1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include "dm_services.h"
26 
27 #include "dc.h"
28 
29 #include "core_status.h"
30 #include "core_types.h"
31 #include "hw_sequencer.h"
32 #include "dce/dce_hwseq.h"
33 
34 #include "resource.h"
35 
36 #include "gpio_service_interface.h"
37 #include "clk_mgr.h"
38 #include "clock_source.h"
39 #include "dc_bios_types.h"
40 
41 #include "bios_parser_interface.h"
42 #include "bios/bios_parser_helper.h"
43 #include "include/irq_service_interface.h"
44 #include "transform.h"
45 #include "dmcu.h"
46 #include "dpp.h"
47 #include "timing_generator.h"
48 #include "abm.h"
49 #include "virtual/virtual_link_encoder.h"
50 #include "hubp.h"
51 
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54 #include "link_enc_cfg.h"
55 
56 #include "link.h"
57 #include "dm_helpers.h"
58 #include "mem_input.h"
59 
60 #include "dc_dmub_srv.h"
61 
62 #include "dsc.h"
63 
64 #include "vm_helper.h"
65 
66 #include "dce/dce_i2c.h"
67 
68 #include "dmub/dmub_srv.h"
69 
70 #include "dce/dmub_psr.h"
71 
72 #include "dce/dmub_hw_lock_mgr.h"
73 
74 #include "dc_trace.h"
75 
76 #include "hw_sequencer_private.h"
77 
78 #include "dce/dmub_outbox.h"
79 
80 #define CTX \
81 	dc->ctx
82 
83 #define DC_LOGGER \
84 	dc->ctx->logger
85 
86 static const char DC_BUILD_ID[] = "production-build";
87 
88 /**
89  * DOC: Overview
90  *
91  * DC is the OS-agnostic component of the amdgpu DC driver.
92  *
93  * DC maintains and validates a set of structs representing the state of the
94  * driver and writes that state to AMD hardware
95  *
96  * Main DC HW structs:
97  *
98  * struct dc - The central struct.  One per driver.  Created on driver load,
99  * destroyed on driver unload.
100  *
101  * struct dc_context - One per driver.
102  * Used as a backpointer by most other structs in dc.
103  *
104  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
105  * plugpoints).  Created on driver load, destroyed on driver unload.
106  *
107  * struct dc_sink - One per display.  Created on boot or hotplug.
108  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
109  * (the display directly attached).  It may also have one or more remote
110  * sinks (in the Multi-Stream Transport case)
111  *
112  * struct resource_pool - One per driver.  Represents the hw blocks not in the
113  * main pipeline.  Not directly accessible by dm.
114  *
115  * Main dc state structs:
116  *
117  * These structs can be created and destroyed as needed.  There is a full set of
118  * these structs in dc->current_state representing the currently programmed state.
119  *
120  * struct dc_state - The global DC state to track global state information,
121  * such as bandwidth values.
122  *
123  * struct dc_stream_state - Represents the hw configuration for the pipeline from
124  * a framebuffer to a display.  Maps one-to-one with dc_sink.
125  *
126  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
127  * and may have more in the Multi-Plane Overlay case.
128  *
129  * struct resource_context - Represents the programmable state of everything in
130  * the resource_pool.  Not directly accessible by dm.
131  *
132  * struct pipe_ctx - A member of struct resource_context.  Represents the
133  * internal hardware pipeline components.  Each dc_plane_state has either
134  * one or two (in the pipe-split case).
135  */
136 
137 /* Private functions */
138 
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)139 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
140 {
141 	if (new > *original)
142 		*original = new;
143 }
144 
destroy_links(struct dc * dc)145 static void destroy_links(struct dc *dc)
146 {
147 	uint32_t i;
148 
149 	for (i = 0; i < dc->link_count; i++) {
150 		if (NULL != dc->links[i])
151 			dc->link_srv->destroy_link(&dc->links[i]);
152 	}
153 }
154 
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)155 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
156 {
157 	int i;
158 	uint32_t count = 0;
159 
160 	for (i = 0; i < num_links; i++) {
161 		if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
162 				links[i]->is_internal_display)
163 			count++;
164 	}
165 
166 	return count;
167 }
168 
get_seamless_boot_stream_count(struct dc_state * ctx)169 static int get_seamless_boot_stream_count(struct dc_state *ctx)
170 {
171 	uint8_t i;
172 	uint8_t seamless_boot_stream_count = 0;
173 
174 	for (i = 0; i < ctx->stream_count; i++)
175 		if (ctx->streams[i]->apply_seamless_boot_optimization)
176 			seamless_boot_stream_count++;
177 
178 	return seamless_boot_stream_count;
179 }
180 
create_links(struct dc * dc,uint32_t num_virtual_links)181 static bool create_links(
182 		struct dc *dc,
183 		uint32_t num_virtual_links)
184 {
185 	int i;
186 	int connectors_num;
187 	struct dc_bios *bios = dc->ctx->dc_bios;
188 
189 	dc->link_count = 0;
190 
191 	connectors_num = bios->funcs->get_connectors_number(bios);
192 
193 	DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
194 
195 	if (connectors_num > ENUM_ID_COUNT) {
196 		dm_error(
197 			"DC: Number of connectors %d exceeds maximum of %d!\n",
198 			connectors_num,
199 			ENUM_ID_COUNT);
200 		return false;
201 	}
202 
203 	dm_output_to_console(
204 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
205 		__func__,
206 		connectors_num,
207 		num_virtual_links);
208 
209 	for (i = 0; i < connectors_num; i++) {
210 		struct link_init_data link_init_params = {0};
211 		struct dc_link *link;
212 
213 		DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
214 
215 		link_init_params.ctx = dc->ctx;
216 		/* next BIOS object table connector */
217 		link_init_params.connector_index = i;
218 		link_init_params.link_index = dc->link_count;
219 		link_init_params.dc = dc;
220 		link = dc->link_srv->create_link(&link_init_params);
221 
222 		if (link) {
223 			dc->links[dc->link_count] = link;
224 			link->dc = dc;
225 			++dc->link_count;
226 		}
227 	}
228 
229 	DC_LOG_DC("BIOS object table - end");
230 
231 	/* Create a link for each usb4 dpia port */
232 	for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
233 		struct link_init_data link_init_params = {0};
234 		struct dc_link *link;
235 
236 		link_init_params.ctx = dc->ctx;
237 		link_init_params.connector_index = i;
238 		link_init_params.link_index = dc->link_count;
239 		link_init_params.dc = dc;
240 		link_init_params.is_dpia_link = true;
241 
242 		link = dc->link_srv->create_link(&link_init_params);
243 		if (link) {
244 			dc->links[dc->link_count] = link;
245 			link->dc = dc;
246 			++dc->link_count;
247 		}
248 	}
249 
250 	for (i = 0; i < num_virtual_links; i++) {
251 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
252 		struct encoder_init_data enc_init = {0};
253 
254 		if (link == NULL) {
255 			BREAK_TO_DEBUGGER();
256 			goto failed_alloc;
257 		}
258 
259 		link->link_index = dc->link_count;
260 		dc->links[dc->link_count] = link;
261 		dc->link_count++;
262 
263 		link->ctx = dc->ctx;
264 		link->dc = dc;
265 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
266 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
267 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
268 		link->link_id.enum_id = ENUM_ID_1;
269 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
270 
271 		if (!link->link_enc) {
272 			BREAK_TO_DEBUGGER();
273 			goto failed_alloc;
274 		}
275 
276 		link->link_status.dpcd_caps = &link->dpcd_caps;
277 
278 		enc_init.ctx = dc->ctx;
279 		enc_init.channel = CHANNEL_ID_UNKNOWN;
280 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
281 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
282 		enc_init.connector = link->link_id;
283 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
284 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
285 		enc_init.encoder.enum_id = ENUM_ID_1;
286 		virtual_link_encoder_construct(link->link_enc, &enc_init);
287 	}
288 
289 	dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
290 
291 	return true;
292 
293 failed_alloc:
294 	return false;
295 }
296 
297 /* Create additional DIG link encoder objects if fewer than the platform
298  * supports were created during link construction. This can happen if the
299  * number of physical connectors is less than the number of DIGs.
300  */
create_link_encoders(struct dc * dc)301 static bool create_link_encoders(struct dc *dc)
302 {
303 	bool res = true;
304 	unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
305 	unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
306 	int i;
307 
308 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
309 	 * link encoders and physical display endpoints and does not require
310 	 * additional link encoder objects.
311 	 */
312 	if (num_usb4_dpia == 0)
313 		return res;
314 
315 	/* Create as many link encoder objects as the platform supports. DPIA
316 	 * endpoints can be programmably mapped to any DIG.
317 	 */
318 	if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
319 		for (i = 0; i < num_dig_link_enc; i++) {
320 			struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
321 
322 			if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
323 				link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
324 						(enum engine_id)(ENGINE_ID_DIGA + i));
325 				if (link_enc) {
326 					dc->res_pool->link_encoders[i] = link_enc;
327 					dc->res_pool->dig_link_enc_count++;
328 				} else {
329 					res = false;
330 				}
331 			}
332 		}
333 	}
334 
335 	return res;
336 }
337 
338 /* Destroy any additional DIG link encoder objects created by
339  * create_link_encoders().
340  * NB: Must only be called after destroy_links().
341  */
destroy_link_encoders(struct dc * dc)342 static void destroy_link_encoders(struct dc *dc)
343 {
344 	unsigned int num_usb4_dpia;
345 	unsigned int num_dig_link_enc;
346 	int i;
347 
348 	if (!dc->res_pool)
349 		return;
350 
351 	num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
352 	num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
353 
354 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
355 	 * link encoders and physical display endpoints and does not require
356 	 * additional link encoder objects.
357 	 */
358 	if (num_usb4_dpia == 0)
359 		return;
360 
361 	for (i = 0; i < num_dig_link_enc; i++) {
362 		struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
363 
364 		if (link_enc) {
365 			link_enc->funcs->destroy(&link_enc);
366 			dc->res_pool->link_encoders[i] = NULL;
367 			dc->res_pool->dig_link_enc_count--;
368 		}
369 	}
370 }
371 
dc_perf_trace_create(void)372 static struct dc_perf_trace *dc_perf_trace_create(void)
373 {
374 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
375 }
376 
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)377 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
378 {
379 	kfree(*perf_trace);
380 	*perf_trace = NULL;
381 }
382 
383 /**
384  *  dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
385  *  @dc:     dc reference
386  *  @stream: Initial dc stream state
387  *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
388  *
389  *  Looks up the pipe context of dc_stream_state and updates the
390  *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
391  *  Rate, which is a power-saving feature that targets reducing panel
392  *  refresh rate while the screen is static
393  *
394  *  Return: %true if the pipe context is found and adjusted;
395  *          %false if the pipe context is not found.
396  */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)397 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
398 		struct dc_stream_state *stream,
399 		struct dc_crtc_timing_adjust *adjust)
400 {
401 	int i;
402 
403 	/*
404 	 * Don't adjust DRR while there's bandwidth optimizations pending to
405 	 * avoid conflicting with firmware updates.
406 	 */
407 	if (dc->ctx->dce_version > DCE_VERSION_MAX)
408 		if (dc->optimized_required || dc->wm_optimized_required)
409 			return false;
410 
411 	stream->adjust.v_total_max = adjust->v_total_max;
412 	stream->adjust.v_total_mid = adjust->v_total_mid;
413 	stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
414 	stream->adjust.v_total_min = adjust->v_total_min;
415 
416 	for (i = 0; i < MAX_PIPES; i++) {
417 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
418 
419 		if (pipe->stream == stream && pipe->stream_res.tg) {
420 			dc->hwss.set_drr(&pipe,
421 					1,
422 					*adjust);
423 
424 			return true;
425 		}
426 	}
427 	return false;
428 }
429 
430 /**
431  * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
432  * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
433  *
434  * @dc: [in] dc reference
435  * @stream: [in] Initial dc stream state
436  * @refresh_rate: [in] new refresh_rate
437  *
438  * Return: %true if the pipe context is found and there is an associated
439  *         timing_generator for the DC;
440  *         %false if the pipe context is not found or there is no
441  *         timing_generator for the DC.
442  */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)443 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
444 		struct dc_stream_state *stream,
445 		uint32_t *refresh_rate)
446 {
447 	bool status = false;
448 
449 	int i = 0;
450 
451 	for (i = 0; i < MAX_PIPES; i++) {
452 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
453 
454 		if (pipe->stream == stream && pipe->stream_res.tg) {
455 			/* Only execute if a function pointer has been defined for
456 			 * the DC version in question
457 			 */
458 			if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
459 				pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
460 
461 				status = true;
462 
463 				break;
464 			}
465 		}
466 	}
467 
468 	return status;
469 }
470 
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)471 bool dc_stream_get_crtc_position(struct dc *dc,
472 		struct dc_stream_state **streams, int num_streams,
473 		unsigned int *v_pos, unsigned int *nom_v_pos)
474 {
475 	/* TODO: Support multiple streams */
476 	const struct dc_stream_state *stream = streams[0];
477 	int i;
478 	bool ret = false;
479 	struct crtc_position position;
480 
481 	for (i = 0; i < MAX_PIPES; i++) {
482 		struct pipe_ctx *pipe =
483 				&dc->current_state->res_ctx.pipe_ctx[i];
484 
485 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
486 			dc->hwss.get_position(&pipe, 1, &position);
487 
488 			*v_pos = position.vertical_count;
489 			*nom_v_pos = position.nominal_vcount;
490 			ret = true;
491 		}
492 	}
493 	return ret;
494 }
495 
496 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
497 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)498 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
499 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
500 {
501 	union dmub_rb_cmd cmd = {0};
502 
503 	cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
504 	cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
505 
506 	if (is_stop) {
507 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
508 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
509 	} else {
510 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
511 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
512 		cmd.secure_display.roi_info.x_start = rect->x;
513 		cmd.secure_display.roi_info.y_start = rect->y;
514 		cmd.secure_display.roi_info.x_end = rect->x + rect->width;
515 		cmd.secure_display.roi_info.y_end = rect->y + rect->height;
516 	}
517 
518 	dm_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
519 }
520 
521 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)522 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
523 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
524 {
525 	if (is_stop)
526 		dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
527 	else
528 		dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
529 }
530 
531 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,bool is_stop)532 dc_stream_forward_crc_window(struct dc_stream_state *stream,
533 		struct rect *rect, bool is_stop)
534 {
535 	struct dmcu *dmcu;
536 	struct dc_dmub_srv *dmub_srv;
537 	struct otg_phy_mux mux_mapping;
538 	struct pipe_ctx *pipe;
539 	int i;
540 	struct dc *dc = stream->ctx->dc;
541 
542 	for (i = 0; i < MAX_PIPES; i++) {
543 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
544 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
545 			break;
546 	}
547 
548 	/* Stream not found */
549 	if (i == MAX_PIPES)
550 		return false;
551 
552 	mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
553 	mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
554 
555 	dmcu = dc->res_pool->dmcu;
556 	dmub_srv = dc->ctx->dmub_srv;
557 
558 	/* forward to dmub */
559 	if (dmub_srv)
560 		dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
561 	/* forward to dmcu */
562 	else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
563 		dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
564 	else
565 		return false;
566 
567 	return true;
568 }
569 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
570 
571 /**
572  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
573  * @dc: DC Object
574  * @stream: The stream to configure CRC on.
575  * @enable: Enable CRC if true, disable otherwise.
576  * @crc_window: CRC window (x/y start/end) information
577  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
578  *              once.
579  *
580  * By default, only CRC0 is configured, and the entire frame is used to
581  * calculate the CRC.
582  *
583  * Return: %false if the stream is not found or CRC capture is not supported;
584  *         %true if the stream has been configured.
585  */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous)586 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
587 			     struct crc_params *crc_window, bool enable, bool continuous)
588 {
589 	struct pipe_ctx *pipe;
590 	struct crc_params param;
591 	struct timing_generator *tg;
592 
593 	pipe = resource_get_otg_master_for_stream(
594 			&dc->current_state->res_ctx, stream);
595 
596 	/* Stream not found */
597 	if (pipe == NULL)
598 		return false;
599 
600 	/* By default, capture the full frame */
601 	param.windowa_x_start = 0;
602 	param.windowa_y_start = 0;
603 	param.windowa_x_end = pipe->stream->timing.h_addressable;
604 	param.windowa_y_end = pipe->stream->timing.v_addressable;
605 	param.windowb_x_start = 0;
606 	param.windowb_y_start = 0;
607 	param.windowb_x_end = pipe->stream->timing.h_addressable;
608 	param.windowb_y_end = pipe->stream->timing.v_addressable;
609 
610 	if (crc_window) {
611 		param.windowa_x_start = crc_window->windowa_x_start;
612 		param.windowa_y_start = crc_window->windowa_y_start;
613 		param.windowa_x_end = crc_window->windowa_x_end;
614 		param.windowa_y_end = crc_window->windowa_y_end;
615 		param.windowb_x_start = crc_window->windowb_x_start;
616 		param.windowb_y_start = crc_window->windowb_y_start;
617 		param.windowb_x_end = crc_window->windowb_x_end;
618 		param.windowb_y_end = crc_window->windowb_y_end;
619 	}
620 
621 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
622 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
623 
624 	/* Default to the union of both windows */
625 	param.selection = UNION_WINDOW_A_B;
626 	param.continuous_mode = continuous;
627 	param.enable = enable;
628 
629 	tg = pipe->stream_res.tg;
630 
631 	/* Only call if supported */
632 	if (tg->funcs->configure_crc)
633 		return tg->funcs->configure_crc(tg, &param);
634 	DC_LOG_WARNING("CRC capture not supported.");
635 	return false;
636 }
637 
638 /**
639  * dc_stream_get_crc() - Get CRC values for the given stream.
640  *
641  * @dc: DC object.
642  * @stream: The DC stream state of the stream to get CRCs from.
643  * @r_cr: CRC value for the red component.
644  * @g_y:  CRC value for the green component.
645  * @b_cb: CRC value for the blue component.
646  *
647  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
648  *
649  * Return:
650  * %false if stream is not found, or if CRCs are not enabled.
651  */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)652 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
653 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
654 {
655 	int i;
656 	struct pipe_ctx *pipe;
657 	struct timing_generator *tg;
658 
659 	for (i = 0; i < MAX_PIPES; i++) {
660 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
661 		if (pipe->stream == stream)
662 			break;
663 	}
664 	/* Stream not found */
665 	if (i == MAX_PIPES)
666 		return false;
667 
668 	tg = pipe->stream_res.tg;
669 
670 	if (tg->funcs->get_crc)
671 		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
672 	DC_LOG_WARNING("CRC capture not supported.");
673 	return false;
674 }
675 
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)676 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
677 		enum dc_dynamic_expansion option)
678 {
679 	/* OPP FMT dyn expansion updates*/
680 	int i;
681 	struct pipe_ctx *pipe_ctx;
682 
683 	for (i = 0; i < MAX_PIPES; i++) {
684 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
685 				== stream) {
686 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
687 			pipe_ctx->stream_res.opp->dyn_expansion = option;
688 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
689 					pipe_ctx->stream_res.opp,
690 					COLOR_SPACE_YCBCR601,
691 					stream->timing.display_color_depth,
692 					stream->signal);
693 		}
694 	}
695 }
696 
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)697 void dc_stream_set_dither_option(struct dc_stream_state *stream,
698 		enum dc_dither_option option)
699 {
700 	struct bit_depth_reduction_params params;
701 	struct dc_link *link = stream->link;
702 	struct pipe_ctx *pipes = NULL;
703 	int i;
704 
705 	for (i = 0; i < MAX_PIPES; i++) {
706 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
707 				stream) {
708 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
709 			break;
710 		}
711 	}
712 
713 	if (!pipes)
714 		return;
715 	if (option > DITHER_OPTION_MAX)
716 		return;
717 
718 	stream->dither_option = option;
719 
720 	memset(&params, 0, sizeof(params));
721 	resource_build_bit_depth_reduction_params(stream, &params);
722 	stream->bit_depth_params = params;
723 
724 	if (pipes->plane_res.xfm &&
725 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
726 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
727 			pipes->plane_res.xfm,
728 			pipes->plane_res.scl_data.lb_params.depth,
729 			&stream->bit_depth_params);
730 	}
731 
732 	pipes->stream_res.opp->funcs->
733 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
734 }
735 
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)736 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
737 {
738 	int i;
739 	bool ret = false;
740 	struct pipe_ctx *pipes;
741 
742 	for (i = 0; i < MAX_PIPES; i++) {
743 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
744 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
745 			dc->hwss.program_gamut_remap(pipes);
746 			ret = true;
747 		}
748 	}
749 
750 	return ret;
751 }
752 
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)753 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
754 {
755 	int i;
756 	bool ret = false;
757 	struct pipe_ctx *pipes;
758 
759 	for (i = 0; i < MAX_PIPES; i++) {
760 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
761 				== stream) {
762 
763 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
764 			dc->hwss.program_output_csc(dc,
765 					pipes,
766 					stream->output_color_space,
767 					stream->csc_color_matrix.matrix,
768 					pipes->stream_res.opp->inst);
769 			ret = true;
770 		}
771 	}
772 
773 	return ret;
774 }
775 
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)776 void dc_stream_set_static_screen_params(struct dc *dc,
777 		struct dc_stream_state **streams,
778 		int num_streams,
779 		const struct dc_static_screen_params *params)
780 {
781 	int i, j;
782 	struct pipe_ctx *pipes_affected[MAX_PIPES];
783 	int num_pipes_affected = 0;
784 
785 	for (i = 0; i < num_streams; i++) {
786 		struct dc_stream_state *stream = streams[i];
787 
788 		for (j = 0; j < MAX_PIPES; j++) {
789 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
790 					== stream) {
791 				pipes_affected[num_pipes_affected++] =
792 						&dc->current_state->res_ctx.pipe_ctx[j];
793 			}
794 		}
795 	}
796 
797 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
798 }
799 
dc_destruct(struct dc * dc)800 static void dc_destruct(struct dc *dc)
801 {
802 	// reset link encoder assignment table on destruct
803 	if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
804 		link_enc_cfg_init(dc, dc->current_state);
805 
806 	if (dc->current_state) {
807 		dc_release_state(dc->current_state);
808 		dc->current_state = NULL;
809 	}
810 
811 	destroy_links(dc);
812 
813 	destroy_link_encoders(dc);
814 
815 	if (dc->clk_mgr) {
816 		dc_destroy_clk_mgr(dc->clk_mgr);
817 		dc->clk_mgr = NULL;
818 	}
819 
820 	dc_destroy_resource_pool(dc);
821 
822 	if (dc->link_srv)
823 		link_destroy_link_service(&dc->link_srv);
824 
825 	if (dc->ctx->gpio_service)
826 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
827 
828 	if (dc->ctx->created_bios)
829 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
830 
831 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
832 
833 	kfree(dc->ctx);
834 	dc->ctx = NULL;
835 
836 	kfree(dc->bw_vbios);
837 	dc->bw_vbios = NULL;
838 
839 	kfree(dc->bw_dceip);
840 	dc->bw_dceip = NULL;
841 
842 	kfree(dc->dcn_soc);
843 	dc->dcn_soc = NULL;
844 
845 	kfree(dc->dcn_ip);
846 	dc->dcn_ip = NULL;
847 
848 	kfree(dc->vm_helper);
849 	dc->vm_helper = NULL;
850 
851 }
852 
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)853 static bool dc_construct_ctx(struct dc *dc,
854 		const struct dc_init_data *init_params)
855 {
856 	struct dc_context *dc_ctx;
857 
858 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
859 	if (!dc_ctx)
860 		return false;
861 
862 	dc_ctx->cgs_device = init_params->cgs_device;
863 	dc_ctx->driver_context = init_params->driver;
864 	dc_ctx->dc = dc;
865 	dc_ctx->asic_id = init_params->asic_id;
866 	dc_ctx->dc_sink_id_count = 0;
867 	dc_ctx->dc_stream_id_count = 0;
868 	dc_ctx->dce_environment = init_params->dce_environment;
869 	dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
870 	dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
871 
872 	/* Create logger */
873 
874 	dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
875 
876 	dc_ctx->perf_trace = dc_perf_trace_create();
877 	if (!dc_ctx->perf_trace) {
878 		kfree(dc_ctx);
879 		ASSERT_CRITICAL(false);
880 		return false;
881 	}
882 
883 	dc->ctx = dc_ctx;
884 
885 	dc->link_srv = link_create_link_service();
886 	if (!dc->link_srv)
887 		return false;
888 
889 	return true;
890 }
891 
dc_construct(struct dc * dc,const struct dc_init_data * init_params)892 static bool dc_construct(struct dc *dc,
893 		const struct dc_init_data *init_params)
894 {
895 	struct dc_context *dc_ctx;
896 	struct bw_calcs_dceip *dc_dceip;
897 	struct bw_calcs_vbios *dc_vbios;
898 	struct dcn_soc_bounding_box *dcn_soc;
899 	struct dcn_ip_params *dcn_ip;
900 
901 	dc->config = init_params->flags;
902 
903 	// Allocate memory for the vm_helper
904 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
905 	if (!dc->vm_helper) {
906 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
907 		goto fail;
908 	}
909 
910 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
911 
912 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
913 	if (!dc_dceip) {
914 		dm_error("%s: failed to create dceip\n", __func__);
915 		goto fail;
916 	}
917 
918 	dc->bw_dceip = dc_dceip;
919 
920 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
921 	if (!dc_vbios) {
922 		dm_error("%s: failed to create vbios\n", __func__);
923 		goto fail;
924 	}
925 
926 	dc->bw_vbios = dc_vbios;
927 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
928 	if (!dcn_soc) {
929 		dm_error("%s: failed to create dcn_soc\n", __func__);
930 		goto fail;
931 	}
932 
933 	dc->dcn_soc = dcn_soc;
934 
935 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
936 	if (!dcn_ip) {
937 		dm_error("%s: failed to create dcn_ip\n", __func__);
938 		goto fail;
939 	}
940 
941 	dc->dcn_ip = dcn_ip;
942 
943 	if (!dc_construct_ctx(dc, init_params)) {
944 		dm_error("%s: failed to create ctx\n", __func__);
945 		goto fail;
946 	}
947 
948         dc_ctx = dc->ctx;
949 
950 	/* Resource should construct all asic specific resources.
951 	 * This should be the only place where we need to parse the asic id
952 	 */
953 	if (init_params->vbios_override)
954 		dc_ctx->dc_bios = init_params->vbios_override;
955 	else {
956 		/* Create BIOS parser */
957 		struct bp_init_data bp_init_data;
958 
959 		bp_init_data.ctx = dc_ctx;
960 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
961 
962 		dc_ctx->dc_bios = dal_bios_parser_create(
963 				&bp_init_data, dc_ctx->dce_version);
964 
965 		if (!dc_ctx->dc_bios) {
966 			ASSERT_CRITICAL(false);
967 			goto fail;
968 		}
969 
970 		dc_ctx->created_bios = true;
971 	}
972 
973 	dc->vendor_signature = init_params->vendor_signature;
974 
975 	/* Create GPIO service */
976 	dc_ctx->gpio_service = dal_gpio_service_create(
977 			dc_ctx->dce_version,
978 			dc_ctx->dce_environment,
979 			dc_ctx);
980 
981 	if (!dc_ctx->gpio_service) {
982 		ASSERT_CRITICAL(false);
983 		goto fail;
984 	}
985 
986 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
987 	if (!dc->res_pool)
988 		goto fail;
989 
990 	/* set i2c speed if not done by the respective dcnxxx__resource.c */
991 	if (dc->caps.i2c_speed_in_khz_hdcp == 0)
992 		dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
993 	if (dc->caps.max_optimizable_video_width == 0)
994 		dc->caps.max_optimizable_video_width = 5120;
995 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
996 	if (!dc->clk_mgr)
997 		goto fail;
998 #ifdef CONFIG_DRM_AMD_DC_FP
999 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1000 
1001 	if (dc->res_pool->funcs->update_bw_bounding_box) {
1002 		DC_FP_START();
1003 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1004 		DC_FP_END();
1005 	}
1006 #endif
1007 
1008 	/* Creation of current_state must occur after dc->dml
1009 	 * is initialized in dc_create_resource_pool because
1010 	 * on creation it copies the contents of dc->dml
1011 	 */
1012 
1013 	dc->current_state = dc_create_state(dc);
1014 
1015 	if (!dc->current_state) {
1016 		dm_error("%s: failed to create validate ctx\n", __func__);
1017 		goto fail;
1018 	}
1019 
1020 	if (!create_links(dc, init_params->num_virtual_links))
1021 		goto fail;
1022 
1023 	/* Create additional DIG link encoder objects if fewer than the platform
1024 	 * supports were created during link construction.
1025 	 */
1026 	if (!create_link_encoders(dc))
1027 		goto fail;
1028 
1029 	dc_resource_state_construct(dc, dc->current_state);
1030 
1031 	return true;
1032 
1033 fail:
1034 	return false;
1035 }
1036 
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1037 static void disable_all_writeback_pipes_for_stream(
1038 		const struct dc *dc,
1039 		struct dc_stream_state *stream,
1040 		struct dc_state *context)
1041 {
1042 	int i;
1043 
1044 	for (i = 0; i < stream->num_wb_info; i++)
1045 		stream->writeback_info[i].wb_enabled = false;
1046 }
1047 
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1048 static void apply_ctx_interdependent_lock(struct dc *dc,
1049 					  struct dc_state *context,
1050 					  struct dc_stream_state *stream,
1051 					  bool lock)
1052 {
1053 	int i;
1054 
1055 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1056 	if (dc->hwss.interdependent_update_lock)
1057 		dc->hwss.interdependent_update_lock(dc, context, lock);
1058 	else {
1059 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1060 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1061 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1062 
1063 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
1064 			if (stream == pipe_ctx->stream) {
1065 				if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1066 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1067 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1068 			}
1069 		}
1070 	}
1071 }
1072 
dc_update_viusal_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1073 static void dc_update_viusal_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1074 {
1075 	if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1076 		memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1077 
1078 		if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1079 			get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1080 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1081 			get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1082 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1083 			get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1084 		else {
1085 			if (dc->ctx->dce_version < DCN_VERSION_2_0)
1086 				color_space_to_black_color(
1087 					dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1088 		}
1089 		if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1090 			if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1091 				get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1092 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1093 				get_subvp_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1094 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1095 				get_mclk_switch_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1096 		}
1097 	}
1098 }
1099 
disable_dangling_plane(struct dc * dc,struct dc_state * context)1100 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1101 {
1102 	int i, j;
1103 	struct dc_state *dangling_context = dc_create_state(dc);
1104 	struct dc_state *current_ctx;
1105 	struct pipe_ctx *pipe;
1106 	struct timing_generator *tg;
1107 
1108 	if (dangling_context == NULL)
1109 		return;
1110 
1111 	dc_resource_state_copy_construct(dc->current_state, dangling_context);
1112 
1113 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1114 		struct dc_stream_state *old_stream =
1115 				dc->current_state->res_ctx.pipe_ctx[i].stream;
1116 		bool should_disable = true;
1117 		bool pipe_split_change = false;
1118 
1119 		if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1120 			(dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1121 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1122 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1123 		else
1124 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1125 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1126 
1127 		for (j = 0; j < context->stream_count; j++) {
1128 			if (old_stream == context->streams[j]) {
1129 				should_disable = false;
1130 				break;
1131 			}
1132 		}
1133 		if (!should_disable && pipe_split_change &&
1134 				dc->current_state->stream_count != context->stream_count)
1135 			should_disable = true;
1136 
1137 		if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1138 				!dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1139 			struct pipe_ctx *old_pipe, *new_pipe;
1140 
1141 			old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1142 			new_pipe = &context->res_ctx.pipe_ctx[i];
1143 
1144 			if (old_pipe->plane_state && !new_pipe->plane_state)
1145 				should_disable = true;
1146 		}
1147 
1148 		if (should_disable && old_stream) {
1149 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1150 			tg = pipe->stream_res.tg;
1151 			/* When disabling plane for a phantom pipe, we must turn on the
1152 			 * phantom OTG so the disable programming gets the double buffer
1153 			 * update. Otherwise the pipe will be left in a partially disabled
1154 			 * state that can result in underflow or hang when enabling it
1155 			 * again for different use.
1156 			 */
1157 			if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1158 				if (tg->funcs->enable_crtc) {
1159 					int main_pipe_width, main_pipe_height;
1160 
1161 					main_pipe_width = old_stream->mall_stream_config.paired_stream->dst.width;
1162 					main_pipe_height = old_stream->mall_stream_config.paired_stream->dst.height;
1163 					if (dc->hwss.blank_phantom)
1164 						dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height);
1165 					tg->funcs->enable_crtc(tg);
1166 				}
1167 			}
1168 			dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1169 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1170 
1171 			if (pipe->stream && pipe->plane_state)
1172 				dc_update_viusal_confirm_color(dc, context, pipe);
1173 
1174 			if (dc->hwss.apply_ctx_for_surface) {
1175 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1176 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1177 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1178 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1179 			}
1180 			if (dc->hwss.program_front_end_for_ctx) {
1181 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1182 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1183 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1184 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1185 			}
1186 			/* We need to put the phantom OTG back into it's default (disabled) state or we
1187 			 * can get corruption when transition from one SubVP config to a different one.
1188 			 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1189 			 * will still get it's double buffer update.
1190 			 */
1191 			if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1192 				if (tg->funcs->disable_phantom_crtc)
1193 					tg->funcs->disable_phantom_crtc(tg);
1194 			}
1195 		}
1196 	}
1197 
1198 	current_ctx = dc->current_state;
1199 	dc->current_state = dangling_context;
1200 	dc_release_state(current_ctx);
1201 }
1202 
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1203 static void disable_vbios_mode_if_required(
1204 		struct dc *dc,
1205 		struct dc_state *context)
1206 {
1207 	unsigned int i, j;
1208 
1209 	/* check if timing_changed, disable stream*/
1210 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1211 		struct dc_stream_state *stream = NULL;
1212 		struct dc_link *link = NULL;
1213 		struct pipe_ctx *pipe = NULL;
1214 
1215 		pipe = &context->res_ctx.pipe_ctx[i];
1216 		stream = pipe->stream;
1217 		if (stream == NULL)
1218 			continue;
1219 
1220 		if (stream->apply_seamless_boot_optimization)
1221 			continue;
1222 
1223 		// only looking for first odm pipe
1224 		if (pipe->prev_odm_pipe)
1225 			continue;
1226 
1227 		if (stream->link->local_sink &&
1228 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1229 			link = stream->link;
1230 		}
1231 
1232 		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1233 			unsigned int enc_inst, tg_inst = 0;
1234 			unsigned int pix_clk_100hz;
1235 
1236 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1237 			if (enc_inst != ENGINE_ID_UNKNOWN) {
1238 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1239 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1240 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1241 							dc->res_pool->stream_enc[j]);
1242 						break;
1243 					}
1244 				}
1245 
1246 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1247 					dc->res_pool->dp_clock_source,
1248 					tg_inst, &pix_clk_100hz);
1249 
1250 				if (link->link_status.link_active) {
1251 					uint32_t requested_pix_clk_100hz =
1252 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1253 
1254 					if (pix_clk_100hz != requested_pix_clk_100hz) {
1255 						dc->link_srv->set_dpms_off(pipe);
1256 						pipe->stream->dpms_off = false;
1257 					}
1258 				}
1259 			}
1260 		}
1261 	}
1262 }
1263 
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)1264 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1265 {
1266 	int i;
1267 	PERF_TRACE();
1268 	for (i = 0; i < MAX_PIPES; i++) {
1269 		int count = 0;
1270 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1271 
1272 		if (!pipe->plane_state || pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1273 			continue;
1274 
1275 		/* Timeout 100 ms */
1276 		while (count < 100000) {
1277 			/* Must set to false to start with, due to OR in update function */
1278 			pipe->plane_state->status.is_flip_pending = false;
1279 			dc->hwss.update_pending_status(pipe);
1280 			if (!pipe->plane_state->status.is_flip_pending)
1281 				break;
1282 			udelay(1);
1283 			count++;
1284 		}
1285 		ASSERT(!pipe->plane_state->status.is_flip_pending);
1286 	}
1287 	PERF_TRACE();
1288 }
1289 
1290 /* Public functions */
1291 
dc_create(const struct dc_init_data * init_params)1292 struct dc *dc_create(const struct dc_init_data *init_params)
1293 {
1294 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1295 	unsigned int full_pipe_count;
1296 
1297 	if (!dc)
1298 		return NULL;
1299 
1300 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1301 		if (!dc_construct_ctx(dc, init_params))
1302 			goto destruct_dc;
1303 	} else {
1304 		if (!dc_construct(dc, init_params))
1305 			goto destruct_dc;
1306 
1307 		full_pipe_count = dc->res_pool->pipe_count;
1308 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1309 			full_pipe_count--;
1310 		dc->caps.max_streams = min(
1311 				full_pipe_count,
1312 				dc->res_pool->stream_enc_count);
1313 
1314 		dc->caps.max_links = dc->link_count;
1315 		dc->caps.max_audios = dc->res_pool->audio_count;
1316 		dc->caps.linear_pitch_alignment = 64;
1317 
1318 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1319 
1320 		dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1321 
1322 		if (dc->res_pool->dmcu != NULL)
1323 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1324 	}
1325 
1326 	dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1327 	dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1328 
1329 	/* Populate versioning information */
1330 	dc->versions.dc_ver = DC_VER;
1331 
1332 	dc->build_id = DC_BUILD_ID;
1333 
1334 	DC_LOG_DC("Display Core initialized\n");
1335 
1336 
1337 
1338 	return dc;
1339 
1340 destruct_dc:
1341 	dc_destruct(dc);
1342 	kfree(dc);
1343 	return NULL;
1344 }
1345 
detect_edp_presence(struct dc * dc)1346 static void detect_edp_presence(struct dc *dc)
1347 {
1348 	struct dc_link *edp_links[MAX_NUM_EDP];
1349 	struct dc_link *edp_link = NULL;
1350 	enum dc_connection_type type;
1351 	int i;
1352 	int edp_num;
1353 
1354 	dc_get_edp_links(dc, edp_links, &edp_num);
1355 	if (!edp_num)
1356 		return;
1357 
1358 	for (i = 0; i < edp_num; i++) {
1359 		edp_link = edp_links[i];
1360 		if (dc->config.edp_not_connected) {
1361 			edp_link->edp_sink_present = false;
1362 		} else {
1363 			dc_link_detect_connection_type(edp_link, &type);
1364 			edp_link->edp_sink_present = (type != dc_connection_none);
1365 		}
1366 	}
1367 }
1368 
dc_hardware_init(struct dc * dc)1369 void dc_hardware_init(struct dc *dc)
1370 {
1371 
1372 	detect_edp_presence(dc);
1373 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1374 		dc->hwss.init_hw(dc);
1375 }
1376 
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1377 void dc_init_callbacks(struct dc *dc,
1378 		const struct dc_callback_init *init_params)
1379 {
1380 	dc->ctx->cp_psp = init_params->cp_psp;
1381 }
1382 
dc_deinit_callbacks(struct dc * dc)1383 void dc_deinit_callbacks(struct dc *dc)
1384 {
1385 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1386 }
1387 
dc_destroy(struct dc ** dc)1388 void dc_destroy(struct dc **dc)
1389 {
1390 	dc_destruct(*dc);
1391 	kfree(*dc);
1392 	*dc = NULL;
1393 }
1394 
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1395 static void enable_timing_multisync(
1396 		struct dc *dc,
1397 		struct dc_state *ctx)
1398 {
1399 	int i, multisync_count = 0;
1400 	int pipe_count = dc->res_pool->pipe_count;
1401 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1402 
1403 	for (i = 0; i < pipe_count; i++) {
1404 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1405 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1406 			continue;
1407 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1408 			continue;
1409 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1410 		multisync_count++;
1411 	}
1412 
1413 	if (multisync_count > 0) {
1414 		dc->hwss.enable_per_frame_crtc_position_reset(
1415 			dc, multisync_count, multisync_pipes);
1416 	}
1417 }
1418 
program_timing_sync(struct dc * dc,struct dc_state * ctx)1419 static void program_timing_sync(
1420 		struct dc *dc,
1421 		struct dc_state *ctx)
1422 {
1423 	int i, j, k;
1424 	int group_index = 0;
1425 	int num_group = 0;
1426 	int pipe_count = dc->res_pool->pipe_count;
1427 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1428 
1429 	for (i = 0; i < pipe_count; i++) {
1430 		if (!ctx->res_ctx.pipe_ctx[i].stream
1431 				|| ctx->res_ctx.pipe_ctx[i].top_pipe
1432 				|| ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1433 			continue;
1434 
1435 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1436 	}
1437 
1438 	for (i = 0; i < pipe_count; i++) {
1439 		int group_size = 1;
1440 		enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1441 		struct pipe_ctx *pipe_set[MAX_PIPES];
1442 
1443 		if (!unsynced_pipes[i])
1444 			continue;
1445 
1446 		pipe_set[0] = unsynced_pipes[i];
1447 		unsynced_pipes[i] = NULL;
1448 
1449 		/* Add tg to the set, search rest of the tg's for ones with
1450 		 * same timing, add all tgs with same timing to the group
1451 		 */
1452 		for (j = i + 1; j < pipe_count; j++) {
1453 			if (!unsynced_pipes[j])
1454 				continue;
1455 			if (sync_type != TIMING_SYNCHRONIZABLE &&
1456 				dc->hwss.enable_vblanks_synchronization &&
1457 				unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1458 				resource_are_vblanks_synchronizable(
1459 					unsynced_pipes[j]->stream,
1460 					pipe_set[0]->stream)) {
1461 				sync_type = VBLANK_SYNCHRONIZABLE;
1462 				pipe_set[group_size] = unsynced_pipes[j];
1463 				unsynced_pipes[j] = NULL;
1464 				group_size++;
1465 			} else
1466 			if (sync_type != VBLANK_SYNCHRONIZABLE &&
1467 				resource_are_streams_timing_synchronizable(
1468 					unsynced_pipes[j]->stream,
1469 					pipe_set[0]->stream)) {
1470 				sync_type = TIMING_SYNCHRONIZABLE;
1471 				pipe_set[group_size] = unsynced_pipes[j];
1472 				unsynced_pipes[j] = NULL;
1473 				group_size++;
1474 			}
1475 		}
1476 
1477 		/* set first unblanked pipe as master */
1478 		for (j = 0; j < group_size; j++) {
1479 			bool is_blanked;
1480 
1481 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1482 				is_blanked =
1483 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1484 			else
1485 				is_blanked =
1486 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1487 			if (!is_blanked) {
1488 				if (j == 0)
1489 					break;
1490 
1491 				swap(pipe_set[0], pipe_set[j]);
1492 				break;
1493 			}
1494 		}
1495 
1496 		for (k = 0; k < group_size; k++) {
1497 			struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1498 
1499 			status->timing_sync_info.group_id = num_group;
1500 			status->timing_sync_info.group_size = group_size;
1501 			if (k == 0)
1502 				status->timing_sync_info.master = true;
1503 			else
1504 				status->timing_sync_info.master = false;
1505 
1506 		}
1507 
1508 		/* remove any other pipes that are already been synced */
1509 		if (dc->config.use_pipe_ctx_sync_logic) {
1510 			/* check pipe's syncd to decide which pipe to be removed */
1511 			for (j = 1; j < group_size; j++) {
1512 				if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1513 					group_size--;
1514 					pipe_set[j] = pipe_set[group_size];
1515 					j--;
1516 				} else
1517 					/* link slave pipe's syncd with master pipe */
1518 					pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1519 			}
1520 		} else {
1521 			for (j = j + 1; j < group_size; j++) {
1522 				bool is_blanked;
1523 
1524 				if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1525 					is_blanked =
1526 						pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1527 				else
1528 					is_blanked =
1529 						pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1530 				if (!is_blanked) {
1531 					group_size--;
1532 					pipe_set[j] = pipe_set[group_size];
1533 					j--;
1534 				}
1535 			}
1536 		}
1537 
1538 		if (group_size > 1) {
1539 			if (sync_type == TIMING_SYNCHRONIZABLE) {
1540 				dc->hwss.enable_timing_synchronization(
1541 					dc, group_index, group_size, pipe_set);
1542 			} else
1543 				if (sync_type == VBLANK_SYNCHRONIZABLE) {
1544 				dc->hwss.enable_vblanks_synchronization(
1545 					dc, group_index, group_size, pipe_set);
1546 				}
1547 			group_index++;
1548 		}
1549 		num_group++;
1550 	}
1551 }
1552 
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1553 static bool streams_changed(struct dc *dc,
1554 			    struct dc_stream_state *streams[],
1555 			    uint8_t stream_count)
1556 {
1557 	uint8_t i;
1558 
1559 	if (stream_count != dc->current_state->stream_count)
1560 		return true;
1561 
1562 	for (i = 0; i < dc->current_state->stream_count; i++) {
1563 		if (dc->current_state->streams[i] != streams[i])
1564 			return true;
1565 		if (!streams[i]->link->link_state_valid)
1566 			return true;
1567 	}
1568 
1569 	return false;
1570 }
1571 
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1572 bool dc_validate_boot_timing(const struct dc *dc,
1573 				const struct dc_sink *sink,
1574 				struct dc_crtc_timing *crtc_timing)
1575 {
1576 	struct timing_generator *tg;
1577 	struct stream_encoder *se = NULL;
1578 
1579 	struct dc_crtc_timing hw_crtc_timing = {0};
1580 
1581 	struct dc_link *link = sink->link;
1582 	unsigned int i, enc_inst, tg_inst = 0;
1583 
1584 	/* Support seamless boot on EDP displays only */
1585 	if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1586 		return false;
1587 	}
1588 
1589 	if (dc->debug.force_odm_combine)
1590 		return false;
1591 
1592 	/* Check for enabled DIG to identify enabled display */
1593 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1594 		return false;
1595 
1596 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1597 
1598 	if (enc_inst == ENGINE_ID_UNKNOWN)
1599 		return false;
1600 
1601 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1602 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1603 
1604 			se = dc->res_pool->stream_enc[i];
1605 
1606 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1607 				dc->res_pool->stream_enc[i]);
1608 			break;
1609 		}
1610 	}
1611 
1612 	// tg_inst not found
1613 	if (i == dc->res_pool->stream_enc_count)
1614 		return false;
1615 
1616 	if (tg_inst >= dc->res_pool->timing_generator_count)
1617 		return false;
1618 
1619 	if (tg_inst != link->link_enc->preferred_engine)
1620 		return false;
1621 
1622 	tg = dc->res_pool->timing_generators[tg_inst];
1623 
1624 	if (!tg->funcs->get_hw_timing)
1625 		return false;
1626 
1627 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1628 		return false;
1629 
1630 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1631 		return false;
1632 
1633 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1634 		return false;
1635 
1636 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1637 		return false;
1638 
1639 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1640 		return false;
1641 
1642 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1643 		return false;
1644 
1645 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1646 		return false;
1647 
1648 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1649 		return false;
1650 
1651 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1652 		return false;
1653 
1654 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1655 		return false;
1656 
1657 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1658 		return false;
1659 
1660 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1661 		return false;
1662 
1663 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1664 		return false;
1665 
1666 	/* block DSC for now, as VBIOS does not currently support DSC timings */
1667 	if (crtc_timing->flags.DSC)
1668 		return false;
1669 
1670 	if (dc_is_dp_signal(link->connector_signal)) {
1671 		unsigned int pix_clk_100hz;
1672 		uint32_t numOdmPipes = 1;
1673 		uint32_t id_src[4] = {0};
1674 
1675 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1676 			dc->res_pool->dp_clock_source,
1677 			tg_inst, &pix_clk_100hz);
1678 
1679 		if (tg->funcs->get_optc_source)
1680 			tg->funcs->get_optc_source(tg,
1681 						&numOdmPipes, &id_src[0], &id_src[1]);
1682 
1683 		if (numOdmPipes == 2)
1684 			pix_clk_100hz *= 2;
1685 		if (numOdmPipes == 4)
1686 			pix_clk_100hz *= 4;
1687 
1688 		// Note: In rare cases, HW pixclk may differ from crtc's pixclk
1689 		// slightly due to rounding issues in 10 kHz units.
1690 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1691 			return false;
1692 
1693 		if (!se->funcs->dp_get_pixel_format)
1694 			return false;
1695 
1696 		if (!se->funcs->dp_get_pixel_format(
1697 			se,
1698 			&hw_crtc_timing.pixel_encoding,
1699 			&hw_crtc_timing.display_color_depth))
1700 			return false;
1701 
1702 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1703 			return false;
1704 
1705 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1706 			return false;
1707 	}
1708 
1709 	if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1710 		return false;
1711 	}
1712 
1713 	if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1714 		DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1715 		return false;
1716 	}
1717 
1718 	return true;
1719 }
1720 
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1721 static inline bool should_update_pipe_for_stream(
1722 		struct dc_state *context,
1723 		struct pipe_ctx *pipe_ctx,
1724 		struct dc_stream_state *stream)
1725 {
1726 	return (pipe_ctx->stream && pipe_ctx->stream == stream);
1727 }
1728 
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1729 static inline bool should_update_pipe_for_plane(
1730 		struct dc_state *context,
1731 		struct pipe_ctx *pipe_ctx,
1732 		struct dc_plane_state *plane_state)
1733 {
1734 	return (pipe_ctx->plane_state == plane_state);
1735 }
1736 
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1737 void dc_enable_stereo(
1738 	struct dc *dc,
1739 	struct dc_state *context,
1740 	struct dc_stream_state *streams[],
1741 	uint8_t stream_count)
1742 {
1743 	int i, j;
1744 	struct pipe_ctx *pipe;
1745 
1746 	for (i = 0; i < MAX_PIPES; i++) {
1747 		if (context != NULL) {
1748 			pipe = &context->res_ctx.pipe_ctx[i];
1749 		} else {
1750 			context = dc->current_state;
1751 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1752 		}
1753 
1754 		for (j = 0; pipe && j < stream_count; j++)  {
1755 			if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1756 				dc->hwss.setup_stereo)
1757 				dc->hwss.setup_stereo(pipe, dc);
1758 		}
1759 	}
1760 }
1761 
dc_trigger_sync(struct dc * dc,struct dc_state * context)1762 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1763 {
1764 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1765 		enable_timing_multisync(dc, context);
1766 		program_timing_sync(dc, context);
1767 	}
1768 }
1769 
get_stream_mask(struct dc * dc,struct dc_state * context)1770 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1771 {
1772 	int i;
1773 	unsigned int stream_mask = 0;
1774 
1775 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1776 		if (context->res_ctx.pipe_ctx[i].stream)
1777 			stream_mask |= 1 << i;
1778 	}
1779 
1780 	return stream_mask;
1781 }
1782 
dc_z10_restore(const struct dc * dc)1783 void dc_z10_restore(const struct dc *dc)
1784 {
1785 	if (dc->hwss.z10_restore)
1786 		dc->hwss.z10_restore(dc);
1787 }
1788 
dc_z10_save_init(struct dc * dc)1789 void dc_z10_save_init(struct dc *dc)
1790 {
1791 	if (dc->hwss.z10_save_init)
1792 		dc->hwss.z10_save_init(dc);
1793 }
1794 
1795 /**
1796  * dc_commit_state_no_check - Apply context to the hardware
1797  *
1798  * @dc: DC object with the current status to be updated
1799  * @context: New state that will become the current status at the end of this function
1800  *
1801  * Applies given context to the hardware and copy it into current context.
1802  * It's up to the user to release the src context afterwards.
1803  *
1804  * Return: an enum dc_status result code for the operation
1805  */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1806 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1807 {
1808 	struct dc_bios *dcb = dc->ctx->dc_bios;
1809 	enum dc_status result = DC_ERROR_UNEXPECTED;
1810 	struct pipe_ctx *pipe;
1811 	int i, k, l;
1812 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1813 	struct dc_state *old_state;
1814 	bool subvp_prev_use = false;
1815 
1816 	dc_z10_restore(dc);
1817 	dc_allow_idle_optimizations(dc, false);
1818 
1819 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1820 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1821 
1822 		/* Check old context for SubVP */
1823 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
1824 		if (subvp_prev_use)
1825 			break;
1826 	}
1827 
1828 	for (i = 0; i < context->stream_count; i++)
1829 		dc_streams[i] =  context->streams[i];
1830 
1831 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1832 		disable_vbios_mode_if_required(dc, context);
1833 		dc->hwss.enable_accelerated_mode(dc, context);
1834 	}
1835 
1836 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1837 		context->stream_count == 0)
1838 		dc->hwss.prepare_bandwidth(dc, context);
1839 
1840 	/* When SubVP is active, all HW programming must be done while
1841 	 * SubVP lock is acquired
1842 	 */
1843 	if (dc->hwss.subvp_pipe_control_lock)
1844 		dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1845 
1846 	if (dc->hwss.update_dsc_pg)
1847 		dc->hwss.update_dsc_pg(dc, context, false);
1848 
1849 	disable_dangling_plane(dc, context);
1850 	/* re-program planes for existing stream, in case we need to
1851 	 * free up plane resource for later use
1852 	 */
1853 	if (dc->hwss.apply_ctx_for_surface) {
1854 		for (i = 0; i < context->stream_count; i++) {
1855 			if (context->streams[i]->mode_changed)
1856 				continue;
1857 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1858 			dc->hwss.apply_ctx_for_surface(
1859 				dc, context->streams[i],
1860 				context->stream_status[i].plane_count,
1861 				context); /* use new pipe config in new context */
1862 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1863 			dc->hwss.post_unlock_program_front_end(dc, context);
1864 		}
1865 	}
1866 
1867 	/* Program hardware */
1868 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1869 		pipe = &context->res_ctx.pipe_ctx[i];
1870 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1871 	}
1872 
1873 	result = dc->hwss.apply_ctx_to_hw(dc, context);
1874 
1875 	if (result != DC_OK) {
1876 		/* Application of dc_state to hardware stopped. */
1877 		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1878 		return result;
1879 	}
1880 
1881 	dc_trigger_sync(dc, context);
1882 
1883 	/* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
1884 	for (i = 0; i < context->stream_count; i++) {
1885 		uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
1886 
1887 		context->streams[i]->update_flags.raw = 0xFFFFFFFF;
1888 		context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
1889 	}
1890 
1891 	/* Program all planes within new context*/
1892 	if (dc->hwss.program_front_end_for_ctx) {
1893 		dc->hwss.interdependent_update_lock(dc, context, true);
1894 		dc->hwss.program_front_end_for_ctx(dc, context);
1895 		dc->hwss.interdependent_update_lock(dc, context, false);
1896 		dc->hwss.post_unlock_program_front_end(dc, context);
1897 	}
1898 
1899 	if (dc->hwss.commit_subvp_config)
1900 		dc->hwss.commit_subvp_config(dc, context);
1901 	if (dc->hwss.subvp_pipe_control_lock)
1902 		dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1903 
1904 	for (i = 0; i < context->stream_count; i++) {
1905 		const struct dc_link *link = context->streams[i]->link;
1906 
1907 		if (!context->streams[i]->mode_changed)
1908 			continue;
1909 
1910 		if (dc->hwss.apply_ctx_for_surface) {
1911 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1912 			dc->hwss.apply_ctx_for_surface(
1913 					dc, context->streams[i],
1914 					context->stream_status[i].plane_count,
1915 					context);
1916 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1917 			dc->hwss.post_unlock_program_front_end(dc, context);
1918 		}
1919 
1920 		/*
1921 		 * enable stereo
1922 		 * TODO rework dc_enable_stereo call to work with validation sets?
1923 		 */
1924 		for (k = 0; k < MAX_PIPES; k++) {
1925 			pipe = &context->res_ctx.pipe_ctx[k];
1926 
1927 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
1928 				if (context->streams[l] &&
1929 					context->streams[l] == pipe->stream &&
1930 					dc->hwss.setup_stereo)
1931 					dc->hwss.setup_stereo(pipe, dc);
1932 			}
1933 		}
1934 
1935 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1936 				context->streams[i]->timing.h_addressable,
1937 				context->streams[i]->timing.v_addressable,
1938 				context->streams[i]->timing.h_total,
1939 				context->streams[i]->timing.v_total,
1940 				context->streams[i]->timing.pix_clk_100hz / 10);
1941 	}
1942 
1943 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1944 
1945 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1946 		context->stream_count == 0) {
1947 		/* Must wait for no flips to be pending before doing optimize bw */
1948 		wait_for_no_pipes_pending(dc, context);
1949 		/* pplib is notified if disp_num changed */
1950 		dc->hwss.optimize_bandwidth(dc, context);
1951 		/* Need to do otg sync again as otg could be out of sync due to otg
1952 		 * workaround applied during clock update
1953 		 */
1954 		dc_trigger_sync(dc, context);
1955 	}
1956 
1957 	if (dc->hwss.update_dsc_pg)
1958 		dc->hwss.update_dsc_pg(dc, context, true);
1959 
1960 	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
1961 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
1962 	else
1963 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
1964 
1965 	context->stream_mask = get_stream_mask(dc, context);
1966 
1967 	if (context->stream_mask != dc->current_state->stream_mask)
1968 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1969 
1970 	for (i = 0; i < context->stream_count; i++)
1971 		context->streams[i]->mode_changed = false;
1972 
1973 	/* Clear update flags that were set earlier to avoid redundant programming */
1974 	for (i = 0; i < context->stream_count; i++) {
1975 		context->streams[i]->update_flags.raw = 0x0;
1976 	}
1977 
1978 	old_state = dc->current_state;
1979 	dc->current_state = context;
1980 
1981 	dc_release_state(old_state);
1982 
1983 	dc_retain_state(dc->current_state);
1984 
1985 	return result;
1986 }
1987 
1988 static bool commit_minimal_transition_state(struct dc *dc,
1989 		struct dc_state *transition_base_context);
1990 
1991 /**
1992  * dc_commit_streams - Commit current stream state
1993  *
1994  * @dc: DC object with the commit state to be configured in the hardware
1995  * @streams: Array with a list of stream state
1996  * @stream_count: Total of streams
1997  *
1998  * Function responsible for commit streams change to the hardware.
1999  *
2000  * Return:
2001  * Return DC_OK if everything work as expected, otherwise, return a dc_status
2002  * code.
2003  */
dc_commit_streams(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)2004 enum dc_status dc_commit_streams(struct dc *dc,
2005 				 struct dc_stream_state *streams[],
2006 				 uint8_t stream_count)
2007 {
2008 	int i, j;
2009 	struct dc_state *context;
2010 	enum dc_status res = DC_OK;
2011 	struct dc_validation_set set[MAX_STREAMS] = {0};
2012 	struct pipe_ctx *pipe;
2013 	bool handle_exit_odm2to1 = false;
2014 
2015 	if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2016 		return res;
2017 
2018 	if (!streams_changed(dc, streams, stream_count))
2019 		return res;
2020 
2021 	DC_LOG_DC("%s: %d streams\n", __func__, stream_count);
2022 
2023 	for (i = 0; i < stream_count; i++) {
2024 		struct dc_stream_state *stream = streams[i];
2025 		struct dc_stream_status *status = dc_stream_get_status(stream);
2026 
2027 		dc_stream_log(dc, stream);
2028 
2029 		set[i].stream = stream;
2030 
2031 		if (status) {
2032 			set[i].plane_count = status->plane_count;
2033 			for (j = 0; j < status->plane_count; j++)
2034 				set[i].plane_states[j] = status->plane_states[j];
2035 		}
2036 	}
2037 
2038 	/* ODM Combine 2:1 power optimization is only applied for single stream
2039 	 * scenario, it uses extra pipes than needed to reduce power consumption
2040 	 * We need to switch off this feature to make room for new streams.
2041 	 */
2042 	if (stream_count > dc->current_state->stream_count &&
2043 			dc->current_state->stream_count == 1) {
2044 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2045 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2046 			if (pipe->next_odm_pipe)
2047 				handle_exit_odm2to1 = true;
2048 		}
2049 	}
2050 
2051 	if (handle_exit_odm2to1)
2052 		res = commit_minimal_transition_state(dc, dc->current_state);
2053 
2054 	context = dc_create_state(dc);
2055 	if (!context)
2056 		goto context_alloc_fail;
2057 
2058 	dc_resource_state_copy_construct_current(dc, context);
2059 
2060 	res = dc_validate_with_context(dc, set, stream_count, context, false);
2061 	if (res != DC_OK) {
2062 		BREAK_TO_DEBUGGER();
2063 		goto fail;
2064 	}
2065 
2066 	res = dc_commit_state_no_check(dc, context);
2067 
2068 	for (i = 0; i < stream_count; i++) {
2069 		for (j = 0; j < context->stream_count; j++) {
2070 			if (streams[i]->stream_id == context->streams[j]->stream_id)
2071 				streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2072 
2073 			if (dc_is_embedded_signal(streams[i]->signal)) {
2074 				struct dc_stream_status *status = dc_stream_get_status_from_state(context, streams[i]);
2075 
2076 				if (dc->hwss.is_abm_supported)
2077 					status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, streams[i]);
2078 				else
2079 					status->is_abm_supported = true;
2080 			}
2081 		}
2082 	}
2083 
2084 fail:
2085 	dc_release_state(context);
2086 
2087 context_alloc_fail:
2088 
2089 	DC_LOG_DC("%s Finished.\n", __func__);
2090 
2091 	return res;
2092 }
2093 
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2094 bool dc_acquire_release_mpc_3dlut(
2095 		struct dc *dc, bool acquire,
2096 		struct dc_stream_state *stream,
2097 		struct dc_3dlut **lut,
2098 		struct dc_transfer_func **shaper)
2099 {
2100 	int pipe_idx;
2101 	bool ret = false;
2102 	bool found_pipe_idx = false;
2103 	const struct resource_pool *pool = dc->res_pool;
2104 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
2105 	int mpcc_id = 0;
2106 
2107 	if (pool && res_ctx) {
2108 		if (acquire) {
2109 			/*find pipe idx for the given stream*/
2110 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2111 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2112 					found_pipe_idx = true;
2113 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2114 					break;
2115 				}
2116 			}
2117 		} else
2118 			found_pipe_idx = true;/*for release pipe_idx is not required*/
2119 
2120 		if (found_pipe_idx) {
2121 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2122 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2123 			else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2124 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2125 		}
2126 	}
2127 	return ret;
2128 }
2129 
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2130 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2131 {
2132 	int i;
2133 	struct pipe_ctx *pipe;
2134 
2135 	for (i = 0; i < MAX_PIPES; i++) {
2136 		pipe = &context->res_ctx.pipe_ctx[i];
2137 
2138 		// Don't check flip pending on phantom pipes
2139 		if (!pipe->plane_state || (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM))
2140 			continue;
2141 
2142 		/* Must set to false to start with, due to OR in update function */
2143 		pipe->plane_state->status.is_flip_pending = false;
2144 		dc->hwss.update_pending_status(pipe);
2145 		if (pipe->plane_state->status.is_flip_pending)
2146 			return true;
2147 	}
2148 	return false;
2149 }
2150 
2151 /* Perform updates here which need to be deferred until next vupdate
2152  *
2153  * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2154  * but forcing lut memory to shutdown state is immediate. This causes
2155  * single frame corruption as lut gets disabled mid-frame unless shutdown
2156  * is deferred until after entering bypass.
2157  */
process_deferred_updates(struct dc * dc)2158 static void process_deferred_updates(struct dc *dc)
2159 {
2160 	int i = 0;
2161 
2162 	if (dc->debug.enable_mem_low_power.bits.cm) {
2163 		ASSERT(dc->dcn_ip->max_num_dpp);
2164 		for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2165 			if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2166 				dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2167 	}
2168 }
2169 
dc_post_update_surfaces_to_stream(struct dc * dc)2170 void dc_post_update_surfaces_to_stream(struct dc *dc)
2171 {
2172 	int i;
2173 	struct dc_state *context = dc->current_state;
2174 
2175 	if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2176 		return;
2177 
2178 	post_surface_trace(dc);
2179 
2180 	/*
2181 	 * Only relevant for DCN behavior where we can guarantee the optimization
2182 	 * is safe to apply - retain the legacy behavior for DCE.
2183 	 */
2184 
2185 	if (dc->ctx->dce_version < DCE_VERSION_MAX)
2186 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2187 	else {
2188 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2189 
2190 		if (is_flip_pending_in_pipes(dc, context))
2191 			return;
2192 
2193 		for (i = 0; i < dc->res_pool->pipe_count; i++)
2194 			if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2195 					context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2196 				context->res_ctx.pipe_ctx[i].pipe_idx = i;
2197 				dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
2198 			}
2199 
2200 		process_deferred_updates(dc);
2201 
2202 		dc->hwss.optimize_bandwidth(dc, context);
2203 
2204 		if (dc->hwss.update_dsc_pg)
2205 			dc->hwss.update_dsc_pg(dc, context, true);
2206 	}
2207 
2208 	dc->optimized_required = false;
2209 	dc->wm_optimized_required = false;
2210 }
2211 
init_state(struct dc * dc,struct dc_state * context)2212 static void init_state(struct dc *dc, struct dc_state *context)
2213 {
2214 	/* Each context must have their own instance of VBA and in order to
2215 	 * initialize and obtain IP and SOC the base DML instance from DC is
2216 	 * initially copied into every context
2217 	 */
2218 	memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
2219 }
2220 
dc_create_state(struct dc * dc)2221 struct dc_state *dc_create_state(struct dc *dc)
2222 {
2223 	struct dc_state *context = kvzalloc(sizeof(struct dc_state),
2224 					    GFP_KERNEL);
2225 
2226 	if (!context)
2227 		return NULL;
2228 
2229 	init_state(dc, context);
2230 
2231 	kref_init(&context->refcount);
2232 
2233 	return context;
2234 }
2235 
dc_copy_state(struct dc_state * src_ctx)2236 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
2237 {
2238 	int i, j;
2239 	struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
2240 
2241 	if (!new_ctx)
2242 		return NULL;
2243 	memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
2244 
2245 	for (i = 0; i < MAX_PIPES; i++) {
2246 			struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
2247 
2248 			if (cur_pipe->top_pipe)
2249 				cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2250 
2251 			if (cur_pipe->bottom_pipe)
2252 				cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2253 
2254 			if (cur_pipe->prev_odm_pipe)
2255 				cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2256 
2257 			if (cur_pipe->next_odm_pipe)
2258 				cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2259 
2260 	}
2261 
2262 	for (i = 0; i < new_ctx->stream_count; i++) {
2263 			dc_stream_retain(new_ctx->streams[i]);
2264 			for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
2265 				dc_plane_state_retain(
2266 					new_ctx->stream_status[i].plane_states[j]);
2267 	}
2268 
2269 	kref_init(&new_ctx->refcount);
2270 
2271 	return new_ctx;
2272 }
2273 
dc_retain_state(struct dc_state * context)2274 void dc_retain_state(struct dc_state *context)
2275 {
2276 	kref_get(&context->refcount);
2277 }
2278 
dc_state_free(struct kref * kref)2279 static void dc_state_free(struct kref *kref)
2280 {
2281 	struct dc_state *context = container_of(kref, struct dc_state, refcount);
2282 	dc_resource_state_destruct(context);
2283 	kvfree(context);
2284 }
2285 
dc_release_state(struct dc_state * context)2286 void dc_release_state(struct dc_state *context)
2287 {
2288 	kref_put(&context->refcount, dc_state_free);
2289 }
2290 
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2291 bool dc_set_generic_gpio_for_stereo(bool enable,
2292 		struct gpio_service *gpio_service)
2293 {
2294 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2295 	struct gpio_pin_info pin_info;
2296 	struct gpio *generic;
2297 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2298 			   GFP_KERNEL);
2299 
2300 	if (!config)
2301 		return false;
2302 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2303 
2304 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2305 		kfree(config);
2306 		return false;
2307 	} else {
2308 		generic = dal_gpio_service_create_generic_mux(
2309 			gpio_service,
2310 			pin_info.offset,
2311 			pin_info.mask);
2312 	}
2313 
2314 	if (!generic) {
2315 		kfree(config);
2316 		return false;
2317 	}
2318 
2319 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2320 
2321 	config->enable_output_from_mux = enable;
2322 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2323 
2324 	if (gpio_result == GPIO_RESULT_OK)
2325 		gpio_result = dal_mux_setup_config(generic, config);
2326 
2327 	if (gpio_result == GPIO_RESULT_OK) {
2328 		dal_gpio_close(generic);
2329 		dal_gpio_destroy_generic_mux(&generic);
2330 		kfree(config);
2331 		return true;
2332 	} else {
2333 		dal_gpio_close(generic);
2334 		dal_gpio_destroy_generic_mux(&generic);
2335 		kfree(config);
2336 		return false;
2337 	}
2338 }
2339 
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2340 static bool is_surface_in_context(
2341 		const struct dc_state *context,
2342 		const struct dc_plane_state *plane_state)
2343 {
2344 	int j;
2345 
2346 	for (j = 0; j < MAX_PIPES; j++) {
2347 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2348 
2349 		if (plane_state == pipe_ctx->plane_state) {
2350 			return true;
2351 		}
2352 	}
2353 
2354 	return false;
2355 }
2356 
get_plane_info_update_type(const struct dc_surface_update * u)2357 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2358 {
2359 	union surface_update_flags *update_flags = &u->surface->update_flags;
2360 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
2361 
2362 	if (!u->plane_info)
2363 		return UPDATE_TYPE_FAST;
2364 
2365 	if (u->plane_info->color_space != u->surface->color_space) {
2366 		update_flags->bits.color_space_change = 1;
2367 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2368 	}
2369 
2370 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2371 		update_flags->bits.horizontal_mirror_change = 1;
2372 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2373 	}
2374 
2375 	if (u->plane_info->rotation != u->surface->rotation) {
2376 		update_flags->bits.rotation_change = 1;
2377 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2378 	}
2379 
2380 	if (u->plane_info->format != u->surface->format) {
2381 		update_flags->bits.pixel_format_change = 1;
2382 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2383 	}
2384 
2385 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
2386 		update_flags->bits.stereo_format_change = 1;
2387 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2388 	}
2389 
2390 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2391 		update_flags->bits.per_pixel_alpha_change = 1;
2392 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2393 	}
2394 
2395 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2396 		update_flags->bits.global_alpha_change = 1;
2397 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2398 	}
2399 
2400 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
2401 			|| u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2402 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2403 		/* During DCC on/off, stutter period is calculated before
2404 		 * DCC has fully transitioned. This results in incorrect
2405 		 * stutter period calculation. Triggering a full update will
2406 		 * recalculate stutter period.
2407 		 */
2408 		update_flags->bits.dcc_change = 1;
2409 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2410 	}
2411 
2412 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2413 			resource_pixel_format_to_bpp(u->surface->format)) {
2414 		/* different bytes per element will require full bandwidth
2415 		 * and DML calculation
2416 		 */
2417 		update_flags->bits.bpp_change = 1;
2418 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2419 	}
2420 
2421 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2422 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2423 		update_flags->bits.plane_size_change = 1;
2424 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2425 	}
2426 
2427 
2428 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2429 			sizeof(union dc_tiling_info)) != 0) {
2430 		update_flags->bits.swizzle_change = 1;
2431 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2432 
2433 		/* todo: below are HW dependent, we should add a hook to
2434 		 * DCE/N resource and validated there.
2435 		 */
2436 		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2437 			/* swizzled mode requires RQ to be setup properly,
2438 			 * thus need to run DML to calculate RQ settings
2439 			 */
2440 			update_flags->bits.bandwidth_change = 1;
2441 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2442 		}
2443 	}
2444 
2445 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
2446 	return update_type;
2447 }
2448 
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2449 static enum surface_update_type get_scaling_info_update_type(
2450 		const struct dc *dc,
2451 		const struct dc_surface_update *u)
2452 {
2453 	union surface_update_flags *update_flags = &u->surface->update_flags;
2454 
2455 	if (!u->scaling_info)
2456 		return UPDATE_TYPE_FAST;
2457 
2458 	if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2459 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2460 			|| u->scaling_info->scaling_quality.integer_scaling !=
2461 				u->surface->scaling_quality.integer_scaling
2462 			) {
2463 		update_flags->bits.scaling_change = 1;
2464 
2465 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2466 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2467 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2468 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2469 			/* Making dst rect smaller requires a bandwidth change */
2470 			update_flags->bits.bandwidth_change = 1;
2471 	}
2472 
2473 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2474 		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2475 
2476 		update_flags->bits.scaling_change = 1;
2477 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2478 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
2479 			/* Making src rect bigger requires a bandwidth change */
2480 			update_flags->bits.clock_change = 1;
2481 	}
2482 
2483 	if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2484 		(u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2485 		 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2486 		 /* Changing clip size of a large surface may result in MPC slice count change */
2487 		update_flags->bits.bandwidth_change = 1;
2488 
2489 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2490 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
2491 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2492 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2493 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2494 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2495 		update_flags->bits.position_change = 1;
2496 
2497 	if (update_flags->bits.clock_change
2498 			|| update_flags->bits.bandwidth_change
2499 			|| update_flags->bits.scaling_change)
2500 		return UPDATE_TYPE_FULL;
2501 
2502 	if (update_flags->bits.position_change)
2503 		return UPDATE_TYPE_MED;
2504 
2505 	return UPDATE_TYPE_FAST;
2506 }
2507 
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2508 static enum surface_update_type det_surface_update(const struct dc *dc,
2509 		const struct dc_surface_update *u)
2510 {
2511 	const struct dc_state *context = dc->current_state;
2512 	enum surface_update_type type;
2513 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2514 	union surface_update_flags *update_flags = &u->surface->update_flags;
2515 
2516 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2517 		update_flags->raw = 0xFFFFFFFF;
2518 		return UPDATE_TYPE_FULL;
2519 	}
2520 
2521 	update_flags->raw = 0; // Reset all flags
2522 
2523 	type = get_plane_info_update_type(u);
2524 	elevate_update_type(&overall_type, type);
2525 
2526 	type = get_scaling_info_update_type(dc, u);
2527 	elevate_update_type(&overall_type, type);
2528 
2529 	if (u->flip_addr) {
2530 		update_flags->bits.addr_update = 1;
2531 		if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2532 			update_flags->bits.tmz_changed = 1;
2533 			elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2534 		}
2535 	}
2536 	if (u->in_transfer_func)
2537 		update_flags->bits.in_transfer_func_change = 1;
2538 
2539 	if (u->input_csc_color_matrix)
2540 		update_flags->bits.input_csc_change = 1;
2541 
2542 	if (u->coeff_reduction_factor)
2543 		update_flags->bits.coeff_reduction_change = 1;
2544 
2545 	if (u->gamut_remap_matrix)
2546 		update_flags->bits.gamut_remap_change = 1;
2547 
2548 	if (u->gamma) {
2549 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2550 
2551 		if (u->plane_info)
2552 			format = u->plane_info->format;
2553 		else if (u->surface)
2554 			format = u->surface->format;
2555 
2556 		if (dce_use_lut(format))
2557 			update_flags->bits.gamma_change = 1;
2558 	}
2559 
2560 	if (u->lut3d_func || u->func_shaper)
2561 		update_flags->bits.lut_3d = 1;
2562 
2563 	if (u->hdr_mult.value)
2564 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2565 			update_flags->bits.hdr_mult = 1;
2566 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2567 		}
2568 
2569 	if (update_flags->bits.in_transfer_func_change) {
2570 		type = UPDATE_TYPE_MED;
2571 		elevate_update_type(&overall_type, type);
2572 	}
2573 
2574 	if (update_flags->bits.lut_3d) {
2575 		type = UPDATE_TYPE_FULL;
2576 		elevate_update_type(&overall_type, type);
2577 	}
2578 
2579 	if (dc->debug.enable_legacy_fast_update &&
2580 			(update_flags->bits.gamma_change ||
2581 			update_flags->bits.gamut_remap_change ||
2582 			update_flags->bits.input_csc_change ||
2583 			update_flags->bits.coeff_reduction_change)) {
2584 		type = UPDATE_TYPE_FULL;
2585 		elevate_update_type(&overall_type, type);
2586 	}
2587 	return overall_type;
2588 }
2589 
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2590 static enum surface_update_type check_update_surfaces_for_stream(
2591 		struct dc *dc,
2592 		struct dc_surface_update *updates,
2593 		int surface_count,
2594 		struct dc_stream_update *stream_update,
2595 		const struct dc_stream_status *stream_status)
2596 {
2597 	int i;
2598 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2599 
2600 	if (dc->idle_optimizations_allowed)
2601 		overall_type = UPDATE_TYPE_FULL;
2602 
2603 	if (stream_status == NULL || stream_status->plane_count != surface_count)
2604 		overall_type = UPDATE_TYPE_FULL;
2605 
2606 	if (stream_update && stream_update->pending_test_pattern) {
2607 		overall_type = UPDATE_TYPE_FULL;
2608 	}
2609 
2610 	/* some stream updates require passive update */
2611 	if (stream_update) {
2612 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2613 
2614 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2615 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2616 			stream_update->integer_scaling_update)
2617 			su_flags->bits.scaling = 1;
2618 
2619 		if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2620 			su_flags->bits.out_tf = 1;
2621 
2622 		if (stream_update->abm_level)
2623 			su_flags->bits.abm_level = 1;
2624 
2625 		if (stream_update->dpms_off)
2626 			su_flags->bits.dpms_off = 1;
2627 
2628 		if (stream_update->gamut_remap)
2629 			su_flags->bits.gamut_remap = 1;
2630 
2631 		if (stream_update->wb_update)
2632 			su_flags->bits.wb_update = 1;
2633 
2634 		if (stream_update->dsc_config)
2635 			su_flags->bits.dsc_changed = 1;
2636 
2637 		if (stream_update->mst_bw_update)
2638 			su_flags->bits.mst_bw = 1;
2639 
2640 		if (stream_update->stream && stream_update->stream->freesync_on_desktop &&
2641 			(stream_update->vrr_infopacket || stream_update->allow_freesync ||
2642 				stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2643 			su_flags->bits.fams_changed = 1;
2644 
2645 		if (su_flags->raw != 0)
2646 			overall_type = UPDATE_TYPE_FULL;
2647 
2648 		if (stream_update->output_csc_transform || stream_update->output_color_space)
2649 			su_flags->bits.out_csc = 1;
2650 
2651 		/* Output transfer function changes do not require bandwidth recalculation,
2652 		 * so don't trigger a full update
2653 		 */
2654 		if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2655 			su_flags->bits.out_tf = 1;
2656 	}
2657 
2658 	for (i = 0 ; i < surface_count; i++) {
2659 		enum surface_update_type type =
2660 				det_surface_update(dc, &updates[i]);
2661 
2662 		elevate_update_type(&overall_type, type);
2663 	}
2664 
2665 	return overall_type;
2666 }
2667 
2668 /*
2669  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2670  *
2671  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2672  */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2673 enum surface_update_type dc_check_update_surfaces_for_stream(
2674 		struct dc *dc,
2675 		struct dc_surface_update *updates,
2676 		int surface_count,
2677 		struct dc_stream_update *stream_update,
2678 		const struct dc_stream_status *stream_status)
2679 {
2680 	int i;
2681 	enum surface_update_type type;
2682 
2683 	if (stream_update)
2684 		stream_update->stream->update_flags.raw = 0;
2685 	for (i = 0; i < surface_count; i++)
2686 		updates[i].surface->update_flags.raw = 0;
2687 
2688 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2689 	if (type == UPDATE_TYPE_FULL) {
2690 		if (stream_update) {
2691 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2692 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2693 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2694 		}
2695 		for (i = 0; i < surface_count; i++)
2696 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2697 	}
2698 
2699 	if (type == UPDATE_TYPE_FAST) {
2700 		// If there's an available clock comparator, we use that.
2701 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2702 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2703 				dc->optimized_required = true;
2704 		// Else we fallback to mem compare.
2705 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2706 			dc->optimized_required = true;
2707 		}
2708 
2709 		dc->optimized_required |= dc->wm_optimized_required;
2710 	}
2711 
2712 	return type;
2713 }
2714 
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2715 static struct dc_stream_status *stream_get_status(
2716 	struct dc_state *ctx,
2717 	struct dc_stream_state *stream)
2718 {
2719 	uint8_t i;
2720 
2721 	for (i = 0; i < ctx->stream_count; i++) {
2722 		if (stream == ctx->streams[i]) {
2723 			return &ctx->stream_status[i];
2724 		}
2725 	}
2726 
2727 	return NULL;
2728 }
2729 
2730 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2731 
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2732 static void copy_surface_update_to_plane(
2733 		struct dc_plane_state *surface,
2734 		struct dc_surface_update *srf_update)
2735 {
2736 	if (srf_update->flip_addr) {
2737 		surface->address = srf_update->flip_addr->address;
2738 		surface->flip_immediate =
2739 			srf_update->flip_addr->flip_immediate;
2740 		surface->time.time_elapsed_in_us[surface->time.index] =
2741 			srf_update->flip_addr->flip_timestamp_in_us -
2742 				surface->time.prev_update_time_in_us;
2743 		surface->time.prev_update_time_in_us =
2744 			srf_update->flip_addr->flip_timestamp_in_us;
2745 		surface->time.index++;
2746 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2747 			surface->time.index = 0;
2748 
2749 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2750 	}
2751 
2752 	if (srf_update->scaling_info) {
2753 		surface->scaling_quality =
2754 				srf_update->scaling_info->scaling_quality;
2755 		surface->dst_rect =
2756 				srf_update->scaling_info->dst_rect;
2757 		surface->src_rect =
2758 				srf_update->scaling_info->src_rect;
2759 		surface->clip_rect =
2760 				srf_update->scaling_info->clip_rect;
2761 	}
2762 
2763 	if (srf_update->plane_info) {
2764 		surface->color_space =
2765 				srf_update->plane_info->color_space;
2766 		surface->format =
2767 				srf_update->plane_info->format;
2768 		surface->plane_size =
2769 				srf_update->plane_info->plane_size;
2770 		surface->rotation =
2771 				srf_update->plane_info->rotation;
2772 		surface->horizontal_mirror =
2773 				srf_update->plane_info->horizontal_mirror;
2774 		surface->stereo_format =
2775 				srf_update->plane_info->stereo_format;
2776 		surface->tiling_info =
2777 				srf_update->plane_info->tiling_info;
2778 		surface->visible =
2779 				srf_update->plane_info->visible;
2780 		surface->per_pixel_alpha =
2781 				srf_update->plane_info->per_pixel_alpha;
2782 		surface->global_alpha =
2783 				srf_update->plane_info->global_alpha;
2784 		surface->global_alpha_value =
2785 				srf_update->plane_info->global_alpha_value;
2786 		surface->dcc =
2787 				srf_update->plane_info->dcc;
2788 		surface->layer_index =
2789 				srf_update->plane_info->layer_index;
2790 	}
2791 
2792 	if (srf_update->gamma &&
2793 			(surface->gamma_correction !=
2794 					srf_update->gamma)) {
2795 		memcpy(&surface->gamma_correction->entries,
2796 			&srf_update->gamma->entries,
2797 			sizeof(struct dc_gamma_entries));
2798 		surface->gamma_correction->is_identity =
2799 			srf_update->gamma->is_identity;
2800 		surface->gamma_correction->num_entries =
2801 			srf_update->gamma->num_entries;
2802 		surface->gamma_correction->type =
2803 			srf_update->gamma->type;
2804 	}
2805 
2806 	if (srf_update->in_transfer_func &&
2807 			(surface->in_transfer_func !=
2808 				srf_update->in_transfer_func)) {
2809 		surface->in_transfer_func->sdr_ref_white_level =
2810 			srf_update->in_transfer_func->sdr_ref_white_level;
2811 		surface->in_transfer_func->tf =
2812 			srf_update->in_transfer_func->tf;
2813 		surface->in_transfer_func->type =
2814 			srf_update->in_transfer_func->type;
2815 		memcpy(&surface->in_transfer_func->tf_pts,
2816 			&srf_update->in_transfer_func->tf_pts,
2817 			sizeof(struct dc_transfer_func_distributed_points));
2818 	}
2819 
2820 	if (srf_update->func_shaper &&
2821 			(surface->in_shaper_func !=
2822 			srf_update->func_shaper))
2823 		memcpy(surface->in_shaper_func, srf_update->func_shaper,
2824 		sizeof(*surface->in_shaper_func));
2825 
2826 	if (srf_update->lut3d_func &&
2827 			(surface->lut3d_func !=
2828 			srf_update->lut3d_func))
2829 		memcpy(surface->lut3d_func, srf_update->lut3d_func,
2830 		sizeof(*surface->lut3d_func));
2831 
2832 	if (srf_update->hdr_mult.value)
2833 		surface->hdr_mult =
2834 				srf_update->hdr_mult;
2835 
2836 	if (srf_update->blend_tf &&
2837 			(surface->blend_tf !=
2838 			srf_update->blend_tf))
2839 		memcpy(surface->blend_tf, srf_update->blend_tf,
2840 		sizeof(*surface->blend_tf));
2841 
2842 	if (srf_update->input_csc_color_matrix)
2843 		surface->input_csc_color_matrix =
2844 			*srf_update->input_csc_color_matrix;
2845 
2846 	if (srf_update->coeff_reduction_factor)
2847 		surface->coeff_reduction_factor =
2848 			*srf_update->coeff_reduction_factor;
2849 
2850 	if (srf_update->gamut_remap_matrix)
2851 		surface->gamut_remap_matrix =
2852 			*srf_update->gamut_remap_matrix;
2853 }
2854 
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2855 static void copy_stream_update_to_stream(struct dc *dc,
2856 					 struct dc_state *context,
2857 					 struct dc_stream_state *stream,
2858 					 struct dc_stream_update *update)
2859 {
2860 	struct dc_context *dc_ctx = dc->ctx;
2861 
2862 	if (update == NULL || stream == NULL)
2863 		return;
2864 
2865 	if (update->src.height && update->src.width)
2866 		stream->src = update->src;
2867 
2868 	if (update->dst.height && update->dst.width)
2869 		stream->dst = update->dst;
2870 
2871 	if (update->out_transfer_func &&
2872 	    stream->out_transfer_func != update->out_transfer_func) {
2873 		stream->out_transfer_func->sdr_ref_white_level =
2874 			update->out_transfer_func->sdr_ref_white_level;
2875 		stream->out_transfer_func->tf = update->out_transfer_func->tf;
2876 		stream->out_transfer_func->type =
2877 			update->out_transfer_func->type;
2878 		memcpy(&stream->out_transfer_func->tf_pts,
2879 		       &update->out_transfer_func->tf_pts,
2880 		       sizeof(struct dc_transfer_func_distributed_points));
2881 	}
2882 
2883 	if (update->hdr_static_metadata)
2884 		stream->hdr_static_metadata = *update->hdr_static_metadata;
2885 
2886 	if (update->abm_level)
2887 		stream->abm_level = *update->abm_level;
2888 
2889 	if (update->periodic_interrupt)
2890 		stream->periodic_interrupt = *update->periodic_interrupt;
2891 
2892 	if (update->gamut_remap)
2893 		stream->gamut_remap_matrix = *update->gamut_remap;
2894 
2895 	/* Note: this being updated after mode set is currently not a use case
2896 	 * however if it arises OCSC would need to be reprogrammed at the
2897 	 * minimum
2898 	 */
2899 	if (update->output_color_space)
2900 		stream->output_color_space = *update->output_color_space;
2901 
2902 	if (update->output_csc_transform)
2903 		stream->csc_color_matrix = *update->output_csc_transform;
2904 
2905 	if (update->vrr_infopacket)
2906 		stream->vrr_infopacket = *update->vrr_infopacket;
2907 
2908 	if (update->allow_freesync)
2909 		stream->allow_freesync = *update->allow_freesync;
2910 
2911 	if (update->vrr_active_variable)
2912 		stream->vrr_active_variable = *update->vrr_active_variable;
2913 
2914 	if (update->vrr_active_fixed)
2915 		stream->vrr_active_fixed = *update->vrr_active_fixed;
2916 
2917 	if (update->crtc_timing_adjust)
2918 		stream->adjust = *update->crtc_timing_adjust;
2919 
2920 	if (update->dpms_off)
2921 		stream->dpms_off = *update->dpms_off;
2922 
2923 	if (update->hfvsif_infopacket)
2924 		stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2925 
2926 	if (update->vtem_infopacket)
2927 		stream->vtem_infopacket = *update->vtem_infopacket;
2928 
2929 	if (update->vsc_infopacket)
2930 		stream->vsc_infopacket = *update->vsc_infopacket;
2931 
2932 	if (update->vsp_infopacket)
2933 		stream->vsp_infopacket = *update->vsp_infopacket;
2934 
2935 	if (update->adaptive_sync_infopacket)
2936 		stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2937 
2938 	if (update->dither_option)
2939 		stream->dither_option = *update->dither_option;
2940 
2941 	if (update->pending_test_pattern)
2942 		stream->test_pattern = *update->pending_test_pattern;
2943 	/* update current stream with writeback info */
2944 	if (update->wb_update) {
2945 		int i;
2946 
2947 		stream->num_wb_info = update->wb_update->num_wb_info;
2948 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2949 		for (i = 0; i < stream->num_wb_info; i++)
2950 			stream->writeback_info[i] =
2951 				update->wb_update->writeback_info[i];
2952 	}
2953 	if (update->dsc_config) {
2954 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2955 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2956 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2957 				       update->dsc_config->num_slices_v != 0);
2958 
2959 		/* Use temporarry context for validating new DSC config */
2960 		struct dc_state *dsc_validate_context = dc_create_state(dc);
2961 
2962 		if (dsc_validate_context) {
2963 			dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2964 
2965 			stream->timing.dsc_cfg = *update->dsc_config;
2966 			stream->timing.flags.DSC = enable_dsc;
2967 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2968 				stream->timing.dsc_cfg = old_dsc_cfg;
2969 				stream->timing.flags.DSC = old_dsc_enabled;
2970 				update->dsc_config = NULL;
2971 			}
2972 
2973 			dc_release_state(dsc_validate_context);
2974 		} else {
2975 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
2976 			update->dsc_config = NULL;
2977 		}
2978 	}
2979 }
2980 
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)2981 static bool update_planes_and_stream_state(struct dc *dc,
2982 		struct dc_surface_update *srf_updates, int surface_count,
2983 		struct dc_stream_state *stream,
2984 		struct dc_stream_update *stream_update,
2985 		enum surface_update_type *new_update_type,
2986 		struct dc_state **new_context)
2987 {
2988 	struct dc_state *context;
2989 	int i, j;
2990 	enum surface_update_type update_type;
2991 	const struct dc_stream_status *stream_status;
2992 	struct dc_context *dc_ctx = dc->ctx;
2993 
2994 	stream_status = dc_stream_get_status(stream);
2995 
2996 	if (!stream_status) {
2997 		if (surface_count) /* Only an error condition if surf_count non-zero*/
2998 			ASSERT(false);
2999 
3000 		return false; /* Cannot commit surface to stream that is not committed */
3001 	}
3002 
3003 	context = dc->current_state;
3004 
3005 	update_type = dc_check_update_surfaces_for_stream(
3006 			dc, srf_updates, surface_count, stream_update, stream_status);
3007 
3008 	/* update current stream with the new updates */
3009 	copy_stream_update_to_stream(dc, context, stream, stream_update);
3010 
3011 	/* do not perform surface update if surface has invalid dimensions
3012 	 * (all zero) and no scaling_info is provided
3013 	 */
3014 	if (surface_count > 0) {
3015 		for (i = 0; i < surface_count; i++) {
3016 			if ((srf_updates[i].surface->src_rect.width == 0 ||
3017 				 srf_updates[i].surface->src_rect.height == 0 ||
3018 				 srf_updates[i].surface->dst_rect.width == 0 ||
3019 				 srf_updates[i].surface->dst_rect.height == 0) &&
3020 				(!srf_updates[i].scaling_info ||
3021 				  srf_updates[i].scaling_info->src_rect.width == 0 ||
3022 				  srf_updates[i].scaling_info->src_rect.height == 0 ||
3023 				  srf_updates[i].scaling_info->dst_rect.width == 0 ||
3024 				  srf_updates[i].scaling_info->dst_rect.height == 0)) {
3025 				DC_ERROR("Invalid src/dst rects in surface update!\n");
3026 				return false;
3027 			}
3028 		}
3029 	}
3030 
3031 	if (update_type >= update_surface_trace_level)
3032 		update_surface_trace(dc, srf_updates, surface_count);
3033 
3034 	if (update_type >= UPDATE_TYPE_FULL) {
3035 		struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3036 
3037 		for (i = 0; i < surface_count; i++)
3038 			new_planes[i] = srf_updates[i].surface;
3039 
3040 		/* initialize scratch memory for building context */
3041 		context = dc_create_state(dc);
3042 		if (context == NULL) {
3043 			DC_ERROR("Failed to allocate new validate context!\n");
3044 			return false;
3045 		}
3046 
3047 		dc_resource_state_copy_construct(
3048 				dc->current_state, context);
3049 
3050 		/* For each full update, remove all existing phantom pipes first.
3051 		 * Ensures that we have enough pipes for newly added MPO planes
3052 		 */
3053 		if (dc->res_pool->funcs->remove_phantom_pipes)
3054 			dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
3055 
3056 		/*remove old surfaces from context */
3057 		if (!dc_rem_all_planes_for_stream(dc, stream, context)) {
3058 
3059 			BREAK_TO_DEBUGGER();
3060 			goto fail;
3061 		}
3062 
3063 		/* add surface to context */
3064 		if (!dc_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3065 
3066 			BREAK_TO_DEBUGGER();
3067 			goto fail;
3068 		}
3069 	}
3070 
3071 	/* save update parameters into surface */
3072 	for (i = 0; i < surface_count; i++) {
3073 		struct dc_plane_state *surface = srf_updates[i].surface;
3074 
3075 		copy_surface_update_to_plane(surface, &srf_updates[i]);
3076 
3077 		if (update_type >= UPDATE_TYPE_MED) {
3078 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3079 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3080 
3081 				if (pipe_ctx->plane_state != surface)
3082 					continue;
3083 
3084 				resource_build_scaling_params(pipe_ctx);
3085 			}
3086 		}
3087 	}
3088 
3089 	if (update_type == UPDATE_TYPE_FULL) {
3090 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3091 			/* For phantom pipes we remove and create a new set of phantom pipes
3092 			 * for each full update (because we don't know if we'll need phantom
3093 			 * pipes until after the first round of validation). However, if validation
3094 			 * fails we need to keep the existing phantom pipes (because we don't update
3095 			 * the dc->current_state).
3096 			 *
3097 			 * The phantom stream/plane refcount is decremented for validation because
3098 			 * we assume it'll be removed (the free comes when the dc_state is freed),
3099 			 * but if validation fails we have to increment back the refcount so it's
3100 			 * consistent.
3101 			 */
3102 			if (dc->res_pool->funcs->retain_phantom_pipes)
3103 				dc->res_pool->funcs->retain_phantom_pipes(dc, dc->current_state);
3104 			BREAK_TO_DEBUGGER();
3105 			goto fail;
3106 		}
3107 	}
3108 
3109 	*new_context = context;
3110 	*new_update_type = update_type;
3111 
3112 	return true;
3113 
3114 fail:
3115 	dc_release_state(context);
3116 
3117 	return false;
3118 
3119 }
3120 
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3121 static void commit_planes_do_stream_update(struct dc *dc,
3122 		struct dc_stream_state *stream,
3123 		struct dc_stream_update *stream_update,
3124 		enum surface_update_type update_type,
3125 		struct dc_state *context)
3126 {
3127 	int j;
3128 
3129 	// Stream updates
3130 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3131 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3132 
3133 		if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3134 
3135 			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3136 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3137 
3138 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3139 					stream_update->vrr_infopacket ||
3140 					stream_update->vsc_infopacket ||
3141 					stream_update->vsp_infopacket ||
3142 					stream_update->hfvsif_infopacket ||
3143 					stream_update->adaptive_sync_infopacket ||
3144 					stream_update->vtem_infopacket) {
3145 				resource_build_info_frame(pipe_ctx);
3146 				dc->hwss.update_info_frame(pipe_ctx);
3147 
3148 				if (dc_is_dp_signal(pipe_ctx->stream->signal))
3149 					dc->link_srv->dp_trace_source_sequence(
3150 							pipe_ctx->stream->link,
3151 							DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3152 			}
3153 
3154 			if (stream_update->hdr_static_metadata &&
3155 					stream->use_dynamic_meta &&
3156 					dc->hwss.set_dmdata_attributes &&
3157 					pipe_ctx->stream->dmdata_address.quad_part != 0)
3158 				dc->hwss.set_dmdata_attributes(pipe_ctx);
3159 
3160 			if (stream_update->gamut_remap)
3161 				dc_stream_set_gamut_remap(dc, stream);
3162 
3163 			if (stream_update->output_csc_transform)
3164 				dc_stream_program_csc_matrix(dc, stream);
3165 
3166 			if (stream_update->dither_option) {
3167 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3168 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3169 									&pipe_ctx->stream->bit_depth_params);
3170 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3171 						&stream->bit_depth_params,
3172 						&stream->clamping);
3173 				while (odm_pipe) {
3174 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3175 							&stream->bit_depth_params,
3176 							&stream->clamping);
3177 					odm_pipe = odm_pipe->next_odm_pipe;
3178 				}
3179 			}
3180 
3181 
3182 			/* Full fe update*/
3183 			if (update_type == UPDATE_TYPE_FAST)
3184 				continue;
3185 
3186 			if (stream_update->dsc_config)
3187 				dc->link_srv->update_dsc_config(pipe_ctx);
3188 
3189 			if (stream_update->mst_bw_update) {
3190 				if (stream_update->mst_bw_update->is_increase)
3191 					dc->link_srv->increase_mst_payload(pipe_ctx,
3192 							stream_update->mst_bw_update->mst_stream_bw);
3193  				else
3194 					dc->link_srv->reduce_mst_payload(pipe_ctx,
3195 							stream_update->mst_bw_update->mst_stream_bw);
3196  			}
3197 
3198 			if (stream_update->pending_test_pattern) {
3199 				dc_link_dp_set_test_pattern(stream->link,
3200 					stream->test_pattern.type,
3201 					stream->test_pattern.color_space,
3202 					stream->test_pattern.p_link_settings,
3203 					stream->test_pattern.p_custom_pattern,
3204 					stream->test_pattern.cust_pattern_size);
3205 			}
3206 
3207 			if (stream_update->dpms_off) {
3208 				if (*stream_update->dpms_off) {
3209 					dc->link_srv->set_dpms_off(pipe_ctx);
3210 					/* for dpms, keep acquired resources*/
3211 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3212 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3213 
3214 					dc->optimized_required = true;
3215 
3216 				} else {
3217 					if (get_seamless_boot_stream_count(context) == 0)
3218 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
3219 					dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3220 				}
3221 			} else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3222 					&& !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3223 				/*
3224 				 * Workaround for firmware issue in some receivers where they don't pick up
3225 				 * correct output color space unless DP link is disabled/re-enabled
3226 				 */
3227 				dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3228 			}
3229 
3230 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3231 				bool should_program_abm = true;
3232 
3233 				// if otg funcs defined check if blanked before programming
3234 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3235 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3236 						should_program_abm = false;
3237 
3238 				if (should_program_abm) {
3239 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3240 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
3241 					} else {
3242 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
3243 							pipe_ctx->stream_res.abm, stream->abm_level);
3244 					}
3245 				}
3246 			}
3247 		}
3248 	}
3249 }
3250 
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3251 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3252 {
3253 	if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3254 			|| stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3255 			&& stream->ctx->dce_version >= DCN_VERSION_3_1)
3256 		return true;
3257 
3258 	if (stream->link->replay_settings.config.replay_supported)
3259 		return true;
3260 
3261 	return false;
3262 }
3263 
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3264 void dc_dmub_update_dirty_rect(struct dc *dc,
3265 			       int surface_count,
3266 			       struct dc_stream_state *stream,
3267 			       struct dc_surface_update *srf_updates,
3268 			       struct dc_state *context)
3269 {
3270 	union dmub_rb_cmd cmd;
3271 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3272 	unsigned int i, j;
3273 	unsigned int panel_inst = 0;
3274 
3275 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3276 		return;
3277 
3278 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3279 		return;
3280 
3281 	memset(&cmd, 0x0, sizeof(cmd));
3282 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3283 	cmd.update_dirty_rect.header.sub_type = 0;
3284 	cmd.update_dirty_rect.header.payload_bytes =
3285 		sizeof(cmd.update_dirty_rect) -
3286 		sizeof(cmd.update_dirty_rect.header);
3287 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3288 	for (i = 0; i < surface_count; i++) {
3289 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3290 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3291 
3292 		if (!srf_updates[i].surface || !flip_addr)
3293 			continue;
3294 		/* Do not send in immediate flip mode */
3295 		if (srf_updates[i].surface->flip_immediate)
3296 			continue;
3297 
3298 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3299 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3300 				sizeof(flip_addr->dirty_rects));
3301 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3302 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3303 
3304 			if (pipe_ctx->stream != stream)
3305 				continue;
3306 			if (pipe_ctx->plane_state != plane_state)
3307 				continue;
3308 
3309 			update_dirty_rect->panel_inst = panel_inst;
3310 			update_dirty_rect->pipe_idx = j;
3311 			dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3312 		}
3313 	}
3314 }
3315 
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3316 static void build_dmub_update_dirty_rect(
3317 		struct dc *dc,
3318 		int surface_count,
3319 		struct dc_stream_state *stream,
3320 		struct dc_surface_update *srf_updates,
3321 		struct dc_state *context,
3322 		struct dc_dmub_cmd dc_dmub_cmd[],
3323 		unsigned int *dmub_cmd_count)
3324 {
3325 	union dmub_rb_cmd cmd;
3326 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3327 	unsigned int i, j;
3328 	unsigned int panel_inst = 0;
3329 
3330 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3331 		return;
3332 
3333 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3334 		return;
3335 
3336 	memset(&cmd, 0x0, sizeof(cmd));
3337 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3338 	cmd.update_dirty_rect.header.sub_type = 0;
3339 	cmd.update_dirty_rect.header.payload_bytes =
3340 		sizeof(cmd.update_dirty_rect) -
3341 		sizeof(cmd.update_dirty_rect.header);
3342 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3343 	for (i = 0; i < surface_count; i++) {
3344 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3345 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3346 
3347 		if (!srf_updates[i].surface || !flip_addr)
3348 			continue;
3349 		/* Do not send in immediate flip mode */
3350 		if (srf_updates[i].surface->flip_immediate)
3351 			continue;
3352 		update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3353 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3354 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3355 				sizeof(flip_addr->dirty_rects));
3356 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3357 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3358 
3359 			if (pipe_ctx->stream != stream)
3360 				continue;
3361 			if (pipe_ctx->plane_state != plane_state)
3362 				continue;
3363 			update_dirty_rect->panel_inst = panel_inst;
3364 			update_dirty_rect->pipe_idx = j;
3365 			dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3366 			dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3367 			(*dmub_cmd_count)++;
3368 		}
3369 	}
3370 }
3371 
3372 
3373 /**
3374  * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3375  *
3376  * @dc: Current DC state
3377  * @srf_updates: Array of surface updates
3378  * @surface_count: Number of surfaces that have an updated
3379  * @stream: Corresponding stream to be updated in the current flip
3380  * @context: New DC state to be programmed
3381  *
3382  * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3383  * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3384  *
3385  * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3386  * to build an array of commands and have them sent while the OTG lock is acquired.
3387  *
3388  * Return: void
3389  */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3390 static void build_dmub_cmd_list(struct dc *dc,
3391 		struct dc_surface_update *srf_updates,
3392 		int surface_count,
3393 		struct dc_stream_state *stream,
3394 		struct dc_state *context,
3395 		struct dc_dmub_cmd dc_dmub_cmd[],
3396 		unsigned int *dmub_cmd_count)
3397 {
3398 	// Initialize cmd count to 0
3399 	*dmub_cmd_count = 0;
3400 	build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3401 }
3402 
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3403 static void commit_planes_for_stream_fast(struct dc *dc,
3404 		struct dc_surface_update *srf_updates,
3405 		int surface_count,
3406 		struct dc_stream_state *stream,
3407 		struct dc_stream_update *stream_update,
3408 		enum surface_update_type update_type,
3409 		struct dc_state *context)
3410 {
3411 	int i, j;
3412 	struct pipe_ctx *top_pipe_to_program = NULL;
3413 	dc_z10_restore(dc);
3414 
3415 	top_pipe_to_program = resource_get_otg_master_for_stream(
3416 			&context->res_ctx,
3417 			stream);
3418 
3419 	if (dc->debug.visual_confirm) {
3420 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3421 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3422 
3423 			if (pipe->stream && pipe->plane_state)
3424 				dc_update_viusal_confirm_color(dc, context, pipe);
3425 		}
3426 	}
3427 
3428 	for (i = 0; i < surface_count; i++) {
3429 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3430 		/*set logical flag for lock/unlock use*/
3431 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3432 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3433 
3434 			if (!pipe_ctx->plane_state)
3435 				continue;
3436 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3437 				continue;
3438 			pipe_ctx->plane_state->triplebuffer_flips = false;
3439 			if (update_type == UPDATE_TYPE_FAST &&
3440 			    dc->hwss.program_triplebuffer &&
3441 			    !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3442 				/*triple buffer for VUpdate  only*/
3443 				pipe_ctx->plane_state->triplebuffer_flips = true;
3444 			}
3445 		}
3446 	}
3447 
3448 	build_dmub_cmd_list(dc,
3449 			srf_updates,
3450 			surface_count,
3451 			stream,
3452 			context,
3453 			context->dc_dmub_cmd,
3454 			&(context->dmub_cmd_count));
3455 	hwss_build_fast_sequence(dc,
3456 			context->dc_dmub_cmd,
3457 			context->dmub_cmd_count,
3458 			context->block_sequence,
3459 			&(context->block_sequence_steps),
3460 			top_pipe_to_program);
3461 	hwss_execute_sequence(dc,
3462 			context->block_sequence,
3463 			context->block_sequence_steps);
3464 	/* Clear update flags so next flip doesn't have redundant programming
3465 	 * (if there's no stream update, the update flags are not cleared).
3466 	 * Surface updates are cleared unconditionally at the beginning of each flip,
3467 	 * so no need to clear here.
3468 	 */
3469 	if (top_pipe_to_program->stream)
3470 		top_pipe_to_program->stream->update_flags.raw = 0;
3471 }
3472 
wait_for_outstanding_hw_updates(struct dc * dc,const struct dc_state * dc_context)3473 static void wait_for_outstanding_hw_updates(struct dc *dc, const struct dc_state *dc_context)
3474 {
3475 /*
3476  * This function calls HWSS to wait for any potentially double buffered
3477  * operations to complete. It should be invoked as a pre-amble prior
3478  * to full update programming before asserting any HW locks.
3479  */
3480 	int pipe_idx;
3481 	int opp_inst;
3482 	int opp_count = dc->res_pool->pipe_count;
3483 	struct hubp *hubp;
3484 	int mpcc_inst;
3485 	const struct pipe_ctx *pipe_ctx;
3486 
3487 	for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
3488 		pipe_ctx = &dc_context->res_ctx.pipe_ctx[pipe_idx];
3489 
3490 		if (!pipe_ctx->stream)
3491 			continue;
3492 
3493 		if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
3494 			pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
3495 
3496 		hubp = pipe_ctx->plane_res.hubp;
3497 		if (!hubp)
3498 			continue;
3499 
3500 		mpcc_inst = hubp->inst;
3501 		// MPCC inst is equal to pipe index in practice
3502 		for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
3503 			if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
3504 				dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
3505 				dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
3506 				break;
3507 			}
3508 		}
3509 	}
3510 }
3511 
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3512 static void commit_planes_for_stream(struct dc *dc,
3513 		struct dc_surface_update *srf_updates,
3514 		int surface_count,
3515 		struct dc_stream_state *stream,
3516 		struct dc_stream_update *stream_update,
3517 		enum surface_update_type update_type,
3518 		struct dc_state *context)
3519 {
3520 	int i, j;
3521 	struct pipe_ctx *top_pipe_to_program = NULL;
3522 	bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3523 	bool subvp_prev_use = false;
3524 	bool subvp_curr_use = false;
3525 
3526 	// Once we apply the new subvp context to hardware it won't be in the
3527 	// dc->current_state anymore, so we have to cache it before we apply
3528 	// the new SubVP context
3529 	subvp_prev_use = false;
3530 	dc_z10_restore(dc);
3531 	if (update_type == UPDATE_TYPE_FULL)
3532 		wait_for_outstanding_hw_updates(dc, context);
3533 
3534 	if (update_type == UPDATE_TYPE_FULL) {
3535 		dc_allow_idle_optimizations(dc, false);
3536 
3537 		if (get_seamless_boot_stream_count(context) == 0)
3538 			dc->hwss.prepare_bandwidth(dc, context);
3539 
3540 		if (dc->hwss.update_dsc_pg)
3541 			dc->hwss.update_dsc_pg(dc, context, false);
3542 
3543 		context_clock_trace(dc, context);
3544 	}
3545 
3546 	top_pipe_to_program = resource_get_otg_master_for_stream(
3547 				&context->res_ctx,
3548 				stream);
3549 
3550 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3551 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3552 
3553 		// Check old context for SubVP
3554 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
3555 		if (subvp_prev_use)
3556 			break;
3557 	}
3558 
3559 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3560 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3561 
3562 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
3563 			subvp_curr_use = true;
3564 			break;
3565 		}
3566 	}
3567 
3568 	if (dc->debug.visual_confirm)
3569 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3570 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3571 
3572 			if (pipe->stream && pipe->plane_state)
3573 				dc_update_viusal_confirm_color(dc, context, pipe);
3574 		}
3575 
3576 	if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3577 		struct pipe_ctx *mpcc_pipe;
3578 		struct pipe_ctx *odm_pipe;
3579 
3580 		for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3581 			for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3582 				odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3583 	}
3584 
3585 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3586 		if (top_pipe_to_program &&
3587 			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3588 			if (should_use_dmub_lock(stream->link)) {
3589 				union dmub_hw_lock_flags hw_locks = { 0 };
3590 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3591 
3592 				hw_locks.bits.lock_dig = 1;
3593 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3594 
3595 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3596 							true,
3597 							&hw_locks,
3598 							&inst_flags);
3599 			} else
3600 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3601 						top_pipe_to_program->stream_res.tg);
3602 		}
3603 
3604 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3605 		if (dc->hwss.subvp_pipe_control_lock)
3606 				dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3607 		dc->hwss.interdependent_update_lock(dc, context, true);
3608 
3609 	} else {
3610 		if (dc->hwss.subvp_pipe_control_lock)
3611 			dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3612 		/* Lock the top pipe while updating plane addrs, since freesync requires
3613 		 *  plane addr update event triggers to be synchronized.
3614 		 *  top_pipe_to_program is expected to never be NULL
3615 		 */
3616 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3617 	}
3618 
3619 	dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3620 
3621 	// Stream updates
3622 	if (stream_update)
3623 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3624 
3625 	if (surface_count == 0) {
3626 		/*
3627 		 * In case of turning off screen, no need to program front end a second time.
3628 		 * just return after program blank.
3629 		 */
3630 		if (dc->hwss.apply_ctx_for_surface)
3631 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3632 		if (dc->hwss.program_front_end_for_ctx)
3633 			dc->hwss.program_front_end_for_ctx(dc, context);
3634 
3635 		if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3636 			dc->hwss.interdependent_update_lock(dc, context, false);
3637 		} else {
3638 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3639 		}
3640 		dc->hwss.post_unlock_program_front_end(dc, context);
3641 
3642 		if (update_type != UPDATE_TYPE_FAST)
3643 			if (dc->hwss.commit_subvp_config)
3644 				dc->hwss.commit_subvp_config(dc, context);
3645 
3646 		/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3647 		 * move the SubVP lock to after the phantom pipes have been setup
3648 		 */
3649 		if (dc->hwss.subvp_pipe_control_lock)
3650 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3651 							 NULL, subvp_prev_use);
3652 		return;
3653 	}
3654 
3655 	if (update_type != UPDATE_TYPE_FAST) {
3656 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3657 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3658 
3659 			if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3660 				dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3661 				pipe_ctx->stream && pipe_ctx->plane_state) {
3662 				/* Only update visual confirm for SUBVP and Mclk switching here.
3663 				 * The bar appears on all pipes, so we need to update the bar on all displays,
3664 				 * so the information doesn't get stale.
3665 				 */
3666 				dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3667 						pipe_ctx->plane_res.hubp->inst);
3668 			}
3669 		}
3670 	}
3671 
3672 	for (i = 0; i < surface_count; i++) {
3673 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3674 		/*set logical flag for lock/unlock use*/
3675 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3676 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3677 			if (!pipe_ctx->plane_state)
3678 				continue;
3679 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3680 				continue;
3681 			pipe_ctx->plane_state->triplebuffer_flips = false;
3682 			if (update_type == UPDATE_TYPE_FAST &&
3683 				dc->hwss.program_triplebuffer != NULL &&
3684 				!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3685 					/*triple buffer for VUpdate  only*/
3686 					pipe_ctx->plane_state->triplebuffer_flips = true;
3687 			}
3688 		}
3689 		if (update_type == UPDATE_TYPE_FULL) {
3690 			/* force vsync flip when reconfiguring pipes to prevent underflow */
3691 			plane_state->flip_immediate = false;
3692 		}
3693 	}
3694 
3695 	// Update Type FULL, Surface updates
3696 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3697 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3698 
3699 		if (!pipe_ctx->top_pipe &&
3700 			!pipe_ctx->prev_odm_pipe &&
3701 			should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3702 			struct dc_stream_status *stream_status = NULL;
3703 
3704 			if (!pipe_ctx->plane_state)
3705 				continue;
3706 
3707 			/* Full fe update*/
3708 			if (update_type == UPDATE_TYPE_FAST)
3709 				continue;
3710 
3711 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3712 
3713 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3714 				/*turn off triple buffer for full update*/
3715 				dc->hwss.program_triplebuffer(
3716 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3717 			}
3718 			stream_status =
3719 				stream_get_status(context, pipe_ctx->stream);
3720 
3721 			if (dc->hwss.apply_ctx_for_surface)
3722 				dc->hwss.apply_ctx_for_surface(
3723 					dc, pipe_ctx->stream, stream_status->plane_count, context);
3724 		}
3725 	}
3726 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3727 		dc->hwss.program_front_end_for_ctx(dc, context);
3728 		if (dc->debug.validate_dml_output) {
3729 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
3730 				struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3731 				if (cur_pipe->stream == NULL)
3732 					continue;
3733 
3734 				cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3735 						cur_pipe->plane_res.hubp, dc->ctx,
3736 						&context->res_ctx.pipe_ctx[i].rq_regs,
3737 						&context->res_ctx.pipe_ctx[i].dlg_regs,
3738 						&context->res_ctx.pipe_ctx[i].ttu_regs);
3739 			}
3740 		}
3741 	}
3742 
3743 	// Update Type FAST, Surface updates
3744 	if (update_type == UPDATE_TYPE_FAST) {
3745 		if (dc->hwss.set_flip_control_gsl)
3746 			for (i = 0; i < surface_count; i++) {
3747 				struct dc_plane_state *plane_state = srf_updates[i].surface;
3748 
3749 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
3750 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3751 
3752 					if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3753 						continue;
3754 
3755 					if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3756 						continue;
3757 
3758 					// GSL has to be used for flip immediate
3759 					dc->hwss.set_flip_control_gsl(pipe_ctx,
3760 							pipe_ctx->plane_state->flip_immediate);
3761 				}
3762 			}
3763 
3764 		/* Perform requested Updates */
3765 		for (i = 0; i < surface_count; i++) {
3766 			struct dc_plane_state *plane_state = srf_updates[i].surface;
3767 
3768 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3769 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3770 
3771 				if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3772 					continue;
3773 
3774 				if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3775 					continue;
3776 
3777 				/*program triple buffer after lock based on flip type*/
3778 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3779 					/*only enable triplebuffer for  fast_update*/
3780 					dc->hwss.program_triplebuffer(
3781 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3782 				}
3783 				if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3784 					dc->hwss.update_plane_addr(dc, pipe_ctx);
3785 			}
3786 		}
3787 	}
3788 
3789 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3790 		dc->hwss.interdependent_update_lock(dc, context, false);
3791 	} else {
3792 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3793 	}
3794 
3795 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3796 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3797 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3798 				top_pipe_to_program->stream_res.tg,
3799 				CRTC_STATE_VACTIVE);
3800 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3801 				top_pipe_to_program->stream_res.tg,
3802 				CRTC_STATE_VBLANK);
3803 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3804 				top_pipe_to_program->stream_res.tg,
3805 				CRTC_STATE_VACTIVE);
3806 
3807 			if (should_use_dmub_lock(stream->link)) {
3808 				union dmub_hw_lock_flags hw_locks = { 0 };
3809 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3810 
3811 				hw_locks.bits.lock_dig = 1;
3812 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3813 
3814 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3815 							false,
3816 							&hw_locks,
3817 							&inst_flags);
3818 			} else
3819 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3820 					top_pipe_to_program->stream_res.tg);
3821 		}
3822 
3823 	if (subvp_curr_use) {
3824 		/* If enabling subvp or transitioning from subvp->subvp, enable the
3825 		 * phantom streams before we program front end for the phantom pipes.
3826 		 */
3827 		if (update_type != UPDATE_TYPE_FAST) {
3828 			if (dc->hwss.enable_phantom_streams)
3829 				dc->hwss.enable_phantom_streams(dc, context);
3830 		}
3831 	}
3832 
3833 	if (update_type != UPDATE_TYPE_FAST)
3834 		dc->hwss.post_unlock_program_front_end(dc, context);
3835 
3836 	if (subvp_prev_use && !subvp_curr_use) {
3837 		/* If disabling subvp, disable phantom streams after front end
3838 		 * programming has completed (we turn on phantom OTG in order
3839 		 * to complete the plane disable for phantom pipes).
3840 		 */
3841 		dc->hwss.apply_ctx_to_hw(dc, context);
3842 	}
3843 
3844 	if (update_type != UPDATE_TYPE_FAST)
3845 		if (dc->hwss.commit_subvp_config)
3846 			dc->hwss.commit_subvp_config(dc, context);
3847 	/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3848 	 * move the SubVP lock to after the phantom pipes have been setup
3849 	 */
3850 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3851 		if (dc->hwss.subvp_pipe_control_lock)
3852 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3853 	} else {
3854 		if (dc->hwss.subvp_pipe_control_lock)
3855 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3856 	}
3857 
3858 	// Fire manual trigger only when bottom plane is flipped
3859 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3860 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3861 
3862 		if (!pipe_ctx->plane_state)
3863 			continue;
3864 
3865 		if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
3866 				!pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
3867 				!pipe_ctx->plane_state->update_flags.bits.addr_update ||
3868 				pipe_ctx->plane_state->skip_manual_trigger)
3869 			continue;
3870 
3871 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
3872 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
3873 	}
3874 }
3875 
3876 /**
3877  * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
3878  *
3879  * @dc: Used to get the current state status
3880  * @stream: Target stream, which we want to remove the attached planes
3881  * @surface_count: Number of surface update
3882  * @is_plane_addition: [in] Fill out with true if it is a plane addition case
3883  *
3884  * DCN32x and newer support a feature named Dynamic ODM which can conflict with
3885  * the MPO if used simultaneously in some specific configurations (e.g.,
3886  * 4k@144). This function checks if the incoming context requires applying a
3887  * transition state with unnecessary pipe splitting and ODM disabled to
3888  * circumvent our hardware limitations to prevent this edge case. If the OPP
3889  * associated with an MPCC might change due to plane additions, this function
3890  * returns true.
3891  *
3892  * Return:
3893  * Return true if OPP and MPCC might change, otherwise, return false.
3894  */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,int surface_count,bool * is_plane_addition)3895 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
3896 		struct dc_stream_state *stream,
3897 		int surface_count,
3898 		bool *is_plane_addition)
3899 {
3900 
3901 	struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
3902 	bool force_minimal_pipe_splitting = false;
3903 	bool subvp_active = false;
3904 	uint32_t i;
3905 
3906 	*is_plane_addition = false;
3907 
3908 	if (cur_stream_status &&
3909 			dc->current_state->stream_count > 0 &&
3910 			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
3911 		/* determine if minimal transition is required due to MPC*/
3912 		if (surface_count > 0) {
3913 			if (cur_stream_status->plane_count > surface_count) {
3914 				force_minimal_pipe_splitting = true;
3915 			} else if (cur_stream_status->plane_count < surface_count) {
3916 				force_minimal_pipe_splitting = true;
3917 				*is_plane_addition = true;
3918 			}
3919 		}
3920 	}
3921 
3922 	if (cur_stream_status &&
3923 			dc->current_state->stream_count == 1 &&
3924 			dc->debug.enable_single_display_2to1_odm_policy) {
3925 		/* determine if minimal transition is required due to dynamic ODM*/
3926 		if (surface_count > 0) {
3927 			if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
3928 				force_minimal_pipe_splitting = true;
3929 			} else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
3930 				force_minimal_pipe_splitting = true;
3931 				*is_plane_addition = true;
3932 			}
3933 		}
3934 	}
3935 
3936 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3937 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3938 
3939 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
3940 			subvp_active = true;
3941 			break;
3942 		}
3943 	}
3944 
3945 	/* For SubVP when adding or removing planes we need to add a minimal transition
3946 	 * (even when disabling all planes). Whenever disabling a phantom pipe, we
3947 	 * must use the minimal transition path to disable the pipe correctly.
3948 	 *
3949 	 * We want to use the minimal transition whenever subvp is active, not only if
3950 	 * a plane is being added / removed from a subvp stream (MPO plane can be added
3951 	 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
3952 	 * a min transition to disable subvp.
3953 	 */
3954 	if (cur_stream_status && subvp_active) {
3955 		/* determine if minimal transition is required due to SubVP*/
3956 		if (cur_stream_status->plane_count > surface_count) {
3957 			force_minimal_pipe_splitting = true;
3958 		} else if (cur_stream_status->plane_count < surface_count) {
3959 			force_minimal_pipe_splitting = true;
3960 			*is_plane_addition = true;
3961 		}
3962 	}
3963 
3964 	return force_minimal_pipe_splitting;
3965 }
3966 
3967 /**
3968  * commit_minimal_transition_state - Create a transition pipe split state
3969  *
3970  * @dc: Used to get the current state status
3971  * @transition_base_context: New transition state
3972  *
3973  * In some specific configurations, such as pipe split on multi-display with
3974  * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
3975  * programming when moving to new planes. To mitigate those types of problems,
3976  * this function adds a transition state that minimizes pipe usage before
3977  * programming the new configuration. When adding a new plane, the current
3978  * state requires the least pipes, so it is applied without splitting. When
3979  * removing a plane, the new state requires the least pipes, so it is applied
3980  * without splitting.
3981  *
3982  * Return:
3983  * Return false if something is wrong in the transition state.
3984  */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)3985 static bool commit_minimal_transition_state(struct dc *dc,
3986 		struct dc_state *transition_base_context)
3987 {
3988 	struct dc_state *transition_context = dc_create_state(dc);
3989 	enum pipe_split_policy tmp_mpc_policy = 0;
3990 	bool temp_dynamic_odm_policy = 0;
3991 	bool temp_subvp_policy = 0;
3992 	enum dc_status ret = DC_ERROR_UNEXPECTED;
3993 	unsigned int i, j;
3994 	unsigned int pipe_in_use = 0;
3995 	bool subvp_in_use = false;
3996 	bool odm_in_use = false;
3997 
3998 	if (!transition_context)
3999 		return false;
4000 	/* Setup:
4001 	 * Store the current ODM and MPC config in some temp variables to be
4002 	 * restored after we commit the transition state.
4003 	 */
4004 
4005 	/* check current pipes in use*/
4006 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4007 		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4008 
4009 		if (pipe->plane_state)
4010 			pipe_in_use++;
4011 	}
4012 
4013 	/* If SubVP is enabled and we are adding or removing planes from any main subvp
4014 	 * pipe, we must use the minimal transition.
4015 	 */
4016 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4017 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4018 
4019 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
4020 			subvp_in_use = true;
4021 			break;
4022 		}
4023 	}
4024 
4025 	/* If ODM is enabled and we are adding or removing planes from any ODM
4026 	 * pipe, we must use the minimal transition.
4027 	 */
4028 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4029 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4030 
4031 		if (pipe->stream && pipe->next_odm_pipe) {
4032 			odm_in_use = true;
4033 			break;
4034 		}
4035 	}
4036 
4037 	/* When the OS add a new surface if we have been used all of pipes with odm combine
4038 	 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4039 	 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4040 	 * call it again. Otherwise return true to skip.
4041 	 *
4042 	 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4043 	 * enter/exit MPO when DCN still have enough resources.
4044 	 */
4045 	if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use) {
4046 		dc_release_state(transition_context);
4047 		return true;
4048 	}
4049 
4050 	if (!dc->config.is_vmin_only_asic) {
4051 		tmp_mpc_policy = dc->debug.pipe_split_policy;
4052 		dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4053 	}
4054 
4055 	temp_dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4056 	dc->debug.enable_single_display_2to1_odm_policy = false;
4057 
4058 	temp_subvp_policy = dc->debug.force_disable_subvp;
4059 	dc->debug.force_disable_subvp = true;
4060 
4061 	dc_resource_state_copy_construct(transition_base_context, transition_context);
4062 
4063 	/* commit minimal state */
4064 	if (dc->res_pool->funcs->validate_bandwidth(dc, transition_context, false)) {
4065 		for (i = 0; i < transition_context->stream_count; i++) {
4066 			struct dc_stream_status *stream_status = &transition_context->stream_status[i];
4067 
4068 			for (j = 0; j < stream_status->plane_count; j++) {
4069 				struct dc_plane_state *plane_state = stream_status->plane_states[j];
4070 
4071 				/* force vsync flip when reconfiguring pipes to prevent underflow
4072 				 * and corruption
4073 				 */
4074 				plane_state->flip_immediate = false;
4075 			}
4076 		}
4077 
4078 		ret = dc_commit_state_no_check(dc, transition_context);
4079 	}
4080 
4081 	/* always release as dc_commit_state_no_check retains in good case */
4082 	dc_release_state(transition_context);
4083 
4084 	/* TearDown:
4085 	 * Restore original configuration for ODM and MPO.
4086 	 */
4087 	if (!dc->config.is_vmin_only_asic)
4088 		dc->debug.pipe_split_policy = tmp_mpc_policy;
4089 
4090 	dc->debug.enable_single_display_2to1_odm_policy = temp_dynamic_odm_policy;
4091 	dc->debug.force_disable_subvp = temp_subvp_policy;
4092 
4093 	if (ret != DC_OK) {
4094 		/* this should never happen */
4095 		BREAK_TO_DEBUGGER();
4096 		return false;
4097 	}
4098 
4099 	/* force full surface update */
4100 	for (i = 0; i < dc->current_state->stream_count; i++) {
4101 		for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4102 			dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4103 		}
4104 	}
4105 
4106 	return true;
4107 }
4108 
4109 /**
4110  * update_seamless_boot_flags() - Helper function for updating seamless boot flags
4111  *
4112  * @dc: Current DC state
4113  * @context: New DC state to be programmed
4114  * @surface_count: Number of surfaces that have an updated
4115  * @stream: Corresponding stream to be updated in the current flip
4116  *
4117  * Updating seamless boot flags do not need to be part of the commit sequence. This
4118  * helper function will update the seamless boot flags on each flip (if required)
4119  * outside of the HW commit sequence (fast or slow).
4120  *
4121  * Return: void
4122  */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)4123 static void update_seamless_boot_flags(struct dc *dc,
4124 		struct dc_state *context,
4125 		int surface_count,
4126 		struct dc_stream_state *stream)
4127 {
4128 	if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
4129 		/* Optimize seamless boot flag keeps clocks and watermarks high until
4130 		 * first flip. After first flip, optimization is required to lower
4131 		 * bandwidth. Important to note that it is expected UEFI will
4132 		 * only light up a single display on POST, therefore we only expect
4133 		 * one stream with seamless boot flag set.
4134 		 */
4135 		if (stream->apply_seamless_boot_optimization) {
4136 			stream->apply_seamless_boot_optimization = false;
4137 
4138 			if (get_seamless_boot_stream_count(context) == 0)
4139 				dc->optimized_required = true;
4140 		}
4141 	}
4142 }
4143 
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4144 static void populate_fast_updates(struct dc_fast_update *fast_update,
4145 		struct dc_surface_update *srf_updates,
4146 		int surface_count,
4147 		struct dc_stream_update *stream_update)
4148 {
4149 	int i = 0;
4150 
4151 	if (stream_update) {
4152 		fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4153 		fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4154 	}
4155 
4156 	for (i = 0; i < surface_count; i++) {
4157 		fast_update[i].flip_addr = srf_updates[i].flip_addr;
4158 		fast_update[i].gamma = srf_updates[i].gamma;
4159 		fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4160 		fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4161 		fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4162 	}
4163 }
4164 
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4165 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4166 {
4167 	int i;
4168 
4169 	if (fast_update[0].out_transfer_func ||
4170 		fast_update[0].output_csc_transform)
4171 		return true;
4172 
4173 	for (i = 0; i < surface_count; i++) {
4174 		if (fast_update[i].flip_addr ||
4175 				fast_update[i].gamma ||
4176 				fast_update[i].gamut_remap_matrix ||
4177 				fast_update[i].input_csc_color_matrix ||
4178 				fast_update[i].coeff_reduction_factor)
4179 			return true;
4180 	}
4181 
4182 	return false;
4183 }
4184 
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4185 static bool full_update_required(struct dc *dc,
4186 		struct dc_surface_update *srf_updates,
4187 		int surface_count,
4188 		struct dc_stream_update *stream_update,
4189 		struct dc_stream_state *stream)
4190 {
4191 
4192 	int i;
4193 	struct dc_stream_status *stream_status;
4194 	const struct dc_state *context = dc->current_state;
4195 
4196 	for (i = 0; i < surface_count; i++) {
4197 		if (srf_updates &&
4198 				(srf_updates[i].plane_info ||
4199 				srf_updates[i].scaling_info ||
4200 				(srf_updates[i].hdr_mult.value &&
4201 				srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4202 				srf_updates[i].in_transfer_func ||
4203 				srf_updates[i].func_shaper ||
4204 				srf_updates[i].lut3d_func ||
4205 				srf_updates[i].blend_tf ||
4206 				srf_updates[i].surface->force_full_update ||
4207 				(srf_updates[i].flip_addr &&
4208 				srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4209 				!is_surface_in_context(context, srf_updates[i].surface)))
4210 			return true;
4211 	}
4212 
4213 	if (stream_update &&
4214 			(((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4215 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4216 			stream_update->integer_scaling_update) ||
4217 			stream_update->hdr_static_metadata ||
4218 			stream_update->abm_level ||
4219 			stream_update->periodic_interrupt ||
4220 			stream_update->vrr_infopacket ||
4221 			stream_update->vsc_infopacket ||
4222 			stream_update->vsp_infopacket ||
4223 			stream_update->hfvsif_infopacket ||
4224 			stream_update->vtem_infopacket ||
4225 			stream_update->adaptive_sync_infopacket ||
4226 			stream_update->dpms_off ||
4227 			stream_update->allow_freesync ||
4228 			stream_update->vrr_active_variable ||
4229 			stream_update->vrr_active_fixed ||
4230 			stream_update->gamut_remap ||
4231 			stream_update->output_color_space ||
4232 			stream_update->dither_option ||
4233 			stream_update->wb_update ||
4234 			stream_update->dsc_config ||
4235 			stream_update->mst_bw_update ||
4236 			stream_update->func_shaper ||
4237 			stream_update->lut3d_func ||
4238 			stream_update->pending_test_pattern ||
4239 			stream_update->crtc_timing_adjust))
4240 		return true;
4241 
4242 	if (stream) {
4243 		stream_status = dc_stream_get_status(stream);
4244 		if (stream_status == NULL || stream_status->plane_count != surface_count)
4245 			return true;
4246 	}
4247 	if (dc->idle_optimizations_allowed)
4248 		return true;
4249 
4250 	return false;
4251 }
4252 
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4253 static bool fast_update_only(struct dc *dc,
4254 		struct dc_fast_update *fast_update,
4255 		struct dc_surface_update *srf_updates,
4256 		int surface_count,
4257 		struct dc_stream_update *stream_update,
4258 		struct dc_stream_state *stream)
4259 {
4260 	return fast_updates_exist(fast_update, surface_count)
4261 			&& !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4262 }
4263 
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)4264 bool dc_update_planes_and_stream(struct dc *dc,
4265 		struct dc_surface_update *srf_updates, int surface_count,
4266 		struct dc_stream_state *stream,
4267 		struct dc_stream_update *stream_update)
4268 {
4269 	struct dc_state *context;
4270 	enum surface_update_type update_type;
4271 	int i;
4272 	struct mall_temp_config mall_temp_config;
4273 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4274 
4275 	/* In cases where MPO and split or ODM are used transitions can
4276 	 * cause underflow. Apply stream configuration with minimal pipe
4277 	 * split first to avoid unsupported transitions for active pipes.
4278 	 */
4279 	bool force_minimal_pipe_splitting = 0;
4280 	bool is_plane_addition = 0;
4281 
4282 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4283 	force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4284 			dc,
4285 			stream,
4286 			surface_count,
4287 			&is_plane_addition);
4288 
4289 	/* on plane addition, minimal state is the current one */
4290 	if (force_minimal_pipe_splitting && is_plane_addition &&
4291 		!commit_minimal_transition_state(dc, dc->current_state))
4292 				return false;
4293 
4294 	if (!update_planes_and_stream_state(
4295 			dc,
4296 			srf_updates,
4297 			surface_count,
4298 			stream,
4299 			stream_update,
4300 			&update_type,
4301 			&context))
4302 		return false;
4303 
4304 	/* on plane removal, minimal state is the new one */
4305 	if (force_minimal_pipe_splitting && !is_plane_addition) {
4306 		/* Since all phantom pipes are removed in full validation,
4307 		 * we have to save and restore the subvp/mall config when
4308 		 * we do a minimal transition since the flags marking the
4309 		 * pipe as subvp/phantom will be cleared (dc copy constructor
4310 		 * creates a shallow copy).
4311 		 */
4312 		if (dc->res_pool->funcs->save_mall_state)
4313 			dc->res_pool->funcs->save_mall_state(dc, context, &mall_temp_config);
4314 		if (!commit_minimal_transition_state(dc, context)) {
4315 			dc_release_state(context);
4316 			return false;
4317 		}
4318 		if (dc->res_pool->funcs->restore_mall_state)
4319 			dc->res_pool->funcs->restore_mall_state(dc, context, &mall_temp_config);
4320 
4321 		/* If we do a minimal transition with plane removal and the context
4322 		 * has subvp we also have to retain back the phantom stream / planes
4323 		 * since the refcount is decremented as part of the min transition
4324 		 * (we commit a state with no subvp, so the phantom streams / planes
4325 		 * had to be removed).
4326 		 */
4327 		if (dc->res_pool->funcs->retain_phantom_pipes)
4328 			dc->res_pool->funcs->retain_phantom_pipes(dc, context);
4329 		update_type = UPDATE_TYPE_FULL;
4330 	}
4331 
4332 	update_seamless_boot_flags(dc, context, surface_count, stream);
4333 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4334 			!dc->debug.enable_legacy_fast_update) {
4335 		commit_planes_for_stream_fast(dc,
4336 				srf_updates,
4337 				surface_count,
4338 				stream,
4339 				stream_update,
4340 				update_type,
4341 				context);
4342 	} else {
4343 		if (!stream_update &&
4344 				dc->hwss.is_pipe_topology_transition_seamless &&
4345 				!dc->hwss.is_pipe_topology_transition_seamless(
4346 						dc, dc->current_state, context)) {
4347 
4348 			DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
4349 			BREAK_TO_DEBUGGER();
4350 		}
4351 		commit_planes_for_stream(
4352 				dc,
4353 				srf_updates,
4354 				surface_count,
4355 				stream,
4356 				stream_update,
4357 				update_type,
4358 				context);
4359 	}
4360 
4361 	if (dc->current_state != context) {
4362 
4363 		/* Since memory free requires elevated IRQL, an interrupt
4364 		 * request is generated by mem free. If this happens
4365 		 * between freeing and reassigning the context, our vsync
4366 		 * interrupt will call into dc and cause a memory
4367 		 * corruption BSOD. Hence, we first reassign the context,
4368 		 * then free the old context.
4369 		 */
4370 
4371 		struct dc_state *old = dc->current_state;
4372 
4373 		dc->current_state = context;
4374 		dc_release_state(old);
4375 
4376 		// clear any forced full updates
4377 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4378 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4379 
4380 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4381 				pipe_ctx->plane_state->force_full_update = false;
4382 		}
4383 	}
4384 	return true;
4385 }
4386 
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4387 void dc_commit_updates_for_stream(struct dc *dc,
4388 		struct dc_surface_update *srf_updates,
4389 		int surface_count,
4390 		struct dc_stream_state *stream,
4391 		struct dc_stream_update *stream_update,
4392 		struct dc_state *state)
4393 {
4394 	const struct dc_stream_status *stream_status;
4395 	enum surface_update_type update_type;
4396 	struct dc_state *context;
4397 	struct dc_context *dc_ctx = dc->ctx;
4398 	int i, j;
4399 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4400 
4401 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4402 	stream_status = dc_stream_get_status(stream);
4403 	context = dc->current_state;
4404 
4405 	update_type = dc_check_update_surfaces_for_stream(
4406 				dc, srf_updates, surface_count, stream_update, stream_status);
4407 
4408 	/* TODO: Since change commit sequence can have a huge impact,
4409 	 * we decided to only enable it for DCN3x. However, as soon as
4410 	 * we get more confident about this change we'll need to enable
4411 	 * the new sequence for all ASICs.
4412 	 */
4413 	if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
4414 		/*
4415 		 * Previous frame finished and HW is ready for optimization.
4416 		 */
4417 		if (update_type == UPDATE_TYPE_FAST)
4418 			dc_post_update_surfaces_to_stream(dc);
4419 
4420 		dc_update_planes_and_stream(dc, srf_updates,
4421 					    surface_count, stream,
4422 					    stream_update);
4423 		return;
4424 	}
4425 
4426 	if (update_type >= update_surface_trace_level)
4427 		update_surface_trace(dc, srf_updates, surface_count);
4428 
4429 
4430 	if (update_type >= UPDATE_TYPE_FULL) {
4431 
4432 		/* initialize scratch memory for building context */
4433 		context = dc_create_state(dc);
4434 		if (context == NULL) {
4435 			DC_ERROR("Failed to allocate new validate context!\n");
4436 			return;
4437 		}
4438 
4439 		dc_resource_state_copy_construct(state, context);
4440 
4441 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4442 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4443 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4444 
4445 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4446 				new_pipe->plane_state->force_full_update = true;
4447 		}
4448 	} else if (update_type == UPDATE_TYPE_FAST) {
4449 		/*
4450 		 * Previous frame finished and HW is ready for optimization.
4451 		 */
4452 		dc_post_update_surfaces_to_stream(dc);
4453 	}
4454 
4455 
4456 	for (i = 0; i < surface_count; i++) {
4457 		struct dc_plane_state *surface = srf_updates[i].surface;
4458 
4459 		copy_surface_update_to_plane(surface, &srf_updates[i]);
4460 
4461 		if (update_type >= UPDATE_TYPE_MED) {
4462 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4463 				struct pipe_ctx *pipe_ctx =
4464 					&context->res_ctx.pipe_ctx[j];
4465 
4466 				if (pipe_ctx->plane_state != surface)
4467 					continue;
4468 
4469 				resource_build_scaling_params(pipe_ctx);
4470 			}
4471 		}
4472 	}
4473 
4474 	copy_stream_update_to_stream(dc, context, stream, stream_update);
4475 
4476 	if (update_type >= UPDATE_TYPE_FULL) {
4477 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4478 			DC_ERROR("Mode validation failed for stream update!\n");
4479 			dc_release_state(context);
4480 			return;
4481 		}
4482 	}
4483 
4484 	TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4485 
4486 	update_seamless_boot_flags(dc, context, surface_count, stream);
4487 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4488 			!dc->debug.enable_legacy_fast_update) {
4489 		commit_planes_for_stream_fast(dc,
4490 				srf_updates,
4491 				surface_count,
4492 				stream,
4493 				stream_update,
4494 				update_type,
4495 				context);
4496 	} else {
4497 		commit_planes_for_stream(
4498 				dc,
4499 				srf_updates,
4500 				surface_count,
4501 				stream,
4502 				stream_update,
4503 				update_type,
4504 				context);
4505 	}
4506 	/*update current_State*/
4507 	if (dc->current_state != context) {
4508 
4509 		struct dc_state *old = dc->current_state;
4510 
4511 		dc->current_state = context;
4512 		dc_release_state(old);
4513 
4514 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4515 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4516 
4517 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4518 				pipe_ctx->plane_state->force_full_update = false;
4519 		}
4520 	}
4521 
4522 	/* Legacy optimization path for DCE. */
4523 	if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4524 		dc_post_update_surfaces_to_stream(dc);
4525 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4526 	}
4527 
4528 	return;
4529 
4530 }
4531 
dc_get_current_stream_count(struct dc * dc)4532 uint8_t dc_get_current_stream_count(struct dc *dc)
4533 {
4534 	return dc->current_state->stream_count;
4535 }
4536 
dc_get_stream_at_index(struct dc * dc,uint8_t i)4537 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
4538 {
4539 	if (i < dc->current_state->stream_count)
4540 		return dc->current_state->streams[i];
4541 	return NULL;
4542 }
4543 
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)4544 enum dc_irq_source dc_interrupt_to_irq_source(
4545 		struct dc *dc,
4546 		uint32_t src_id,
4547 		uint32_t ext_id)
4548 {
4549 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
4550 }
4551 
4552 /*
4553  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
4554  */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)4555 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
4556 {
4557 
4558 	if (dc == NULL)
4559 		return false;
4560 
4561 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
4562 }
4563 
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)4564 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
4565 {
4566 	dal_irq_service_ack(dc->res_pool->irqs, src);
4567 }
4568 
dc_power_down_on_boot(struct dc * dc)4569 void dc_power_down_on_boot(struct dc *dc)
4570 {
4571 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
4572 			dc->hwss.power_down_on_boot)
4573 		dc->hwss.power_down_on_boot(dc);
4574 }
4575 
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)4576 void dc_set_power_state(
4577 	struct dc *dc,
4578 	enum dc_acpi_cm_power_state power_state)
4579 {
4580 	struct kref refcount;
4581 	struct display_mode_lib *dml;
4582 
4583 	if (!dc->current_state)
4584 		return;
4585 
4586 	switch (power_state) {
4587 	case DC_ACPI_CM_POWER_STATE_D0:
4588 		dc_resource_state_construct(dc, dc->current_state);
4589 
4590 		dc_z10_restore(dc);
4591 
4592 		dc->hwss.init_hw(dc);
4593 
4594 		if (dc->hwss.init_sys_ctx != NULL &&
4595 			dc->vm_pa_config.valid) {
4596 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
4597 		}
4598 
4599 		break;
4600 	default:
4601 		ASSERT(dc->current_state->stream_count == 0);
4602 		/* Zero out the current context so that on resume we start with
4603 		 * clean state, and dc hw programming optimizations will not
4604 		 * cause any trouble.
4605 		 */
4606 		dml = kzalloc(sizeof(struct display_mode_lib),
4607 				GFP_KERNEL);
4608 
4609 		ASSERT(dml);
4610 		if (!dml)
4611 			return;
4612 
4613 		/* Preserve refcount */
4614 		refcount = dc->current_state->refcount;
4615 		/* Preserve display mode lib */
4616 		memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
4617 
4618 		dc_resource_state_destruct(dc->current_state);
4619 		memset(dc->current_state, 0,
4620 				sizeof(*dc->current_state));
4621 
4622 		dc->current_state->refcount = refcount;
4623 		dc->current_state->bw_ctx.dml = *dml;
4624 
4625 		kfree(dml);
4626 
4627 		break;
4628 	}
4629 }
4630 
dc_resume(struct dc * dc)4631 void dc_resume(struct dc *dc)
4632 {
4633 	uint32_t i;
4634 
4635 	for (i = 0; i < dc->link_count; i++)
4636 		dc->link_srv->resume(dc->links[i]);
4637 }
4638 
dc_is_dmcu_initialized(struct dc * dc)4639 bool dc_is_dmcu_initialized(struct dc *dc)
4640 {
4641 	struct dmcu *dmcu = dc->res_pool->dmcu;
4642 
4643 	if (dmcu)
4644 		return dmcu->funcs->is_dmcu_initialized(dmcu);
4645 	return false;
4646 }
4647 
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)4648 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
4649 {
4650 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
4651 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
4652 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
4653 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
4654 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
4655 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
4656 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
4657 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
4658 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
4659 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)4660 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
4661 {
4662 	if (dc->hwss.set_clock)
4663 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
4664 	return DC_ERROR_UNEXPECTED;
4665 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)4666 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
4667 {
4668 	if (dc->hwss.get_clock)
4669 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
4670 }
4671 
4672 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)4673 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
4674 {
4675 	int i;
4676 	bool allow_active;
4677 
4678 	for (i = 0; i < dc->current_state->stream_count ; i++) {
4679 		struct dc_link *link;
4680 		struct dc_stream_state *stream = dc->current_state->streams[i];
4681 
4682 		link = stream->link;
4683 		if (!link)
4684 			continue;
4685 
4686 		if (link->psr_settings.psr_feature_enabled) {
4687 			if (enable && !link->psr_settings.psr_allow_active) {
4688 				allow_active = true;
4689 				if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
4690 					return false;
4691 			} else if (!enable && link->psr_settings.psr_allow_active) {
4692 				allow_active = false;
4693 				if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
4694 					return false;
4695 			}
4696 		}
4697 	}
4698 
4699 	return true;
4700 }
4701 
dc_allow_idle_optimizations(struct dc * dc,bool allow)4702 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
4703 {
4704 	if (dc->debug.disable_idle_power_optimizations)
4705 		return;
4706 
4707 	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
4708 		if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
4709 			return;
4710 
4711 	if (allow == dc->idle_optimizations_allowed)
4712 		return;
4713 
4714 	if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
4715 		dc->idle_optimizations_allowed = allow;
4716 }
4717 
4718 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)4719 void dc_unlock_memory_clock_frequency(struct dc *dc)
4720 {
4721 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4722 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
4723 
4724 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4725 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4726 }
4727 
4728 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)4729 void dc_lock_memory_clock_frequency(struct dc *dc)
4730 {
4731 	if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
4732 		dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
4733 
4734 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4735 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
4736 
4737 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4738 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4739 }
4740 
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)4741 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
4742 {
4743 	struct dc_state *context = dc->current_state;
4744 	struct hubp *hubp;
4745 	struct pipe_ctx *pipe;
4746 	int i;
4747 
4748 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4749 		pipe = &context->res_ctx.pipe_ctx[i];
4750 
4751 		if (pipe->stream != NULL) {
4752 			dc->hwss.disable_pixel_data(dc, pipe, true);
4753 
4754 			// wait for double buffer
4755 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4756 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
4757 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4758 
4759 			hubp = pipe->plane_res.hubp;
4760 			hubp->funcs->set_blank_regs(hubp, true);
4761 		}
4762 	}
4763 
4764 	dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
4765 	dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
4766 
4767 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4768 		pipe = &context->res_ctx.pipe_ctx[i];
4769 
4770 		if (pipe->stream != NULL) {
4771 			dc->hwss.disable_pixel_data(dc, pipe, false);
4772 
4773 			hubp = pipe->plane_res.hubp;
4774 			hubp->funcs->set_blank_regs(hubp, false);
4775 		}
4776 	}
4777 }
4778 
4779 
4780 /**
4781  * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
4782  * @dc: pointer to dc of the dm calling this
4783  * @enable: True = transition to DC mode, false = transition back to AC mode
4784  *
4785  * Some SoCs define additional clock limits when in DC mode, DM should
4786  * invoke this function when the platform undergoes a power source transition
4787  * so DC can apply/unapply the limit. This interface may be disruptive to
4788  * the onscreen content.
4789  *
4790  * Context: Triggered by OS through DM interface, or manually by escape calls.
4791  * Need to hold a dclock when doing so.
4792  *
4793  * Return: none (void function)
4794  *
4795  */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)4796 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
4797 {
4798 	unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
4799 	bool p_state_change_support;
4800 
4801 	if (!dc->config.dc_mode_clk_limit_support)
4802 		return;
4803 
4804 	softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
4805 	for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
4806 		if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
4807 			maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
4808 	}
4809 	funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
4810 	p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
4811 
4812 	if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
4813 		if (p_state_change_support) {
4814 			if (funcMin <= softMax)
4815 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
4816 			// else: No-Op
4817 		} else {
4818 			if (funcMin <= softMax)
4819 				blank_and_force_memclk(dc, true, softMax);
4820 			// else: No-Op
4821 		}
4822 	} else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
4823 		if (p_state_change_support) {
4824 			if (funcMin <= softMax)
4825 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
4826 			// else: No-Op
4827 		} else {
4828 			if (funcMin <= softMax)
4829 				blank_and_force_memclk(dc, true, maxDPM);
4830 			// else: No-Op
4831 		}
4832 	}
4833 	dc->clk_mgr->dc_mode_softmax_enabled = enable;
4834 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,struct dc_plane_state * plane,struct dc_cursor_attributes * cursor_attr)4835 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
4836 		struct dc_cursor_attributes *cursor_attr)
4837 {
4838 	if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
4839 		return true;
4840 	return false;
4841 }
4842 
4843 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)4844 void dc_hardware_release(struct dc *dc)
4845 {
4846 	dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
4847 
4848 	if (dc->hwss.hardware_release)
4849 		dc->hwss.hardware_release(dc);
4850 }
4851 
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)4852 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
4853 {
4854 	if (dc->current_state)
4855 		dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
4856 }
4857 
4858 /**
4859  * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
4860  *
4861  * @dc: [in] dc structure
4862  *
4863  * Checks whether DMUB FW supports outbox notifications, if supported DM
4864  * should register outbox interrupt prior to actually enabling interrupts
4865  * via dc_enable_dmub_outbox
4866  *
4867  * Return:
4868  * True if DMUB FW supports outbox notifications, False otherwise
4869  */
dc_is_dmub_outbox_supported(struct dc * dc)4870 bool dc_is_dmub_outbox_supported(struct dc *dc)
4871 {
4872 	switch (dc->ctx->asic_id.chip_family) {
4873 
4874 	case FAMILY_YELLOW_CARP:
4875 		/* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
4876 		if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
4877 		    !dc->debug.dpia_debug.bits.disable_dpia)
4878 			return true;
4879 	break;
4880 
4881 	case AMDGPU_FAMILY_GC_11_0_1:
4882 	case AMDGPU_FAMILY_GC_11_5_0:
4883 		if (!dc->debug.dpia_debug.bits.disable_dpia)
4884 			return true;
4885 	break;
4886 
4887 	default:
4888 		break;
4889 	}
4890 
4891 	/* dmub aux needs dmub notifications to be enabled */
4892 	return dc->debug.enable_dmub_aux_for_legacy_ddc;
4893 
4894 }
4895 
4896 /**
4897  * dc_enable_dmub_notifications - Check if dmub fw supports outbox
4898  *
4899  * @dc: [in] dc structure
4900  *
4901  * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
4902  * notifications. All DMs shall switch to dc_is_dmub_outbox_supported.  This
4903  * API shall be removed after switching.
4904  *
4905  * Return:
4906  * True if DMUB FW supports outbox notifications, False otherwise
4907  */
dc_enable_dmub_notifications(struct dc * dc)4908 bool dc_enable_dmub_notifications(struct dc *dc)
4909 {
4910 	return dc_is_dmub_outbox_supported(dc);
4911 }
4912 
4913 /**
4914  * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
4915  *
4916  * @dc: [in] dc structure
4917  *
4918  * Enables DMUB unsolicited notifications to x86 via outbox.
4919  */
dc_enable_dmub_outbox(struct dc * dc)4920 void dc_enable_dmub_outbox(struct dc *dc)
4921 {
4922 	struct dc_context *dc_ctx = dc->ctx;
4923 
4924 	dmub_enable_outbox_notification(dc_ctx->dmub_srv);
4925 	DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
4926 }
4927 
4928 /**
4929  * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
4930  *                                      Sets port index appropriately for legacy DDC
4931  * @dc: dc structure
4932  * @link_index: link index
4933  * @payload: aux payload
4934  *
4935  * Returns: True if successful, False if failure
4936  */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)4937 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
4938 				uint32_t link_index,
4939 				struct aux_payload *payload)
4940 {
4941 	uint8_t action;
4942 	union dmub_rb_cmd cmd = {0};
4943 
4944 	ASSERT(payload->length <= 16);
4945 
4946 	cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
4947 	cmd.dp_aux_access.header.payload_bytes = 0;
4948 	/* For dpia, ddc_pin is set to NULL */
4949 	if (!dc->links[link_index]->ddc->ddc_pin)
4950 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
4951 	else
4952 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
4953 
4954 	cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
4955 	cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
4956 	cmd.dp_aux_access.aux_control.timeout = 0;
4957 	cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
4958 	cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
4959 	cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
4960 
4961 	/* set aux action */
4962 	if (payload->i2c_over_aux) {
4963 		if (payload->write) {
4964 			if (payload->mot)
4965 				action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
4966 			else
4967 				action = DP_AUX_REQ_ACTION_I2C_WRITE;
4968 		} else {
4969 			if (payload->mot)
4970 				action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
4971 			else
4972 				action = DP_AUX_REQ_ACTION_I2C_READ;
4973 			}
4974 	} else {
4975 		if (payload->write)
4976 			action = DP_AUX_REQ_ACTION_DPCD_WRITE;
4977 		else
4978 			action = DP_AUX_REQ_ACTION_DPCD_READ;
4979 	}
4980 
4981 	cmd.dp_aux_access.aux_control.dpaux.action = action;
4982 
4983 	if (payload->length && payload->write) {
4984 		memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
4985 			payload->data,
4986 			payload->length
4987 			);
4988 	}
4989 
4990 	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
4991 
4992 	return true;
4993 }
4994 
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)4995 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
4996 					    uint8_t dpia_port_index)
4997 {
4998 	uint8_t index, link_index = 0xFF;
4999 
5000 	for (index = 0; index < dc->link_count; index++) {
5001 		/* ddc_hw_inst has dpia port index for dpia links
5002 		 * and ddc instance for legacy links
5003 		 */
5004 		if (!dc->links[index]->ddc->ddc_pin) {
5005 			if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5006 				link_index = index;
5007 				break;
5008 			}
5009 		}
5010 	}
5011 	ASSERT(link_index != 0xFF);
5012 	return link_index;
5013 }
5014 
5015 /**
5016  * dc_process_dmub_set_config_async - Submits set_config command
5017  *
5018  * @dc: [in] dc structure
5019  * @link_index: [in] link_index: link index
5020  * @payload: [in] aux payload
5021  * @notify: [out] set_config immediate reply
5022  *
5023  * Submits set_config command to dmub via inbox message.
5024  *
5025  * Return:
5026  * True if successful, False if failure
5027  */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5028 bool dc_process_dmub_set_config_async(struct dc *dc,
5029 				uint32_t link_index,
5030 				struct set_config_cmd_payload *payload,
5031 				struct dmub_notification *notify)
5032 {
5033 	union dmub_rb_cmd cmd = {0};
5034 	bool is_cmd_complete = true;
5035 
5036 	/* prepare SET_CONFIG command */
5037 	cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5038 	cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5039 
5040 	cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5041 	cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5042 	cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5043 
5044 	if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5045 		/* command is not processed by dmub */
5046 		notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5047 		return is_cmd_complete;
5048 	}
5049 
5050 	/* command processed by dmub, if ret_status is 1, it is completed instantly */
5051 	if (cmd.set_config_access.header.ret_status == 1)
5052 		notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5053 	else
5054 		/* cmd pending, will receive notification via outbox */
5055 		is_cmd_complete = false;
5056 
5057 	return is_cmd_complete;
5058 }
5059 
5060 /**
5061  * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5062  *
5063  * @dc: [in] dc structure
5064  * @link_index: [in] link index
5065  * @mst_alloc_slots: [in] mst slots to be allotted
5066  * @mst_slots_in_use: [out] mst slots in use returned in failure case
5067  *
5068  * Submits mst slot allocation command to dmub via inbox message
5069  *
5070  * Return:
5071  * DC_OK if successful, DC_ERROR if failure
5072  */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5073 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5074 				uint32_t link_index,
5075 				uint8_t mst_alloc_slots,
5076 				uint8_t *mst_slots_in_use)
5077 {
5078 	union dmub_rb_cmd cmd = {0};
5079 
5080 	/* prepare MST_ALLOC_SLOTS command */
5081 	cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5082 	cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5083 
5084 	cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5085 	cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5086 
5087 	if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5088 		/* command is not processed by dmub */
5089 		return DC_ERROR_UNEXPECTED;
5090 
5091 	/* command processed by dmub, if ret_status is 1 */
5092 	if (cmd.set_config_access.header.ret_status != 1)
5093 		/* command processing error */
5094 		return DC_ERROR_UNEXPECTED;
5095 
5096 	/* command processed and we have a status of 2, mst not enabled in dpia */
5097 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5098 		return DC_FAIL_UNSUPPORTED_1;
5099 
5100 	/* previously configured mst alloc and used slots did not match */
5101 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5102 		*mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5103 		return DC_NOT_SUPPORTED;
5104 	}
5105 
5106 	return DC_OK;
5107 }
5108 
5109 /**
5110  * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5111  *
5112  * @dc: [in] dc structure
5113  * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5114  *
5115  * Submits dpia hpd int enable command to dmub via inbox message
5116  */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)5117 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5118 				uint32_t hpd_int_enable)
5119 {
5120 	union dmub_rb_cmd cmd = {0};
5121 
5122 	cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5123 	cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5124 
5125 	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5126 
5127 	DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5128 }
5129 
5130 /**
5131  * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5132  *
5133  * @dc: [in] dc structure
5134  *
5135  *
5136  */
dc_print_dmub_diagnostic_data(const struct dc * dc)5137 void dc_print_dmub_diagnostic_data(const struct dc *dc)
5138 {
5139 	dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5140 }
5141 
5142 /**
5143  * dc_disable_accelerated_mode - disable accelerated mode
5144  * @dc: dc structure
5145  */
dc_disable_accelerated_mode(struct dc * dc)5146 void dc_disable_accelerated_mode(struct dc *dc)
5147 {
5148 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5149 }
5150 
5151 
5152 /**
5153  *  dc_notify_vsync_int_state - notifies vsync enable/disable state
5154  *  @dc: dc structure
5155  *  @stream: stream where vsync int state changed
5156  *  @enable: whether vsync is enabled or disabled
5157  *
5158  *  Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5159  *  interrupts after steady state is reached.
5160  */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)5161 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5162 {
5163 	int i;
5164 	int edp_num;
5165 	struct pipe_ctx *pipe = NULL;
5166 	struct dc_link *link = stream->sink->link;
5167 	struct dc_link *edp_links[MAX_NUM_EDP];
5168 
5169 
5170 	if (link->psr_settings.psr_feature_enabled)
5171 		return;
5172 
5173 	if (link->replay_settings.replay_feature_enabled)
5174 		return;
5175 
5176 	/*find primary pipe associated with stream*/
5177 	for (i = 0; i < MAX_PIPES; i++) {
5178 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5179 
5180 		if (pipe->stream == stream && pipe->stream_res.tg)
5181 			break;
5182 	}
5183 
5184 	if (i == MAX_PIPES) {
5185 		ASSERT(0);
5186 		return;
5187 	}
5188 
5189 	dc_get_edp_links(dc, edp_links, &edp_num);
5190 
5191 	/* Determine panel inst */
5192 	for (i = 0; i < edp_num; i++) {
5193 		if (edp_links[i] == link)
5194 			break;
5195 	}
5196 
5197 	if (i == edp_num) {
5198 		return;
5199 	}
5200 
5201 	if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5202 		pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5203 }
5204 
5205 /*****************************************************************************
5206  *  dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5207  *                          ABM
5208  *  @dc: dc structure
5209  *	@stream: stream where vsync int state changed
5210  *  @pData: abm hw states
5211  *
5212  ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)5213 bool dc_abm_save_restore(
5214 		struct dc *dc,
5215 		struct dc_stream_state *stream,
5216 		struct abm_save_restore *pData)
5217 {
5218 	int i;
5219 	int edp_num;
5220 	struct pipe_ctx *pipe = NULL;
5221 	struct dc_link *link = stream->sink->link;
5222 	struct dc_link *edp_links[MAX_NUM_EDP];
5223 
5224 
5225 	/*find primary pipe associated with stream*/
5226 	for (i = 0; i < MAX_PIPES; i++) {
5227 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5228 
5229 		if (pipe->stream == stream && pipe->stream_res.tg)
5230 			break;
5231 	}
5232 
5233 	if (i == MAX_PIPES) {
5234 		ASSERT(0);
5235 		return false;
5236 	}
5237 
5238 	dc_get_edp_links(dc, edp_links, &edp_num);
5239 
5240 	/* Determine panel inst */
5241 	for (i = 0; i < edp_num; i++)
5242 		if (edp_links[i] == link)
5243 			break;
5244 
5245 	if (i == edp_num)
5246 		return false;
5247 
5248 	if (pipe->stream_res.abm &&
5249 		pipe->stream_res.abm->funcs->save_restore)
5250 		return pipe->stream_res.abm->funcs->save_restore(
5251 				pipe->stream_res.abm,
5252 				i,
5253 				pData);
5254 	return false;
5255 }
5256 
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)5257 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5258 {
5259 	unsigned int i;
5260 	bool subvp_in_use = false;
5261 
5262 	for (i = 0; i < dc->current_state->stream_count; i++) {
5263 		if (dc->current_state->streams[i]->mall_stream_config.type != SUBVP_NONE) {
5264 			subvp_in_use = true;
5265 			break;
5266 		}
5267 	}
5268 	properties->cursor_size_limit = subvp_in_use ? 64 : dc->caps.max_cursor_size;
5269 }
5270 
5271 /**
5272  *****************************************************************************
5273  * dc_set_edp_power() - DM controls eDP power to be ON/OFF
5274  *
5275  * Called when DM wants to power on/off eDP.
5276  *     Only work on links with flag skip_implict_edp_power_control is set.
5277  *
5278  *****************************************************************************
5279  */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)5280 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
5281 				 bool powerOn)
5282 {
5283 	if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
5284 		return;
5285 
5286 	if (edp_link->skip_implict_edp_power_control == false)
5287 		return;
5288 
5289 	edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
5290 }
5291 
5292