power_off_for_reset = true;
4264 bios->fp.reset_after_pclk_change = true;
4265
4266 /*
4267 * It's ok lvdsofs is wrong for nv4x edid case; dual_link is
4268 * over-written, and if_is_24bit isn't used
4269 */
4270 bios->fp.dual_link = bios->data[lvdsofs] & 1;
4271 bios->fp.if_is_24bit = bios->data[lvdsofs] & 2;
4272 bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4];
4273 bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10;
4274 break;
4275 }
4276
4277 /* set dual_link flag for EDID case */
4278 if (pxclk && (chip_version < 0x25 || chip_version > 0x28))
4279 bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk);
4280
4281 *dl = bios->fp.dual_link;
4282
4283 return 0;
4284 }
4285
4286 /* BIT 'U'/'d' table encoder subtables have hashes matching them to
4287 * a particular set of encoders.
4288 *
4289 * This function returns true if a particular DCB entry matches.
4290 */
4291 bool
bios_encoder_match(struct dcb_entry * dcb,u32 hash)4292 bios_encoder_match(struct dcb_entry *dcb, u32 hash)
4293 {
4294 if ((hash & 0x000000f0) != (dcb->location << 4))
4295 return false;
4296 if ((hash & 0x0000000f) != dcb->type)
4297 return false;
4298 if (!(hash & (dcb->or << 16)))
4299 return false;
4300
4301 switch (dcb->type) {
4302 case OUTPUT_TMDS:
4303 case OUTPUT_LVDS:
4304 case OUTPUT_DP:
4305 if (hash & 0x00c00000) {
4306 if (!(hash & (dcb->sorconf.link << 22)))
4307 return false;
4308 }
4309 default:
4310 return true;
4311 }
4312 }
4313
4314 int
nouveau_bios_run_display_table(struct drm_device * dev,u16 type,int pclk,struct dcb_entry * dcbent,int crtc)4315 nouveau_bios_run_display_table(struct drm_device *dev, u16 type, int pclk,
4316 struct dcb_entry *dcbent, int crtc)
4317 {
4318 /*
4319 * The display script table is located by the BIT 'U' table.
4320 *
4321 * It contains an array of pointers to various tables describing
4322 * a particular output type. The first 32-bits of the output
4323 * tables contains similar information to a DCB entry, and is
4324 * used to decide whether that particular table is suitable for
4325 * the output you want to access.
4326 *
4327 * The "record header length" field here seems to indicate the
4328 * offset of the first configuration entry in the output tables.
4329 * This is 10 on most cards I've seen, but 12 has been witnessed
4330 * on DP cards, and there's another script pointer within the
4331 * header.
4332 *
4333 * offset + 0 ( 8 bits): version
4334 * offset + 1 ( 8 bits): header length
4335 * offset + 2 ( 8 bits): record length
4336 * offset + 3 ( 8 bits): number of records
4337 * offset + 4 ( 8 bits): record header length
4338 * offset + 5 (16 bits): pointer to first output script table
4339 */
4340
4341 struct drm_nouveau_private *dev_priv = dev->dev_private;
4342 struct nvbios *bios = &dev_priv->vbios;
4343 uint8_t *table = &bios->data[bios->display.script_table_ptr];
4344 uint8_t *otable = NULL;
4345 uint16_t script;
4346 int i;
4347
4348 if (!bios->display.script_table_ptr) {
4349 NV_ERROR(dev, "No pointer to output script table\n");
4350 return 1;
4351 }
4352
4353 /*
4354 * Nothing useful has been in any of the pre-2.0 tables I've seen,
4355 * so until they are, we really don't need to care.
4356 */
4357 if (table[0] < 0x20)
4358 return 1;
4359
4360 if (table[0] != 0x20 && table[0] != 0x21) {
4361 NV_ERROR(dev, "Output script table version 0x%02x unknown\n",
4362 table[0]);
4363 return 1;
4364 }
4365
4366 /*
4367 * The output script tables describing a particular output type
4368 * look as follows:
4369 *
4370 * offset + 0 (32 bits): output this table matches (hash of DCB)
4371 * offset + 4 ( 8 bits): unknown
4372 * offset + 5 ( 8 bits): number of configurations
4373 * offset + 6 (16 bits): pointer to some script
4374 * offset + 8 (16 bits): pointer to some script
4375 *
4376 * headerlen == 10
4377 * offset + 10 : configuration 0
4378 *
4379 * headerlen == 12
4380 * offset + 10 : pointer to some script
4381 * offset + 12 : configuration 0
4382 *
4383 * Each config entry is as follows:
4384 *
4385 * offset + 0 (16 bits): unknown, assumed to be a match value
4386 * offset + 2 (16 bits): pointer to script table (clock set?)
4387 * offset + 4 (16 bits): pointer to script table (reset?)
4388 *
4389 * There doesn't appear to be a count value to say how many
4390 * entries exist in each script table, instead, a 0 value in
4391 * the first 16-bit word seems to indicate both the end of the
4392 * list and the default entry. The second 16-bit word in the
4393 * script tables is a pointer to the script to execute.
4394 */
4395
4396 NV_DEBUG_KMS(dev, "Searching for output entry for %d %d %d\n",
4397 dcbent->type, dcbent->location, dcbent->or);
4398 for (i = 0; i < table[3]; i++) {
4399 otable = ROMPTR(dev, table[table[1] + (i * table[2])]);
4400 if (otable && bios_encoder_match(dcbent, ROM32(otable[0])))
4401 break;
4402 }
4403
4404 if (!otable) {
4405 NV_DEBUG_KMS(dev, "failed to match any output table\n");
4406 return 1;
4407 }
4408
4409 if (pclk < -2 || pclk > 0) {
4410 /* Try to find matching script table entry */
4411 for (i = 0; i < otable[5]; i++) {
4412 if (ROM16(otable[table[4] + i*6]) == type)
4413 break;
4414 }
4415
4416 if (i == otable[5]) {
4417 NV_ERROR(dev, "Table 0x%04x not found for %d/%d, "
4418 "using first\n",
4419 type, dcbent->type, dcbent->or);
4420 i = 0;
4421 }
4422 }
4423
4424 if (pclk == 0) {
4425 script = ROM16(otable[6]);
4426 if (!script) {
4427 NV_DEBUG_KMS(dev, "output script 0 not found\n");
4428 return 1;
4429 }
4430
4431 NV_DEBUG_KMS(dev, "0x%04X: parsing output script 0\n", script);
4432 nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4433 } else
4434 if (pclk == -1) {
4435 script = ROM16(otable[8]);
4436 if (!script) {
4437 NV_DEBUG_KMS(dev, "output script 1 not found\n");
4438 return 1;
4439 }
4440
4441 NV_DEBUG_KMS(dev, "0x%04X: parsing output script 1\n", script);
4442 nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4443 } else
4444 if (pclk == -2) {
4445 if (table[4] >= 12)
4446 script = ROM16(otable[10]);
4447 else
4448 script = 0;
4449 if (!script) {
4450 NV_DEBUG_KMS(dev, "output script 2 not found\n");
4451 return 1;
4452 }
4453
4454 NV_DEBUG_KMS(dev, "0x%04X: parsing output script 2\n", script);
4455 nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4456 } else
4457 if (pclk > 0) {
4458 script = ROM16(otable[table[4] + i*6 + 2]);
4459 if (script)
4460 script = clkcmptable(bios, script, pclk);
4461 if (!script) {
4462 NV_DEBUG_KMS(dev, "clock script 0 not found\n");
4463 return 1;
4464 }
4465
4466 NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 0\n", script);
4467 nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4468 } else
4469 if (pclk < 0) {
4470 script = ROM16(otable[table[4] + i*6 + 4]);
4471 if (script)
4472 script = clkcmptable(bios, script, -pclk);
4473 if (!script) {
4474 NV_DEBUG_KMS(dev, "clock script 1 not found\n");
4475 return 1;
4476 }
4477
4478 NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 1\n", script);
4479 nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4480 }
4481
4482 return 0;
4483 }
4484
4485
run_tmds_table(struct drm_device * dev,struct dcb_entry * dcbent,int head,int pxclk)4486 int run_tmds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, int pxclk)
4487 {
4488 /*
4489 * the pxclk parameter is in kHz
4490 *
4491 * This runs the TMDS regs setting code found on BIT bios cards
4492 *
4493 * For ffs(or) == 1 use the first table, for ffs(or) == 2 and
4494 * ffs(or) == 3, use the second.
4495 */
4496
4497 struct drm_nouveau_private *dev_priv = dev->dev_private;
4498 struct nvbios *bios = &dev_priv->vbios;
4499 int cv = bios->chip_version;
4500 uint16_t clktable = 0, scriptptr;
4501 uint32_t sel_clk_binding, sel_clk;
4502
4503 /* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */
4504 if (cv >= 0x17 && cv != 0x1a && cv != 0x20 &&
4505 dcbent->location != DCB_LOC_ON_CHIP)
4506 return 0;
4507
4508 switch (ffs(dcbent->or)) {
4509 case 1:
4510 clktable = bios->tmds.output0_script_ptr;
4511 break;
4512 case 2:
4513 case 3:
4514 clktable = bios->tmds.output1_script_ptr;
4515 break;
4516 }
4517
4518 if (!clktable) {
4519 NV_ERROR(dev, "Pixel clock comparison table not found\n");
4520 return -EINVAL;
4521 }
4522
4523 scriptptr = clkcmptable(bios, clktable, pxclk);
4524
4525 if (!scriptptr) {
4526 NV_ERROR(dev, "TMDS output init script not found\n");
4527 return -ENOENT;
4528 }
4529
4530 /* don't let script change pll->head binding */
4531 sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
4532 run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000);
4533 sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
4534 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
4535
4536 return 0;
4537 }
4538
4539 struct pll_mapping {
4540 u8 type;
4541 u32 reg;
4542 };
4543
4544 static struct pll_mapping nv04_pll_mapping[] = {
4545 { PLL_CORE , NV_PRAMDAC_NVPLL_COEFF },
4546 { PLL_MEMORY, NV_PRAMDAC_MPLL_COEFF },
4547 { PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
4548 { PLL_VPLL1 , NV_RAMDAC_VPLL2 },
4549 {}
4550 };
4551
4552 static struct pll_mapping nv40_pll_mapping[] = {
4553 { PLL_CORE , 0x004000 },
4554 { PLL_MEMORY, 0x004020 },
4555 { PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
4556 { PLL_VPLL1 , NV_RAMDAC_VPLL2 },
4557 {}
4558 };
4559
4560 static struct pll_mapping nv50_pll_mapping[] = {
4561 { PLL_CORE , 0x004028 },
4562 { PLL_SHADER, 0x004020 },
4563 { PLL_UNK03 , 0x004000 },
4564 { PLL_MEMORY, 0x004008 },
4565 { PLL_UNK40 , 0x00e810 },
4566 { PLL_UNK41 , 0x00e818 },
4567 { PLL_UNK42 , 0x00e824 },
4568 { PLL_VPLL0 , 0x614100 },
4569 { PLL_VPLL1 , 0x614900 },
4570 {}
4571 };
4572
4573 static struct pll_mapping nv84_pll_mapping[] = {
4574 { PLL_CORE , 0x004028 },
4575 { PLL_SHADER, 0x004020 },
4576 { PLL_MEMORY, 0x004008 },
4577 { PLL_VDEC , 0x004030 },
4578 { PLL_UNK41 , 0x00e818 },
4579 { PLL_VPLL0 , 0x614100 },
4580 { PLL_VPLL1 , 0x614900 },
4581 {}
4582 };
4583
4584 u32
get_pll_register(struct drm_device * dev,enum pll_types type)4585 get_pll_register(struct drm_device *dev, enum pll_types type)
4586 {
4587 struct drm_nouveau_private *dev_priv = dev->dev_private;
4588 struct nvbios *bios = &dev_priv->vbios;
4589 struct pll_mapping *map;
4590 int i;
4591
4592 if (dev_priv->card_type < NV_40)
4593 map = nv04_pll_mapping;
4594 else
4595 if (dev_priv->card_type < NV_50)
4596 map = nv40_pll_mapping;
4597 else {
4598 u8 *plim = &bios->data[bios->pll_limit_tbl_ptr];
4599
4600 if (plim[0] >= 0x30) {
4601 u8 *entry = plim + plim[1];
4602 for (i = 0; i < plim[3]; i++, entry += plim[2]) {
4603 if (entry[0] == type)
4604 return ROM32(entry[3]);
4605 }
4606
4607 return 0;
4608 }
4609
4610 if (dev_priv->chipset == 0x50)
4611 map = nv50_pll_mapping;
4612 else
4613 map = nv84_pll_mapping;
4614 }
4615
4616 while (map->reg) {
4617 if (map->type == type)
4618 return map->reg;
4619 map++;
4620 }
4621
4622 return 0;
4623 }
4624
get_pll_limits(struct drm_device * dev,uint32_t limit_match,struct pll_lims * pll_lim)4625 int get_pll_limits(struct drm_device *dev, uint32_t limit_match, struct pll_lims *pll_lim)
4626 {
4627 /*
4628 * PLL limits table
4629 *
4630 * Version 0x10: NV30, NV31
4631 * One byte header (version), one record of 24 bytes
4632 * Version 0x11: NV36 - Not implemented
4633 * Seems to have same record style as 0x10, but 3 records rather than 1
4634 * Version 0x20: Found on Geforce 6 cards
4635 * Trivial 4 byte BIT header. 31 (0x1f) byte record length
4636 * Version 0x21: Found on Geforce 7, 8 and some Geforce 6 cards
4637 * 5 byte header, fifth byte of unknown purpose. 35 (0x23) byte record
4638 * length in general, some (integrated) have an extra configuration byte
4639 * Version 0x30: Found on Geforce 8, separates the register mapping
4640 * from the limits tables.
4641 */
4642
4643 struct drm_nouveau_private *dev_priv = dev->dev_private;
4644 struct nvbios *bios = &dev_priv->vbios;
4645 int cv = bios->chip_version, pllindex = 0;
4646 uint8_t pll_lim_ver = 0, headerlen = 0, recordlen = 0, entries = 0;
4647 uint32_t crystal_strap_mask, crystal_straps;
4648
4649 if (!bios->pll_limit_tbl_ptr) {
4650 if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 ||
4651 cv >= 0x40) {
4652 NV_ERROR(dev, "Pointer to PLL limits table invalid\n");
4653 return -EINVAL;
4654 }
4655 } else
4656 pll_lim_ver = bios->data[bios->pll_limit_tbl_ptr];
4657
4658 crystal_strap_mask = 1 << 6;
4659 /* open coded dev->twoHeads test */
4660 if (cv > 0x10 && cv != 0x15 && cv != 0x1a && cv != 0x20)
4661 crystal_strap_mask |= 1 << 22;
4662 crystal_straps = nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) &
4663 crystal_strap_mask;
4664
4665 switch (pll_lim_ver) {
4666 /*
4667 * We use version 0 to indicate a pre limit table bios (single stage
4668 * pll) and load the hard coded limits instead.
4669 */
4670 case 0:
4671 break;
4672 case 0x10:
4673 case 0x11:
4674 /*
4675 * Strictly v0x11 has 3 entries, but the last two don't seem
4676 * to get used.
4677 */
4678 headerlen = 1;
4679 recordlen = 0x18;
4680 entries = 1;
4681 pllindex = 0;
4682 break;
4683 case 0x20:
4684 case 0x21:
4685 case 0x30:
4686 case 0x40:
4687 headerlen = bios->data[bios->pll_limit_tbl_ptr + 1];
4688 recordlen = bios->data[bios->pll_limit_tbl_ptr + 2];
4689 entries = bios->data[bios->pll_limit_tbl_ptr + 3];
4690 break;
4691 default:
4692 NV_ERROR(dev, "PLL limits table revision 0x%X not currently "
4693 "supported\n", pll_lim_ver);
4694 return -ENOSYS;
4695 }
4696
4697 /* initialize all members to zero */
4698 memset(pll_lim, 0, sizeof(struct pll_lims));
4699
4700 /* if we were passed a type rather than a register, figure
4701 * out the register and store it
4702 */
4703 if (limit_match > PLL_MAX)
4704 pll_lim->reg = limit_match;
4705 else {
4706 pll_lim->reg = get_pll_register(dev, limit_match);
4707 if (!pll_lim->reg)
4708 return -ENOENT;
4709 }
4710
4711 if (pll_lim_ver == 0x10 || pll_lim_ver == 0x11) {
4712 uint8_t *pll_rec = &bios->data[bios->pll_limit_tbl_ptr + headerlen + recordlen * pllindex];
4713
4714 pll_lim->vco1.minfreq = ROM32(pll_rec[0]);
4715 pll_lim->vco1.maxfreq = ROM32(pll_rec[4]);
4716 pll_lim->vco2.minfreq = ROM32(pll_rec[8]);
4717 pll_lim->vco2.maxfreq = ROM32(pll_rec[12]);
4718 pll_lim->vco1.min_inputfreq = ROM32(pll_rec[16]);
4719 pll_lim->vco2.min_inputfreq = ROM32(pll_rec[20]);
4720 pll_lim->vco1.max_inputfreq = pll_lim->vco2.max_inputfreq = INT_MAX;
4721
4722 /* these values taken from nv30/31/36 */
4723 pll_lim->vco1.min_n = 0x1;
4724 if (cv == 0x36)
4725 pll_lim->vco1.min_n = 0x5;
4726 pll_lim->vco1.max_n = 0xff;
4727 pll_lim->vco1.min_m = 0x1;
4728 pll_lim->vco1.max_m = 0xd;
4729 pll_lim->vco2.min_n = 0x4;
4730 /*
4731 * On nv30, 31, 36 (i.e. all cards with two stage PLLs with this
4732 * table version (apart from nv35)), N2 is compared to
4733 * maxN2 (0x46) and 10 * maxM2 (0x4), so set maxN2 to 0x28 and
4734 * save a comparison
4735 */
4736 pll_lim->vco2.max_n = 0x28;
4737 if (cv == 0x30 || cv == 0x35)
4738 /* only 5 bits available for N2 on nv30/35 */
4739 pll_lim->vco2.max_n = 0x1f;
4740 pll_lim->vco2.min_m = 0x1;
4741 pll_lim->vco2.max_m = 0x4;
4742 pll_lim->max_log2p = 0x7;
4743 pll_lim->max_usable_log2p = 0x6;
4744 } else if (pll_lim_ver == 0x20 || pll_lim_ver == 0x21) {
4745 uint16_t plloffs = bios->pll_limit_tbl_ptr + headerlen;
4746 uint8_t *pll_rec;
4747 int i;
4748
4749 /*
4750 * First entry is default match, if nothing better. warn if
4751 * reg field nonzero
4752 */
4753 if (ROM32(bios->data[plloffs]))
4754 NV_WARN(dev, "Default PLL limit entry has non-zero "
4755 "register field\n");
4756
4757 for (i = 1; i < entries; i++)
4758 if (ROM32(bios->data[plloffs + recordlen * i]) == pll_lim->reg) {
4759 pllindex = i;
4760 break;
4761 }
4762
4763 if ((dev_priv->card_type >= NV_50) && (pllindex == 0)) {
4764 NV_ERROR(dev, "Register 0x%08x not found in PLL "
4765 "limits table", pll_lim->reg);
4766 return -ENOENT;
4767 }
4768
4769 pll_rec = &bios->data[plloffs + recordlen * pllindex];
4770
4771 BIOSLOG(bios, "Loading PLL limits for reg 0x%08x\n",
4772 pllindex ? pll_lim->reg : 0);
4773
4774 /*
4775 * Frequencies are stored in tables in MHz, kHz are more
4776 * useful, so we convert.
4777 */
4778
4779 /* What output frequencies can each VCO generate? */
4780 pll_lim->vco1.minfreq = ROM16(pll_rec[4]) * 1000;
4781 pll_lim->vco1.maxfreq = ROM16(pll_rec[6]) * 1000;
4782 pll_lim->vco2.minfreq = ROM16(pll_rec[8]) * 1000;
4783 pll_lim->vco2.maxfreq = ROM16(pll_rec[10]) * 1000;
4784
4785 /* What input frequencies they accept (past the m-divider)? */
4786 pll_lim->vco1.min_inputfreq = ROM16(pll_rec[12]) * 1000;
4787 pll_lim->vco2.min_inputfreq = ROM16(pll_rec[14]) * 1000;
4788 pll_lim->vco1.max_inputfreq = ROM16(pll_rec[16]) * 1000;
4789 pll_lim->vco2.max_inputfreq = ROM16(pll_rec[18]) * 1000;
4790
4791 /* What values are accepted as multiplier and divider? */
4792 pll_lim->vco1.min_n = pll_rec[20];
4793 pll_lim->vco1.max_n = pll_rec[21];
4794 pll_lim->vco1.min_m = pll_rec[22];
4795 pll_lim->vco1.max_m = pll_rec[23];
4796 pll_lim->vco2.min_n = pll_rec[24];
4797 pll_lim->vco2.max_n = pll_rec[25];
4798 pll_lim->vco2.min_m = pll_rec[26];
4799 pll_lim->vco2.max_m = pll_rec[27];
4800
4801 pll_lim->max_usable_log2p = pll_lim->max_log2p = pll_rec[29];
4802 if (pll_lim->max_log2p > 0x7)
4803 /* pll decoding in nv_hw.c assumes never > 7 */
4804 NV_WARN(dev, "Max log2 P value greater than 7 (%d)\n",
4805 pll_lim->max_log2p);
4806 if (cv < 0x60)
4807 pll_lim->max_usable_log2p = 0x6;
4808 pll_lim->log2p_bias = pll_rec[30];
4809
4810 if (recordlen > 0x22)
4811 pll_lim->refclk = ROM32(pll_rec[31]);
4812
4813 if (recordlen > 0x23 && pll_rec[35])
4814 NV_WARN(dev,
4815 "Bits set in PLL configuration byte (%x)\n",
4816 pll_rec[35]);
4817
4818 /* C51 special not seen elsewhere */
4819 if (cv == 0x51 && !pll_lim->refclk) {
4820 uint32_t sel_clk = bios_rd32(bios, NV_PRAMDAC_SEL_CLK);
4821
4822 if ((pll_lim->reg == NV_PRAMDAC_VPLL_COEFF && sel_clk & 0x20) ||
4823 (pll_lim->reg == NV_RAMDAC_VPLL2 && sel_clk & 0x80)) {
4824 if (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_CHIP_ID_INDEX) < 0xa3)
4825 pll_lim->refclk = 200000;
4826 else
4827 pll_lim->refclk = 25000;
4828 }
4829 }
4830 } else if (pll_lim_ver == 0x30) { /* ver 0x30 */
4831 uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
4832 uint8_t *record = NULL;
4833 int i;
4834
4835 BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
4836 pll_lim->reg);
4837
4838 for (i = 0; i < entries; i++, entry += recordlen) {
4839 if (ROM32(entry[3]) == pll_lim->reg) {
4840 record = &bios->data[ROM16(entry[1])];
4841 break;
4842 }
4843 }
4844
4845 if (!record) {
4846 NV_ERROR(dev, "Register 0x%08x not found in PLL "
4847 "limits table", pll_lim->reg);
4848 return -ENOENT;
4849 }
4850
4851 pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
4852 pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
4853 pll_lim->vco2.minfreq = ROM16(record[4]) * 1000;
4854 pll_lim->vco2.maxfreq = ROM16(record[6]) * 1000;
4855 pll_lim->vco1.min_inputfreq = ROM16(record[8]) * 1000;
4856 pll_lim->vco2.min_inputfreq = ROM16(record[10]) * 1000;
4857 pll_lim->vco1.max_inputfreq = ROM16(record[12]) * 1000;
4858 pll_lim->vco2.max_inputfreq = ROM16(record[14]) * 1000;
4859 pll_lim->vco1.min_n = record[16];
4860 pll_lim->vco1.max_n = record[17];
4861 pll_lim->vco1.min_m = record[18];
4862 pll_lim->vco1.max_m = record[19];
4863 pll_lim->vco2.min_n = record[20];
4864 pll_lim->vco2.max_n = record[21];
4865 pll_lim->vco2.min_m = record[22];
4866 pll_lim->vco2.max_m = record[23];
4867 pll_lim->max_usable_log2p = pll_lim->max_log2p = record[25];
4868 pll_lim->log2p_bias = record[27];
4869 pll_lim->refclk = ROM32(record[28]);
4870 } else if (pll_lim_ver) { /* ver 0x40 */
4871 uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
4872 uint8_t *record = NULL;
4873 int i;
4874
4875 BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
4876 pll_lim->reg);
4877
4878 for (i = 0; i < entries; i++, entry += recordlen) {
4879 if (ROM32(entry[3]) == pll_lim->reg) {
4880 record = &bios->data[ROM16(entry[1])];
4881 break;
4882 }
4883 }
4884
4885 if (!record) {
4886 NV_ERROR(dev, "Register 0x%08x not found in PLL "
4887 "limits table", pll_lim->reg);
4888 return -ENOENT;
4889 }
4890
4891 pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
4892 pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
4893 pll_lim->vco1.min_inputfreq = ROM16(record[4]) * 1000;
4894 pll_lim->vco1.max_inputfreq = ROM16(record[6]) * 1000;
4895 pll_lim->vco1.min_m = record[8];
4896 pll_lim->vco1.max_m = record[9];
4897 pll_lim->vco1.min_n = record[10];
4898 pll_lim->vco1.max_n = record[11];
4899 pll_lim->min_p = record[12];
4900 pll_lim->max_p = record[13];
4901 pll_lim->refclk = ROM16(entry[9]) * 1000;
4902 }
4903
4904 /*
4905 * By now any valid limit table ought to have set a max frequency for
4906 * vco1, so if it's zero it's either a pre limit table bios, or one
4907 * with an empty limit table (seen on nv18)
4908 */
4909 if (!pll_lim->vco1.maxfreq) {
4910 pll_lim->vco1.minfreq = bios->fminvco;
4911 pll_lim->vco1.maxfreq = bios->fmaxvco;
4912 pll_lim->vco1.min_inputfreq = 0;
4913 pll_lim->vco1.max_inputfreq = INT_MAX;
4914 pll_lim->vco1.min_n = 0x1;
4915 pll_lim->vco1.max_n = 0xff;
4916 pll_lim->vco1.min_m = 0x1;
4917 if (crystal_straps == 0) {
4918 /* nv05 does this, nv11 doesn't, nv10 unknown */
4919 if (cv < 0x11)
4920 pll_lim->vco1.min_m = 0x7;
4921 pll_lim->vco1.max_m = 0xd;
4922 } else {
4923 if (cv < 0x11)
4924 pll_lim->vco1.min_m = 0x8;
4925 pll_lim->vco1.max_m = 0xe;
4926 }
4927 if (cv < 0x17 || cv == 0x1a || cv == 0x20)
4928 pll_lim->max_log2p = 4;
4929 else
4930 pll_lim->max_log2p = 5;
4931 pll_lim->max_usable_log2p = pll_lim->max_log2p;
4932 }
4933
4934 if (!pll_lim->refclk)
4935 switch (crystal_straps) {
4936 case 0:
4937 pll_lim->refclk = 13500;
4938 break;
4939 case (1 << 6):
4940 pll_lim->refclk = 14318;
4941 break;
4942 case (1 << 22):
4943 pll_lim->refclk = 27000;
4944 break;
4945 case (1 << 22 | 1 << 6):
4946 pll_lim->refclk = 25000;
4947 break;
4948 }
4949
4950 NV_DEBUG(dev, "pll.vco1.minfreq: %d\n", pll_lim->vco1.minfreq);
4951 NV_DEBUG(dev, "pll.vco1.maxfreq: %d\n", pll_lim->vco1.maxfreq);
4952 NV_DEBUG(dev, "pll.vco1.min_inputfreq: %d\n", pll_lim->vco1.min_inputfreq);
4953 NV_DEBUG(dev, "pll.vco1.max_inputfreq: %d\n", pll_lim->vco1.max_inputfreq);
4954 NV_DEBUG(dev, "pll.vco1.min_n: %d\n", pll_lim->vco1.min_n);
4955 NV_DEBUG(dev, "pll.vco1.max_n: %d\n", pll_lim->vco1.max_n);
4956 NV_DEBUG(dev, "pll.vco1.min_m: %d\n", pll_lim->vco1.min_m);
4957 NV_DEBUG(dev, "pll.vco1.max_m: %d\n", pll_lim->vco1.max_m);
4958 if (pll_lim->vco2.maxfreq) {
4959 NV_DEBUG(dev, "pll.vco2.minfreq: %d\n", pll_lim->vco2.minfreq);
4960 NV_DEBUG(dev, "pll.vco2.maxfreq: %d\n", pll_lim->vco2.maxfreq);
4961 NV_DEBUG(dev, "pll.vco2.min_inputfreq: %d\n", pll_lim->vco2.min_inputfreq);
4962 NV_DEBUG(dev, "pll.vco2.max_inputfreq: %d\n", pll_lim->vco2.max_inputfreq);
4963 NV_DEBUG(dev, "pll.vco2.min_n: %d\n", pll_lim->vco2.min_n);
4964 NV_DEBUG(dev, "pll.vco2.max_n: %d\n", pll_lim->vco2.max_n);
4965 NV_DEBUG(dev, "pll.vco2.min_m: %d\n", pll_lim->vco2.min_m);
4966 NV_DEBUG(dev, "pll.vco2.max_m: %d\n", pll_lim->vco2.max_m);
4967 }
4968 if (!pll_lim->max_p) {
4969 NV_DEBUG(dev, "pll.max_log2p: %d\n", pll_lim->max_log2p);
4970 NV_DEBUG(dev, "pll.log2p_bias: %d\n", pll_lim->log2p_bias);
4971 } else {
4972 NV_DEBUG(dev, "pll.min_p: %d\n", pll_lim->min_p);
4973 NV_DEBUG(dev, "pll.max_p: %d\n", pll_lim->max_p);
4974 }
4975 NV_DEBUG(dev, "pll.refclk: %d\n", pll_lim->refclk);
4976
4977 return 0;
4978 }
4979
parse_bios_version(struct drm_device * dev,struct nvbios * bios,uint16_t offset)4980 static void parse_bios_version(struct drm_device *dev, struct nvbios *bios, uint16_t offset)
4981 {
4982 /*
4983 * offset + 0 (8 bits): Micro version
4984 * offset + 1 (8 bits): Minor version
4985 * offset + 2 (8 bits): Chip version
4986 * offset + 3 (8 bits): Major version
4987 */
4988
4989 bios->major_version = bios->data[offset + 3];
4990 bios->chip_version = bios->data[offset + 2];
4991 NV_TRACE(dev, "Bios version %02x.%02x.%02x.%02x\n",
4992 bios->data[offset + 3], bios->data[offset + 2],
4993 bios->data[offset + 1], bios->data[offset]);
4994 }
4995
parse_script_table_pointers(struct nvbios * bios,uint16_t offset)4996 static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset)
4997 {
4998 /*
4999 * Parses the init table segment for pointers used in script execution.
5000 *
5001 * offset + 0 (16 bits): init script tables pointer
5002 * offset + 2 (16 bits): macro index table pointer
5003 * offset + 4 (16 bits): macro table pointer
5004 * offset + 6 (16 bits): condition table pointer
5005 * offset + 8 (16 bits): io condition table pointer
5006 * offset + 10 (16 bits): io flag condition table pointer
5007 * offset + 12 (16 bits): init function table pointer
5008 */
5009
5010 bios->init_script_tbls_ptr = ROM16(bios->data[offset]);
5011 bios->macro_index_tbl_ptr = ROM16(bios->data[offset + 2]);
5012 bios->macro_tbl_ptr = ROM16(bios->data[offset + 4]);
5013 bios->condition_tbl_ptr = ROM16(bios->data[offset + 6]);
5014 bios->io_condition_tbl_ptr = ROM16(bios->data[offset + 8]);
5015 bios->io_flag_condition_tbl_ptr = ROM16(bios->data[offset + 10]);
5016 bios->init_function_tbl_ptr = ROM16(bios->data[offset + 12]);
5017 }
5018
parse_bit_A_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5019 static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5020 {
5021 /*
5022 * Parses the load detect values for g80 cards.
5023 *
5024 * offset + 0 (16 bits): loadval table pointer
5025 */
5026
5027 uint16_t load_table_ptr;
5028 uint8_t version, headerlen, entrylen, num_entries;
5029
5030 if (bitentry->length != 3) {
5031 NV_ERROR(dev, "Do not understand BIT A table\n");
5032 return -EINVAL;
5033 }
5034
5035 load_table_ptr = ROM16(bios->data[bitentry->offset]);
5036
5037 if (load_table_ptr == 0x0) {
5038 NV_DEBUG(dev, "Pointer to BIT loadval table invalid\n");
5039 return -EINVAL;
5040 }
5041
5042 version = bios->data[load_table_ptr];
5043
5044 if (version != 0x10) {
5045 NV_ERROR(dev, "BIT loadval table version %d.%d not supported\n",
5046 version >> 4, version & 0xF);
5047 return -ENOSYS;
5048 }
5049
5050 headerlen = bios->data[load_table_ptr + 1];
5051 entrylen = bios->data[load_table_ptr + 2];
5052 num_entries = bios->data[load_table_ptr + 3];
5053
5054 if (headerlen != 4 || entrylen != 4 || num_entries != 2) {
5055 NV_ERROR(dev, "Do not understand BIT loadval table\n");
5056 return -EINVAL;
5057 }
5058
5059 /* First entry is normal dac, 2nd tv-out perhaps? */
5060 bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff;
5061
5062 return 0;
5063 }
5064
parse_bit_C_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5065 static int parse_bit_C_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5066 {
5067 /*
5068 * offset + 8 (16 bits): PLL limits table pointer
5069 *
5070 * There's more in here, but that's unknown.
5071 */
5072
5073 if (bitentry->length < 10) {
5074 NV_ERROR(dev, "Do not understand BIT C table\n");
5075 return -EINVAL;
5076 }
5077
5078 bios->pll_limit_tbl_ptr = ROM16(bios->data[bitentry->offset + 8]);
5079
5080 return 0;
5081 }
5082
parse_bit_display_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5083 static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5084 {
5085 /*
5086 * Parses the flat panel table segment that the bit entry points to.
5087 * Starting at bitentry->offset:
5088 *
5089 * offset + 0 (16 bits): ??? table pointer - seems to have 18 byte
5090 * records beginning with a freq.
5091 * offset + 2 (16 bits): mode table pointer
5092 */
5093
5094 if (bitentry->length != 4) {
5095 NV_ERROR(dev, "Do not understand BIT display table\n");
5096 return -EINVAL;
5097 }
5098
5099 bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]);
5100
5101 return 0;
5102 }
5103
parse_bit_init_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5104 static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5105 {
5106 /*
5107 * Parses the init table segment that the bit entry points to.
5108 *
5109 * See parse_script_table_pointers for layout
5110 */
5111
5112 if (bitentry->length < 14) {
5113 NV_ERROR(dev, "Do not understand init table\n");
5114 return -EINVAL;
5115 }
5116
5117 parse_script_table_pointers(bios, bitentry->offset);
5118
5119 if (bitentry->length >= 16)
5120 bios->some_script_ptr = ROM16(bios->data[bitentry->offset + 14]);
5121 if (bitentry->length >= 18)
5122 bios->init96_tbl_ptr = ROM16(bios->data[bitentry->offset + 16]);
5123
5124 return 0;
5125 }
5126
parse_bit_i_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5127 static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5128 {
5129 /*
5130 * BIT 'i' (info?) table
5131 *
5132 * offset + 0 (32 bits): BIOS version dword (as in B table)
5133 * offset + 5 (8 bits): BIOS feature byte (same as for BMP?)
5134 * offset + 13 (16 bits): pointer to table containing DAC load
5135 * detection comparison values
5136 *
5137 * There's other things in the table, purpose unknown
5138 */
5139
5140 uint16_t daccmpoffset;
5141 uint8_t dacver, dacheaderlen;
5142
5143 if (bitentry->length < 6) {
5144 NV_ERROR(dev, "BIT i table too short for needed information\n");
5145 return -EINVAL;
5146 }
5147
5148 parse_bios_version(dev, bios, bitentry->offset);
5149
5150 /*
5151 * bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's
5152 * Quadro identity crisis), other bits possibly as for BMP feature byte
5153 */
5154 bios->feature_byte = bios->data[bitentry->offset + 5];
5155 bios->is_mobile = bios->feature_byte & FEATURE_MOBILE;
5156
5157 if (bitentry->length < 15) {
5158 NV_WARN(dev, "BIT i table not long enough for DAC load "
5159 "detection comparison table\n");
5160 return -EINVAL;
5161 }
5162
5163 daccmpoffset = ROM16(bios->data[bitentry->offset + 13]);
5164
5165 /* doesn't exist on g80 */
5166 if (!daccmpoffset)
5167 return 0;
5168
5169 /*
5170 * The first value in the table, following the header, is the
5171 * comparison value, the second entry is a comparison value for
5172 * TV load detection.
5173 */
5174
5175 dacver = bios->data[daccmpoffset];
5176 dacheaderlen = bios->data[daccmpoffset + 1];
5177
5178 if (dacver != 0x00 && dacver != 0x10) {
5179 NV_WARN(dev, "DAC load detection comparison table version "
5180 "%d.%d not known\n", dacver >> 4, dacver & 0xf);
5181 return -ENOSYS;
5182 }
5183
5184 bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]);
5185 bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]);
5186
5187 return 0;
5188 }
5189
parse_bit_lvds_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5190 static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5191 {
5192 /*
5193 * Parses the LVDS table segment that the bit entry points to.
5194 * Starting at bitentry->offset:
5195 *
5196 * offset + 0 (16 bits): LVDS strap xlate table pointer
5197 */
5198
5199 if (bitentry->length != 2) {
5200 NV_ERROR(dev, "Do not understand BIT LVDS table\n");
5201 return -EINVAL;
5202 }
5203
5204 /*
5205 * No idea if it's still called the LVDS manufacturer table, but
5206 * the concept's close enough.
5207 */
5208 bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]);
5209
5210 return 0;
5211 }
5212
5213 static int
parse_bit_M_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5214 parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios,
5215 struct bit_entry *bitentry)
5216 {
5217 /*
5218 * offset + 2 (8 bits): number of options in an
5219 * INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set
5220 * offset + 3 (16 bits): pointer to strap xlate table for RAM
5221 * restrict option selection
5222 *
5223 * There's a bunch of bits in this table other than the RAM restrict
5224 * stuff that we don't use - their use currently unknown
5225 */
5226
5227 /*
5228 * Older bios versions don't have a sufficiently long table for
5229 * what we want
5230 */
5231 if (bitentry->length < 0x5)
5232 return 0;
5233
5234 if (bitentry->version < 2) {
5235 bios->ram_restrict_group_count = bios->data[bitentry->offset + 2];
5236 bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]);
5237 } else {
5238 bios->ram_restrict_group_count = bios->data[bitentry->offset + 0];
5239 bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]);
5240 }
5241
5242 return 0;
5243 }
5244
parse_bit_tmds_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5245 static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
5246 {
5247 /*
5248 * Parses the pointer to the TMDS table
5249 *
5250 * Starting at bitentry->offset:
5251 *
5252 * offset + 0 (16 bits): TMDS table pointer
5253 *
5254 * The TMDS table is typically found just before the DCB table, with a
5255 * characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being
5256 * length?)
5257 *
5258 * At offset +7 is a pointer to a script, which I don't know how to
5259 * run yet.
5260 * At offset +9 is a pointer to another script, likewise
5261 * Offset +11 has a pointer to a table where the first word is a pxclk
5262 * frequency and the second word a pointer to a script, which should be
5263 * run if the comparison pxclk frequency is less than the pxclk desired.
5264 * This repeats for decreasing comparison frequencies
5265 * Offset +13 has a pointer to a similar table
5266 * The selection of table (and possibly +7/+9 script) is dictated by
5267 * "or" from the DCB.
5268 */
5269
5270 uint16_t tmdstableptr, script1, script2;
5271
5272 if (bitentry->length != 2) {
5273 NV_ERROR(dev, "Do not understand BIT TMDS table\n");
5274 return -EINVAL;
5275 }
5276
5277 tmdstableptr = ROM16(bios->data[bitentry->offset]);
5278 if (!tmdstableptr) {
5279 NV_ERROR(dev, "Pointer to TMDS table invalid\n");
5280 return -EINVAL;
5281 }
5282
5283 NV_INFO(dev, "TMDS table version %d.%d\n",
5284 bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf);
5285
5286 /* nv50+ has v2.0, but we don't parse it atm */
5287 if (bios->data[tmdstableptr] != 0x11)
5288 return -ENOSYS;
5289
5290 /*
5291 * These two scripts are odd: they don't seem to get run even when
5292 * they are not stubbed.
5293 */
5294 script1 = ROM16(bios->data[tmdstableptr + 7]);
5295 script2 = ROM16(bios->data[tmdstableptr + 9]);
5296 if (bios->data[script1] != 'q' || bios->data[script2] != 'q')
5297 NV_WARN(dev, "TMDS table script pointers not stubbed\n");
5298
5299 bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]);
5300 bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]);
5301
5302 return 0;
5303 }
5304
5305 static int
parse_bit_U_tbl_entry(struct drm_device * dev,struct nvbios * bios,struct bit_entry * bitentry)5306 parse_bit_U_tbl_entry(struct drm_device *dev, struct nvbios *bios,
5307 struct bit_entry *bitentry)
5308 {
5309 /*
5310 * Parses the pointer to the G80 output script tables
5311 *
5312 * Starting at bitentry->offset:
5313 *
5314 * offset + 0 (16 bits): output script table pointer
5315 */
5316
5317 uint16_t outputscripttableptr;
5318
5319 if (bitentry->length != 3) {
5320 NV_ERROR(dev, "Do not understand BIT U table\n");
5321 return -EINVAL;
5322 }
5323
5324 outputscripttableptr = ROM16(bios->data[bitentry->offset]);
5325 bios->display.script_table_ptr = outputscripttableptr;
5326 return 0;
5327 }
5328
5329 struct bit_table {
5330 const char id;
5331 int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *);
5332 };
5333
5334 #define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry })
5335
5336 int
bit_table(struct drm_device * dev,u8 id,struct bit_entry * bit)5337 bit_table(struct drm_device *dev, u8 id, struct bit_entry *bit)
5338 {
5339 struct drm_nouveau_private *dev_priv = dev->dev_private;
5340 struct nvbios *bios = &dev_priv->vbios;
5341 u8 entries, *entry;
5342
5343 if (bios->type != NVBIOS_BIT)
5344 return -ENODEV;
5345
5346 entries = bios->data[bios->offset + 10];
5347 entry = &bios->data[bios->offset + 12];
5348 while (entries--) {
5349 if (entry[0] == id) {
5350 bit->id = entry[0];
5351 bit->version = entry[1];
5352 bit->length = ROM16(entry[2]);
5353 bit->offset = ROM16(entry[4]);
5354 bit->data = ROMPTR(dev, entry[4]);
5355 return 0;
5356 }
5357
5358 entry += bios->data[bios->offset + 9];
5359 }
5360
5361 return -ENOENT;
5362 }
5363
5364 static int
parse_bit_table(struct nvbios * bios,const uint16_t bitoffset,struct bit_table * table)5365 parse_bit_table(struct nvbios *bios, const uint16_t bitoffset,
5366 struct bit_table *table)
5367 {
5368 struct drm_device *dev = bios->dev;
5369 struct bit_entry bitentry;
5370
5371 if (bit_table(dev, table->id, &bitentry) == 0)
5372 return table->parse_fn(dev, bios, &bitentry);
5373
5374 NV_INFO(dev, "BIT table '%c' not found\n", table->id);
5375 return -ENOSYS;
5376 }
5377
5378 static int
parse_bit_structure(struct nvbios * bios,const uint16_t bitoffset)5379 parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset)
5380 {
5381 int ret;
5382
5383 /*
5384 * The only restriction on parsing order currently is having 'i' first
5385 * for use of bios->*_version or bios->feature_byte while parsing;
5386 * functions shouldn't be actually *doing* anything apart from pulling
5387 * data from the image into the bios struct, thus no interdependencies
5388 */
5389 ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i));
5390 if (ret) /* info? */
5391 return ret;
5392 if (bios->major_version >= 0x60) /* g80+ */
5393 parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A));
5394 ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('C', C));
5395 if (ret)
5396 return ret;
5397 parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display));
5398 ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init));
5399 if (ret)
5400 return ret;
5401 parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */
5402 parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds));
5403 parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds));
5404 parse_bit_table(bios, bitoffset, &BIT_TABLE('U', U));
5405
5406 return 0;
5407 }
5408
parse_bmp_structure(struct drm_device * dev,struct nvbios * bios,unsigned int offset)5409 static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset)
5410 {
5411 /*
5412 * Parses the BMP structure for useful things, but does not act on them
5413 *
5414 * offset + 5: BMP major version
5415 * offset + 6: BMP minor version
5416 * offset + 9: BMP feature byte
5417 * offset + 10: BCD encoded BIOS version
5418 *
5419 * offset + 18: init script table pointer (for bios versions < 5.10h)
5420 * offset + 20: extra init script table pointer (for bios
5421 * versions < 5.10h)
5422 *
5423 * offset + 24: memory init table pointer (used on early bios versions)
5424 * offset + 26: SDR memory sequencing setup data table
5425 * offset + 28: DDR memory sequencing setup data table
5426 *
5427 * offset + 54: index of I2C CRTC pair to use for CRT output
5428 * offset + 55: index of I2C CRTC pair to use for TV output
5429 * offset + 56: index of I2C CRTC pair to use for flat panel output
5430 * offset + 58: write CRTC index for I2C pair 0
5431 * offset + 59: read CRTC index for I2C pair 0
5432 * offset + 60: write CRTC index for I2C pair 1
5433 * offset + 61: read CRTC index for I2C pair 1
5434 *
5435 * offset + 67: maximum internal PLL frequency (single stage PLL)
5436 * offset + 71: minimum internal PLL frequency (single stage PLL)
5437 *
5438 * offset + 75: script table pointers, as described in
5439 * parse_script_table_pointers
5440 *
5441 * offset + 89: TMDS single link output A table pointer
5442 * offset + 91: TMDS single link output B table pointer
5443 * offset + 95: LVDS single link output A table pointer
5444 * offset + 105: flat panel timings table pointer
5445 * offset + 107: flat panel strapping translation table pointer
5446 * offset + 117: LVDS manufacturer panel config table pointer
5447 * offset + 119: LVDS manufacturer strapping translation table pointer
5448 *
5449 * offset + 142: PLL limits table pointer
5450 *
5451 * offset + 156: minimum pixel clock for LVDS dual link
5452 */
5453
5454 uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor;
5455 uint16_t bmplength;
5456 uint16_t legacy_scripts_offset, legacy_i2c_offset;
5457
5458 /* load needed defaults in case we can't parse this info */
5459 bios->digital_min_front_porch = 0x4b;
5460 bios->fmaxvco = 256000;
5461 bios->fminvco = 128000;
5462 bios->fp.duallink_transition_clk = 90000;
5463
5464 bmp_version_major = bmp[5];
5465 bmp_version_minor = bmp[6];
5466
5467 NV_TRACE(dev, "BMP version %d.%d\n",
5468 bmp_version_major, bmp_version_minor);
5469
5470 /*
5471 * Make sure that 0x36 is blank and can't be mistaken for a DCB
5472 * pointer on early versions
5473 */
5474 if (bmp_version_major < 5)
5475 *(uint16_t *)&bios->data[0x36] = 0;
5476
5477 /*
5478 * Seems that the minor version was 1 for all major versions prior
5479 * to 5. Version 6 could theoretically exist, but I suspect BIT
5480 * happened instead.
5481 */
5482 if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) {
5483 NV_ERROR(dev, "You have an unsupported BMP version. "
5484 "Please send in your bios\n");
5485 return -ENOSYS;
5486 }
5487
5488 if (bmp_version_major == 0)
5489 /* nothing that's currently useful in this version */
5490 return 0;
5491 else if (bmp_version_major == 1)
5492 bmplength = 44; /* exact for 1.01 */
5493 else if (bmp_version_major == 2)
5494 bmplength = 48; /* exact for 2.01 */
5495 else if (bmp_version_major == 3)
5496 bmplength = 54;
5497 /* guessed - mem init tables added in this version */
5498 else if (bmp_version_major == 4 || bmp_version_minor < 0x1)
5499 /* don't know if 5.0 exists... */
5500 bmplength = 62;
5501 /* guessed - BMP I2C indices added in version 4*/
5502 else if (bmp_version_minor < 0x6)
5503 bmplength = 67; /* exact for 5.01 */
5504 else if (bmp_version_minor < 0x10)
5505 bmplength = 75; /* exact for 5.06 */
5506 else if (bmp_version_minor == 0x10)
5507 bmplength = 89; /* exact for 5.10h */
5508 else if (bmp_version_minor < 0x14)
5509 bmplength = 118; /* exact for 5.11h */
5510 else if (bmp_version_minor < 0x24)
5511 /*
5512 * Not sure of version where pll limits came in;
5513 * certainly exist by 0x24 though.
5514 */
5515 /* length not exact: this is long enough to get lvds members */
5516 bmplength = 123;
5517 else if (bmp_version_minor < 0x27)
5518 /*
5519 * Length not exact: this is long enough to get pll limit
5520 * member
5521 */
5522 bmplength = 144;
5523 else
5524 /*
5525 * Length not exact: this is long enough to get dual link
5526 * transition clock.
5527 */
5528 bmplength = 158;
5529
5530 /* checksum */
5531 if (nv_cksum(bmp, 8)) {
5532 NV_ERROR(dev, "Bad BMP checksum\n");
5533 return -EINVAL;
5534 }
5535
5536 /*
5537 * Bit 4 seems to indicate either a mobile bios or a quadro card --
5538 * mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl
5539 * (not nv10gl), bit 5 that the flat panel tables are present, and
5540 * bit 6 a tv bios.
5541 */
5542 bios->feature_byte = bmp[9];
5543
5544 parse_bios_version(dev, bios, offset + 10);
5545
5546 if (bmp_version_major < 5 || bmp_version_minor < 0x10)
5547 bios->old_style_init = true;
5548 legacy_scripts_offset = 18;
5549 if (bmp_version_major < 2)
5550 legacy_scripts_offset -= 4;
5551 bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]);
5552 bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]);
5553
5554 if (bmp_version_major > 2) { /* appears in BMP 3 */
5555 bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]);
5556 bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]);
5557 bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]);
5558 }
5559
5560 legacy_i2c_offset = 0x48; /* BMP version 2 & 3 */
5561 if (bmplength > 61)
5562 legacy_i2c_offset = offset + 54;
5563 bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset];
5564 bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1];
5565 bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2];
5566
5567 if (bmplength > 74) {
5568 bios->fmaxvco = ROM32(bmp[67]);
5569 bios->fminvco = ROM32(bmp[71]);
5570 }
5571 if (bmplength > 88)
5572 parse_script_table_pointers(bios, offset + 75);
5573 if (bmplength > 94) {
5574 bios->tmds.output0_script_ptr = ROM16(bmp[89]);
5575 bios->tmds.output1_script_ptr = ROM16(bmp[91]);
5576 /*
5577 * Never observed in use with lvds scripts, but is reused for
5578 * 18/24 bit panel interface default for EDID equipped panels
5579 * (if_is_24bit not set directly to avoid any oscillation).
5580 */
5581 bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]);
5582 }
5583 if (bmplength > 108) {
5584 bios->fp.fptablepointer = ROM16(bmp[105]);
5585 bios->fp.fpxlatetableptr = ROM16(bmp[107]);
5586 bios->fp.xlatwidth = 1;
5587 }
5588 if (bmplength > 120) {
5589 bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]);
5590 bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]);
5591 }
5592 if (bmplength > 143)
5593 bios->pll_limit_tbl_ptr = ROM16(bmp[142]);
5594
5595 if (bmplength > 157)
5596 bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10;
5597
5598 return 0;
5599 }
5600
findstr(uint8_t * data,int n,const uint8_t * str,int len)5601 static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len)
5602 {
5603 int i, j;
5604
5605 for (i = 0; i <= (n - len); i++) {
5606 for (j = 0; j < len; j++)
5607 if (data[i + j] != str[j])
5608 break;
5609 if (j == len)
5610 return i;
5611 }
5612
5613 return 0;
5614 }
5615
5616 void *
dcb_table(struct drm_device * dev)5617 dcb_table(struct drm_device *dev)
5618 {
5619 struct drm_nouveau_private *dev_priv = dev->dev_private;
5620 u8 *dcb = NULL;
5621
5622 if (dev_priv->card_type > NV_04)
5623 dcb = ROMPTR(dev, dev_priv->vbios.data[0x36]);
5624 if (!dcb) {
5625 NV_WARNONCE(dev, "No DCB data found in VBIOS\n");
5626 return NULL;
5627 }
5628
5629 if (dcb[0] >= 0x41) {
5630 NV_WARNONCE(dev, "DCB version 0x%02x unknown\n", dcb[0]);
5631 return NULL;
5632 } else
5633 if (dcb[0] >= 0x30) {
5634 if (ROM32(dcb[6]) == 0x4edcbdcb)
5635 return dcb;
5636 } else
5637 if (dcb[0] >= 0x20) {
5638 if (ROM32(dcb[4]) == 0x4edcbdcb)
5639 return dcb;
5640 } else
5641 if (dcb[0] >= 0x15) {
5642 if (!memcmp(&dcb[-7], "DEV_REC", 7))
5643 return dcb;
5644 } else {
5645 /*
5646 * v1.4 (some NV15/16, NV11+) seems the same as v1.5, but
5647 * always has the same single (crt) entry, even when tv-out
5648 * present, so the conclusion is this version cannot really
5649 * be used.
5650 *
5651 * v1.2 tables (some NV6/10, and NV15+) normally have the
5652 * same 5 entries, which are not specific to the card and so
5653 * no use.
5654 *
5655 * v1.2 does have an I2C table that read_dcb_i2c_table can
5656 * handle, but cards exist (nv11 in #14821) with a bad i2c
5657 * table pointer, so use the indices parsed in
5658 * parse_bmp_structure.
5659 *
5660 * v1.1 (NV5+, maybe some NV4) is entirely unhelpful
5661 */
5662 NV_WARNONCE(dev, "No useful DCB data in VBIOS\n");
5663 return NULL;
5664 }
5665
5666 NV_WARNONCE(dev, "DCB header validation failed\n");
5667 return NULL;
5668 }
5669
5670 void *
dcb_outp(struct drm_device * dev,u8 idx)5671 dcb_outp(struct drm_device *dev, u8 idx)
5672 {
5673 u8 *dcb = dcb_table(dev);
5674 if (dcb && dcb[0] >= 0x30) {
5675 if (idx < dcb[2])
5676 return dcb + dcb[1] + (idx * dcb[3]);
5677 } else
5678 if (dcb && dcb[0] >= 0x20) {
5679 u8 *i2c = ROMPTR(dev, dcb[2]);
5680 u8 *ent = dcb + 8 + (idx * 8);
5681 if (i2c && ent < i2c)
5682 return ent;
5683 } else
5684 if (dcb && dcb[0] >= 0x15) {
5685 u8 *i2c = ROMPTR(dev, dcb[2]);
5686 u8 *ent = dcb + 4 + (idx * 10);
5687 if (i2c && ent < i2c)
5688 return ent;
5689 }
5690
5691 return NULL;
5692 }
5693
5694 int
dcb_outp_foreach(struct drm_device * dev,void * data,int (* exec)(struct drm_device *,void *,int idx,u8 * outp))5695 dcb_outp_foreach(struct drm_device *dev, void *data,
5696 int (*exec)(struct drm_device *, void *, int idx, u8 *outp))
5697 {
5698 int ret, idx = -1;
5699 u8 *outp = NULL;
5700 while ((outp = dcb_outp(dev, ++idx))) {
5701 if (ROM32(outp[0]) == 0x00000000)
5702 break; /* seen on an NV11 with DCB v1.5 */
5703 if (ROM32(outp[0]) == 0xffffffff)
5704 break; /* seen on an NV17 with DCB v2.0 */
5705
5706 if ((outp[0] & 0x0f) == OUTPUT_UNUSED)
5707 continue;
5708 if ((outp[0] & 0x0f) == OUTPUT_EOL)
5709 break;
5710
5711 ret = exec(dev, data, idx, outp);
5712 if (ret)
5713 return ret;
5714 }
5715
5716 return 0;
5717 }
5718
5719 u8 *
dcb_conntab(struct drm_device * dev)5720 dcb_conntab(struct drm_device *dev)
5721 {
5722 u8 *dcb = dcb_table(dev);
5723 if (dcb && dcb[0] >= 0x30 && dcb[1] >= 0x16) {
5724 u8 *conntab = ROMPTR(dev, dcb[0x14]);
5725 if (conntab && conntab[0] >= 0x30 && conntab[0] <= 0x40)
5726 return conntab;
5727 }
5728 return NULL;
5729 }
5730
5731 u8 *
dcb_conn(struct drm_device * dev,u8 idx)5732 dcb_conn(struct drm_device *dev, u8 idx)
5733 {
5734 u8 *conntab = dcb_conntab(dev);
5735 if (conntab && idx < conntab[2])
5736 return conntab + conntab[1] + (idx * conntab[3]);
5737 return NULL;
5738 }
5739
new_dcb_entry(struct dcb_table * dcb)5740 static struct dcb_entry *new_dcb_entry(struct dcb_table *dcb)
5741 {
5742 struct dcb_entry *entry = &dcb->entry[dcb->entries];
5743
5744 memset(entry, 0, sizeof(struct dcb_entry));
5745 entry->index = dcb->entries++;
5746
5747 return entry;
5748 }
5749
fabricate_dcb_output(struct dcb_table * dcb,int type,int i2c,int heads,int or)5750 static void fabricate_dcb_output(struct dcb_table *dcb, int type, int i2c,
5751 int heads, int or)
5752 {
5753 struct dcb_entry *entry = new_dcb_entry(dcb);
5754
5755 entry->type = type;
5756 entry->i2c_index = i2c;
5757 entry->heads = heads;
5758 if (type != OUTPUT_ANALOG)
5759 entry->location = !DCB_LOC_ON_CHIP; /* ie OFF CHIP */
5760 entry->or = or;
5761 }
5762
5763 static bool
parse_dcb20_entry(struct drm_device * dev,struct dcb_table * dcb,uint32_t conn,uint32_t conf,struct dcb_entry * entry)5764 parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb,
5765 uint32_t conn, uint32_t conf, struct dcb_entry *entry)
5766 {
5767 entry->type = conn & 0xf;
5768 entry->i2c_index = (conn >> 4) & 0xf;
5769 entry->heads = (conn >> 8) & 0xf;
5770 entry->connector = (conn >> 12) & 0xf;
5771 entry->bus = (conn >> 16) & 0xf;
5772 entry->location = (conn >> 20) & 0x3;
5773 entry->or = (conn >> 24) & 0xf;
5774
5775 switch (entry->type) {
5776 case OUTPUT_ANALOG:
5777 /*
5778 * Although the rest of a CRT conf dword is usually
5779 * zeros, mac biosen have stuff there so we must mask
5780 */
5781 entry->crtconf.maxfreq = (dcb->version < 0x30) ?
5782 (conf & 0xffff) * 10 :
5783 (conf & 0xff) * 10000;
5784 break;
5785 case OUTPUT_LVDS:
5786 {
5787 uint32_t mask;
5788 if (conf & 0x1)
5789 entry->lvdsconf.use_straps_for_mode = true;
5790 if (dcb->version < 0x22) {
5791 mask = ~0xd;
5792 /*
5793 * The laptop in bug 14567 lies and claims to not use
5794 * straps when it does, so assume all DCB 2.0 laptops
5795 * use straps, until a broken EDID using one is produced
5796 */
5797 entry->lvdsconf.use_straps_for_mode = true;
5798 /*
5799 * Both 0x4 and 0x8 show up in v2.0 tables; assume they
5800 * mean the same thing (probably wrong, but might work)
5801 */
5802 if (conf & 0x4 || conf & 0x8)
5803 entry->lvdsconf.use_power_scripts = true;
5804 } else {
5805 mask = ~0x7;
5806 if (conf & 0x2)
5807 entry->lvdsconf.use_acpi_for_edid = true;
5808 if (conf & 0x4)
5809 entry->lvdsconf.use_power_scripts = true;
5810 entry->lvdsconf.sor.link = (conf & 0x00000030) >> 4;
5811 }
5812 if (conf & mask) {
5813 /*
5814 * Until we even try to use these on G8x, it's
5815 * useless reporting unknown bits. They all are.
5816 */
5817 if (dcb->version >= 0x40)
5818 break;
5819
5820 NV_ERROR(dev, "Unknown LVDS configuration bits, "
5821 "please report\n");
5822 }
5823 break;
5824 }
5825 case OUTPUT_TV:
5826 {
5827 if (dcb->version >= 0x30)
5828 entry->tvconf.has_component_output = conf & (0x8 << 4);
5829 else
5830 entry->tvconf.has_component_output = false;
5831
5832 break;
5833 }
5834 case OUTPUT_DP:
5835 entry->dpconf.sor.link = (conf & 0x00000030) >> 4;
5836 switch ((conf & 0x00e00000) >> 21) {
5837 case 0:
5838 entry->dpconf.link_bw = 162000;
5839 break;
5840 default:
5841 entry->dpconf.link_bw = 270000;
5842 break;
5843 }
5844 switch ((conf & 0x0f000000) >> 24) {
5845 case 0xf:
5846 entry->dpconf.link_nr = 4;
5847 break;
5848 case 0x3:
5849 entry->dpconf.link_nr = 2;
5850 break;
5851 default:
5852 entry->dpconf.link_nr = 1;
5853 break;
5854 }
5855 break;
5856 case OUTPUT_TMDS:
5857 if (dcb->version >= 0x40)
5858 entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4;
5859 else if (dcb->version >= 0x30)
5860 entry->tmdsconf.slave_addr = (conf & 0x00000700) >> 8;
5861 else if (dcb->version >= 0x22)
5862 entry->tmdsconf.slave_addr = (conf & 0x00000070) >> 4;
5863
5864 break;
5865 case OUTPUT_EOL:
5866 /* weird g80 mobile type that "nv" treats as a terminator */
5867 dcb->entries--;
5868 return false;
5869 default:
5870 break;
5871 }
5872
5873 if (dcb->version < 0x40) {
5874 /* Normal entries consist of a single bit, but dual link has
5875 * the next most significant bit set too
5876 */
5877 entry->duallink_possible =
5878 ((1 << (ffs(entry->or) - 1)) * 3 == entry->or);
5879 } else {
5880 entry->duallink_possible = (entry->sorconf.link == 3);
5881 }
5882
5883 /* unsure what DCB version introduces this, 3.0? */
5884 if (conf & 0x100000)
5885 entry->i2c_upper_default = true;
5886
5887 return true;
5888 }
5889
5890 static bool
parse_dcb15_entry(struct drm_device * dev,struct dcb_table * dcb,uint32_t conn,uint32_t conf,struct dcb_entry * entry)5891 parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb,
5892 uint32_t conn, uint32_t conf, struct dcb_entry *entry)
5893 {
5894 switch (conn & 0x0000000f) {
5895 case 0:
5896 entry->type = OUTPUT_ANALOG;
5897 break;
5898 case 1:
5899 entry->type = OUTPUT_TV;
5900 break;
5901 case 2:
5902 case 4:
5903 if (conn & 0x10)
5904 entry->type = OUTPUT_LVDS;
5905 else
5906 entry->type = OUTPUT_TMDS;
5907 break;
5908 case 3:
5909 entry->type = OUTPUT_LVDS;
5910 break;
5911 default:
5912 NV_ERROR(dev, "Unknown DCB type %d\n", conn & 0x0000000f);
5913 return false;
5914 }
5915
5916 entry->i2c_index = (conn & 0x0003c000) >> 14;
5917 entry->heads = ((conn & 0x001c0000) >> 18) + 1;
5918 entry->or = entry->heads; /* same as heads, hopefully safe enough */
5919 entry->location = (conn & 0x01e00000) >> 21;
5920 entry->bus = (conn & 0x0e000000) >> 25;
5921 entry->duallink_possible = false;
5922
5923 switch (entry->type) {
5924 case OUTPUT_ANALOG:
5925 entry->crtconf.maxfreq = (conf & 0xffff) * 10;
5926 break;
5927 case OUTPUT_TV:
5928 entry->tvconf.has_component_output = false;
5929 break;
5930 case OUTPUT_LVDS:
5931 if ((conn & 0x00003f00) >> 8 != 0x10)
5932 entry->lvdsconf.use_straps_for_mode = true;
5933 entry->lvdsconf.use_power_scripts = true;
5934 break;
5935 default:
5936 break;
5937 }
5938
5939 return true;
5940 }
5941
5942 static
merge_like_dcb_entries(struct drm_device * dev,struct dcb_table * dcb)5943 void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb)
5944 {
5945 /*
5946 * DCB v2.0 lists each output combination separately.
5947 * Here we merge compatible entries to have fewer outputs, with
5948 * more options
5949 */
5950
5951 int i, newentries = 0;
5952
5953 for (i = 0; i < dcb->entries; i++) {
5954 struct dcb_entry *ient = &dcb->entry[i];
5955 int j;
5956
5957 for (j = i + 1; j < dcb->entries; j++) {
5958 struct dcb_entry *jent = &dcb->entry[j];
5959
5960 if (jent->type == 100) /* already merged entry */
5961 continue;
5962
5963 /* merge heads field when all other fields the same */
5964 if (jent->i2c_index == ient->i2c_index &&
5965 jent->type == ient->type &&
5966 jent->location == ient->location &&
5967 jent->or == ient->or) {
5968 NV_TRACE(dev, "Merging DCB entries %d and %d\n",
5969 i, j);
5970 ient->heads |= jent->heads;
5971 jent->type = 100; /* dummy value */
5972 }
5973 }
5974 }
5975
5976 /* Compact entries merged into others out of dcb */
5977 for (i = 0; i < dcb->entries; i++) {
5978 if (dcb->entry[i].type == 100)
5979 continue;
5980
5981 if (newentries != i) {
5982 dcb->entry[newentries] = dcb->entry[i];
5983 dcb->entry[newentries].index = newentries;
5984 }
5985 newentries++;
5986 }
5987
5988 dcb->entries = newentries;
5989 }
5990
5991 static bool
apply_dcb_encoder_quirks(struct drm_device * dev,int idx,u32 * conn,u32 * conf)5992 apply_dcb_encoder_quirks(struct drm_device *dev, int idx, u32 *conn, u32 *conf)
5993 {
5994 struct drm_nouveau_private *dev_priv = dev->dev_private;
5995 struct dcb_table *dcb = &dev_priv->vbios.dcb;
5996
5997 /* Dell Precision M6300
5998 * DCB entry 2: 02025312 00000010
5999 * DCB entry 3: 02026312 00000020
6000 *
6001 * Identical, except apparently a different connector on a
6002 * different SOR link. Not a clue how we're supposed to know
6003 * which one is in use if it even shares an i2c line...
6004 *
6005 * Ignore the connector on the second SOR link to prevent
6006 * nasty problems until this is sorted (assuming it's not a
6007 * VBIOS bug).
6008 */
6009 if (nv_match_device(dev, 0x040d, 0x1028, 0x019b)) {
6010 if (*conn == 0x02026312 && *conf == 0x00000020)
6011 return false;
6012 }
6013
6014 /* GeForce3 Ti 200
6015 *
6016 * DCB reports an LVDS output that should be TMDS:
6017 * DCB entry 1: f2005014 ffffffff
6018 */
6019 if (nv_match_device(dev, 0x0201, 0x1462, 0x8851)) {
6020 if (*conn == 0xf2005014 && *conf == 0xffffffff) {
6021 fabricate_dcb_output(dcb, OUTPUT_TMDS, 1, 1, 1);
6022 return false;
6023 }
6024 }
6025
6026 /* XFX GT-240X-YA
6027 *
6028 * So many things wrong here, replace the entire encoder table..
6029 */
6030 if (nv_match_device(dev, 0x0ca3, 0x1682, 0x3003)) {
6031 if (idx == 0) {
6032 *conn = 0x02001300; /* VGA, connector 1 */
6033 *conf = 0x00000028;
6034 } else
6035 if (idx == 1) {
6036 *conn = 0x01010312; /* DVI, connector 0 */
6037 *conf = 0x00020030;
6038 } else
6039 if (idx == 2) {
6040 *conn = 0x01010310; /* VGA, connector 0 */
6041 *conf = 0x00000028;
6042 } else
6043 if (idx == 3) {
6044 *conn = 0x02022362; /* HDMI, connector 2 */
6045 *conf = 0x00020010;
6046 } else {
6047 *conn = 0x0000000e; /* EOL */
6048 *conf = 0x00000000;
6049 }
6050 }
6051
6052 /* Some other twisted XFX board (rhbz#694914)
6053 *
6054 * The DVI/VGA encoder combo that's supposed to represent the
6055 * DVI-I connector actually point at two different ones, and
6056 * the HDMI connector ends up paired with the VGA instead.
6057 *
6058 * Connector table is missing anything for VGA at all, pointing it
6059 * an invalid conntab entry 2 so we figure it out ourself.
6060 */
6061 if (nv_match_device(dev, 0x0615, 0x1682, 0x2605)) {
6062 if (idx == 0) {
6063 *conn = 0x02002300; /* VGA, connector 2 */
6064 *conf = 0x00000028;
6065 } else
6066 if (idx == 1) {
6067 *conn = 0x01010312; /* DVI, connector 0 */
6068 *conf = 0x00020030;
6069 } else
6070 if (idx == 2) {
6071 *conn = 0x04020310; /* VGA, connector 0 */
6072 *conf = 0x00000028;
6073 } else
6074 if (idx == 3) {
6075 *conn = 0x02021322; /* HDMI, connector 1 */
6076 *conf = 0x00020010;
6077 } else {
6078 *conn = 0x0000000e; /* EOL */
6079 *conf = 0x00000000;
6080 }
6081 }
6082
6083 return true;
6084 }
6085
6086 static void
fabricate_dcb_encoder_table(struct drm_device * dev,struct nvbios * bios)6087 fabricate_dcb_encoder_table(struct drm_device *dev, struct nvbios *bios)
6088 {
6089 struct dcb_table *dcb = &bios->dcb;
6090 int all_heads = (nv_two_heads(dev) ? 3 : 1);
6091
6092 #ifdef __powerpc__
6093 /* Apple iMac G4 NV17 */
6094 if (of_machine_is_compatible("PowerMac4,5")) {
6095 fabricate_dcb_output(dcb, OUTPUT_TMDS, 0, all_heads, 1);
6096 fabricate_dcb_output(dcb, OUTPUT_ANALOG, 1, all_heads, 2);
6097 return;
6098 }
6099 #endif
6100
6101 /* Make up some sane defaults */
6102 fabricate_dcb_output(dcb, OUTPUT_ANALOG,
6103 bios->legacy.i2c_indices.crt, 1, 1);
6104
6105 if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0)
6106 fabricate_dcb_output(dcb, OUTPUT_TV,
6107 bios->legacy.i2c_indices.tv,
6108 all_heads, 0);
6109
6110 else if (bios->tmds.output0_script_ptr ||
6111 bios->tmds.output1_script_ptr)
6112 fabricate_dcb_output(dcb, OUTPUT_TMDS,
6113 bios->legacy.i2c_indices.panel,
6114 all_heads, 1);
6115 }
6116
6117 static int
parse_dcb_entry(struct drm_device * dev,void * data,int idx,u8 * outp)6118 parse_dcb_entry(struct drm_device *dev, void *data, int idx, u8 *outp)
6119 {
6120 struct drm_nouveau_private *dev_priv = dev->dev_private;
6121 struct dcb_table *dcb = &dev_priv->vbios.dcb;
6122 u32 conf = (dcb->version >= 0x20) ? ROM32(outp[4]) : ROM32(outp[6]);
6123 u32 conn = ROM32(outp[0]);
6124 bool ret;
6125
6126 if (apply_dcb_encoder_quirks(dev, idx, &conn, &conf)) {
6127 struct dcb_entry *entry = new_dcb_entry(dcb);
6128
6129 NV_TRACEWARN(dev, "DCB outp %02d: %08x %08x\n", idx, conn, conf);
6130
6131 if (dcb->version >= 0x20)
6132 ret = parse_dcb20_entry(dev, dcb, conn, conf, entry);
6133 else
6134 ret = parse_dcb15_entry(dev, dcb, conn, conf, entry);
6135 if (!ret)
6136 return 1; /* stop parsing */
6137
6138 /* Ignore the I2C index for on-chip TV-out, as there
6139 * are cards with bogus values (nv31m in bug 23212),
6140 * and it's otherwise useless.
6141 */
6142 if (entry->type == OUTPUT_TV &&
6143 entry->location == DCB_LOC_ON_CHIP)
6144 entry->i2c_index = 0x0f;
6145 }
6146
6147 return 0;
6148 }
6149
6150 static void
dcb_fake_connectors(struct nvbios * bios)6151 dcb_fake_connectors(struct nvbios *bios)
6152 {
6153 struct dcb_table *dcbt = &bios->dcb;
6154 u8 map[16] = { };
6155 int i, idx = 0;
6156
6157 /* heuristic: if we ever get a non-zero connector field, assume
6158 * that all the indices are valid and we don't need fake them.
6159 *
6160 * and, as usual, a blacklist of boards with bad bios data..
6161 */
6162 if (!nv_match_device(bios->dev, 0x0392, 0x107d, 0x20a2)) {
6163 for (i = 0; i < dcbt->entries; i++) {
6164 if (dcbt->entry[i].connector)
6165 return;
6166 }
6167 }
6168
6169 /* no useful connector info available, we need to make it up
6170 * ourselves. the rule here is: anything on the same i2c bus
6171 * is considered to be on the same connector. any output
6172 * without an associated i2c bus is assigned its own unique
6173 * connector index.
6174 */
6175 for (i = 0; i < dcbt->entries; i++) {
6176 u8 i2c = dcbt->entry[i].i2c_index;
6177 if (i2c == 0x0f) {
6178 dcbt->entry[i].connector = idx++;
6179 } else {
6180 if (!map[i2c])
6181 map[i2c] = ++idx;
6182 dcbt->entry[i].connector = map[i2c] - 1;
6183 }
6184 }
6185
6186 /* if we created more than one connector, destroy the connector
6187 * table - just in case it has random, rather than stub, entries.
6188 */
6189 if (i > 1) {
6190 u8 *conntab = dcb_conntab(bios->dev);
6191 if (conntab)
6192 conntab[0] = 0x00;
6193 }
6194 }
6195
6196 static int
parse_dcb_table(struct drm_device * dev,struct nvbios * bios)6197 parse_dcb_table(struct drm_device *dev, struct nvbios *bios)
6198 {
6199 struct dcb_table *dcb = &bios->dcb;
6200 u8 *dcbt, *conn;
6201 int idx;
6202
6203 dcbt = dcb_table(dev);
6204 if (!dcbt) {
6205 /* handle pre-DCB boards */
6206 if (bios->type == NVBIOS_BMP) {
6207 fabricate_dcb_encoder_table(dev, bios);
6208 return 0;
6209 }
6210
6211 return -EINVAL;
6212 }
6213
6214 NV_TRACE(dev, "DCB version %d.%d\n", dcbt[0] >> 4, dcbt[0] & 0xf);
6215
6216 dcb->version = dcbt[0];
6217 dcb_outp_foreach(dev, NULL, parse_dcb_entry);
6218
6219 /*
6220 * apart for v2.1+ not being known for requiring merging, this
6221 * guarantees dcbent->index is the index of the entry in the rom image
6222 */
6223 if (dcb->version < 0x21)
6224 merge_like_dcb_entries(dev, dcb);
6225
6226 if (!dcb->entries)
6227 return -ENXIO;
6228
6229 /* dump connector table entries to log, if any exist */
6230 idx = -1;
6231 while ((conn = dcb_conn(dev, ++idx))) {
6232 if (conn[0] != 0xff) {
6233 NV_TRACE(dev, "DCB conn %02d: ", idx);
6234 if (dcb_conntab(dev)[3] < 4)
6235 printk("%04x\n", ROM16(conn[0]));
6236 else
6237 printk("%08x\n", ROM32(conn[0]));
6238 }
6239 }
6240 dcb_fake_connectors(bios);
6241 return 0;
6242 }
6243
load_nv17_hwsq_ucode_entry(struct drm_device * dev,struct nvbios * bios,uint16_t hwsq_offset,int entry)6244 static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry)
6245 {
6246 /*
6247 * The header following the "HWSQ" signature has the number of entries,
6248 * and the entry size
6249 *
6250 * An entry consists of a dword to write to the sequencer control reg
6251 * (0x00001304), followed by the ucode bytes, written sequentially,
6252 * starting at reg 0x00001400
6253 */
6254
6255 uint8_t bytes_to_write;
6256 uint16_t hwsq_entry_offset;
6257 int i;
6258
6259 if (bios->data[hwsq_offset] <= entry) {
6260 NV_ERROR(dev, "Too few entries in HW sequencer table for "
6261 "requested entry\n");
6262 return -ENOENT;
6263 }
6264
6265 bytes_to_write = bios->data[hwsq_offset + 1];
6266
6267 if (bytes_to_write != 36) {
6268 NV_ERROR(dev, "Unknown HW sequencer entry size\n");
6269 return -EINVAL;
6270 }
6271
6272 NV_TRACE(dev, "Loading NV17 power sequencing microcode\n");
6273
6274 hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write;
6275
6276 /* set sequencer control */
6277 bios_wr32(bios, 0x00001304, ROM32(bios->data[hwsq_entry_offset]));
6278 bytes_to_write -= 4;
6279
6280 /* write ucode */
6281 for (i = 0; i < bytes_to_write; i += 4)
6282 bios_wr32(bios, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4]));
6283
6284 /* twiddle NV_PBUS_DEBUG_4 */
6285 bios_wr32(bios, NV_PBUS_DEBUG_4, bios_rd32(bios, NV_PBUS_DEBUG_4) | 0x18);
6286
6287 return 0;
6288 }
6289
load_nv17_hw_sequencer_ucode(struct drm_device * dev,struct nvbios * bios)6290 static int load_nv17_hw_sequencer_ucode(struct drm_device *dev,
6291 struct nvbios *bios)
6292 {
6293 /*
6294 * BMP based cards, from NV17, need a microcode loading to correctly
6295 * control the GPIO etc for LVDS panels
6296 *
6297 * BIT based cards seem to do this directly in the init scripts
6298 *
6299 * The microcode entries are found by the "HWSQ" signature.
6300 */
6301
6302 const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' };
6303 const int sz = sizeof(hwsq_signature);
6304 int hwsq_offset;
6305
6306 hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz);
6307 if (!hwsq_offset)
6308 return 0;
6309
6310 /* always use entry 0? */
6311 return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0);
6312 }
6313
nouveau_bios_embedded_edid(struct drm_device * dev)6314 uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev)
6315 {
6316 struct drm_nouveau_private *dev_priv = dev->dev_private;
6317 struct nvbios *bios = &dev_priv->vbios;
6318 const uint8_t edid_sig[] = {
6319 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 };
6320 uint16_t offset = 0;
6321 uint16_t newoffset;
6322 int searchlen = NV_PROM_SIZE;
6323
6324 if (bios->fp.edid)
6325 return bios->fp.edid;
6326
6327 while (searchlen) {
6328 newoffset = findstr(&bios->data[offset], searchlen,
6329 edid_sig, 8);
6330 if (!newoffset)
6331 return NULL;
6332 offset += newoffset;
6333 if (!nv_cksum(&bios->data[offset], EDID1_LEN))
6334 break;
6335
6336 searchlen -= offset;
6337 offset++;
6338 }
6339
6340 NV_TRACE(dev, "Found EDID in BIOS\n");
6341
6342 return bios->fp.edid = &bios->data[offset];
6343 }
6344
6345 void
nouveau_bios_run_init_table(struct drm_device * dev,uint16_t table,struct dcb_entry * dcbent,int crtc)6346 nouveau_bios_run_init_table(struct drm_device *dev, uint16_t table,
6347 struct dcb_entry *dcbent, int crtc)
6348 {
6349 struct drm_nouveau_private *dev_priv = dev->dev_private;
6350 struct nvbios *bios = &dev_priv->vbios;
6351 struct init_exec iexec = { true, false };
6352
6353 spin_lock_bh(&bios->lock);
6354 bios->display.output = dcbent;
6355 bios->display.crtc = crtc;
6356 parse_init_table(bios, table, &iexec);
6357 bios->display.output = NULL;
6358 spin_unlock_bh(&bios->lock);
6359 }
6360
6361 void
nouveau_bios_init_exec(struct drm_device * dev,uint16_t table)6362 nouveau_bios_init_exec(struct drm_device *dev, uint16_t table)
6363 {
6364 struct drm_nouveau_private *dev_priv = dev->dev_private;
6365 struct nvbios *bios = &dev_priv->vbios;
6366 struct init_exec iexec = { true, false };
6367
6368 parse_init_table(bios, table, &iexec);
6369 }
6370
NVInitVBIOS(struct drm_device * dev)6371 static bool NVInitVBIOS(struct drm_device *dev)
6372 {
6373 struct drm_nouveau_private *dev_priv = dev->dev_private;
6374 struct nvbios *bios = &dev_priv->vbios;
6375
6376 memset(bios, 0, sizeof(struct nvbios));
6377 spin_lock_init(&bios->lock);
6378 bios->dev = dev;
6379
6380 return bios_shadow(dev);
6381 }
6382
nouveau_parse_vbios_struct(struct drm_device * dev)6383 static int nouveau_parse_vbios_struct(struct drm_device *dev)
6384 {
6385 struct drm_nouveau_private *dev_priv = dev->dev_private;
6386 struct nvbios *bios = &dev_priv->vbios;
6387 const uint8_t bit_signature[] = { 0xff, 0xb8, 'B', 'I', 'T' };
6388 const uint8_t bmp_signature[] = { 0xff, 0x7f, 'N', 'V', 0x0 };
6389 int offset;
6390
6391 offset = findstr(bios->data, bios->length,
6392 bit_signature, sizeof(bit_signature));
6393 if (offset) {
6394 NV_TRACE(dev, "BIT BIOS found\n");
6395 bios->type = NVBIOS_BIT;
6396 bios->offset = offset;
6397 return parse_bit_structure(bios, offset + 6);
6398 }
6399
6400 offset = findstr(bios->data, bios->length,
6401 bmp_signature, sizeof(bmp_signature));
6402 if (offset) {
6403 NV_TRACE(dev, "BMP BIOS found\n");
6404 bios->type = NVBIOS_BMP;
6405 bios->offset = offset;
6406 return parse_bmp_structure(dev, bios, offset);
6407 }
6408
6409 NV_ERROR(dev, "No known BIOS signature found\n");
6410 return -ENODEV;
6411 }
6412
6413 int
nouveau_run_vbios_init(struct drm_device * dev)6414 nouveau_run_vbios_init(struct drm_device *dev)
6415 {
6416 struct drm_nouveau_private *dev_priv = dev->dev_private;
6417 struct nvbios *bios = &dev_priv->vbios;
6418 int i, ret = 0;
6419
6420 /* Reset the BIOS head to 0. */
6421 bios->state.crtchead = 0;
6422
6423 if (bios->major_version < 5) /* BMP only */
6424 load_nv17_hw_sequencer_ucode(dev, bios);
6425
6426 if (bios->execute) {
6427 bios->fp.last_script_invoc = 0;
6428 bios->fp.lvds_init_run = false;
6429 }
6430
6431 parse_init_tables(bios);
6432
6433 /*
6434 * Runs some additional script seen on G8x VBIOSen. The VBIOS'
6435 * parser will run this right after the init tables, the binary
6436 * driver appears to run it at some point later.
6437 */
6438 if (bios->some_script_ptr) {
6439 struct init_exec iexec = {true, false};
6440
6441 NV_INFO(dev, "Parsing VBIOS init table at offset 0x%04X\n",
6442 bios->some_script_ptr);
6443 parse_init_table(bios, bios->some_script_ptr, &iexec);
6444 }
6445
6446 if (dev_priv->card_type >= NV_50) {
6447 for (i = 0; i < bios->dcb.entries; i++) {
6448 nouveau_bios_run_display_table(dev, 0, 0,
6449 &bios->dcb.entry[i], -1);
6450 }
6451 }
6452
6453 return ret;
6454 }
6455
6456 static bool
nouveau_bios_posted(struct drm_device * dev)6457 nouveau_bios_posted(struct drm_device *dev)
6458 {
6459 struct drm_nouveau_private *dev_priv = dev->dev_private;
6460 unsigned htotal;
6461
6462 if (dev_priv->card_type >= NV_50) {
6463 if (NVReadVgaCrtc(dev, 0, 0x00) == 0 &&
6464 NVReadVgaCrtc(dev, 0, 0x1a) == 0)
6465 return false;
6466 return true;
6467 }
6468
6469 htotal = NVReadVgaCrtc(dev, 0, 0x06);
6470 htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x01) << 8;
6471 htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x20) << 4;
6472 htotal |= (NVReadVgaCrtc(dev, 0, 0x25) & 0x01) << 10;
6473 htotal |= (NVReadVgaCrtc(dev, 0, 0x41) & 0x01) << 11;
6474
6475 return (htotal != 0);
6476 }
6477
6478 int
nouveau_bios_init(struct drm_device * dev)6479 nouveau_bios_init(struct drm_device *dev)
6480 {
6481 struct drm_nouveau_private *dev_priv = dev->dev_private;
6482 struct nvbios *bios = &dev_priv->vbios;
6483 int ret;
6484
6485 if (!NVInitVBIOS(dev))
6486 return -ENODEV;
6487
6488 ret = nouveau_parse_vbios_struct(dev);
6489 if (ret)
6490 return ret;
6491
6492 ret = nouveau_i2c_init(dev);
6493 if (ret)
6494 return ret;
6495
6496 ret = nouveau_mxm_init(dev);
6497 if (ret)
6498 return ret;
6499
6500 ret = parse_dcb_table(dev, bios);
6501 if (ret)
6502 return ret;
6503
6504 if (!bios->major_version) /* we don't run version 0 bios */
6505 return 0;
6506
6507 /* init script execution disabled */
6508 bios->execute = false;
6509
6510 /* ... unless card isn't POSTed already */
6511 if (!nouveau_bios_posted(dev)) {
6512 NV_INFO(dev, "Adaptor not initialised, "
6513 "running VBIOS init tables.\n");
6514 bios->execute = true;
6515 }
6516 if (nouveau_force_post)
6517 bios->execute = true;
6518
6519 ret = nouveau_run_vbios_init(dev);
6520 if (ret)
6521 return ret;
6522
6523 /* feature_byte on BMP is poor, but init always sets CR4B */
6524 if (bios->major_version < 5)
6525 bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40;
6526
6527 /* all BIT systems need p_f_m_t for digital_min_front_porch */
6528 if (bios->is_mobile || bios->major_version >= 5)
6529 ret = parse_fp_mode_table(dev, bios);
6530
6531 /* allow subsequent scripts to execute */
6532 bios->execute = true;
6533
6534 return 0;
6535 }
6536
6537 void
nouveau_bios_takedown(struct drm_device * dev)6538 nouveau_bios_takedown(struct drm_device *dev)
6539 {
6540 struct drm_nouveau_private *dev_priv = dev->dev_private;
6541
6542 nouveau_mxm_fini(dev);
6543 nouveau_i2c_fini(dev);
6544
6545 kfree(dev_priv->vbios.data);
6546 }
6547