1 /*
2 * IPI management based on arch/arm/kernel/smp.c (Copyright 2002 ARM Limited)
3 *
4 * Copyright 2007-2009 Analog Devices Inc.
5 * Philippe Gerum <rpm@xenomai.org>
6 *
7 * Licensed under the GPL-2.
8 */
9
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/clockchips.h>
18 #include <linux/profile.h>
19 #include <linux/errno.h>
20 #include <linux/mm.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/cpumask.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/slab.h>
27 #include <linux/atomic.h>
28 #include <asm/cacheflush.h>
29 #include <asm/irq_handler.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/pgalloc.h>
33 #include <asm/processor.h>
34 #include <asm/ptrace.h>
35 #include <asm/cpu.h>
36 #include <asm/time.h>
37 #include <linux/err.h>
38
39 /*
40 * Anomaly notes:
41 * 05000120 - we always define corelock as 32-bit integer in L2
42 */
43 struct corelock_slot corelock __attribute__ ((__section__(".l2.bss")));
44
45 #ifdef CONFIG_ICACHE_FLUSH_L1
46 unsigned long blackfin_iflush_l1_entry[NR_CPUS];
47 #endif
48
49 struct blackfin_initial_pda __cpuinitdata initial_pda_coreb;
50
51 #define BFIN_IPI_TIMER 0
52 #define BFIN_IPI_RESCHEDULE 1
53 #define BFIN_IPI_CALL_FUNC 2
54 #define BFIN_IPI_CPU_STOP 3
55
56 struct blackfin_flush_data {
57 unsigned long start;
58 unsigned long end;
59 };
60
61 void *secondary_stack;
62
63
64 struct smp_call_struct {
65 void (*func)(void *info);
66 void *info;
67 int wait;
68 cpumask_t *waitmask;
69 };
70
71 static struct blackfin_flush_data smp_flush_data;
72
73 static DEFINE_SPINLOCK(stop_lock);
74
75 struct ipi_message {
76 unsigned long type;
77 struct smp_call_struct call_struct;
78 };
79
80 /* A magic number - stress test shows this is safe for common cases */
81 #define BFIN_IPI_MSGQ_LEN 5
82
83 /* Simple FIFO buffer, overflow leads to panic */
84 struct ipi_message_queue {
85 spinlock_t lock;
86 unsigned long count;
87 unsigned long head; /* head of the queue */
88 struct ipi_message ipi_message[BFIN_IPI_MSGQ_LEN];
89 };
90
91 static DEFINE_PER_CPU(struct ipi_message_queue, ipi_msg_queue);
92
ipi_cpu_stop(unsigned int cpu)93 static void ipi_cpu_stop(unsigned int cpu)
94 {
95 spin_lock(&stop_lock);
96 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
97 dump_stack();
98 spin_unlock(&stop_lock);
99
100 set_cpu_online(cpu, false);
101
102 local_irq_disable();
103
104 while (1)
105 SSYNC();
106 }
107
ipi_flush_icache(void * info)108 static void ipi_flush_icache(void *info)
109 {
110 struct blackfin_flush_data *fdata = info;
111
112 /* Invalidate the memory holding the bounds of the flushed region. */
113 blackfin_dcache_invalidate_range((unsigned long)fdata,
114 (unsigned long)fdata + sizeof(*fdata));
115
116 /* Make sure all write buffers in the data side of the core
117 * are flushed before trying to invalidate the icache. This
118 * needs to be after the data flush and before the icache
119 * flush so that the SSYNC does the right thing in preventing
120 * the instruction prefetcher from hitting things in cached
121 * memory at the wrong time -- it runs much further ahead than
122 * the pipeline.
123 */
124 SSYNC();
125
126 /* ipi_flaush_icache is invoked by generic flush_icache_range,
127 * so call blackfin arch icache flush directly here.
128 */
129 blackfin_icache_flush_range(fdata->start, fdata->end);
130 }
131
ipi_call_function(unsigned int cpu,struct ipi_message * msg)132 static void ipi_call_function(unsigned int cpu, struct ipi_message *msg)
133 {
134 int wait;
135 void (*func)(void *info);
136 void *info;
137 func = msg->call_struct.func;
138 info = msg->call_struct.info;
139 wait = msg->call_struct.wait;
140 func(info);
141 if (wait) {
142 #ifdef __ARCH_SYNC_CORE_DCACHE
143 /*
144 * 'wait' usually means synchronization between CPUs.
145 * Invalidate D cache in case shared data was changed
146 * by func() to ensure cache coherence.
147 */
148 resync_core_dcache();
149 #endif
150 cpumask_clear_cpu(cpu, msg->call_struct.waitmask);
151 }
152 }
153
154 /* Use IRQ_SUPPLE_0 to request reschedule.
155 * When returning from interrupt to user space,
156 * there is chance to reschedule */
ipi_handler_int0(int irq,void * dev_instance)157 static irqreturn_t ipi_handler_int0(int irq, void *dev_instance)
158 {
159 unsigned int cpu = smp_processor_id();
160
161 platform_clear_ipi(cpu, IRQ_SUPPLE_0);
162 return IRQ_HANDLED;
163 }
164
165 DECLARE_PER_CPU(struct clock_event_device, coretmr_events);
ipi_timer(void)166 void ipi_timer(void)
167 {
168 int cpu = smp_processor_id();
169 struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
170 evt->event_handler(evt);
171 }
172
ipi_handler_int1(int irq,void * dev_instance)173 static irqreturn_t ipi_handler_int1(int irq, void *dev_instance)
174 {
175 struct ipi_message *msg;
176 struct ipi_message_queue *msg_queue;
177 unsigned int cpu = smp_processor_id();
178 unsigned long flags;
179
180 platform_clear_ipi(cpu, IRQ_SUPPLE_1);
181
182 msg_queue = &__get_cpu_var(ipi_msg_queue);
183
184 spin_lock_irqsave(&msg_queue->lock, flags);
185
186 while (msg_queue->count) {
187 msg = &msg_queue->ipi_message[msg_queue->head];
188 switch (msg->type) {
189 case BFIN_IPI_TIMER:
190 ipi_timer();
191 break;
192 case BFIN_IPI_RESCHEDULE:
193 scheduler_ipi();
194 break;
195 case BFIN_IPI_CALL_FUNC:
196 ipi_call_function(cpu, msg);
197 break;
198 case BFIN_IPI_CPU_STOP:
199 ipi_cpu_stop(cpu);
200 break;
201 default:
202 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%lx\n",
203 cpu, msg->type);
204 break;
205 }
206 msg_queue->head++;
207 msg_queue->head %= BFIN_IPI_MSGQ_LEN;
208 msg_queue->count--;
209 }
210 spin_unlock_irqrestore(&msg_queue->lock, flags);
211 return IRQ_HANDLED;
212 }
213
ipi_queue_init(void)214 static void ipi_queue_init(void)
215 {
216 unsigned int cpu;
217 struct ipi_message_queue *msg_queue;
218 for_each_possible_cpu(cpu) {
219 msg_queue = &per_cpu(ipi_msg_queue, cpu);
220 spin_lock_init(&msg_queue->lock);
221 msg_queue->count = 0;
222 msg_queue->head = 0;
223 }
224 }
225
smp_send_message(cpumask_t callmap,unsigned long type,void (* func)(void * info),void * info,int wait)226 static inline void smp_send_message(cpumask_t callmap, unsigned long type,
227 void (*func) (void *info), void *info, int wait)
228 {
229 unsigned int cpu;
230 struct ipi_message_queue *msg_queue;
231 struct ipi_message *msg;
232 unsigned long flags, next_msg;
233 cpumask_t waitmask; /* waitmask is shared by all cpus */
234
235 cpumask_copy(&waitmask, &callmap);
236 for_each_cpu(cpu, &callmap) {
237 msg_queue = &per_cpu(ipi_msg_queue, cpu);
238 spin_lock_irqsave(&msg_queue->lock, flags);
239 if (msg_queue->count < BFIN_IPI_MSGQ_LEN) {
240 next_msg = (msg_queue->head + msg_queue->count)
241 % BFIN_IPI_MSGQ_LEN;
242 msg = &msg_queue->ipi_message[next_msg];
243 msg->type = type;
244 if (type == BFIN_IPI_CALL_FUNC) {
245 msg->call_struct.func = func;
246 msg->call_struct.info = info;
247 msg->call_struct.wait = wait;
248 msg->call_struct.waitmask = &waitmask;
249 }
250 msg_queue->count++;
251 } else
252 panic("IPI message queue overflow\n");
253 spin_unlock_irqrestore(&msg_queue->lock, flags);
254 platform_send_ipi_cpu(cpu, IRQ_SUPPLE_1);
255 }
256
257 if (wait) {
258 while (!cpumask_empty(&waitmask))
259 blackfin_dcache_invalidate_range(
260 (unsigned long)(&waitmask),
261 (unsigned long)(&waitmask));
262 #ifdef __ARCH_SYNC_CORE_DCACHE
263 /*
264 * Invalidate D cache in case shared data was changed by
265 * other processors to ensure cache coherence.
266 */
267 resync_core_dcache();
268 #endif
269 }
270 }
271
smp_call_function(void (* func)(void * info),void * info,int wait)272 int smp_call_function(void (*func)(void *info), void *info, int wait)
273 {
274 cpumask_t callmap;
275
276 preempt_disable();
277 cpumask_copy(&callmap, cpu_online_mask);
278 cpumask_clear_cpu(smp_processor_id(), &callmap);
279 if (!cpumask_empty(&callmap))
280 smp_send_message(callmap, BFIN_IPI_CALL_FUNC, func, info, wait);
281
282 preempt_enable();
283
284 return 0;
285 }
286 EXPORT_SYMBOL_GPL(smp_call_function);
287
smp_call_function_single(int cpuid,void (* func)(void * info),void * info,int wait)288 int smp_call_function_single(int cpuid, void (*func) (void *info), void *info,
289 int wait)
290 {
291 unsigned int cpu = cpuid;
292 cpumask_t callmap;
293
294 if (cpu_is_offline(cpu))
295 return 0;
296 cpumask_clear(&callmap);
297 cpumask_set_cpu(cpu, &callmap);
298
299 smp_send_message(callmap, BFIN_IPI_CALL_FUNC, func, info, wait);
300
301 return 0;
302 }
303 EXPORT_SYMBOL_GPL(smp_call_function_single);
304
smp_send_reschedule(int cpu)305 void smp_send_reschedule(int cpu)
306 {
307 cpumask_t callmap;
308 /* simply trigger an ipi */
309
310 cpumask_clear(&callmap);
311 cpumask_set_cpu(cpu, &callmap);
312
313 smp_send_message(callmap, BFIN_IPI_RESCHEDULE, NULL, NULL, 0);
314
315 return;
316 }
317
smp_send_msg(const struct cpumask * mask,unsigned long type)318 void smp_send_msg(const struct cpumask *mask, unsigned long type)
319 {
320 smp_send_message(*mask, type, NULL, NULL, 0);
321 }
322
smp_timer_broadcast(const struct cpumask * mask)323 void smp_timer_broadcast(const struct cpumask *mask)
324 {
325 smp_send_msg(mask, BFIN_IPI_TIMER);
326 }
327
smp_send_stop(void)328 void smp_send_stop(void)
329 {
330 cpumask_t callmap;
331
332 preempt_disable();
333 cpumask_copy(&callmap, cpu_online_mask);
334 cpumask_clear_cpu(smp_processor_id(), &callmap);
335 if (!cpumask_empty(&callmap))
336 smp_send_message(callmap, BFIN_IPI_CPU_STOP, NULL, NULL, 0);
337
338 preempt_enable();
339
340 return;
341 }
342
__cpu_up(unsigned int cpu)343 int __cpuinit __cpu_up(unsigned int cpu)
344 {
345 int ret;
346 struct blackfin_cpudata *ci = &per_cpu(cpu_data, cpu);
347 struct task_struct *idle = ci->idle;
348
349 if (idle) {
350 free_task(idle);
351 idle = NULL;
352 }
353
354 if (!idle) {
355 idle = fork_idle(cpu);
356 if (IS_ERR(idle)) {
357 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
358 return PTR_ERR(idle);
359 }
360 ci->idle = idle;
361 } else {
362 init_idle(idle, cpu);
363 }
364 secondary_stack = task_stack_page(idle) + THREAD_SIZE;
365
366 ret = platform_boot_secondary(cpu, idle);
367
368 secondary_stack = NULL;
369
370 return ret;
371 }
372
setup_secondary(unsigned int cpu)373 static void __cpuinit setup_secondary(unsigned int cpu)
374 {
375 unsigned long ilat;
376
377 bfin_write_IMASK(0);
378 CSYNC();
379 ilat = bfin_read_ILAT();
380 CSYNC();
381 bfin_write_ILAT(ilat);
382 CSYNC();
383
384 /* Enable interrupt levels IVG7-15. IARs have been already
385 * programmed by the boot CPU. */
386 bfin_irq_flags |= IMASK_IVG15 |
387 IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
388 IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
389 }
390
secondary_start_kernel(void)391 void __cpuinit secondary_start_kernel(void)
392 {
393 unsigned int cpu = smp_processor_id();
394 struct mm_struct *mm = &init_mm;
395
396 if (_bfin_swrst & SWRST_DBL_FAULT_B) {
397 printk(KERN_EMERG "CoreB Recovering from DOUBLE FAULT event\n");
398 #ifdef CONFIG_DEBUG_DOUBLEFAULT
399 printk(KERN_EMERG " While handling exception (EXCAUSE = %#x) at %pF\n",
400 initial_pda_coreb.seqstat_doublefault & SEQSTAT_EXCAUSE,
401 initial_pda_coreb.retx_doublefault);
402 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n",
403 initial_pda_coreb.dcplb_doublefault_addr);
404 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n",
405 initial_pda_coreb.icplb_doublefault_addr);
406 #endif
407 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
408 initial_pda_coreb.retx);
409 }
410
411 /*
412 * We want the D-cache to be enabled early, in case the atomic
413 * support code emulates cache coherence (see
414 * __ARCH_SYNC_CORE_DCACHE).
415 */
416 init_exception_vectors();
417
418 local_irq_disable();
419
420 /* Attach the new idle task to the global mm. */
421 atomic_inc(&mm->mm_users);
422 atomic_inc(&mm->mm_count);
423 current->active_mm = mm;
424
425 preempt_disable();
426
427 setup_secondary(cpu);
428
429 platform_secondary_init(cpu);
430
431 /* setup local core timer */
432 bfin_local_timer_setup();
433
434 local_irq_enable();
435
436 bfin_setup_caches(cpu);
437
438 notify_cpu_starting(cpu);
439 /*
440 * Calibrate loops per jiffy value.
441 * IRQs need to be enabled here - D-cache can be invalidated
442 * in timer irq handler, so core B can read correct jiffies.
443 */
444 calibrate_delay();
445
446 cpu_idle();
447 }
448
smp_prepare_boot_cpu(void)449 void __init smp_prepare_boot_cpu(void)
450 {
451 }
452
smp_prepare_cpus(unsigned int max_cpus)453 void __init smp_prepare_cpus(unsigned int max_cpus)
454 {
455 platform_prepare_cpus(max_cpus);
456 ipi_queue_init();
457 platform_request_ipi(IRQ_SUPPLE_0, ipi_handler_int0);
458 platform_request_ipi(IRQ_SUPPLE_1, ipi_handler_int1);
459 }
460
smp_cpus_done(unsigned int max_cpus)461 void __init smp_cpus_done(unsigned int max_cpus)
462 {
463 unsigned long bogosum = 0;
464 unsigned int cpu;
465
466 for_each_online_cpu(cpu)
467 bogosum += loops_per_jiffy;
468
469 printk(KERN_INFO "SMP: Total of %d processors activated "
470 "(%lu.%02lu BogoMIPS).\n",
471 num_online_cpus(),
472 bogosum / (500000/HZ),
473 (bogosum / (5000/HZ)) % 100);
474 }
475
smp_icache_flush_range_others(unsigned long start,unsigned long end)476 void smp_icache_flush_range_others(unsigned long start, unsigned long end)
477 {
478 smp_flush_data.start = start;
479 smp_flush_data.end = end;
480
481 preempt_disable();
482 if (smp_call_function(&ipi_flush_icache, &smp_flush_data, 1))
483 printk(KERN_WARNING "SMP: failed to run I-cache flush request on other CPUs\n");
484 preempt_enable();
485 }
486 EXPORT_SYMBOL_GPL(smp_icache_flush_range_others);
487
488 #ifdef __ARCH_SYNC_CORE_ICACHE
489 unsigned long icache_invld_count[NR_CPUS];
resync_core_icache(void)490 void resync_core_icache(void)
491 {
492 unsigned int cpu = get_cpu();
493 blackfin_invalidate_entire_icache();
494 icache_invld_count[cpu]++;
495 put_cpu();
496 }
497 EXPORT_SYMBOL(resync_core_icache);
498 #endif
499
500 #ifdef __ARCH_SYNC_CORE_DCACHE
501 unsigned long dcache_invld_count[NR_CPUS];
502 unsigned long barrier_mask __attribute__ ((__section__(".l2.bss")));
503
resync_core_dcache(void)504 void resync_core_dcache(void)
505 {
506 unsigned int cpu = get_cpu();
507 blackfin_invalidate_entire_dcache();
508 dcache_invld_count[cpu]++;
509 put_cpu();
510 }
511 EXPORT_SYMBOL(resync_core_dcache);
512 #endif
513
514 #ifdef CONFIG_HOTPLUG_CPU
__cpu_disable(void)515 int __cpuexit __cpu_disable(void)
516 {
517 unsigned int cpu = smp_processor_id();
518
519 if (cpu == 0)
520 return -EPERM;
521
522 set_cpu_online(cpu, false);
523 return 0;
524 }
525
526 static DECLARE_COMPLETION(cpu_killed);
527
__cpu_die(unsigned int cpu)528 int __cpuexit __cpu_die(unsigned int cpu)
529 {
530 return wait_for_completion_timeout(&cpu_killed, 5000);
531 }
532
cpu_die(void)533 void cpu_die(void)
534 {
535 complete(&cpu_killed);
536
537 atomic_dec(&init_mm.mm_users);
538 atomic_dec(&init_mm.mm_count);
539
540 local_irq_disable();
541 platform_cpu_die();
542 }
543 #endif
544