1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27
28 #include "resource.h"
29 #include "include/irq_service_interface.h"
30 #include "link_encoder.h"
31 #include "stream_encoder.h"
32 #include "opp.h"
33 #include "timing_generator.h"
34 #include "transform.h"
35 #include "dccg.h"
36 #include "dchubbub.h"
37 #include "dpp.h"
38 #include "core_types.h"
39 #include "set_mode_types.h"
40 #include "virtual/virtual_stream_encoder.h"
41 #include "dpcd_defs.h"
42 #include "link_enc_cfg.h"
43 #include "dc_link_dp.h"
44 #include "virtual/virtual_link_hwss.h"
45 #include "link/link_hwss_dio.h"
46 #include "link/link_hwss_dpia.h"
47 #include "link/link_hwss_hpo_dp.h"
48
49 #if defined(CONFIG_DRM_AMD_DC_SI)
50 #include "dce60/dce60_resource.h"
51 #endif
52 #include "dce80/dce80_resource.h"
53 #include "dce100/dce100_resource.h"
54 #include "dce110/dce110_resource.h"
55 #include "dce112/dce112_resource.h"
56 #include "dce120/dce120_resource.h"
57 #include "dcn10/dcn10_resource.h"
58 #include "dcn20/dcn20_resource.h"
59 #include "dcn21/dcn21_resource.h"
60 #include "dcn201/dcn201_resource.h"
61 #include "dcn30/dcn30_resource.h"
62 #include "dcn301/dcn301_resource.h"
63 #include "dcn302/dcn302_resource.h"
64 #include "dcn303/dcn303_resource.h"
65 #include "dcn31/dcn31_resource.h"
66 #include "dcn314/dcn314_resource.h"
67 #include "dcn315/dcn315_resource.h"
68 #include "dcn316/dcn316_resource.h"
69 #include "../dcn32/dcn32_resource.h"
70 #include "../dcn321/dcn321_resource.h"
71
72 #define DC_LOGGER_INIT(logger)
73
resource_parse_asic_id(struct hw_asic_id asic_id)74 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
75 {
76 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
77
78 switch (asic_id.chip_family) {
79
80 #if defined(CONFIG_DRM_AMD_DC_SI)
81 case FAMILY_SI:
82 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
83 ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
84 ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
85 dc_version = DCE_VERSION_6_0;
86 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
87 dc_version = DCE_VERSION_6_4;
88 else
89 dc_version = DCE_VERSION_6_1;
90 break;
91 #endif
92 case FAMILY_CI:
93 dc_version = DCE_VERSION_8_0;
94 break;
95 case FAMILY_KV:
96 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
97 ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
98 ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
99 dc_version = DCE_VERSION_8_3;
100 else
101 dc_version = DCE_VERSION_8_1;
102 break;
103 case FAMILY_CZ:
104 dc_version = DCE_VERSION_11_0;
105 break;
106
107 case FAMILY_VI:
108 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
109 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
110 dc_version = DCE_VERSION_10_0;
111 break;
112 }
113 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
114 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
115 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
116 dc_version = DCE_VERSION_11_2;
117 }
118 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
119 dc_version = DCE_VERSION_11_22;
120 break;
121 case FAMILY_AI:
122 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
123 dc_version = DCE_VERSION_12_1;
124 else
125 dc_version = DCE_VERSION_12_0;
126 break;
127 case FAMILY_RV:
128 dc_version = DCN_VERSION_1_0;
129 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
130 dc_version = DCN_VERSION_1_01;
131 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
132 dc_version = DCN_VERSION_2_1;
133 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
134 dc_version = DCN_VERSION_2_1;
135 break;
136
137 case FAMILY_NV:
138 dc_version = DCN_VERSION_2_0;
139 if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
140 dc_version = DCN_VERSION_2_01;
141 break;
142 }
143 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
144 dc_version = DCN_VERSION_3_0;
145 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
146 dc_version = DCN_VERSION_3_02;
147 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
148 dc_version = DCN_VERSION_3_03;
149 break;
150
151 case FAMILY_VGH:
152 dc_version = DCN_VERSION_3_01;
153 break;
154
155 case FAMILY_YELLOW_CARP:
156 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
157 dc_version = DCN_VERSION_3_1;
158 break;
159 case AMDGPU_FAMILY_GC_10_3_6:
160 if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
161 dc_version = DCN_VERSION_3_15;
162 break;
163 case AMDGPU_FAMILY_GC_10_3_7:
164 if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
165 dc_version = DCN_VERSION_3_16;
166 break;
167 case AMDGPU_FAMILY_GC_11_0_0:
168 dc_version = DCN_VERSION_3_2;
169 if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
170 dc_version = DCN_VERSION_3_21;
171 break;
172 case AMDGPU_FAMILY_GC_11_0_1:
173 dc_version = DCN_VERSION_3_14;
174 break;
175 default:
176 dc_version = DCE_VERSION_UNKNOWN;
177 break;
178 }
179 return dc_version;
180 }
181
dc_create_resource_pool(struct dc * dc,const struct dc_init_data * init_data,enum dce_version dc_version)182 struct resource_pool *dc_create_resource_pool(struct dc *dc,
183 const struct dc_init_data *init_data,
184 enum dce_version dc_version)
185 {
186 struct resource_pool *res_pool = NULL;
187
188 switch (dc_version) {
189 #if defined(CONFIG_DRM_AMD_DC_SI)
190 case DCE_VERSION_6_0:
191 res_pool = dce60_create_resource_pool(
192 init_data->num_virtual_links, dc);
193 break;
194 case DCE_VERSION_6_1:
195 res_pool = dce61_create_resource_pool(
196 init_data->num_virtual_links, dc);
197 break;
198 case DCE_VERSION_6_4:
199 res_pool = dce64_create_resource_pool(
200 init_data->num_virtual_links, dc);
201 break;
202 #endif
203 case DCE_VERSION_8_0:
204 res_pool = dce80_create_resource_pool(
205 init_data->num_virtual_links, dc);
206 break;
207 case DCE_VERSION_8_1:
208 res_pool = dce81_create_resource_pool(
209 init_data->num_virtual_links, dc);
210 break;
211 case DCE_VERSION_8_3:
212 res_pool = dce83_create_resource_pool(
213 init_data->num_virtual_links, dc);
214 break;
215 case DCE_VERSION_10_0:
216 res_pool = dce100_create_resource_pool(
217 init_data->num_virtual_links, dc);
218 break;
219 case DCE_VERSION_11_0:
220 res_pool = dce110_create_resource_pool(
221 init_data->num_virtual_links, dc,
222 init_data->asic_id);
223 break;
224 case DCE_VERSION_11_2:
225 case DCE_VERSION_11_22:
226 res_pool = dce112_create_resource_pool(
227 init_data->num_virtual_links, dc);
228 break;
229 case DCE_VERSION_12_0:
230 case DCE_VERSION_12_1:
231 res_pool = dce120_create_resource_pool(
232 init_data->num_virtual_links, dc);
233 break;
234
235 #if defined(CONFIG_DRM_AMD_DC_DCN)
236 case DCN_VERSION_1_0:
237 case DCN_VERSION_1_01:
238 res_pool = dcn10_create_resource_pool(init_data, dc);
239 break;
240 case DCN_VERSION_2_0:
241 res_pool = dcn20_create_resource_pool(init_data, dc);
242 break;
243 case DCN_VERSION_2_1:
244 res_pool = dcn21_create_resource_pool(init_data, dc);
245 break;
246 case DCN_VERSION_2_01:
247 res_pool = dcn201_create_resource_pool(init_data, dc);
248 break;
249 case DCN_VERSION_3_0:
250 res_pool = dcn30_create_resource_pool(init_data, dc);
251 break;
252 case DCN_VERSION_3_01:
253 res_pool = dcn301_create_resource_pool(init_data, dc);
254 break;
255 case DCN_VERSION_3_02:
256 res_pool = dcn302_create_resource_pool(init_data, dc);
257 break;
258 case DCN_VERSION_3_03:
259 res_pool = dcn303_create_resource_pool(init_data, dc);
260 break;
261 case DCN_VERSION_3_1:
262 res_pool = dcn31_create_resource_pool(init_data, dc);
263 break;
264 case DCN_VERSION_3_14:
265 res_pool = dcn314_create_resource_pool(init_data, dc);
266 break;
267 case DCN_VERSION_3_15:
268 res_pool = dcn315_create_resource_pool(init_data, dc);
269 break;
270 case DCN_VERSION_3_16:
271 res_pool = dcn316_create_resource_pool(init_data, dc);
272 break;
273 case DCN_VERSION_3_2:
274 res_pool = dcn32_create_resource_pool(init_data, dc);
275 break;
276 case DCN_VERSION_3_21:
277 res_pool = dcn321_create_resource_pool(init_data, dc);
278 break;
279 #endif
280 default:
281 break;
282 }
283
284 if (res_pool != NULL) {
285 if (dc->ctx->dc_bios->fw_info_valid) {
286 res_pool->ref_clocks.xtalin_clock_inKhz =
287 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
288 /* initialize with firmware data first, no all
289 * ASIC have DCCG SW component. FPGA or
290 * simulation need initialization of
291 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
292 * with xtalin_clock_inKhz
293 */
294 res_pool->ref_clocks.dccg_ref_clock_inKhz =
295 res_pool->ref_clocks.xtalin_clock_inKhz;
296 res_pool->ref_clocks.dchub_ref_clock_inKhz =
297 res_pool->ref_clocks.xtalin_clock_inKhz;
298 } else
299 ASSERT_CRITICAL(false);
300 }
301
302 return res_pool;
303 }
304
dc_destroy_resource_pool(struct dc * dc)305 void dc_destroy_resource_pool(struct dc *dc)
306 {
307 if (dc) {
308 if (dc->res_pool)
309 dc->res_pool->funcs->destroy(&dc->res_pool);
310
311 kfree(dc->hwseq);
312 }
313 }
314
update_num_audio(const struct resource_straps * straps,unsigned int * num_audio,struct audio_support * aud_support)315 static void update_num_audio(
316 const struct resource_straps *straps,
317 unsigned int *num_audio,
318 struct audio_support *aud_support)
319 {
320 aud_support->dp_audio = true;
321 aud_support->hdmi_audio_native = false;
322 aud_support->hdmi_audio_on_dongle = false;
323
324 if (straps->hdmi_disable == 0) {
325 if (straps->dc_pinstraps_audio & 0x2) {
326 aud_support->hdmi_audio_on_dongle = true;
327 aud_support->hdmi_audio_native = true;
328 }
329 }
330
331 switch (straps->audio_stream_number) {
332 case 0: /* multi streams supported */
333 break;
334 case 1: /* multi streams not supported */
335 *num_audio = 1;
336 break;
337 default:
338 DC_ERR("DC: unexpected audio fuse!\n");
339 }
340 }
341
resource_construct(unsigned int num_virtual_links,struct dc * dc,struct resource_pool * pool,const struct resource_create_funcs * create_funcs)342 bool resource_construct(
343 unsigned int num_virtual_links,
344 struct dc *dc,
345 struct resource_pool *pool,
346 const struct resource_create_funcs *create_funcs)
347 {
348 struct dc_context *ctx = dc->ctx;
349 const struct resource_caps *caps = pool->res_cap;
350 int i;
351 unsigned int num_audio = caps->num_audio;
352 struct resource_straps straps = {0};
353
354 if (create_funcs->read_dce_straps)
355 create_funcs->read_dce_straps(dc->ctx, &straps);
356
357 pool->audio_count = 0;
358 if (create_funcs->create_audio) {
359 /* find the total number of streams available via the
360 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
361 * registers (one for each pin) starting from pin 1
362 * up to the max number of audio pins.
363 * We stop on the first pin where
364 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
365 */
366 update_num_audio(&straps, &num_audio, &pool->audio_support);
367 for (i = 0; i < caps->num_audio; i++) {
368 struct audio *aud = create_funcs->create_audio(ctx, i);
369
370 if (aud == NULL) {
371 DC_ERR("DC: failed to create audio!\n");
372 return false;
373 }
374 if (!aud->funcs->endpoint_valid(aud)) {
375 aud->funcs->destroy(&aud);
376 break;
377 }
378 pool->audios[i] = aud;
379 pool->audio_count++;
380 }
381 }
382
383 pool->stream_enc_count = 0;
384 if (create_funcs->create_stream_encoder) {
385 for (i = 0; i < caps->num_stream_encoder; i++) {
386 pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
387 if (pool->stream_enc[i] == NULL)
388 DC_ERR("DC: failed to create stream_encoder!\n");
389 pool->stream_enc_count++;
390 }
391 }
392
393 pool->hpo_dp_stream_enc_count = 0;
394 if (create_funcs->create_hpo_dp_stream_encoder) {
395 for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
396 pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
397 if (pool->hpo_dp_stream_enc[i] == NULL)
398 DC_ERR("DC: failed to create HPO DP stream encoder!\n");
399 pool->hpo_dp_stream_enc_count++;
400
401 }
402 }
403
404 pool->hpo_dp_link_enc_count = 0;
405 if (create_funcs->create_hpo_dp_link_encoder) {
406 for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
407 pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
408 if (pool->hpo_dp_link_enc[i] == NULL)
409 DC_ERR("DC: failed to create HPO DP link encoder!\n");
410 pool->hpo_dp_link_enc_count++;
411 }
412 }
413
414 for (i = 0; i < caps->num_mpc_3dlut; i++) {
415 pool->mpc_lut[i] = dc_create_3dlut_func();
416 if (pool->mpc_lut[i] == NULL)
417 DC_ERR("DC: failed to create MPC 3dlut!\n");
418 pool->mpc_shaper[i] = dc_create_transfer_func();
419 if (pool->mpc_shaper[i] == NULL)
420 DC_ERR("DC: failed to create MPC shaper!\n");
421 }
422
423 dc->caps.dynamic_audio = false;
424 if (pool->audio_count < pool->stream_enc_count) {
425 dc->caps.dynamic_audio = true;
426 }
427 for (i = 0; i < num_virtual_links; i++) {
428 pool->stream_enc[pool->stream_enc_count] =
429 virtual_stream_encoder_create(
430 ctx, ctx->dc_bios);
431 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
432 DC_ERR("DC: failed to create stream_encoder!\n");
433 return false;
434 }
435 pool->stream_enc_count++;
436 }
437
438 dc->hwseq = create_funcs->create_hwseq(ctx);
439
440 return true;
441 }
find_matching_clock_source(const struct resource_pool * pool,struct clock_source * clock_source)442 static int find_matching_clock_source(
443 const struct resource_pool *pool,
444 struct clock_source *clock_source)
445 {
446
447 int i;
448
449 for (i = 0; i < pool->clk_src_count; i++) {
450 if (pool->clock_sources[i] == clock_source)
451 return i;
452 }
453 return -1;
454 }
455
resource_unreference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)456 void resource_unreference_clock_source(
457 struct resource_context *res_ctx,
458 const struct resource_pool *pool,
459 struct clock_source *clock_source)
460 {
461 int i = find_matching_clock_source(pool, clock_source);
462
463 if (i > -1)
464 res_ctx->clock_source_ref_count[i]--;
465
466 if (pool->dp_clock_source == clock_source)
467 res_ctx->dp_clock_source_ref_count--;
468 }
469
resource_reference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)470 void resource_reference_clock_source(
471 struct resource_context *res_ctx,
472 const struct resource_pool *pool,
473 struct clock_source *clock_source)
474 {
475 int i = find_matching_clock_source(pool, clock_source);
476
477 if (i > -1)
478 res_ctx->clock_source_ref_count[i]++;
479
480 if (pool->dp_clock_source == clock_source)
481 res_ctx->dp_clock_source_ref_count++;
482 }
483
resource_get_clock_source_reference(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)484 int resource_get_clock_source_reference(
485 struct resource_context *res_ctx,
486 const struct resource_pool *pool,
487 struct clock_source *clock_source)
488 {
489 int i = find_matching_clock_source(pool, clock_source);
490
491 if (i > -1)
492 return res_ctx->clock_source_ref_count[i];
493
494 if (pool->dp_clock_source == clock_source)
495 return res_ctx->dp_clock_source_ref_count;
496
497 return -1;
498 }
499
resource_are_vblanks_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)500 bool resource_are_vblanks_synchronizable(
501 struct dc_stream_state *stream1,
502 struct dc_stream_state *stream2)
503 {
504 uint32_t base60_refresh_rates[] = {10, 20, 5};
505 uint8_t i;
506 uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
507 uint64_t frame_time_diff;
508
509 if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
510 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
511 dc_is_dp_signal(stream1->signal) &&
512 dc_is_dp_signal(stream2->signal) &&
513 false == stream1->has_non_synchronizable_pclk &&
514 false == stream2->has_non_synchronizable_pclk &&
515 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
516 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
517 /* disable refresh rates higher than 60Hz for now */
518 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
519 stream1->timing.v_total > 60)
520 return false;
521 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
522 stream2->timing.v_total > 60)
523 return false;
524 frame_time_diff = (uint64_t)10000 *
525 stream1->timing.h_total *
526 stream1->timing.v_total *
527 stream2->timing.pix_clk_100hz;
528 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
529 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
530 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
531 for (i = 0; i < rr_count; i++) {
532 int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
533
534 if (diff < 0)
535 diff = -diff;
536 if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
537 return true;
538 }
539 }
540 return false;
541 }
542
resource_are_streams_timing_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)543 bool resource_are_streams_timing_synchronizable(
544 struct dc_stream_state *stream1,
545 struct dc_stream_state *stream2)
546 {
547 if (stream1->timing.h_total != stream2->timing.h_total)
548 return false;
549
550 if (stream1->timing.v_total != stream2->timing.v_total)
551 return false;
552
553 if (stream1->timing.h_addressable
554 != stream2->timing.h_addressable)
555 return false;
556
557 if (stream1->timing.v_addressable
558 != stream2->timing.v_addressable)
559 return false;
560
561 if (stream1->timing.v_front_porch
562 != stream2->timing.v_front_porch)
563 return false;
564
565 if (stream1->timing.pix_clk_100hz
566 != stream2->timing.pix_clk_100hz)
567 return false;
568
569 if (stream1->clamping.c_depth != stream2->clamping.c_depth)
570 return false;
571
572 if (stream1->phy_pix_clk != stream2->phy_pix_clk
573 && (!dc_is_dp_signal(stream1->signal)
574 || !dc_is_dp_signal(stream2->signal)))
575 return false;
576
577 if (stream1->view_format != stream2->view_format)
578 return false;
579
580 if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
581 return false;
582
583 return true;
584 }
is_dp_and_hdmi_sharable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)585 static bool is_dp_and_hdmi_sharable(
586 struct dc_stream_state *stream1,
587 struct dc_stream_state *stream2)
588 {
589 if (stream1->ctx->dc->caps.disable_dp_clk_share)
590 return false;
591
592 if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
593 stream2->clamping.c_depth != COLOR_DEPTH_888)
594 return false;
595
596 return true;
597
598 }
599
is_sharable_clk_src(const struct pipe_ctx * pipe_with_clk_src,const struct pipe_ctx * pipe)600 static bool is_sharable_clk_src(
601 const struct pipe_ctx *pipe_with_clk_src,
602 const struct pipe_ctx *pipe)
603 {
604 if (pipe_with_clk_src->clock_source == NULL)
605 return false;
606
607 if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
608 return false;
609
610 if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
611 (dc_is_dp_signal(pipe->stream->signal) &&
612 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
613 pipe->stream)))
614 return false;
615
616 if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
617 && dc_is_dual_link_signal(pipe->stream->signal))
618 return false;
619
620 if (dc_is_hdmi_signal(pipe->stream->signal)
621 && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
622 return false;
623
624 if (!resource_are_streams_timing_synchronizable(
625 pipe_with_clk_src->stream, pipe->stream))
626 return false;
627
628 return true;
629 }
630
resource_find_used_clk_src_for_sharing(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx)631 struct clock_source *resource_find_used_clk_src_for_sharing(
632 struct resource_context *res_ctx,
633 struct pipe_ctx *pipe_ctx)
634 {
635 int i;
636
637 for (i = 0; i < MAX_PIPES; i++) {
638 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
639 return res_ctx->pipe_ctx[i].clock_source;
640 }
641
642 return NULL;
643 }
644
convert_pixel_format_to_dalsurface(enum surface_pixel_format surface_pixel_format)645 static enum pixel_format convert_pixel_format_to_dalsurface(
646 enum surface_pixel_format surface_pixel_format)
647 {
648 enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
649
650 switch (surface_pixel_format) {
651 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
652 dal_pixel_format = PIXEL_FORMAT_INDEX8;
653 break;
654 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
655 dal_pixel_format = PIXEL_FORMAT_RGB565;
656 break;
657 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
658 dal_pixel_format = PIXEL_FORMAT_RGB565;
659 break;
660 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
661 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
662 break;
663 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
664 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
665 break;
666 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
667 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
668 break;
669 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
670 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
671 break;
672 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
673 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
674 break;
675 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
676 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
677 dal_pixel_format = PIXEL_FORMAT_FP16;
678 break;
679 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
680 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
681 dal_pixel_format = PIXEL_FORMAT_420BPP8;
682 break;
683 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
684 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
685 dal_pixel_format = PIXEL_FORMAT_420BPP10;
686 break;
687 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
688 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
689 default:
690 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
691 break;
692 }
693 return dal_pixel_format;
694 }
695
get_vp_scan_direction(enum dc_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)696 static inline void get_vp_scan_direction(
697 enum dc_rotation_angle rotation,
698 bool horizontal_mirror,
699 bool *orthogonal_rotation,
700 bool *flip_vert_scan_dir,
701 bool *flip_horz_scan_dir)
702 {
703 *orthogonal_rotation = false;
704 *flip_vert_scan_dir = false;
705 *flip_horz_scan_dir = false;
706 if (rotation == ROTATION_ANGLE_180) {
707 *flip_vert_scan_dir = true;
708 *flip_horz_scan_dir = true;
709 } else if (rotation == ROTATION_ANGLE_90) {
710 *orthogonal_rotation = true;
711 *flip_horz_scan_dir = true;
712 } else if (rotation == ROTATION_ANGLE_270) {
713 *orthogonal_rotation = true;
714 *flip_vert_scan_dir = true;
715 }
716
717 if (horizontal_mirror)
718 *flip_horz_scan_dir = !*flip_horz_scan_dir;
719 }
720
get_num_mpc_splits(struct pipe_ctx * pipe)721 int get_num_mpc_splits(struct pipe_ctx *pipe)
722 {
723 int mpc_split_count = 0;
724 struct pipe_ctx *other_pipe = pipe->bottom_pipe;
725
726 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
727 mpc_split_count++;
728 other_pipe = other_pipe->bottom_pipe;
729 }
730 other_pipe = pipe->top_pipe;
731 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
732 mpc_split_count++;
733 other_pipe = other_pipe->top_pipe;
734 }
735
736 return mpc_split_count;
737 }
738
get_num_odm_splits(struct pipe_ctx * pipe)739 int get_num_odm_splits(struct pipe_ctx *pipe)
740 {
741 int odm_split_count = 0;
742 struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
743 while (next_pipe) {
744 odm_split_count++;
745 next_pipe = next_pipe->next_odm_pipe;
746 }
747 pipe = pipe->prev_odm_pipe;
748 while (pipe) {
749 odm_split_count++;
750 pipe = pipe->prev_odm_pipe;
751 }
752 return odm_split_count;
753 }
754
calculate_split_count_and_index(struct pipe_ctx * pipe_ctx,int * split_count,int * split_idx)755 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
756 {
757 *split_count = get_num_odm_splits(pipe_ctx);
758 *split_idx = 0;
759 if (*split_count == 0) {
760 /*Check for mpc split*/
761 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
762
763 *split_count = get_num_mpc_splits(pipe_ctx);
764 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
765 (*split_idx)++;
766 split_pipe = split_pipe->top_pipe;
767 }
768
769 /* MPO window on right side of ODM split */
770 if (split_pipe && split_pipe->prev_odm_pipe && !pipe_ctx->prev_odm_pipe)
771 (*split_idx)++;
772 } else {
773 /*Get odm split index*/
774 struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
775
776 while (split_pipe) {
777 (*split_idx)++;
778 split_pipe = split_pipe->prev_odm_pipe;
779 }
780 }
781 }
782
783 /*
784 * This is a preliminary vp size calculation to allow us to check taps support.
785 * The result is completely overridden afterwards.
786 */
calculate_viewport_size(struct pipe_ctx * pipe_ctx)787 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
788 {
789 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
790
791 data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
792 data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
793 data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
794 data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
795 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
796 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
797 swap(data->viewport.width, data->viewport.height);
798 swap(data->viewport_c.width, data->viewport_c.height);
799 }
800 }
801
calculate_recout(struct pipe_ctx * pipe_ctx)802 static void calculate_recout(struct pipe_ctx *pipe_ctx)
803 {
804 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
805 const struct dc_stream_state *stream = pipe_ctx->stream;
806 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
807 struct rect surf_clip = plane_state->clip_rect;
808 bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
809 int split_count, split_idx;
810
811 calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
812 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
813 split_idx = 0;
814
815 /*
816 * Only the leftmost ODM pipe should be offset by a nonzero distance
817 */
818 if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->prev_odm_pipe && !pipe_ctx->prev_odm_pipe) {
819 /* MPO window on right side of ODM split */
820 data->recout.x = stream->dst.x + (surf_clip.x - stream->src.x - stream->src.width/2) *
821 stream->dst.width / stream->src.width;
822 } else if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
823 data->recout.x = stream->dst.x;
824 if (stream->src.x < surf_clip.x)
825 data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
826 / stream->src.width;
827 } else
828 data->recout.x = 0;
829
830 if (stream->src.x > surf_clip.x)
831 surf_clip.width -= stream->src.x - surf_clip.x;
832 data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
833 if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
834 data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
835
836 data->recout.y = stream->dst.y;
837 if (stream->src.y < surf_clip.y)
838 data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
839 / stream->src.height;
840 else if (stream->src.y > surf_clip.y)
841 surf_clip.height -= stream->src.y - surf_clip.y;
842
843 data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
844 if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
845 data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
846
847 /* Handle h & v split */
848 if (split_tb) {
849 ASSERT(data->recout.height % 2 == 0);
850 data->recout.height /= 2;
851 } else if (split_count) {
852 if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
853 /* extra pixels in the division remainder need to go to pipes after
854 * the extra pixel index minus one(epimo) defined here as:
855 */
856 int epimo = split_count - data->recout.width % (split_count + 1);
857
858 data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
859 if (split_idx > epimo)
860 data->recout.x += split_idx - epimo - 1;
861 ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
862 data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
863 } else {
864 /* odm */
865 if (split_idx == split_count) {
866 /* rightmost pipe is the remainder recout */
867 data->recout.width -= data->h_active * split_count - data->recout.x;
868
869 /* ODM combine cases with MPO we can get negative widths */
870 if (data->recout.width < 0)
871 data->recout.width = 0;
872
873 data->recout.x = 0;
874 } else
875 data->recout.width = data->h_active - data->recout.x;
876 }
877 }
878 }
879
calculate_scaling_ratios(struct pipe_ctx * pipe_ctx)880 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
881 {
882 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
883 const struct dc_stream_state *stream = pipe_ctx->stream;
884 struct rect surf_src = plane_state->src_rect;
885 const int in_w = stream->src.width;
886 const int in_h = stream->src.height;
887 const int out_w = stream->dst.width;
888 const int out_h = stream->dst.height;
889
890 /*Swap surf_src height and width since scaling ratios are in recout rotation*/
891 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
892 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
893 swap(surf_src.height, surf_src.width);
894
895 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
896 surf_src.width,
897 plane_state->dst_rect.width);
898 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
899 surf_src.height,
900 plane_state->dst_rect.height);
901
902 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
903 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
904 else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
905 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
906
907 pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
908 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
909 pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
910 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
911
912 pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
913 pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
914
915 if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
916 || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
917 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
918 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
919 }
920 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
921 pipe_ctx->plane_res.scl_data.ratios.horz, 19);
922 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
923 pipe_ctx->plane_res.scl_data.ratios.vert, 19);
924 pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
925 pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
926 pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
927 pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
928 }
929
930
931 /*
932 * We completely calculate vp offset, size and inits here based entirely on scaling
933 * ratios and recout for pixel perfect pipe combine.
934 */
calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct fixed31_32 ratio,struct fixed31_32 * init,int * vp_offset,int * vp_size)935 static void calculate_init_and_vp(
936 bool flip_scan_dir,
937 int recout_offset_within_recout_full,
938 int recout_size,
939 int src_size,
940 int taps,
941 struct fixed31_32 ratio,
942 struct fixed31_32 *init,
943 int *vp_offset,
944 int *vp_size)
945 {
946 struct fixed31_32 temp;
947 int int_part;
948
949 /*
950 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
951 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
952 * All following calculations are based on this logic.
953 *
954 * Init calculated according to formula:
955 * init = (scaling_ratio + number_of_taps + 1) / 2
956 * init_bot = init + scaling_ratio
957 * to get pixel perfect combine add the fraction from calculating vp offset
958 */
959 temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
960 *vp_offset = dc_fixpt_floor(temp);
961 temp.value &= 0xffffffff;
962 *init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
963 dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
964 /*
965 * If viewport has non 0 offset and there are more taps than covered by init then
966 * we should decrease the offset and increase init so we are never sampling
967 * outside of viewport.
968 */
969 int_part = dc_fixpt_floor(*init);
970 if (int_part < taps) {
971 int_part = taps - int_part;
972 if (int_part > *vp_offset)
973 int_part = *vp_offset;
974 *vp_offset -= int_part;
975 *init = dc_fixpt_add_int(*init, int_part);
976 }
977 /*
978 * If taps are sampling outside of viewport at end of recout and there are more pixels
979 * available in the surface we should increase the viewport size, regardless set vp to
980 * only what is used.
981 */
982 temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
983 *vp_size = dc_fixpt_floor(temp);
984 if (*vp_size + *vp_offset > src_size)
985 *vp_size = src_size - *vp_offset;
986
987 /* We did all the math assuming we are scanning same direction as display does,
988 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
989 * is flipped we simply need to calculate offset from the other side of plane.
990 * Note that outside of viewport all scaling hardware works in recout space.
991 */
992 if (flip_scan_dir)
993 *vp_offset = src_size - *vp_offset - *vp_size;
994 }
995
calculate_inits_and_viewports(struct pipe_ctx * pipe_ctx)996 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
997 {
998 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
999 const struct dc_stream_state *stream = pipe_ctx->stream;
1000 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1001 struct rect src = plane_state->src_rect;
1002 int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1003 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1004 int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
1005 bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1006
1007 calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
1008 /*
1009 * recout full is what the recout would have been if we didnt clip
1010 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
1011 * offsets of recout within recout full because those are the directions
1012 * we scan from and therefore the only ones that affect inits.
1013 */
1014 recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
1015 * stream->dst.width / stream->src.width;
1016 recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
1017 * stream->dst.height / stream->src.height;
1018 if (pipe_ctx->prev_odm_pipe && split_idx)
1019 ro_lb = data->h_active * split_idx - recout_full_x;
1020 else if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->prev_odm_pipe)
1021 ro_lb = data->h_active * split_idx - recout_full_x + data->recout.x;
1022 else
1023 ro_lb = data->recout.x - recout_full_x;
1024 ro_tb = data->recout.y - recout_full_y;
1025 ASSERT(ro_lb >= 0 && ro_tb >= 0);
1026
1027 /*
1028 * Work in recout rotation since that requires less transformations
1029 */
1030 get_vp_scan_direction(
1031 plane_state->rotation,
1032 plane_state->horizontal_mirror,
1033 &orthogonal_rotation,
1034 &flip_vert_scan_dir,
1035 &flip_horz_scan_dir);
1036
1037 if (orthogonal_rotation) {
1038 swap(src.width, src.height);
1039 swap(flip_vert_scan_dir, flip_horz_scan_dir);
1040 }
1041
1042 calculate_init_and_vp(
1043 flip_horz_scan_dir,
1044 ro_lb,
1045 data->recout.width,
1046 src.width,
1047 data->taps.h_taps,
1048 data->ratios.horz,
1049 &data->inits.h,
1050 &data->viewport.x,
1051 &data->viewport.width);
1052 calculate_init_and_vp(
1053 flip_horz_scan_dir,
1054 ro_lb,
1055 data->recout.width,
1056 src.width / vpc_div,
1057 data->taps.h_taps_c,
1058 data->ratios.horz_c,
1059 &data->inits.h_c,
1060 &data->viewport_c.x,
1061 &data->viewport_c.width);
1062 calculate_init_and_vp(
1063 flip_vert_scan_dir,
1064 ro_tb,
1065 data->recout.height,
1066 src.height,
1067 data->taps.v_taps,
1068 data->ratios.vert,
1069 &data->inits.v,
1070 &data->viewport.y,
1071 &data->viewport.height);
1072 calculate_init_and_vp(
1073 flip_vert_scan_dir,
1074 ro_tb,
1075 data->recout.height,
1076 src.height / vpc_div,
1077 data->taps.v_taps_c,
1078 data->ratios.vert_c,
1079 &data->inits.v_c,
1080 &data->viewport_c.y,
1081 &data->viewport_c.height);
1082 if (orthogonal_rotation) {
1083 swap(data->viewport.x, data->viewport.y);
1084 swap(data->viewport.width, data->viewport.height);
1085 swap(data->viewport_c.x, data->viewport_c.y);
1086 swap(data->viewport_c.width, data->viewport_c.height);
1087 }
1088 data->viewport.x += src.x;
1089 data->viewport.y += src.y;
1090 ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1091 data->viewport_c.x += src.x / vpc_div;
1092 data->viewport_c.y += src.y / vpc_div;
1093 }
1094
resource_build_scaling_params(struct pipe_ctx * pipe_ctx)1095 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1096 {
1097 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1098 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1099 bool res = false;
1100 DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1101
1102 /* Invalid input */
1103 if (!plane_state->dst_rect.width ||
1104 !plane_state->dst_rect.height ||
1105 !plane_state->src_rect.width ||
1106 !plane_state->src_rect.height) {
1107 ASSERT(0);
1108 return false;
1109 }
1110
1111 pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1112 pipe_ctx->plane_state->format);
1113
1114 /* Timing borders are part of vactive that we are also supposed to skip in addition
1115 * to any stream dst offset. Since dm logic assumes dst is in addressable
1116 * space we need to add the left and top borders to dst offsets temporarily.
1117 * TODO: fix in DM, stream dst is supposed to be in vactive
1118 */
1119 pipe_ctx->stream->dst.x += timing->h_border_left;
1120 pipe_ctx->stream->dst.y += timing->v_border_top;
1121
1122 /* Calculate H and V active size */
1123 pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1124 timing->h_border_left + timing->h_border_right;
1125 pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1126 timing->v_border_top + timing->v_border_bottom;
1127 if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe) {
1128 pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1129
1130 DC_LOG_SCALER("%s pipe %d: next_odm_pipe:%d prev_odm_pipe:%d\n",
1131 __func__,
1132 pipe_ctx->pipe_idx,
1133 pipe_ctx->next_odm_pipe ? pipe_ctx->next_odm_pipe->pipe_idx : -1,
1134 pipe_ctx->prev_odm_pipe ? pipe_ctx->prev_odm_pipe->pipe_idx : -1);
1135 } /* ODM + windows MPO, where window is on either right or left ODM half */
1136 else if (pipe_ctx->top_pipe && (pipe_ctx->top_pipe->next_odm_pipe || pipe_ctx->top_pipe->prev_odm_pipe)) {
1137
1138 pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx->top_pipe) + 1;
1139
1140 DC_LOG_SCALER("%s ODM + windows MPO: pipe:%d top_pipe:%d top_pipe->next_odm_pipe:%d top_pipe->prev_odm_pipe:%d\n",
1141 __func__,
1142 pipe_ctx->pipe_idx,
1143 pipe_ctx->top_pipe->pipe_idx,
1144 pipe_ctx->top_pipe->next_odm_pipe ? pipe_ctx->top_pipe->next_odm_pipe->pipe_idx : -1,
1145 pipe_ctx->top_pipe->prev_odm_pipe ? pipe_ctx->top_pipe->prev_odm_pipe->pipe_idx : -1);
1146 }
1147 /* depends on h_active */
1148 calculate_recout(pipe_ctx);
1149 /* depends on pixel format */
1150 calculate_scaling_ratios(pipe_ctx);
1151 /* depends on scaling ratios and recout, does not calculate offset yet */
1152 calculate_viewport_size(pipe_ctx);
1153
1154 if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1155 /* Stopgap for validation of ODM + MPO on one side of screen case */
1156 if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1157 pipe_ctx->plane_res.scl_data.viewport.width < 1)
1158 return false;
1159 }
1160
1161 /*
1162 * LB calculations depend on vp size, h/v_active and scaling ratios
1163 * Setting line buffer pixel depth to 24bpp yields banding
1164 * on certain displays, such as the Sharp 4k. 36bpp is needed
1165 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1166 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1167 * precision on DCN display engines, but apparently not for DCE, as
1168 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1169 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1170 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1171 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1172 */
1173 if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1174 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1175 else
1176 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1177
1178 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1179
1180 if (pipe_ctx->plane_res.xfm != NULL)
1181 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1182 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1183
1184 if (pipe_ctx->plane_res.dpp != NULL)
1185 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1186 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1187
1188
1189 if (!res) {
1190 /* Try 24 bpp linebuffer */
1191 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1192
1193 if (pipe_ctx->plane_res.xfm != NULL)
1194 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1195 pipe_ctx->plane_res.xfm,
1196 &pipe_ctx->plane_res.scl_data,
1197 &plane_state->scaling_quality);
1198
1199 if (pipe_ctx->plane_res.dpp != NULL)
1200 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1201 pipe_ctx->plane_res.dpp,
1202 &pipe_ctx->plane_res.scl_data,
1203 &plane_state->scaling_quality);
1204 }
1205
1206 /*
1207 * Depends on recout, scaling ratios, h_active and taps
1208 * May need to re-check lb size after this in some obscure scenario
1209 */
1210 if (res)
1211 calculate_inits_and_viewports(pipe_ctx);
1212
1213 /*
1214 * Handle side by side and top bottom 3d recout offsets after vp calculation
1215 * since 3d is special and needs to calculate vp as if there is no recout offset
1216 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1217 */
1218 if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1219 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1220 (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1221 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1222 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1223 pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1224 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1225 pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1226 }
1227
1228 if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1229 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1230 pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1231 res = false;
1232 } else {
1233 /* Clamp minimum viewport size */
1234 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1235 pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1236 if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1237 pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1238 }
1239
1240 DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d Recout: height:%d width:%d x:%d y:%d HACTIVE:%d VACTIVE:%d\n"
1241 "src_rect: height:%d width:%d x:%d y:%d dst_rect: height:%d width:%d x:%d y:%d clip_rect: height:%d width:%d x:%d y:%d\n",
1242 __func__,
1243 pipe_ctx->pipe_idx,
1244 pipe_ctx->plane_res.scl_data.viewport.height,
1245 pipe_ctx->plane_res.scl_data.viewport.width,
1246 pipe_ctx->plane_res.scl_data.viewport.x,
1247 pipe_ctx->plane_res.scl_data.viewport.y,
1248 pipe_ctx->plane_res.scl_data.recout.height,
1249 pipe_ctx->plane_res.scl_data.recout.width,
1250 pipe_ctx->plane_res.scl_data.recout.x,
1251 pipe_ctx->plane_res.scl_data.recout.y,
1252 pipe_ctx->plane_res.scl_data.h_active,
1253 pipe_ctx->plane_res.scl_data.v_active,
1254 plane_state->src_rect.height,
1255 plane_state->src_rect.width,
1256 plane_state->src_rect.x,
1257 plane_state->src_rect.y,
1258 plane_state->dst_rect.height,
1259 plane_state->dst_rect.width,
1260 plane_state->dst_rect.x,
1261 plane_state->dst_rect.y,
1262 plane_state->clip_rect.height,
1263 plane_state->clip_rect.width,
1264 plane_state->clip_rect.x,
1265 plane_state->clip_rect.y);
1266
1267 pipe_ctx->stream->dst.x -= timing->h_border_left;
1268 pipe_ctx->stream->dst.y -= timing->v_border_top;
1269
1270 return res;
1271 }
1272
1273
resource_build_scaling_params_for_context(const struct dc * dc,struct dc_state * context)1274 enum dc_status resource_build_scaling_params_for_context(
1275 const struct dc *dc,
1276 struct dc_state *context)
1277 {
1278 int i;
1279
1280 for (i = 0; i < MAX_PIPES; i++) {
1281 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1282 context->res_ctx.pipe_ctx[i].stream != NULL)
1283 if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1284 return DC_FAIL_SCALING;
1285 }
1286
1287 return DC_OK;
1288 }
1289
find_idle_secondary_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1290 struct pipe_ctx *find_idle_secondary_pipe(
1291 struct resource_context *res_ctx,
1292 const struct resource_pool *pool,
1293 const struct pipe_ctx *primary_pipe)
1294 {
1295 int i;
1296 struct pipe_ctx *secondary_pipe = NULL;
1297
1298 /*
1299 * We add a preferred pipe mapping to avoid the chance that
1300 * MPCCs already in use will need to be reassigned to other trees.
1301 * For example, if we went with the strict, assign backwards logic:
1302 *
1303 * (State 1)
1304 * Display A on, no surface, top pipe = 0
1305 * Display B on, no surface, top pipe = 1
1306 *
1307 * (State 2)
1308 * Display A on, no surface, top pipe = 0
1309 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1310 *
1311 * (State 3)
1312 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1313 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1314 *
1315 * The state 2->3 transition requires remapping MPCC 5 from display B
1316 * to display A.
1317 *
1318 * However, with the preferred pipe logic, state 2 would look like:
1319 *
1320 * (State 2)
1321 * Display A on, no surface, top pipe = 0
1322 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1323 *
1324 * This would then cause 2->3 to not require remapping any MPCCs.
1325 */
1326 if (primary_pipe) {
1327 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1328 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1329 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1330 secondary_pipe->pipe_idx = preferred_pipe_idx;
1331 }
1332 }
1333
1334 /*
1335 * search backwards for the second pipe to keep pipe
1336 * assignment more consistent
1337 */
1338 if (!secondary_pipe)
1339 for (i = pool->pipe_count - 1; i >= 0; i--) {
1340 if (res_ctx->pipe_ctx[i].stream == NULL) {
1341 secondary_pipe = &res_ctx->pipe_ctx[i];
1342 secondary_pipe->pipe_idx = i;
1343 break;
1344 }
1345 }
1346
1347 return secondary_pipe;
1348 }
1349
resource_get_head_pipe_for_stream(struct resource_context * res_ctx,struct dc_stream_state * stream)1350 struct pipe_ctx *resource_get_head_pipe_for_stream(
1351 struct resource_context *res_ctx,
1352 struct dc_stream_state *stream)
1353 {
1354 int i;
1355
1356 for (i = 0; i < MAX_PIPES; i++) {
1357 if (res_ctx->pipe_ctx[i].stream == stream
1358 && !res_ctx->pipe_ctx[i].top_pipe
1359 && !res_ctx->pipe_ctx[i].prev_odm_pipe)
1360 return &res_ctx->pipe_ctx[i];
1361 }
1362 return NULL;
1363 }
1364
resource_get_tail_pipe(struct resource_context * res_ctx,struct pipe_ctx * head_pipe)1365 static struct pipe_ctx *resource_get_tail_pipe(
1366 struct resource_context *res_ctx,
1367 struct pipe_ctx *head_pipe)
1368 {
1369 struct pipe_ctx *tail_pipe;
1370
1371 tail_pipe = head_pipe->bottom_pipe;
1372
1373 while (tail_pipe) {
1374 head_pipe = tail_pipe;
1375 tail_pipe = tail_pipe->bottom_pipe;
1376 }
1377
1378 return head_pipe;
1379 }
1380
1381 /*
1382 * A free_pipe for a stream is defined here as a pipe
1383 * that has no surface attached yet
1384 */
acquire_free_pipe_for_head(struct dc_state * context,const struct resource_pool * pool,struct pipe_ctx * head_pipe)1385 static struct pipe_ctx *acquire_free_pipe_for_head(
1386 struct dc_state *context,
1387 const struct resource_pool *pool,
1388 struct pipe_ctx *head_pipe)
1389 {
1390 int i;
1391 struct resource_context *res_ctx = &context->res_ctx;
1392
1393 if (!head_pipe->plane_state)
1394 return head_pipe;
1395
1396 /* Re-use pipe already acquired for this stream if available*/
1397 for (i = pool->pipe_count - 1; i >= 0; i--) {
1398 if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1399 !res_ctx->pipe_ctx[i].plane_state) {
1400 return &res_ctx->pipe_ctx[i];
1401 }
1402 }
1403
1404 /*
1405 * At this point we have no re-useable pipe for this stream and we need
1406 * to acquire an idle one to satisfy the request
1407 */
1408
1409 if (!pool->funcs->acquire_idle_pipe_for_layer) {
1410 if (!pool->funcs->acquire_idle_pipe_for_head_pipe_in_layer)
1411 return NULL;
1412 else
1413 return pool->funcs->acquire_idle_pipe_for_head_pipe_in_layer(context, pool, head_pipe->stream, head_pipe);
1414 }
1415
1416 return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1417 }
1418
acquire_first_split_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1419 static int acquire_first_split_pipe(
1420 struct resource_context *res_ctx,
1421 const struct resource_pool *pool,
1422 struct dc_stream_state *stream)
1423 {
1424 int i;
1425
1426 for (i = 0; i < pool->pipe_count; i++) {
1427 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1428
1429 if (split_pipe->top_pipe &&
1430 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1431 split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1432 if (split_pipe->bottom_pipe)
1433 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1434
1435 if (split_pipe->top_pipe->plane_state)
1436 resource_build_scaling_params(split_pipe->top_pipe);
1437
1438 memset(split_pipe, 0, sizeof(*split_pipe));
1439 split_pipe->stream_res.tg = pool->timing_generators[i];
1440 split_pipe->plane_res.hubp = pool->hubps[i];
1441 split_pipe->plane_res.ipp = pool->ipps[i];
1442 split_pipe->plane_res.dpp = pool->dpps[i];
1443 split_pipe->stream_res.opp = pool->opps[i];
1444 split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1445 split_pipe->pipe_idx = i;
1446
1447 split_pipe->stream = stream;
1448 return i;
1449 }
1450 }
1451 return -1;
1452 }
1453
dc_add_plane_to_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1454 bool dc_add_plane_to_context(
1455 const struct dc *dc,
1456 struct dc_stream_state *stream,
1457 struct dc_plane_state *plane_state,
1458 struct dc_state *context)
1459 {
1460 int i;
1461 struct resource_pool *pool = dc->res_pool;
1462 struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1463 struct dc_stream_status *stream_status = NULL;
1464 struct pipe_ctx *prev_right_head = NULL;
1465 struct pipe_ctx *free_right_pipe = NULL;
1466 struct pipe_ctx *prev_left_head = NULL;
1467
1468 DC_LOGGER_INIT(stream->ctx->logger);
1469 for (i = 0; i < context->stream_count; i++)
1470 if (context->streams[i] == stream) {
1471 stream_status = &context->stream_status[i];
1472 break;
1473 }
1474 if (stream_status == NULL) {
1475 dm_error("Existing stream not found; failed to attach surface!\n");
1476 return false;
1477 }
1478
1479
1480 if (stream_status->plane_count == MAX_SURFACE_NUM) {
1481 dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1482 plane_state, MAX_SURFACE_NUM);
1483 return false;
1484 }
1485
1486 head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1487
1488 if (!head_pipe) {
1489 dm_error("Head pipe not found for stream_state %p !\n", stream);
1490 return false;
1491 }
1492
1493 /* retain new surface, but only once per stream */
1494 dc_plane_state_retain(plane_state);
1495
1496 while (head_pipe) {
1497 free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1498
1499 if (!free_pipe) {
1500 int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1501 if (pipe_idx >= 0)
1502 free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1503 }
1504
1505 if (!free_pipe) {
1506 dc_plane_state_release(plane_state);
1507 return false;
1508 }
1509
1510 free_pipe->plane_state = plane_state;
1511
1512 if (head_pipe != free_pipe) {
1513 tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1514 ASSERT(tail_pipe);
1515
1516 /* ODM + window MPO, where MPO window is on right half only */
1517 if (free_pipe->plane_state &&
1518 (free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2) &&
1519 tail_pipe->next_odm_pipe) {
1520
1521 /* For ODM + window MPO, in 3 plane case, if we already have a MPO window on
1522 * the right side, then we will invalidate a 2nd one on the right side
1523 */
1524 if (head_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1525 dc_plane_state_release(plane_state);
1526 return false;
1527 }
1528
1529 DC_LOG_SCALER("%s - ODM + window MPO(right). free_pipe:%d tail_pipe->next_odm_pipe:%d\n",
1530 __func__,
1531 free_pipe->pipe_idx,
1532 tail_pipe->next_odm_pipe ? tail_pipe->next_odm_pipe->pipe_idx : -1);
1533
1534 /*
1535 * We want to avoid the case where the right side already has a pipe assigned to
1536 * it and is different from free_pipe ( which would cause trigger a pipe
1537 * reallocation ).
1538 * Check the old context to see if the right side already has a pipe allocated
1539 * - If not, continue to use free_pipe
1540 * - If the right side already has a pipe, use that pipe instead if its available
1541 */
1542
1543 /*
1544 * We also want to avoid the case where with three plane ( 2 MPO videos ), we have
1545 * both videos on the left side so one of the videos is invalidated. Then we
1546 * move the invalidated video back to the right side. If the order of the plane
1547 * states is such that the right MPO plane is processed first, the free pipe
1548 * selected by the head will be the left MPO pipe. But since there was no right
1549 * MPO pipe, it will assign the free pipe to the right MPO pipe instead and
1550 * a pipe reallocation will occur.
1551 * Check the old context to see if the left side already has a pipe allocated
1552 * - If not, continue to use free_pipe
1553 * - If the left side is already using this pipe, then pick another pipe for right
1554 */
1555
1556 prev_right_head = &dc->current_state->res_ctx.pipe_ctx[tail_pipe->next_odm_pipe->pipe_idx];
1557 if ((prev_right_head->bottom_pipe) &&
1558 (free_pipe->pipe_idx != prev_right_head->bottom_pipe->pipe_idx)) {
1559 free_right_pipe = acquire_free_pipe_for_head(context, pool, tail_pipe->next_odm_pipe);
1560 } else {
1561 prev_left_head = &dc->current_state->res_ctx.pipe_ctx[head_pipe->pipe_idx];
1562 if ((prev_left_head->bottom_pipe) &&
1563 (free_pipe->pipe_idx == prev_left_head->bottom_pipe->pipe_idx)) {
1564 free_right_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1565 }
1566 }
1567
1568 if (free_right_pipe) {
1569 free_pipe->stream = NULL;
1570 memset(&free_pipe->stream_res, 0, sizeof(struct stream_resource));
1571 memset(&free_pipe->plane_res, 0, sizeof(struct plane_resource));
1572 free_pipe->plane_state = NULL;
1573 free_pipe->pipe_idx = 0;
1574 free_right_pipe->plane_state = plane_state;
1575 free_pipe = free_right_pipe;
1576 }
1577
1578 free_pipe->stream_res.tg = tail_pipe->next_odm_pipe->stream_res.tg;
1579 free_pipe->stream_res.abm = tail_pipe->next_odm_pipe->stream_res.abm;
1580 free_pipe->stream_res.opp = tail_pipe->next_odm_pipe->stream_res.opp;
1581 free_pipe->stream_res.stream_enc = tail_pipe->next_odm_pipe->stream_res.stream_enc;
1582 free_pipe->stream_res.audio = tail_pipe->next_odm_pipe->stream_res.audio;
1583 free_pipe->clock_source = tail_pipe->next_odm_pipe->clock_source;
1584
1585 free_pipe->top_pipe = tail_pipe->next_odm_pipe;
1586 tail_pipe->next_odm_pipe->bottom_pipe = free_pipe;
1587 } else if (free_pipe->plane_state &&
1588 (free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2)
1589 && head_pipe->next_odm_pipe) {
1590
1591 /* For ODM + window MPO, support 3 plane ( 2 MPO ) case.
1592 * Here we have a desktop ODM + left window MPO and a new MPO window appears
1593 * on the right side only. It fails the first case, because tail_pipe is the
1594 * left window MPO, so it has no next_odm_pipe. So in this scenario, we check
1595 * for head_pipe->next_odm_pipe instead
1596 */
1597 DC_LOG_SCALER("%s - ODM + win MPO (left) + win MPO (right). free_pipe:%d head_pipe->next_odm:%d\n",
1598 __func__,
1599 free_pipe->pipe_idx,
1600 head_pipe->next_odm_pipe ? head_pipe->next_odm_pipe->pipe_idx : -1);
1601
1602 /*
1603 * We want to avoid the case where the right side already has a pipe assigned to
1604 * it and is different from free_pipe ( which would cause trigger a pipe
1605 * reallocation ).
1606 * Check the old context to see if the right side already has a pipe allocated
1607 * - If not, continue to use free_pipe
1608 * - If the right side already has a pipe, use that pipe instead if its available
1609 */
1610 prev_right_head = &dc->current_state->res_ctx.pipe_ctx[head_pipe->next_odm_pipe->pipe_idx];
1611 if ((prev_right_head->bottom_pipe) &&
1612 (free_pipe->pipe_idx != prev_right_head->bottom_pipe->pipe_idx)) {
1613 free_right_pipe = acquire_free_pipe_for_head(context, pool, head_pipe->next_odm_pipe);
1614 if (free_right_pipe) {
1615 free_pipe->stream = NULL;
1616 memset(&free_pipe->stream_res, 0, sizeof(struct stream_resource));
1617 memset(&free_pipe->plane_res, 0, sizeof(struct plane_resource));
1618 free_pipe->plane_state = NULL;
1619 free_pipe->pipe_idx = 0;
1620 free_right_pipe->plane_state = plane_state;
1621 free_pipe = free_right_pipe;
1622 }
1623 }
1624
1625 free_pipe->stream_res.tg = head_pipe->next_odm_pipe->stream_res.tg;
1626 free_pipe->stream_res.abm = head_pipe->next_odm_pipe->stream_res.abm;
1627 free_pipe->stream_res.opp = head_pipe->next_odm_pipe->stream_res.opp;
1628 free_pipe->stream_res.stream_enc = head_pipe->next_odm_pipe->stream_res.stream_enc;
1629 free_pipe->stream_res.audio = head_pipe->next_odm_pipe->stream_res.audio;
1630 free_pipe->clock_source = head_pipe->next_odm_pipe->clock_source;
1631
1632 free_pipe->top_pipe = head_pipe->next_odm_pipe;
1633 head_pipe->next_odm_pipe->bottom_pipe = free_pipe;
1634 } else {
1635
1636 /* For ODM + window MPO, in 3 plane case, if we already have a MPO window on
1637 * the left side, then we will invalidate a 2nd one on the left side
1638 */
1639 if (head_pipe->next_odm_pipe && tail_pipe->top_pipe) {
1640 dc_plane_state_release(plane_state);
1641 return false;
1642 }
1643
1644 free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1645 free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1646 free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1647 free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1648 free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1649 free_pipe->clock_source = tail_pipe->clock_source;
1650
1651 free_pipe->top_pipe = tail_pipe;
1652 tail_pipe->bottom_pipe = free_pipe;
1653
1654 /* Connect MPO pipes together if MPO window is in the centre */
1655 if (!(free_pipe->plane_state &&
1656 (free_pipe->plane_state->clip_rect.x + free_pipe->plane_state->clip_rect.width <=
1657 free_pipe->stream->src.x + free_pipe->stream->src.width/2))) {
1658 if (!free_pipe->next_odm_pipe &&
1659 tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1660 free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1661 tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1662 }
1663 if (!free_pipe->prev_odm_pipe &&
1664 tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1665 free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1666 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1667 }
1668 }
1669 }
1670 }
1671
1672 /* ODM + window MPO, where MPO window is on left half only */
1673 if (free_pipe->plane_state &&
1674 (free_pipe->plane_state->clip_rect.x + free_pipe->plane_state->clip_rect.width <=
1675 free_pipe->stream->src.x + free_pipe->stream->src.width/2)) {
1676 DC_LOG_SCALER("%s - ODM + window MPO(left). free_pipe:%d\n",
1677 __func__,
1678 free_pipe->pipe_idx);
1679 break;
1680 }
1681 /* ODM + window MPO, where MPO window is on right half only */
1682 if (free_pipe->plane_state &&
1683 (free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2)) {
1684 DC_LOG_SCALER("%s - ODM + window MPO(right). free_pipe:%d\n",
1685 __func__,
1686 free_pipe->pipe_idx);
1687 break;
1688 }
1689
1690 head_pipe = head_pipe->next_odm_pipe;
1691 }
1692 /* assign new surfaces*/
1693 stream_status->plane_states[stream_status->plane_count] = plane_state;
1694
1695 stream_status->plane_count++;
1696
1697 return true;
1698 }
1699
dc_remove_plane_from_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1700 bool dc_remove_plane_from_context(
1701 const struct dc *dc,
1702 struct dc_stream_state *stream,
1703 struct dc_plane_state *plane_state,
1704 struct dc_state *context)
1705 {
1706 int i;
1707 struct dc_stream_status *stream_status = NULL;
1708 struct resource_pool *pool = dc->res_pool;
1709
1710 for (i = 0; i < context->stream_count; i++)
1711 if (context->streams[i] == stream) {
1712 stream_status = &context->stream_status[i];
1713 break;
1714 }
1715
1716 if (stream_status == NULL) {
1717 dm_error("Existing stream not found; failed to remove plane.\n");
1718 return false;
1719 }
1720
1721 /* release pipe for plane*/
1722 for (i = pool->pipe_count - 1; i >= 0; i--) {
1723 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1724
1725 if (pipe_ctx->plane_state == plane_state) {
1726 if (pipe_ctx->top_pipe)
1727 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1728
1729 /* Second condition is to avoid setting NULL to top pipe
1730 * of tail pipe making it look like head pipe in subsequent
1731 * deletes
1732 */
1733 if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1734 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1735
1736 /*
1737 * For head pipe detach surfaces from pipe for tail
1738 * pipe just zero it out
1739 */
1740 if (!pipe_ctx->top_pipe)
1741 pipe_ctx->plane_state = NULL;
1742 else
1743 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1744 }
1745 }
1746
1747
1748 for (i = 0; i < stream_status->plane_count; i++) {
1749 if (stream_status->plane_states[i] == plane_state) {
1750 dc_plane_state_release(stream_status->plane_states[i]);
1751 break;
1752 }
1753 }
1754
1755 if (i == stream_status->plane_count) {
1756 dm_error("Existing plane_state not found; failed to detach it!\n");
1757 return false;
1758 }
1759
1760 stream_status->plane_count--;
1761
1762 /* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1763 for (; i < stream_status->plane_count; i++)
1764 stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1765
1766 stream_status->plane_states[stream_status->plane_count] = NULL;
1767
1768 return true;
1769 }
1770
dc_rem_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1771 bool dc_rem_all_planes_for_stream(
1772 const struct dc *dc,
1773 struct dc_stream_state *stream,
1774 struct dc_state *context)
1775 {
1776 int i, old_plane_count;
1777 struct dc_stream_status *stream_status = NULL;
1778 struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1779
1780 for (i = 0; i < context->stream_count; i++)
1781 if (context->streams[i] == stream) {
1782 stream_status = &context->stream_status[i];
1783 break;
1784 }
1785
1786 if (stream_status == NULL) {
1787 dm_error("Existing stream %p not found!\n", stream);
1788 return false;
1789 }
1790
1791 old_plane_count = stream_status->plane_count;
1792
1793 for (i = 0; i < old_plane_count; i++)
1794 del_planes[i] = stream_status->plane_states[i];
1795
1796 for (i = 0; i < old_plane_count; i++)
1797 if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1798 return false;
1799
1800 return true;
1801 }
1802
add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count,struct dc_state * context)1803 static bool add_all_planes_for_stream(
1804 const struct dc *dc,
1805 struct dc_stream_state *stream,
1806 const struct dc_validation_set set[],
1807 int set_count,
1808 struct dc_state *context)
1809 {
1810 int i, j;
1811
1812 for (i = 0; i < set_count; i++)
1813 if (set[i].stream == stream)
1814 break;
1815
1816 if (i == set_count) {
1817 dm_error("Stream %p not found in set!\n", stream);
1818 return false;
1819 }
1820
1821 for (j = 0; j < set[i].plane_count; j++)
1822 if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1823 return false;
1824
1825 return true;
1826 }
1827
dc_add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * const * plane_states,int plane_count,struct dc_state * context)1828 bool dc_add_all_planes_for_stream(
1829 const struct dc *dc,
1830 struct dc_stream_state *stream,
1831 struct dc_plane_state * const *plane_states,
1832 int plane_count,
1833 struct dc_state *context)
1834 {
1835 struct dc_validation_set set;
1836 int i;
1837
1838 set.stream = stream;
1839 set.plane_count = plane_count;
1840
1841 for (i = 0; i < plane_count; i++)
1842 set.plane_states[i] = plane_states[i];
1843
1844 return add_all_planes_for_stream(dc, stream, &set, 1, context);
1845 }
1846
is_timing_changed(struct dc_stream_state * cur_stream,struct dc_stream_state * new_stream)1847 bool is_timing_changed(struct dc_stream_state *cur_stream,
1848 struct dc_stream_state *new_stream)
1849 {
1850 if (cur_stream == NULL)
1851 return true;
1852
1853 /* If output color space is changed, need to reprogram info frames */
1854 if (cur_stream->output_color_space != new_stream->output_color_space)
1855 return true;
1856
1857 return memcmp(
1858 &cur_stream->timing,
1859 &new_stream->timing,
1860 sizeof(struct dc_crtc_timing)) != 0;
1861 }
1862
are_stream_backends_same(struct dc_stream_state * stream_a,struct dc_stream_state * stream_b)1863 static bool are_stream_backends_same(
1864 struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1865 {
1866 if (stream_a == stream_b)
1867 return true;
1868
1869 if (stream_a == NULL || stream_b == NULL)
1870 return false;
1871
1872 if (is_timing_changed(stream_a, stream_b))
1873 return false;
1874
1875 if (stream_a->signal != stream_b->signal)
1876 return false;
1877
1878 if (stream_a->dpms_off != stream_b->dpms_off)
1879 return false;
1880
1881 return true;
1882 }
1883
1884 /*
1885 * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1886 *
1887 * Checks if there a difference between the two states
1888 * that would require a mode change.
1889 *
1890 * Does not compare cursor position or attributes.
1891 */
dc_is_stream_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)1892 bool dc_is_stream_unchanged(
1893 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1894 {
1895
1896 if (!are_stream_backends_same(old_stream, stream))
1897 return false;
1898
1899 if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1900 return false;
1901
1902 /*compare audio info*/
1903 if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
1904 return false;
1905
1906 return true;
1907 }
1908
1909 /*
1910 * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1911 */
dc_is_stream_scaling_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)1912 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
1913 struct dc_stream_state *stream)
1914 {
1915 if (old_stream == stream)
1916 return true;
1917
1918 if (old_stream == NULL || stream == NULL)
1919 return false;
1920
1921 if (memcmp(&old_stream->src,
1922 &stream->src,
1923 sizeof(struct rect)) != 0)
1924 return false;
1925
1926 if (memcmp(&old_stream->dst,
1927 &stream->dst,
1928 sizeof(struct rect)) != 0)
1929 return false;
1930
1931 return true;
1932 }
1933
update_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct stream_encoder * stream_enc,bool acquired)1934 static void update_stream_engine_usage(
1935 struct resource_context *res_ctx,
1936 const struct resource_pool *pool,
1937 struct stream_encoder *stream_enc,
1938 bool acquired)
1939 {
1940 int i;
1941
1942 for (i = 0; i < pool->stream_enc_count; i++) {
1943 if (pool->stream_enc[i] == stream_enc)
1944 res_ctx->is_stream_enc_acquired[i] = acquired;
1945 }
1946 }
1947
update_hpo_dp_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct hpo_dp_stream_encoder * hpo_dp_stream_enc,bool acquired)1948 static void update_hpo_dp_stream_engine_usage(
1949 struct resource_context *res_ctx,
1950 const struct resource_pool *pool,
1951 struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
1952 bool acquired)
1953 {
1954 int i;
1955
1956 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1957 if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
1958 res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
1959 }
1960 }
1961
find_acquired_hpo_dp_link_enc_for_link(const struct resource_context * res_ctx,const struct dc_link * link)1962 static inline int find_acquired_hpo_dp_link_enc_for_link(
1963 const struct resource_context *res_ctx,
1964 const struct dc_link *link)
1965 {
1966 int i;
1967
1968 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
1969 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
1970 res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
1971 return i;
1972
1973 return -1;
1974 }
1975
find_free_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * pool)1976 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
1977 const struct resource_pool *pool)
1978 {
1979 int i;
1980
1981 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
1982 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
1983 break;
1984
1985 return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
1986 i < pool->hpo_dp_link_enc_count) ? i : -1;
1987 }
1988
acquire_hpo_dp_link_enc(struct resource_context * res_ctx,unsigned int link_index,int enc_index)1989 static inline void acquire_hpo_dp_link_enc(
1990 struct resource_context *res_ctx,
1991 unsigned int link_index,
1992 int enc_index)
1993 {
1994 res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
1995 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
1996 }
1997
retain_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)1998 static inline void retain_hpo_dp_link_enc(
1999 struct resource_context *res_ctx,
2000 int enc_index)
2001 {
2002 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2003 }
2004
release_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2005 static inline void release_hpo_dp_link_enc(
2006 struct resource_context *res_ctx,
2007 int enc_index)
2008 {
2009 ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2010 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2011 }
2012
add_hpo_dp_link_enc_to_ctx(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2013 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2014 const struct resource_pool *pool,
2015 struct pipe_ctx *pipe_ctx,
2016 struct dc_stream_state *stream)
2017 {
2018 int enc_index;
2019
2020 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2021
2022 if (enc_index >= 0) {
2023 retain_hpo_dp_link_enc(res_ctx, enc_index);
2024 } else {
2025 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2026 if (enc_index >= 0)
2027 acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2028 }
2029
2030 if (enc_index >= 0)
2031 pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2032
2033 return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2034 }
2035
remove_hpo_dp_link_enc_from_ctx(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2036 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2037 struct pipe_ctx *pipe_ctx,
2038 struct dc_stream_state *stream)
2039 {
2040 int enc_index;
2041
2042 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2043
2044 if (enc_index >= 0) {
2045 release_hpo_dp_link_enc(res_ctx, enc_index);
2046 pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2047 }
2048 }
2049
2050 /* TODO: release audio object */
update_audio_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct audio * audio,bool acquired)2051 void update_audio_usage(
2052 struct resource_context *res_ctx,
2053 const struct resource_pool *pool,
2054 struct audio *audio,
2055 bool acquired)
2056 {
2057 int i;
2058 for (i = 0; i < pool->audio_count; i++) {
2059 if (pool->audios[i] == audio)
2060 res_ctx->is_audio_acquired[i] = acquired;
2061 }
2062 }
2063
acquire_first_free_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2064 static int acquire_first_free_pipe(
2065 struct resource_context *res_ctx,
2066 const struct resource_pool *pool,
2067 struct dc_stream_state *stream)
2068 {
2069 int i;
2070
2071 for (i = 0; i < pool->pipe_count; i++) {
2072 if (!res_ctx->pipe_ctx[i].stream) {
2073 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
2074
2075 pipe_ctx->stream_res.tg = pool->timing_generators[i];
2076 pipe_ctx->plane_res.mi = pool->mis[i];
2077 pipe_ctx->plane_res.hubp = pool->hubps[i];
2078 pipe_ctx->plane_res.ipp = pool->ipps[i];
2079 pipe_ctx->plane_res.xfm = pool->transforms[i];
2080 pipe_ctx->plane_res.dpp = pool->dpps[i];
2081 pipe_ctx->stream_res.opp = pool->opps[i];
2082 if (pool->dpps[i])
2083 pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
2084 pipe_ctx->pipe_idx = i;
2085
2086 if (i >= pool->timing_generator_count) {
2087 int tg_inst = pool->timing_generator_count - 1;
2088
2089 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2090 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2091 }
2092
2093 pipe_ctx->stream = stream;
2094 return i;
2095 }
2096 }
2097 return -1;
2098 }
2099
find_first_free_match_hpo_dp_stream_enc_for_link(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2100 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
2101 struct resource_context *res_ctx,
2102 const struct resource_pool *pool,
2103 struct dc_stream_state *stream)
2104 {
2105 int i;
2106
2107 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2108 if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
2109 pool->hpo_dp_stream_enc[i]) {
2110
2111 return pool->hpo_dp_stream_enc[i];
2112 }
2113 }
2114
2115 return NULL;
2116 }
2117
find_first_free_audio(struct resource_context * res_ctx,const struct resource_pool * pool,enum engine_id id,enum dce_version dc_version)2118 static struct audio *find_first_free_audio(
2119 struct resource_context *res_ctx,
2120 const struct resource_pool *pool,
2121 enum engine_id id,
2122 enum dce_version dc_version)
2123 {
2124 int i, available_audio_count;
2125
2126 available_audio_count = pool->audio_count;
2127
2128 for (i = 0; i < available_audio_count; i++) {
2129 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
2130 /*we have enough audio endpoint, find the matching inst*/
2131 if (id != i)
2132 continue;
2133 return pool->audios[i];
2134 }
2135 }
2136
2137 /* use engine id to find free audio */
2138 if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
2139 return pool->audios[id];
2140 }
2141 /*not found the matching one, first come first serve*/
2142 for (i = 0; i < available_audio_count; i++) {
2143 if (res_ctx->is_audio_acquired[i] == false) {
2144 return pool->audios[i];
2145 }
2146 }
2147 return NULL;
2148 }
2149
2150 /*
2151 * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
2152 */
dc_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)2153 enum dc_status dc_add_stream_to_ctx(
2154 struct dc *dc,
2155 struct dc_state *new_ctx,
2156 struct dc_stream_state *stream)
2157 {
2158 enum dc_status res;
2159 DC_LOGGER_INIT(dc->ctx->logger);
2160
2161 if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
2162 DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
2163 return DC_ERROR_UNEXPECTED;
2164 }
2165
2166 new_ctx->streams[new_ctx->stream_count] = stream;
2167 dc_stream_retain(stream);
2168 new_ctx->stream_count++;
2169
2170 res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2171 if (res != DC_OK)
2172 DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
2173
2174 return res;
2175 }
2176
2177 /*
2178 * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
2179 */
dc_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)2180 enum dc_status dc_remove_stream_from_ctx(
2181 struct dc *dc,
2182 struct dc_state *new_ctx,
2183 struct dc_stream_state *stream)
2184 {
2185 int i;
2186 struct dc_context *dc_ctx = dc->ctx;
2187 struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
2188 struct pipe_ctx *odm_pipe;
2189
2190 if (!del_pipe) {
2191 DC_ERROR("Pipe not found for stream %p !\n", stream);
2192 return DC_ERROR_UNEXPECTED;
2193 }
2194
2195 odm_pipe = del_pipe->next_odm_pipe;
2196
2197 /* Release primary pipe */
2198 ASSERT(del_pipe->stream_res.stream_enc);
2199 update_stream_engine_usage(
2200 &new_ctx->res_ctx,
2201 dc->res_pool,
2202 del_pipe->stream_res.stream_enc,
2203 false);
2204
2205 if (is_dp_128b_132b_signal(del_pipe)) {
2206 update_hpo_dp_stream_engine_usage(
2207 &new_ctx->res_ctx, dc->res_pool,
2208 del_pipe->stream_res.hpo_dp_stream_enc,
2209 false);
2210 remove_hpo_dp_link_enc_from_ctx(&new_ctx->res_ctx, del_pipe, del_pipe->stream);
2211 }
2212
2213 if (del_pipe->stream_res.audio)
2214 update_audio_usage(
2215 &new_ctx->res_ctx,
2216 dc->res_pool,
2217 del_pipe->stream_res.audio,
2218 false);
2219
2220 resource_unreference_clock_source(&new_ctx->res_ctx,
2221 dc->res_pool,
2222 del_pipe->clock_source);
2223
2224 if (dc->res_pool->funcs->remove_stream_from_ctx)
2225 dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
2226
2227 while (odm_pipe) {
2228 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
2229
2230 memset(odm_pipe, 0, sizeof(*odm_pipe));
2231 odm_pipe = next_odm_pipe;
2232 }
2233 memset(del_pipe, 0, sizeof(*del_pipe));
2234
2235 for (i = 0; i < new_ctx->stream_count; i++)
2236 if (new_ctx->streams[i] == stream)
2237 break;
2238
2239 if (new_ctx->streams[i] != stream) {
2240 DC_ERROR("Context doesn't have stream %p !\n", stream);
2241 return DC_ERROR_UNEXPECTED;
2242 }
2243
2244 dc_stream_release(new_ctx->streams[i]);
2245 new_ctx->stream_count--;
2246
2247 /* Trim back arrays */
2248 for (; i < new_ctx->stream_count; i++) {
2249 new_ctx->streams[i] = new_ctx->streams[i + 1];
2250 new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
2251 }
2252
2253 new_ctx->streams[new_ctx->stream_count] = NULL;
2254 memset(
2255 &new_ctx->stream_status[new_ctx->stream_count],
2256 0,
2257 sizeof(new_ctx->stream_status[0]));
2258
2259 return DC_OK;
2260 }
2261
find_pll_sharable_stream(struct dc_stream_state * stream_needs_pll,struct dc_state * context)2262 static struct dc_stream_state *find_pll_sharable_stream(
2263 struct dc_stream_state *stream_needs_pll,
2264 struct dc_state *context)
2265 {
2266 int i;
2267
2268 for (i = 0; i < context->stream_count; i++) {
2269 struct dc_stream_state *stream_has_pll = context->streams[i];
2270
2271 /* We are looking for non dp, non virtual stream */
2272 if (resource_are_streams_timing_synchronizable(
2273 stream_needs_pll, stream_has_pll)
2274 && !dc_is_dp_signal(stream_has_pll->signal)
2275 && stream_has_pll->link->connector_signal
2276 != SIGNAL_TYPE_VIRTUAL)
2277 return stream_has_pll;
2278
2279 }
2280
2281 return NULL;
2282 }
2283
get_norm_pix_clk(const struct dc_crtc_timing * timing)2284 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
2285 {
2286 uint32_t pix_clk = timing->pix_clk_100hz;
2287 uint32_t normalized_pix_clk = pix_clk;
2288
2289 if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
2290 pix_clk /= 2;
2291 if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
2292 switch (timing->display_color_depth) {
2293 case COLOR_DEPTH_666:
2294 case COLOR_DEPTH_888:
2295 normalized_pix_clk = pix_clk;
2296 break;
2297 case COLOR_DEPTH_101010:
2298 normalized_pix_clk = (pix_clk * 30) / 24;
2299 break;
2300 case COLOR_DEPTH_121212:
2301 normalized_pix_clk = (pix_clk * 36) / 24;
2302 break;
2303 case COLOR_DEPTH_161616:
2304 normalized_pix_clk = (pix_clk * 48) / 24;
2305 break;
2306 default:
2307 ASSERT(0);
2308 break;
2309 }
2310 }
2311 return normalized_pix_clk;
2312 }
2313
calculate_phy_pix_clks(struct dc_stream_state * stream)2314 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
2315 {
2316 /* update actual pixel clock on all streams */
2317 if (dc_is_hdmi_signal(stream->signal))
2318 stream->phy_pix_clk = get_norm_pix_clk(
2319 &stream->timing) / 10;
2320 else
2321 stream->phy_pix_clk =
2322 stream->timing.pix_clk_100hz / 10;
2323
2324 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2325 stream->phy_pix_clk *= 2;
2326 }
2327
acquire_resource_from_hw_enabled_state(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2328 static int acquire_resource_from_hw_enabled_state(
2329 struct resource_context *res_ctx,
2330 const struct resource_pool *pool,
2331 struct dc_stream_state *stream)
2332 {
2333 struct dc_link *link = stream->link;
2334 unsigned int i, inst, tg_inst = 0;
2335 uint32_t numPipes = 1;
2336 uint32_t id_src[4] = {0};
2337
2338 /* Check for enabled DIG to identify enabled display */
2339 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2340 return -1;
2341
2342 inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2343
2344 if (inst == ENGINE_ID_UNKNOWN)
2345 return -1;
2346
2347 for (i = 0; i < pool->stream_enc_count; i++) {
2348 if (pool->stream_enc[i]->id == inst) {
2349 tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2350 pool->stream_enc[i]);
2351 break;
2352 }
2353 }
2354
2355 // tg_inst not found
2356 if (i == pool->stream_enc_count)
2357 return -1;
2358
2359 if (tg_inst >= pool->timing_generator_count)
2360 return -1;
2361
2362 if (!res_ctx->pipe_ctx[tg_inst].stream) {
2363 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2364
2365 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2366 id_src[0] = tg_inst;
2367
2368 if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
2369 pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
2370 &numPipes, &id_src[0], &id_src[1]);
2371
2372 if (id_src[0] == 0xf && id_src[1] == 0xf) {
2373 id_src[0] = tg_inst;
2374 numPipes = 1;
2375 }
2376
2377 for (i = 0; i < numPipes; i++) {
2378 //Check if src id invalid
2379 if (id_src[i] == 0xf)
2380 return -1;
2381
2382 pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
2383
2384 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2385 pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
2386 pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
2387 pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
2388 pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
2389 pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
2390 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2391
2392 if (pool->dpps[id_src[i]]) {
2393 pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
2394
2395 if (pool->mpc->funcs->read_mpcc_state) {
2396 struct mpcc_state s = {0};
2397
2398 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2399
2400 if (s.dpp_id < MAX_MPCC)
2401 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
2402 s.dpp_id;
2403
2404 if (s.bot_mpcc_id < MAX_MPCC)
2405 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2406 &pool->mpc->mpcc_array[s.bot_mpcc_id];
2407
2408 if (s.opp_id < MAX_OPP)
2409 pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2410 }
2411 }
2412 pipe_ctx->pipe_idx = id_src[i];
2413
2414 if (id_src[i] >= pool->timing_generator_count) {
2415 id_src[i] = pool->timing_generator_count - 1;
2416
2417 pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
2418 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2419 }
2420
2421 pipe_ctx->stream = stream;
2422 }
2423
2424 if (numPipes == 2) {
2425 stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
2426 res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
2427 res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
2428 res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
2429 res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
2430 } else
2431 stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
2432
2433 return id_src[0];
2434 }
2435
2436 return -1;
2437 }
2438
mark_seamless_boot_stream(const struct dc * dc,struct dc_stream_state * stream)2439 static void mark_seamless_boot_stream(
2440 const struct dc *dc,
2441 struct dc_stream_state *stream)
2442 {
2443 struct dc_bios *dcb = dc->ctx->dc_bios;
2444
2445 if (dc->config.allow_seamless_boot_optimization &&
2446 !dcb->funcs->is_accelerated_mode(dcb)) {
2447 if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
2448 stream->apply_seamless_boot_optimization = true;
2449 }
2450 }
2451
resource_map_pool_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)2452 enum dc_status resource_map_pool_resources(
2453 const struct dc *dc,
2454 struct dc_state *context,
2455 struct dc_stream_state *stream)
2456 {
2457 const struct resource_pool *pool = dc->res_pool;
2458 int i;
2459 struct dc_context *dc_ctx = dc->ctx;
2460 struct pipe_ctx *pipe_ctx = NULL;
2461 int pipe_idx = -1;
2462
2463 calculate_phy_pix_clks(stream);
2464
2465 mark_seamless_boot_stream(dc, stream);
2466
2467 if (stream->apply_seamless_boot_optimization) {
2468 pipe_idx = acquire_resource_from_hw_enabled_state(
2469 &context->res_ctx,
2470 pool,
2471 stream);
2472 if (pipe_idx < 0)
2473 /* hw resource was assigned to other stream */
2474 stream->apply_seamless_boot_optimization = false;
2475 }
2476
2477 if (pipe_idx < 0)
2478 /* acquire new resources */
2479 pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2480
2481 if (pipe_idx < 0)
2482 pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2483
2484 if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2485 return DC_NO_CONTROLLER_RESOURCE;
2486
2487 pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2488
2489 pipe_ctx->stream_res.stream_enc =
2490 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2491 &context->res_ctx, pool, stream);
2492
2493 if (!pipe_ctx->stream_res.stream_enc)
2494 return DC_NO_STREAM_ENC_RESOURCE;
2495
2496 update_stream_engine_usage(
2497 &context->res_ctx, pool,
2498 pipe_ctx->stream_res.stream_enc,
2499 true);
2500
2501 /* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2502 * and link settings
2503 */
2504 if (dc_is_dp_signal(stream->signal)) {
2505 if (!decide_link_settings(stream, &pipe_ctx->link_config.dp_link_settings))
2506 return DC_FAIL_DP_LINK_BANDWIDTH;
2507 if (dp_get_link_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
2508 pipe_ctx->stream_res.hpo_dp_stream_enc =
2509 find_first_free_match_hpo_dp_stream_enc_for_link(
2510 &context->res_ctx, pool, stream);
2511
2512 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2513 return DC_NO_STREAM_ENC_RESOURCE;
2514
2515 update_hpo_dp_stream_engine_usage(
2516 &context->res_ctx, pool,
2517 pipe_ctx->stream_res.hpo_dp_stream_enc,
2518 true);
2519 if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
2520 return DC_NO_LINK_ENC_RESOURCE;
2521 }
2522 }
2523
2524 /* TODO: Add check if ASIC support and EDID audio */
2525 if (!stream->converter_disable_audio &&
2526 dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2527 stream->audio_info.mode_count && stream->audio_info.flags.all) {
2528 pipe_ctx->stream_res.audio = find_first_free_audio(
2529 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2530
2531 /*
2532 * Audio assigned in order first come first get.
2533 * There are asics which has number of audio
2534 * resources less then number of pipes
2535 */
2536 if (pipe_ctx->stream_res.audio)
2537 update_audio_usage(&context->res_ctx, pool,
2538 pipe_ctx->stream_res.audio, true);
2539 }
2540
2541 /* Add ABM to the resource if on EDP */
2542 if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2543 if (pool->abm)
2544 pipe_ctx->stream_res.abm = pool->abm;
2545 else
2546 pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2547 }
2548
2549 for (i = 0; i < context->stream_count; i++)
2550 if (context->streams[i] == stream) {
2551 context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2552 context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2553 context->stream_status[i].audio_inst =
2554 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2555
2556 return DC_OK;
2557 }
2558
2559 DC_ERROR("Stream %p not found in new ctx!\n", stream);
2560 return DC_ERROR_UNEXPECTED;
2561 }
2562
2563 /**
2564 * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2565 * Is a shallow copy. Increments refcounts on existing streams and planes.
2566 * @dc: copy out of dc->current_state
2567 * @dst_ctx: copy into this
2568 */
dc_resource_state_copy_construct_current(const struct dc * dc,struct dc_state * dst_ctx)2569 void dc_resource_state_copy_construct_current(
2570 const struct dc *dc,
2571 struct dc_state *dst_ctx)
2572 {
2573 dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2574 }
2575
2576
dc_resource_state_construct(const struct dc * dc,struct dc_state * dst_ctx)2577 void dc_resource_state_construct(
2578 const struct dc *dc,
2579 struct dc_state *dst_ctx)
2580 {
2581 dst_ctx->clk_mgr = dc->clk_mgr;
2582
2583 /* Initialise DIG link encoder resource tracking variables. */
2584 link_enc_cfg_init(dc, dst_ctx);
2585 }
2586
2587
dc_resource_is_dsc_encoding_supported(const struct dc * dc)2588 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2589 {
2590 if (dc->res_pool == NULL)
2591 return false;
2592
2593 return dc->res_pool->res_cap->num_dsc > 0;
2594 }
2595
2596
2597 /**
2598 * dc_validate_global_state() - Determine if HW can support a given state
2599 * Checks HW resource availability and bandwidth requirement.
2600 * @dc: dc struct for this driver
2601 * @new_ctx: state to be validated
2602 * @fast_validate: set to true if only yes/no to support matters
2603 *
2604 * Return: DC_OK if the result can be programmed. Otherwise, an error code.
2605 */
dc_validate_global_state(struct dc * dc,struct dc_state * new_ctx,bool fast_validate)2606 enum dc_status dc_validate_global_state(
2607 struct dc *dc,
2608 struct dc_state *new_ctx,
2609 bool fast_validate)
2610 {
2611 enum dc_status result = DC_ERROR_UNEXPECTED;
2612 int i, j;
2613
2614 if (!new_ctx)
2615 return DC_ERROR_UNEXPECTED;
2616
2617 if (dc->res_pool->funcs->validate_global) {
2618 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2619 if (result != DC_OK)
2620 return result;
2621 }
2622
2623 for (i = 0; i < new_ctx->stream_count; i++) {
2624 struct dc_stream_state *stream = new_ctx->streams[i];
2625
2626 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2627 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2628
2629 if (pipe_ctx->stream != stream)
2630 continue;
2631
2632 if (dc->res_pool->funcs->patch_unknown_plane_state &&
2633 pipe_ctx->plane_state &&
2634 pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2635 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2636 if (result != DC_OK)
2637 return result;
2638 }
2639
2640 /* Switch to dp clock source only if there is
2641 * no non dp stream that shares the same timing
2642 * with the dp stream.
2643 */
2644 if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2645 !find_pll_sharable_stream(stream, new_ctx)) {
2646
2647 resource_unreference_clock_source(
2648 &new_ctx->res_ctx,
2649 dc->res_pool,
2650 pipe_ctx->clock_source);
2651
2652 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2653 resource_reference_clock_source(
2654 &new_ctx->res_ctx,
2655 dc->res_pool,
2656 pipe_ctx->clock_source);
2657 }
2658 }
2659 }
2660
2661 result = resource_build_scaling_params_for_context(dc, new_ctx);
2662
2663 if (result == DC_OK)
2664 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2665 result = DC_FAIL_BANDWIDTH_VALIDATE;
2666
2667 /*
2668 * Only update link encoder to stream assignment after bandwidth validation passed.
2669 * TODO: Split out assignment and validation.
2670 */
2671 if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
2672 dc->res_pool->funcs->link_encs_assign(
2673 dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2674
2675 return result;
2676 }
2677
patch_gamut_packet_checksum(struct dc_info_packet * gamut_packet)2678 static void patch_gamut_packet_checksum(
2679 struct dc_info_packet *gamut_packet)
2680 {
2681 /* For gamut we recalc checksum */
2682 if (gamut_packet->valid) {
2683 uint8_t chk_sum = 0;
2684 uint8_t *ptr;
2685 uint8_t i;
2686
2687 /*start of the Gamut data. */
2688 ptr = &gamut_packet->sb[3];
2689
2690 for (i = 0; i <= gamut_packet->sb[1]; i++)
2691 chk_sum += ptr[i];
2692
2693 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2694 }
2695 }
2696
set_avi_info_frame(struct dc_info_packet * info_packet,struct pipe_ctx * pipe_ctx)2697 static void set_avi_info_frame(
2698 struct dc_info_packet *info_packet,
2699 struct pipe_ctx *pipe_ctx)
2700 {
2701 struct dc_stream_state *stream = pipe_ctx->stream;
2702 enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2703 uint32_t pixel_encoding = 0;
2704 enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2705 enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2706 bool itc = false;
2707 uint8_t itc_value = 0;
2708 uint8_t cn0_cn1 = 0;
2709 unsigned int cn0_cn1_value = 0;
2710 uint8_t *check_sum = NULL;
2711 uint8_t byte_index = 0;
2712 union hdmi_info_packet hdmi_info;
2713 union display_content_support support = {0};
2714 unsigned int vic = pipe_ctx->stream->timing.vic;
2715 unsigned int rid = pipe_ctx->stream->timing.rid;
2716 unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
2717 enum dc_timing_3d_format format;
2718
2719 memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2720
2721 color_space = pipe_ctx->stream->output_color_space;
2722 if (color_space == COLOR_SPACE_UNKNOWN)
2723 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2724 COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2725
2726 /* Initialize header */
2727 hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2728 /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2729 * not be used in HDMI 2.0 (Section 10.1) */
2730 hdmi_info.bits.header.version = 2;
2731 hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2732
2733 /*
2734 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2735 * according to HDMI 2.0 spec (Section 10.1)
2736 */
2737
2738 switch (stream->timing.pixel_encoding) {
2739 case PIXEL_ENCODING_YCBCR422:
2740 pixel_encoding = 1;
2741 break;
2742
2743 case PIXEL_ENCODING_YCBCR444:
2744 pixel_encoding = 2;
2745 break;
2746 case PIXEL_ENCODING_YCBCR420:
2747 pixel_encoding = 3;
2748 break;
2749
2750 case PIXEL_ENCODING_RGB:
2751 default:
2752 pixel_encoding = 0;
2753 }
2754
2755 /* Y0_Y1_Y2 : The pixel encoding */
2756 /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2757 hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2758
2759 /* A0 = 1 Active Format Information valid */
2760 hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2761
2762 /* B0, B1 = 3; Bar info data is valid */
2763 hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2764
2765 hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2766
2767 /* S0, S1 : Underscan / Overscan */
2768 /* TODO: un-hardcode scan type */
2769 scan_type = SCANNING_TYPE_UNDERSCAN;
2770 hdmi_info.bits.S0_S1 = scan_type;
2771
2772 /* C0, C1 : Colorimetry */
2773 if (color_space == COLOR_SPACE_YCBCR709 ||
2774 color_space == COLOR_SPACE_YCBCR709_LIMITED)
2775 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2776 else if (color_space == COLOR_SPACE_YCBCR601 ||
2777 color_space == COLOR_SPACE_YCBCR601_LIMITED)
2778 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2779 else {
2780 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2781 }
2782 if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2783 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2784 color_space == COLOR_SPACE_2020_YCBCR) {
2785 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2786 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
2787 } else if (color_space == COLOR_SPACE_ADOBERGB) {
2788 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2789 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
2790 }
2791
2792 /* TODO: un-hardcode aspect ratio */
2793 aspect = stream->timing.aspect_ratio;
2794
2795 switch (aspect) {
2796 case ASPECT_RATIO_4_3:
2797 case ASPECT_RATIO_16_9:
2798 hdmi_info.bits.M0_M1 = aspect;
2799 break;
2800
2801 case ASPECT_RATIO_NO_DATA:
2802 case ASPECT_RATIO_64_27:
2803 case ASPECT_RATIO_256_135:
2804 default:
2805 hdmi_info.bits.M0_M1 = 0;
2806 }
2807
2808 /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2809 hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2810
2811 /* TODO: un-hardcode cn0_cn1 and itc */
2812
2813 cn0_cn1 = 0;
2814 cn0_cn1_value = 0;
2815
2816 itc = true;
2817 itc_value = 1;
2818
2819 support = stream->content_support;
2820
2821 if (itc) {
2822 if (!support.bits.valid_content_type) {
2823 cn0_cn1_value = 0;
2824 } else {
2825 if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2826 if (support.bits.graphics_content == 1) {
2827 cn0_cn1_value = 0;
2828 }
2829 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2830 if (support.bits.photo_content == 1) {
2831 cn0_cn1_value = 1;
2832 } else {
2833 cn0_cn1_value = 0;
2834 itc_value = 0;
2835 }
2836 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2837 if (support.bits.cinema_content == 1) {
2838 cn0_cn1_value = 2;
2839 } else {
2840 cn0_cn1_value = 0;
2841 itc_value = 0;
2842 }
2843 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2844 if (support.bits.game_content == 1) {
2845 cn0_cn1_value = 3;
2846 } else {
2847 cn0_cn1_value = 0;
2848 itc_value = 0;
2849 }
2850 }
2851 }
2852 hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2853 hdmi_info.bits.ITC = itc_value;
2854 }
2855
2856 if (stream->qs_bit == 1) {
2857 if (color_space == COLOR_SPACE_SRGB ||
2858 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2859 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_FULL_RANGE;
2860 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2861 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2862 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_LIMITED_RANGE;
2863 else
2864 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
2865 } else
2866 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
2867
2868 /* TODO : We should handle YCC quantization */
2869 /* but we do not have matrix calculation */
2870 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2871
2872 ///VIC
2873 if (pipe_ctx->stream->timing.hdmi_vic != 0)
2874 vic = 0;
2875 format = stream->timing.timing_3d_format;
2876 /*todo, add 3DStereo support*/
2877 if (format != TIMING_3D_FORMAT_NONE) {
2878 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2879 switch (pipe_ctx->stream->timing.hdmi_vic) {
2880 case 1:
2881 vic = 95;
2882 break;
2883 case 2:
2884 vic = 94;
2885 break;
2886 case 3:
2887 vic = 93;
2888 break;
2889 case 4:
2890 vic = 98;
2891 break;
2892 default:
2893 break;
2894 }
2895 }
2896 /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2897 hdmi_info.bits.VIC0_VIC7 = vic;
2898 if (vic >= 128)
2899 hdmi_info.bits.header.version = 3;
2900 /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2901 * the Source shall use 20 AVI InfoFrame Version 4
2902 */
2903 if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2904 hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2905 hdmi_info.bits.header.version = 4;
2906 hdmi_info.bits.header.length = 14;
2907 }
2908
2909 if (rid != 0 && fr_ind != 0) {
2910 hdmi_info.bits.header.version = 5;
2911 hdmi_info.bits.header.length = 15;
2912
2913 hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
2914 hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
2915 hdmi_info.bits.RID0_RID5 = rid;
2916 }
2917
2918 /* pixel repetition
2919 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2920 * repetition start from 1 */
2921 hdmi_info.bits.PR0_PR3 = 0;
2922
2923 /* Bar Info
2924 * barTop: Line Number of End of Top Bar.
2925 * barBottom: Line Number of Start of Bottom Bar.
2926 * barLeft: Pixel Number of End of Left Bar.
2927 * barRight: Pixel Number of Start of Right Bar. */
2928 hdmi_info.bits.bar_top = stream->timing.v_border_top;
2929 hdmi_info.bits.bar_bottom = (stream->timing.v_total
2930 - stream->timing.v_border_bottom + 1);
2931 hdmi_info.bits.bar_left = stream->timing.h_border_left;
2932 hdmi_info.bits.bar_right = (stream->timing.h_total
2933 - stream->timing.h_border_right + 1);
2934
2935 /* Additional Colorimetry Extension
2936 * Used in conduction with C0-C1 and EC0-EC2
2937 * 0 = DCI-P3 RGB (D65)
2938 * 1 = DCI-P3 RGB (theater)
2939 */
2940 hdmi_info.bits.ACE0_ACE3 = 0;
2941
2942 /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2943 check_sum = &hdmi_info.packet_raw_data.sb[0];
2944
2945 *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2946
2947 for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2948 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2949
2950 /* one byte complement */
2951 *check_sum = (uint8_t) (0x100 - *check_sum);
2952
2953 /* Store in hw_path_mode */
2954 info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2955 info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2956 info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2957
2958 for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2959 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2960
2961 info_packet->valid = true;
2962 }
2963
set_vendor_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2964 static void set_vendor_info_packet(
2965 struct dc_info_packet *info_packet,
2966 struct dc_stream_state *stream)
2967 {
2968 /* SPD info packet for FreeSync */
2969
2970 /* Check if Freesync is supported. Return if false. If true,
2971 * set the corresponding bit in the info packet
2972 */
2973 if (!stream->vsp_infopacket.valid)
2974 return;
2975
2976 *info_packet = stream->vsp_infopacket;
2977 }
2978
set_spd_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2979 static void set_spd_info_packet(
2980 struct dc_info_packet *info_packet,
2981 struct dc_stream_state *stream)
2982 {
2983 /* SPD info packet for FreeSync */
2984
2985 /* Check if Freesync is supported. Return if false. If true,
2986 * set the corresponding bit in the info packet
2987 */
2988 if (!stream->vrr_infopacket.valid)
2989 return;
2990
2991 *info_packet = stream->vrr_infopacket;
2992 }
2993
set_hdr_static_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2994 static void set_hdr_static_info_packet(
2995 struct dc_info_packet *info_packet,
2996 struct dc_stream_state *stream)
2997 {
2998 /* HDR Static Metadata info packet for HDR10 */
2999
3000 if (!stream->hdr_static_metadata.valid ||
3001 stream->use_dynamic_meta)
3002 return;
3003
3004 *info_packet = stream->hdr_static_metadata;
3005 }
3006
set_vsc_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3007 static void set_vsc_info_packet(
3008 struct dc_info_packet *info_packet,
3009 struct dc_stream_state *stream)
3010 {
3011 if (!stream->vsc_infopacket.valid)
3012 return;
3013
3014 *info_packet = stream->vsc_infopacket;
3015 }
set_hfvs_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3016 static void set_hfvs_info_packet(
3017 struct dc_info_packet *info_packet,
3018 struct dc_stream_state *stream)
3019 {
3020 if (!stream->hfvsif_infopacket.valid)
3021 return;
3022
3023 *info_packet = stream->hfvsif_infopacket;
3024 }
3025
3026
set_vtem_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3027 static void set_vtem_info_packet(
3028 struct dc_info_packet *info_packet,
3029 struct dc_stream_state *stream)
3030 {
3031 if (!stream->vtem_infopacket.valid)
3032 return;
3033
3034 *info_packet = stream->vtem_infopacket;
3035 }
3036
dc_resource_state_destruct(struct dc_state * context)3037 void dc_resource_state_destruct(struct dc_state *context)
3038 {
3039 int i, j;
3040
3041 for (i = 0; i < context->stream_count; i++) {
3042 for (j = 0; j < context->stream_status[i].plane_count; j++)
3043 dc_plane_state_release(
3044 context->stream_status[i].plane_states[j]);
3045
3046 context->stream_status[i].plane_count = 0;
3047 dc_stream_release(context->streams[i]);
3048 context->streams[i] = NULL;
3049 }
3050 context->stream_count = 0;
3051 }
3052
dc_resource_state_copy_construct(const struct dc_state * src_ctx,struct dc_state * dst_ctx)3053 void dc_resource_state_copy_construct(
3054 const struct dc_state *src_ctx,
3055 struct dc_state *dst_ctx)
3056 {
3057 int i, j;
3058 struct kref refcount = dst_ctx->refcount;
3059
3060 *dst_ctx = *src_ctx;
3061
3062 for (i = 0; i < MAX_PIPES; i++) {
3063 struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
3064
3065 if (cur_pipe->top_pipe)
3066 cur_pipe->top_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
3067
3068 if (cur_pipe->bottom_pipe)
3069 cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
3070
3071 if (cur_pipe->next_odm_pipe)
3072 cur_pipe->next_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
3073
3074 if (cur_pipe->prev_odm_pipe)
3075 cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
3076 }
3077
3078 for (i = 0; i < dst_ctx->stream_count; i++) {
3079 dc_stream_retain(dst_ctx->streams[i]);
3080 for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
3081 dc_plane_state_retain(
3082 dst_ctx->stream_status[i].plane_states[j]);
3083 }
3084
3085 /* context refcount should not be overridden */
3086 dst_ctx->refcount = refcount;
3087
3088 }
3089
dc_resource_find_first_free_pll(struct resource_context * res_ctx,const struct resource_pool * pool)3090 struct clock_source *dc_resource_find_first_free_pll(
3091 struct resource_context *res_ctx,
3092 const struct resource_pool *pool)
3093 {
3094 int i;
3095
3096 for (i = 0; i < pool->clk_src_count; ++i) {
3097 if (res_ctx->clock_source_ref_count[i] == 0)
3098 return pool->clock_sources[i];
3099 }
3100
3101 return NULL;
3102 }
3103
resource_build_info_frame(struct pipe_ctx * pipe_ctx)3104 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
3105 {
3106 enum signal_type signal = SIGNAL_TYPE_NONE;
3107 struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
3108
3109 /* default all packets to invalid */
3110 info->avi.valid = false;
3111 info->gamut.valid = false;
3112 info->vendor.valid = false;
3113 info->spd.valid = false;
3114 info->hdrsmd.valid = false;
3115 info->vsc.valid = false;
3116 info->hfvsif.valid = false;
3117 info->vtem.valid = false;
3118 signal = pipe_ctx->stream->signal;
3119
3120 /* HDMi and DP have different info packets*/
3121 if (dc_is_hdmi_signal(signal)) {
3122 set_avi_info_frame(&info->avi, pipe_ctx);
3123
3124 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
3125 set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
3126 set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
3127
3128 set_spd_info_packet(&info->spd, pipe_ctx->stream);
3129
3130 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3131
3132 } else if (dc_is_dp_signal(signal)) {
3133 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
3134
3135 set_spd_info_packet(&info->spd, pipe_ctx->stream);
3136
3137 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3138 }
3139
3140 patch_gamut_packet_checksum(&info->gamut);
3141 }
3142
resource_map_clock_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)3143 enum dc_status resource_map_clock_resources(
3144 const struct dc *dc,
3145 struct dc_state *context,
3146 struct dc_stream_state *stream)
3147 {
3148 /* acquire new resources */
3149 const struct resource_pool *pool = dc->res_pool;
3150 struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
3151 &context->res_ctx, stream);
3152
3153 if (!pipe_ctx)
3154 return DC_ERROR_UNEXPECTED;
3155
3156 if (dc_is_dp_signal(pipe_ctx->stream->signal)
3157 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
3158 pipe_ctx->clock_source = pool->dp_clock_source;
3159 else {
3160 pipe_ctx->clock_source = NULL;
3161
3162 if (!dc->config.disable_disp_pll_sharing)
3163 pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
3164 &context->res_ctx,
3165 pipe_ctx);
3166
3167 if (pipe_ctx->clock_source == NULL)
3168 pipe_ctx->clock_source =
3169 dc_resource_find_first_free_pll(
3170 &context->res_ctx,
3171 pool);
3172 }
3173
3174 if (pipe_ctx->clock_source == NULL)
3175 return DC_NO_CLOCK_SOURCE_RESOURCE;
3176
3177 resource_reference_clock_source(
3178 &context->res_ctx, pool,
3179 pipe_ctx->clock_source);
3180
3181 return DC_OK;
3182 }
3183
3184 /*
3185 * Note: We need to disable output if clock sources change,
3186 * since bios does optimization and doesn't apply if changing
3187 * PHY when not already disabled.
3188 */
pipe_need_reprogram(struct pipe_ctx * pipe_ctx_old,struct pipe_ctx * pipe_ctx)3189 bool pipe_need_reprogram(
3190 struct pipe_ctx *pipe_ctx_old,
3191 struct pipe_ctx *pipe_ctx)
3192 {
3193 if (!pipe_ctx_old->stream)
3194 return false;
3195
3196 if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
3197 return true;
3198
3199 if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
3200 return true;
3201
3202 if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
3203 return true;
3204
3205 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
3206 && pipe_ctx_old->stream != pipe_ctx->stream)
3207 return true;
3208
3209 if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
3210 return true;
3211
3212 if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
3213 return true;
3214
3215 if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
3216 return true;
3217
3218 if (false == pipe_ctx_old->stream->link->link_state_valid &&
3219 false == pipe_ctx_old->stream->dpms_off)
3220 return true;
3221
3222 if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
3223 return true;
3224
3225 if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
3226 return true;
3227 if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
3228 return true;
3229
3230 /* DIG link encoder resource assignment for stream changed. */
3231 if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
3232 bool need_reprogram = false;
3233 struct dc *dc = pipe_ctx_old->stream->ctx->dc;
3234 struct link_encoder *link_enc_prev =
3235 link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
3236
3237 if (link_enc_prev != pipe_ctx->stream->link_enc)
3238 need_reprogram = true;
3239
3240 return need_reprogram;
3241 }
3242
3243 return false;
3244 }
3245
resource_build_bit_depth_reduction_params(struct dc_stream_state * stream,struct bit_depth_reduction_params * fmt_bit_depth)3246 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
3247 struct bit_depth_reduction_params *fmt_bit_depth)
3248 {
3249 enum dc_dither_option option = stream->dither_option;
3250 enum dc_pixel_encoding pixel_encoding =
3251 stream->timing.pixel_encoding;
3252
3253 memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
3254
3255 if (option == DITHER_OPTION_DEFAULT) {
3256 switch (stream->timing.display_color_depth) {
3257 case COLOR_DEPTH_666:
3258 option = DITHER_OPTION_SPATIAL6;
3259 break;
3260 case COLOR_DEPTH_888:
3261 option = DITHER_OPTION_SPATIAL8;
3262 break;
3263 case COLOR_DEPTH_101010:
3264 option = DITHER_OPTION_SPATIAL10;
3265 break;
3266 default:
3267 option = DITHER_OPTION_DISABLE;
3268 }
3269 }
3270
3271 if (option == DITHER_OPTION_DISABLE)
3272 return;
3273
3274 if (option == DITHER_OPTION_TRUN6) {
3275 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3276 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
3277 } else if (option == DITHER_OPTION_TRUN8 ||
3278 option == DITHER_OPTION_TRUN8_SPATIAL6 ||
3279 option == DITHER_OPTION_TRUN8_FM6) {
3280 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3281 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
3282 } else if (option == DITHER_OPTION_TRUN10 ||
3283 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
3284 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
3285 option == DITHER_OPTION_TRUN10_FM8 ||
3286 option == DITHER_OPTION_TRUN10_FM6 ||
3287 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3288 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3289 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3290 }
3291
3292 /* special case - Formatter can only reduce by 4 bits at most.
3293 * When reducing from 12 to 6 bits,
3294 * HW recommends we use trunc with round mode
3295 * (if we did nothing, trunc to 10 bits would be used)
3296 * note that any 12->10 bit reduction is ignored prior to DCE8,
3297 * as the input was 10 bits.
3298 */
3299 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3300 option == DITHER_OPTION_SPATIAL6 ||
3301 option == DITHER_OPTION_FM6) {
3302 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3303 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3304 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
3305 }
3306
3307 /* spatial dither
3308 * note that spatial modes 1-3 are never used
3309 */
3310 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3311 option == DITHER_OPTION_SPATIAL6 ||
3312 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
3313 option == DITHER_OPTION_TRUN8_SPATIAL6) {
3314 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3315 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
3316 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3317 fmt_bit_depth->flags.RGB_RANDOM =
3318 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3319 } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM ||
3320 option == DITHER_OPTION_SPATIAL8 ||
3321 option == DITHER_OPTION_SPATIAL8_FM6 ||
3322 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
3323 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3324 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3325 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
3326 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3327 fmt_bit_depth->flags.RGB_RANDOM =
3328 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3329 } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
3330 option == DITHER_OPTION_SPATIAL10 ||
3331 option == DITHER_OPTION_SPATIAL10_FM8 ||
3332 option == DITHER_OPTION_SPATIAL10_FM6) {
3333 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3334 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
3335 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3336 fmt_bit_depth->flags.RGB_RANDOM =
3337 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3338 }
3339
3340 if (option == DITHER_OPTION_SPATIAL6 ||
3341 option == DITHER_OPTION_SPATIAL8 ||
3342 option == DITHER_OPTION_SPATIAL10) {
3343 fmt_bit_depth->flags.FRAME_RANDOM = 0;
3344 } else {
3345 fmt_bit_depth->flags.FRAME_RANDOM = 1;
3346 }
3347
3348 //////////////////////
3349 //// temporal dither
3350 //////////////////////
3351 if (option == DITHER_OPTION_FM6 ||
3352 option == DITHER_OPTION_SPATIAL8_FM6 ||
3353 option == DITHER_OPTION_SPATIAL10_FM6 ||
3354 option == DITHER_OPTION_TRUN10_FM6 ||
3355 option == DITHER_OPTION_TRUN8_FM6 ||
3356 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3357 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3358 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
3359 } else if (option == DITHER_OPTION_FM8 ||
3360 option == DITHER_OPTION_SPATIAL10_FM8 ||
3361 option == DITHER_OPTION_TRUN10_FM8) {
3362 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3363 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
3364 } else if (option == DITHER_OPTION_FM10) {
3365 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3366 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
3367 }
3368
3369 fmt_bit_depth->pixel_encoding = pixel_encoding;
3370 }
3371
dc_validate_stream(struct dc * dc,struct dc_stream_state * stream)3372 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
3373 {
3374 struct dc_link *link = stream->link;
3375 struct timing_generator *tg = dc->res_pool->timing_generators[0];
3376 enum dc_status res = DC_OK;
3377
3378 calculate_phy_pix_clks(stream);
3379
3380 if (!tg->funcs->validate_timing(tg, &stream->timing))
3381 res = DC_FAIL_CONTROLLER_VALIDATE;
3382
3383 if (res == DC_OK) {
3384 if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
3385 !link->link_enc->funcs->validate_output_with_stream(
3386 link->link_enc, stream))
3387 res = DC_FAIL_ENC_VALIDATE;
3388 }
3389
3390 /* TODO: validate audio ASIC caps, encoder */
3391
3392 if (res == DC_OK)
3393 res = dc_link_validate_mode_timing(stream,
3394 link,
3395 &stream->timing);
3396
3397 return res;
3398 }
3399
dc_validate_plane(struct dc * dc,const struct dc_plane_state * plane_state)3400 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3401 {
3402 enum dc_status res = DC_OK;
3403
3404 /* check if surface has invalid dimensions */
3405 if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3406 plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3407 return DC_FAIL_SURFACE_VALIDATE;
3408
3409 /* TODO For now validates pixel format only */
3410 if (dc->res_pool->funcs->validate_plane)
3411 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3412
3413 return res;
3414 }
3415
resource_pixel_format_to_bpp(enum surface_pixel_format format)3416 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3417 {
3418 switch (format) {
3419 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3420 return 8;
3421 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3422 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3423 return 12;
3424 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3425 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3426 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3427 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3428 return 16;
3429 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3430 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3431 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3432 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3433 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3434 case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3435 case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3436 return 32;
3437 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3438 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
3439 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3440 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3441 return 64;
3442 default:
3443 ASSERT_CRITICAL(false);
3444 return -1;
3445 }
3446 }
get_max_audio_sample_rate(struct audio_mode * modes)3447 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
3448 {
3449 if (modes) {
3450 if (modes->sample_rates.rate.RATE_192)
3451 return 192000;
3452 if (modes->sample_rates.rate.RATE_176_4)
3453 return 176400;
3454 if (modes->sample_rates.rate.RATE_96)
3455 return 96000;
3456 if (modes->sample_rates.rate.RATE_88_2)
3457 return 88200;
3458 if (modes->sample_rates.rate.RATE_48)
3459 return 48000;
3460 if (modes->sample_rates.rate.RATE_44_1)
3461 return 44100;
3462 if (modes->sample_rates.rate.RATE_32)
3463 return 32000;
3464 }
3465 /*original logic when no audio info*/
3466 return 441000;
3467 }
3468
get_audio_check(struct audio_info * aud_modes,struct audio_check * audio_chk)3469 void get_audio_check(struct audio_info *aud_modes,
3470 struct audio_check *audio_chk)
3471 {
3472 unsigned int i;
3473 unsigned int max_sample_rate = 0;
3474
3475 if (aud_modes) {
3476 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
3477
3478 audio_chk->max_audiosample_rate = 0;
3479 for (i = 0; i < aud_modes->mode_count; i++) {
3480 max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
3481 if (audio_chk->max_audiosample_rate < max_sample_rate)
3482 audio_chk->max_audiosample_rate = max_sample_rate;
3483 /*dts takes the same as type 2: AP = 0.25*/
3484 }
3485 /*check which one take more bandwidth*/
3486 if (audio_chk->max_audiosample_rate > 192000)
3487 audio_chk->audio_packet_type = 0x9;/*AP =1*/
3488 audio_chk->acat = 0;/*not support*/
3489 }
3490 }
3491
get_temp_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * const pool,const struct dc_link * link)3492 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
3493 const struct resource_context *res_ctx,
3494 const struct resource_pool *const pool,
3495 const struct dc_link *link)
3496 {
3497 struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
3498 int enc_index;
3499
3500 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
3501
3502 if (enc_index < 0)
3503 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
3504
3505 if (enc_index >= 0)
3506 hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
3507
3508 return hpo_dp_link_enc;
3509 }
3510
get_temp_dp_link_res(struct dc_link * link,struct link_resource * link_res,struct dc_link_settings * link_settings)3511 bool get_temp_dp_link_res(struct dc_link *link,
3512 struct link_resource *link_res,
3513 struct dc_link_settings *link_settings)
3514 {
3515 const struct dc *dc = link->dc;
3516 const struct resource_context *res_ctx = &dc->current_state->res_ctx;
3517
3518 memset(link_res, 0, sizeof(*link_res));
3519
3520 if (dp_get_link_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
3521 link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
3522 dc->res_pool, link);
3523 if (!link_res->hpo_dp_link_enc)
3524 return false;
3525 }
3526 return true;
3527 }
3528
reset_syncd_pipes_from_disabled_pipes(struct dc * dc,struct dc_state * context)3529 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
3530 struct dc_state *context)
3531 {
3532 int i, j;
3533 struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
3534
3535 /* If pipe backend is reset, need to reset pipe syncd status */
3536 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3537 pipe_ctx_old = &dc->current_state->res_ctx.pipe_ctx[i];
3538 pipe_ctx = &context->res_ctx.pipe_ctx[i];
3539
3540 if (!pipe_ctx_old->stream)
3541 continue;
3542
3543 if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
3544 continue;
3545
3546 if (!pipe_ctx->stream ||
3547 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
3548
3549 /* Reset all the syncd pipes from the disabled pipe */
3550 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3551 pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
3552 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
3553 !IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
3554 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
3555 }
3556 }
3557 }
3558 }
3559
check_syncd_pipes_for_disabled_master_pipe(struct dc * dc,struct dc_state * context,uint8_t disabled_master_pipe_idx)3560 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
3561 struct dc_state *context,
3562 uint8_t disabled_master_pipe_idx)
3563 {
3564 int i;
3565 struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
3566
3567 pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
3568 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
3569 !IS_PIPE_SYNCD_VALID(pipe_ctx))
3570 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
3571
3572 /* for the pipe disabled, check if any slave pipe exists and assert */
3573 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3574 pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
3575
3576 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
3577 IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx))
3578 DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
3579 i, disabled_master_pipe_idx);
3580 }
3581 }
3582
reset_sync_context_for_pipe(const struct dc * dc,struct dc_state * context,uint8_t pipe_idx)3583 void reset_sync_context_for_pipe(const struct dc *dc,
3584 struct dc_state *context,
3585 uint8_t pipe_idx)
3586 {
3587 int i;
3588 struct pipe_ctx *pipe_ctx_reset;
3589
3590 /* reset the otg sync context for the pipe and its slave pipes if any */
3591 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3592 pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
3593
3594 if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
3595 IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
3596 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
3597 }
3598 }
3599
resource_transmitter_to_phy_idx(const struct dc * dc,enum transmitter transmitter)3600 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
3601 {
3602 /* TODO - get transmitter to phy idx mapping from DMUB */
3603 uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
3604
3605 if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
3606 dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
3607 switch (transmitter) {
3608 case TRANSMITTER_UNIPHY_A:
3609 phy_idx = 0;
3610 break;
3611 case TRANSMITTER_UNIPHY_B:
3612 phy_idx = 1;
3613 break;
3614 case TRANSMITTER_UNIPHY_C:
3615 phy_idx = 5;
3616 break;
3617 case TRANSMITTER_UNIPHY_D:
3618 phy_idx = 6;
3619 break;
3620 case TRANSMITTER_UNIPHY_E:
3621 phy_idx = 4;
3622 break;
3623 default:
3624 phy_idx = 0;
3625 break;
3626 }
3627 }
3628
3629 return phy_idx;
3630 }
3631
get_link_hwss(const struct dc_link * link,const struct link_resource * link_res)3632 const struct link_hwss *get_link_hwss(const struct dc_link *link,
3633 const struct link_resource *link_res)
3634 {
3635 /* Link_hwss is only accessible by getter function instead of accessing
3636 * by pointers in dc with the intent to protect against breaking polymorphism.
3637 */
3638 if (can_use_hpo_dp_link_hwss(link, link_res))
3639 /* TODO: some assumes that if decided link settings is 128b/132b
3640 * channel coding format hpo_dp_link_enc should be used.
3641 * Others believe that if hpo_dp_link_enc is available in link
3642 * resource then hpo_dp_link_enc must be used. This bound between
3643 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
3644 * with a premise that both hpo_dp_link_enc pointer and decided link
3645 * settings are determined based on single policy function like
3646 * "decide_link_settings" from upper layer. This "convention"
3647 * cannot be maintained and enforced at current level.
3648 * Therefore a refactor is due so we can enforce a strong bound
3649 * between those two parameters at this level.
3650 *
3651 * To put it simple, we want to make enforcement at low level so that
3652 * we will not return link hwss if caller plans to do 8b/10b
3653 * with an hpo encoder. Or we can return a very dummy one that doesn't
3654 * do work for all functions
3655 */
3656 return get_hpo_dp_link_hwss();
3657 else if (can_use_dpia_link_hwss(link, link_res))
3658 return get_dpia_link_hwss();
3659 else if (can_use_dio_link_hwss(link, link_res))
3660 return get_dio_link_hwss();
3661 else
3662 return get_virtual_link_hwss();
3663 }
3664
is_h_timing_divisible_by_2(struct dc_stream_state * stream)3665 bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
3666 {
3667 bool divisible = false;
3668 uint16_t h_blank_start = 0;
3669 uint16_t h_blank_end = 0;
3670
3671 if (stream) {
3672 h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
3673 h_blank_end = h_blank_start - stream->timing.h_addressable;
3674
3675 /* HTOTAL, Hblank start/end, and Hsync start/end all must be
3676 * divisible by 2 in order for the horizontal timing params
3677 * to be considered divisible by 2. Hsync start is always 0.
3678 */
3679 divisible = (stream->timing.h_total % 2 == 0) &&
3680 (h_blank_start % 2 == 0) &&
3681 (h_blank_end % 2 == 0) &&
3682 (stream->timing.h_sync_width % 2 == 0);
3683 }
3684 return divisible;
3685 }
3686
dc_resource_acquire_secondary_pipe_for_mpc_odm(const struct dc * dc,struct dc_state * state,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)3687 bool dc_resource_acquire_secondary_pipe_for_mpc_odm(
3688 const struct dc *dc,
3689 struct dc_state *state,
3690 struct pipe_ctx *pri_pipe,
3691 struct pipe_ctx *sec_pipe,
3692 bool odm)
3693 {
3694 int pipe_idx = sec_pipe->pipe_idx;
3695 struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
3696 const struct resource_pool *pool = dc->res_pool;
3697
3698 sec_top = sec_pipe->top_pipe;
3699 sec_bottom = sec_pipe->bottom_pipe;
3700 sec_next = sec_pipe->next_odm_pipe;
3701 sec_prev = sec_pipe->prev_odm_pipe;
3702
3703 *sec_pipe = *pri_pipe;
3704
3705 sec_pipe->top_pipe = sec_top;
3706 sec_pipe->bottom_pipe = sec_bottom;
3707 sec_pipe->next_odm_pipe = sec_next;
3708 sec_pipe->prev_odm_pipe = sec_prev;
3709
3710 sec_pipe->pipe_idx = pipe_idx;
3711 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
3712 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
3713 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
3714 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
3715 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
3716 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
3717 sec_pipe->stream_res.dsc = NULL;
3718 if (odm) {
3719 if (!sec_pipe->top_pipe)
3720 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
3721 else
3722 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
3723 if (sec_pipe->stream->timing.flags.DSC == 1) {
3724 #if defined(CONFIG_DRM_AMD_DC_DCN)
3725 dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
3726 #endif
3727 ASSERT(sec_pipe->stream_res.dsc);
3728 if (sec_pipe->stream_res.dsc == NULL)
3729 return false;
3730 }
3731 #if defined(CONFIG_DRM_AMD_DC_DCN)
3732 dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
3733 #endif
3734 }
3735
3736 return true;
3737 }