1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include "dm_services.h"
26
27 #include "dc.h"
28
29 #include "core_status.h"
30 #include "core_types.h"
31 #include "hw_sequencer.h"
32 #include "dce/dce_hwseq.h"
33
34 #include "resource.h"
35
36 #include "gpio_service_interface.h"
37 #include "clk_mgr.h"
38 #include "clock_source.h"
39 #include "dc_bios_types.h"
40
41 #include "bios_parser_interface.h"
42 #include "bios/bios_parser_helper.h"
43 #include "include/irq_service_interface.h"
44 #include "transform.h"
45 #include "dmcu.h"
46 #include "dpp.h"
47 #include "timing_generator.h"
48 #include "abm.h"
49 #include "virtual/virtual_link_encoder.h"
50 #include "hubp.h"
51
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54 #include "link_enc_cfg.h"
55
56 #include "link.h"
57 #include "dm_helpers.h"
58 #include "mem_input.h"
59
60 #include "dc_dmub_srv.h"
61
62 #include "dsc.h"
63
64 #include "vm_helper.h"
65
66 #include "dce/dce_i2c.h"
67
68 #include "dmub/dmub_srv.h"
69
70 #include "dce/dmub_psr.h"
71
72 #include "dce/dmub_hw_lock_mgr.h"
73
74 #include "dc_trace.h"
75
76 #include "hw_sequencer_private.h"
77
78 #include "dce/dmub_outbox.h"
79
80 #define CTX \
81 dc->ctx
82
83 #define DC_LOGGER \
84 dc->ctx->logger
85
86 static const char DC_BUILD_ID[] = "production-build";
87
88 /**
89 * DOC: Overview
90 *
91 * DC is the OS-agnostic component of the amdgpu DC driver.
92 *
93 * DC maintains and validates a set of structs representing the state of the
94 * driver and writes that state to AMD hardware
95 *
96 * Main DC HW structs:
97 *
98 * struct dc - The central struct. One per driver. Created on driver load,
99 * destroyed on driver unload.
100 *
101 * struct dc_context - One per driver.
102 * Used as a backpointer by most other structs in dc.
103 *
104 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
105 * plugpoints). Created on driver load, destroyed on driver unload.
106 *
107 * struct dc_sink - One per display. Created on boot or hotplug.
108 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
109 * (the display directly attached). It may also have one or more remote
110 * sinks (in the Multi-Stream Transport case)
111 *
112 * struct resource_pool - One per driver. Represents the hw blocks not in the
113 * main pipeline. Not directly accessible by dm.
114 *
115 * Main dc state structs:
116 *
117 * These structs can be created and destroyed as needed. There is a full set of
118 * these structs in dc->current_state representing the currently programmed state.
119 *
120 * struct dc_state - The global DC state to track global state information,
121 * such as bandwidth values.
122 *
123 * struct dc_stream_state - Represents the hw configuration for the pipeline from
124 * a framebuffer to a display. Maps one-to-one with dc_sink.
125 *
126 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
127 * and may have more in the Multi-Plane Overlay case.
128 *
129 * struct resource_context - Represents the programmable state of everything in
130 * the resource_pool. Not directly accessible by dm.
131 *
132 * struct pipe_ctx - A member of struct resource_context. Represents the
133 * internal hardware pipeline components. Each dc_plane_state has either
134 * one or two (in the pipe-split case).
135 */
136
137 /* Private functions */
138
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)139 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
140 {
141 if (new > *original)
142 *original = new;
143 }
144
destroy_links(struct dc * dc)145 static void destroy_links(struct dc *dc)
146 {
147 uint32_t i;
148
149 for (i = 0; i < dc->link_count; i++) {
150 if (NULL != dc->links[i])
151 dc->link_srv->destroy_link(&dc->links[i]);
152 }
153 }
154
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)155 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
156 {
157 int i;
158 uint32_t count = 0;
159
160 for (i = 0; i < num_links; i++) {
161 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
162 links[i]->is_internal_display)
163 count++;
164 }
165
166 return count;
167 }
168
get_seamless_boot_stream_count(struct dc_state * ctx)169 static int get_seamless_boot_stream_count(struct dc_state *ctx)
170 {
171 uint8_t i;
172 uint8_t seamless_boot_stream_count = 0;
173
174 for (i = 0; i < ctx->stream_count; i++)
175 if (ctx->streams[i]->apply_seamless_boot_optimization)
176 seamless_boot_stream_count++;
177
178 return seamless_boot_stream_count;
179 }
180
create_links(struct dc * dc,uint32_t num_virtual_links)181 static bool create_links(
182 struct dc *dc,
183 uint32_t num_virtual_links)
184 {
185 int i;
186 int connectors_num;
187 struct dc_bios *bios = dc->ctx->dc_bios;
188
189 dc->link_count = 0;
190
191 connectors_num = bios->funcs->get_connectors_number(bios);
192
193 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
194
195 if (connectors_num > ENUM_ID_COUNT) {
196 dm_error(
197 "DC: Number of connectors %d exceeds maximum of %d!\n",
198 connectors_num,
199 ENUM_ID_COUNT);
200 return false;
201 }
202
203 dm_output_to_console(
204 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
205 __func__,
206 connectors_num,
207 num_virtual_links);
208
209 for (i = 0; i < connectors_num; i++) {
210 struct link_init_data link_init_params = {0};
211 struct dc_link *link;
212
213 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
214
215 link_init_params.ctx = dc->ctx;
216 /* next BIOS object table connector */
217 link_init_params.connector_index = i;
218 link_init_params.link_index = dc->link_count;
219 link_init_params.dc = dc;
220 link = dc->link_srv->create_link(&link_init_params);
221
222 if (link) {
223 dc->links[dc->link_count] = link;
224 link->dc = dc;
225 ++dc->link_count;
226 }
227 }
228
229 DC_LOG_DC("BIOS object table - end");
230
231 /* Create a link for each usb4 dpia port */
232 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
233 struct link_init_data link_init_params = {0};
234 struct dc_link *link;
235
236 link_init_params.ctx = dc->ctx;
237 link_init_params.connector_index = i;
238 link_init_params.link_index = dc->link_count;
239 link_init_params.dc = dc;
240 link_init_params.is_dpia_link = true;
241
242 link = dc->link_srv->create_link(&link_init_params);
243 if (link) {
244 dc->links[dc->link_count] = link;
245 link->dc = dc;
246 ++dc->link_count;
247 }
248 }
249
250 for (i = 0; i < num_virtual_links; i++) {
251 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
252 struct encoder_init_data enc_init = {0};
253
254 if (link == NULL) {
255 BREAK_TO_DEBUGGER();
256 goto failed_alloc;
257 }
258
259 link->link_index = dc->link_count;
260 dc->links[dc->link_count] = link;
261 dc->link_count++;
262
263 link->ctx = dc->ctx;
264 link->dc = dc;
265 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
266 link->link_id.type = OBJECT_TYPE_CONNECTOR;
267 link->link_id.id = CONNECTOR_ID_VIRTUAL;
268 link->link_id.enum_id = ENUM_ID_1;
269 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
270
271 if (!link->link_enc) {
272 BREAK_TO_DEBUGGER();
273 goto failed_alloc;
274 }
275
276 link->link_status.dpcd_caps = &link->dpcd_caps;
277
278 enc_init.ctx = dc->ctx;
279 enc_init.channel = CHANNEL_ID_UNKNOWN;
280 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
281 enc_init.transmitter = TRANSMITTER_UNKNOWN;
282 enc_init.connector = link->link_id;
283 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
284 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
285 enc_init.encoder.enum_id = ENUM_ID_1;
286 virtual_link_encoder_construct(link->link_enc, &enc_init);
287 }
288
289 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
290
291 return true;
292
293 failed_alloc:
294 return false;
295 }
296
297 /* Create additional DIG link encoder objects if fewer than the platform
298 * supports were created during link construction. This can happen if the
299 * number of physical connectors is less than the number of DIGs.
300 */
create_link_encoders(struct dc * dc)301 static bool create_link_encoders(struct dc *dc)
302 {
303 bool res = true;
304 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
305 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
306 int i;
307
308 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
309 * link encoders and physical display endpoints and does not require
310 * additional link encoder objects.
311 */
312 if (num_usb4_dpia == 0)
313 return res;
314
315 /* Create as many link encoder objects as the platform supports. DPIA
316 * endpoints can be programmably mapped to any DIG.
317 */
318 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
319 for (i = 0; i < num_dig_link_enc; i++) {
320 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
321
322 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
323 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
324 (enum engine_id)(ENGINE_ID_DIGA + i));
325 if (link_enc) {
326 dc->res_pool->link_encoders[i] = link_enc;
327 dc->res_pool->dig_link_enc_count++;
328 } else {
329 res = false;
330 }
331 }
332 }
333 }
334
335 return res;
336 }
337
338 /* Destroy any additional DIG link encoder objects created by
339 * create_link_encoders().
340 * NB: Must only be called after destroy_links().
341 */
destroy_link_encoders(struct dc * dc)342 static void destroy_link_encoders(struct dc *dc)
343 {
344 unsigned int num_usb4_dpia;
345 unsigned int num_dig_link_enc;
346 int i;
347
348 if (!dc->res_pool)
349 return;
350
351 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
352 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
353
354 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
355 * link encoders and physical display endpoints and does not require
356 * additional link encoder objects.
357 */
358 if (num_usb4_dpia == 0)
359 return;
360
361 for (i = 0; i < num_dig_link_enc; i++) {
362 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
363
364 if (link_enc) {
365 link_enc->funcs->destroy(&link_enc);
366 dc->res_pool->link_encoders[i] = NULL;
367 dc->res_pool->dig_link_enc_count--;
368 }
369 }
370 }
371
dc_perf_trace_create(void)372 static struct dc_perf_trace *dc_perf_trace_create(void)
373 {
374 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
375 }
376
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)377 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
378 {
379 kfree(*perf_trace);
380 *perf_trace = NULL;
381 }
382
383 /**
384 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
385 * @dc: dc reference
386 * @stream: Initial dc stream state
387 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
388 *
389 * Looks up the pipe context of dc_stream_state and updates the
390 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
391 * Rate, which is a power-saving feature that targets reducing panel
392 * refresh rate while the screen is static
393 *
394 * Return: %true if the pipe context is found and adjusted;
395 * %false if the pipe context is not found.
396 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)397 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
398 struct dc_stream_state *stream,
399 struct dc_crtc_timing_adjust *adjust)
400 {
401 int i;
402
403 /*
404 * Don't adjust DRR while there's bandwidth optimizations pending to
405 * avoid conflicting with firmware updates.
406 */
407 if (dc->ctx->dce_version > DCE_VERSION_MAX)
408 if (dc->optimized_required || dc->wm_optimized_required)
409 return false;
410
411 stream->adjust.v_total_max = adjust->v_total_max;
412 stream->adjust.v_total_mid = adjust->v_total_mid;
413 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
414 stream->adjust.v_total_min = adjust->v_total_min;
415
416 for (i = 0; i < MAX_PIPES; i++) {
417 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
418
419 if (pipe->stream == stream && pipe->stream_res.tg) {
420 dc->hwss.set_drr(&pipe,
421 1,
422 *adjust);
423
424 return true;
425 }
426 }
427 return false;
428 }
429
430 /**
431 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
432 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
433 *
434 * @dc: [in] dc reference
435 * @stream: [in] Initial dc stream state
436 * @refresh_rate: [in] new refresh_rate
437 *
438 * Return: %true if the pipe context is found and there is an associated
439 * timing_generator for the DC;
440 * %false if the pipe context is not found or there is no
441 * timing_generator for the DC.
442 */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)443 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
444 struct dc_stream_state *stream,
445 uint32_t *refresh_rate)
446 {
447 bool status = false;
448
449 int i = 0;
450
451 for (i = 0; i < MAX_PIPES; i++) {
452 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
453
454 if (pipe->stream == stream && pipe->stream_res.tg) {
455 /* Only execute if a function pointer has been defined for
456 * the DC version in question
457 */
458 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
459 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
460
461 status = true;
462
463 break;
464 }
465 }
466 }
467
468 return status;
469 }
470
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)471 bool dc_stream_get_crtc_position(struct dc *dc,
472 struct dc_stream_state **streams, int num_streams,
473 unsigned int *v_pos, unsigned int *nom_v_pos)
474 {
475 /* TODO: Support multiple streams */
476 const struct dc_stream_state *stream = streams[0];
477 int i;
478 bool ret = false;
479 struct crtc_position position;
480
481 for (i = 0; i < MAX_PIPES; i++) {
482 struct pipe_ctx *pipe =
483 &dc->current_state->res_ctx.pipe_ctx[i];
484
485 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
486 dc->hwss.get_position(&pipe, 1, &position);
487
488 *v_pos = position.vertical_count;
489 *nom_v_pos = position.nominal_vcount;
490 ret = true;
491 }
492 }
493 return ret;
494 }
495
496 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
497 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)498 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
499 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
500 {
501 union dmub_rb_cmd cmd = {0};
502
503 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
504 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
505
506 if (is_stop) {
507 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
508 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
509 } else {
510 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
511 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
512 cmd.secure_display.roi_info.x_start = rect->x;
513 cmd.secure_display.roi_info.y_start = rect->y;
514 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
515 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
516 }
517
518 dm_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
519 }
520
521 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)522 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
523 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
524 {
525 if (is_stop)
526 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
527 else
528 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
529 }
530
531 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,bool is_stop)532 dc_stream_forward_crc_window(struct dc_stream_state *stream,
533 struct rect *rect, bool is_stop)
534 {
535 struct dmcu *dmcu;
536 struct dc_dmub_srv *dmub_srv;
537 struct otg_phy_mux mux_mapping;
538 struct pipe_ctx *pipe;
539 int i;
540 struct dc *dc = stream->ctx->dc;
541
542 for (i = 0; i < MAX_PIPES; i++) {
543 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
544 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
545 break;
546 }
547
548 /* Stream not found */
549 if (i == MAX_PIPES)
550 return false;
551
552 mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
553 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
554
555 dmcu = dc->res_pool->dmcu;
556 dmub_srv = dc->ctx->dmub_srv;
557
558 /* forward to dmub */
559 if (dmub_srv)
560 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
561 /* forward to dmcu */
562 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
563 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
564 else
565 return false;
566
567 return true;
568 }
569 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
570
571 /**
572 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
573 * @dc: DC Object
574 * @stream: The stream to configure CRC on.
575 * @enable: Enable CRC if true, disable otherwise.
576 * @crc_window: CRC window (x/y start/end) information
577 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
578 * once.
579 *
580 * By default, only CRC0 is configured, and the entire frame is used to
581 * calculate the CRC.
582 *
583 * Return: %false if the stream is not found or CRC capture is not supported;
584 * %true if the stream has been configured.
585 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous)586 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
587 struct crc_params *crc_window, bool enable, bool continuous)
588 {
589 struct pipe_ctx *pipe;
590 struct crc_params param;
591 struct timing_generator *tg;
592
593 pipe = resource_get_otg_master_for_stream(
594 &dc->current_state->res_ctx, stream);
595
596 /* Stream not found */
597 if (pipe == NULL)
598 return false;
599
600 /* By default, capture the full frame */
601 param.windowa_x_start = 0;
602 param.windowa_y_start = 0;
603 param.windowa_x_end = pipe->stream->timing.h_addressable;
604 param.windowa_y_end = pipe->stream->timing.v_addressable;
605 param.windowb_x_start = 0;
606 param.windowb_y_start = 0;
607 param.windowb_x_end = pipe->stream->timing.h_addressable;
608 param.windowb_y_end = pipe->stream->timing.v_addressable;
609
610 if (crc_window) {
611 param.windowa_x_start = crc_window->windowa_x_start;
612 param.windowa_y_start = crc_window->windowa_y_start;
613 param.windowa_x_end = crc_window->windowa_x_end;
614 param.windowa_y_end = crc_window->windowa_y_end;
615 param.windowb_x_start = crc_window->windowb_x_start;
616 param.windowb_y_start = crc_window->windowb_y_start;
617 param.windowb_x_end = crc_window->windowb_x_end;
618 param.windowb_y_end = crc_window->windowb_y_end;
619 }
620
621 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
622 param.odm_mode = pipe->next_odm_pipe ? 1:0;
623
624 /* Default to the union of both windows */
625 param.selection = UNION_WINDOW_A_B;
626 param.continuous_mode = continuous;
627 param.enable = enable;
628
629 tg = pipe->stream_res.tg;
630
631 /* Only call if supported */
632 if (tg->funcs->configure_crc)
633 return tg->funcs->configure_crc(tg, ¶m);
634 DC_LOG_WARNING("CRC capture not supported.");
635 return false;
636 }
637
638 /**
639 * dc_stream_get_crc() - Get CRC values for the given stream.
640 *
641 * @dc: DC object.
642 * @stream: The DC stream state of the stream to get CRCs from.
643 * @r_cr: CRC value for the red component.
644 * @g_y: CRC value for the green component.
645 * @b_cb: CRC value for the blue component.
646 *
647 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
648 *
649 * Return:
650 * %false if stream is not found, or if CRCs are not enabled.
651 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)652 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
653 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
654 {
655 int i;
656 struct pipe_ctx *pipe;
657 struct timing_generator *tg;
658
659 for (i = 0; i < MAX_PIPES; i++) {
660 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
661 if (pipe->stream == stream)
662 break;
663 }
664 /* Stream not found */
665 if (i == MAX_PIPES)
666 return false;
667
668 tg = pipe->stream_res.tg;
669
670 if (tg->funcs->get_crc)
671 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
672 DC_LOG_WARNING("CRC capture not supported.");
673 return false;
674 }
675
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)676 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
677 enum dc_dynamic_expansion option)
678 {
679 /* OPP FMT dyn expansion updates*/
680 int i;
681 struct pipe_ctx *pipe_ctx;
682
683 for (i = 0; i < MAX_PIPES; i++) {
684 if (dc->current_state->res_ctx.pipe_ctx[i].stream
685 == stream) {
686 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
687 pipe_ctx->stream_res.opp->dyn_expansion = option;
688 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
689 pipe_ctx->stream_res.opp,
690 COLOR_SPACE_YCBCR601,
691 stream->timing.display_color_depth,
692 stream->signal);
693 }
694 }
695 }
696
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)697 void dc_stream_set_dither_option(struct dc_stream_state *stream,
698 enum dc_dither_option option)
699 {
700 struct bit_depth_reduction_params params;
701 struct dc_link *link = stream->link;
702 struct pipe_ctx *pipes = NULL;
703 int i;
704
705 for (i = 0; i < MAX_PIPES; i++) {
706 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
707 stream) {
708 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
709 break;
710 }
711 }
712
713 if (!pipes)
714 return;
715 if (option > DITHER_OPTION_MAX)
716 return;
717
718 stream->dither_option = option;
719
720 memset(¶ms, 0, sizeof(params));
721 resource_build_bit_depth_reduction_params(stream, ¶ms);
722 stream->bit_depth_params = params;
723
724 if (pipes->plane_res.xfm &&
725 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
726 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
727 pipes->plane_res.xfm,
728 pipes->plane_res.scl_data.lb_params.depth,
729 &stream->bit_depth_params);
730 }
731
732 pipes->stream_res.opp->funcs->
733 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
734 }
735
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)736 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
737 {
738 int i;
739 bool ret = false;
740 struct pipe_ctx *pipes;
741
742 for (i = 0; i < MAX_PIPES; i++) {
743 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
744 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
745 dc->hwss.program_gamut_remap(pipes);
746 ret = true;
747 }
748 }
749
750 return ret;
751 }
752
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)753 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
754 {
755 int i;
756 bool ret = false;
757 struct pipe_ctx *pipes;
758
759 for (i = 0; i < MAX_PIPES; i++) {
760 if (dc->current_state->res_ctx.pipe_ctx[i].stream
761 == stream) {
762
763 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
764 dc->hwss.program_output_csc(dc,
765 pipes,
766 stream->output_color_space,
767 stream->csc_color_matrix.matrix,
768 pipes->stream_res.opp->inst);
769 ret = true;
770 }
771 }
772
773 return ret;
774 }
775
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)776 void dc_stream_set_static_screen_params(struct dc *dc,
777 struct dc_stream_state **streams,
778 int num_streams,
779 const struct dc_static_screen_params *params)
780 {
781 int i, j;
782 struct pipe_ctx *pipes_affected[MAX_PIPES];
783 int num_pipes_affected = 0;
784
785 for (i = 0; i < num_streams; i++) {
786 struct dc_stream_state *stream = streams[i];
787
788 for (j = 0; j < MAX_PIPES; j++) {
789 if (dc->current_state->res_ctx.pipe_ctx[j].stream
790 == stream) {
791 pipes_affected[num_pipes_affected++] =
792 &dc->current_state->res_ctx.pipe_ctx[j];
793 }
794 }
795 }
796
797 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
798 }
799
dc_destruct(struct dc * dc)800 static void dc_destruct(struct dc *dc)
801 {
802 // reset link encoder assignment table on destruct
803 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
804 link_enc_cfg_init(dc, dc->current_state);
805
806 if (dc->current_state) {
807 dc_release_state(dc->current_state);
808 dc->current_state = NULL;
809 }
810
811 destroy_links(dc);
812
813 destroy_link_encoders(dc);
814
815 if (dc->clk_mgr) {
816 dc_destroy_clk_mgr(dc->clk_mgr);
817 dc->clk_mgr = NULL;
818 }
819
820 dc_destroy_resource_pool(dc);
821
822 if (dc->link_srv)
823 link_destroy_link_service(&dc->link_srv);
824
825 if (dc->ctx->gpio_service)
826 dal_gpio_service_destroy(&dc->ctx->gpio_service);
827
828 if (dc->ctx->created_bios)
829 dal_bios_parser_destroy(&dc->ctx->dc_bios);
830
831 dc_perf_trace_destroy(&dc->ctx->perf_trace);
832
833 kfree(dc->ctx);
834 dc->ctx = NULL;
835
836 kfree(dc->bw_vbios);
837 dc->bw_vbios = NULL;
838
839 kfree(dc->bw_dceip);
840 dc->bw_dceip = NULL;
841
842 kfree(dc->dcn_soc);
843 dc->dcn_soc = NULL;
844
845 kfree(dc->dcn_ip);
846 dc->dcn_ip = NULL;
847
848 kfree(dc->vm_helper);
849 dc->vm_helper = NULL;
850
851 }
852
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)853 static bool dc_construct_ctx(struct dc *dc,
854 const struct dc_init_data *init_params)
855 {
856 struct dc_context *dc_ctx;
857
858 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
859 if (!dc_ctx)
860 return false;
861
862 dc_ctx->cgs_device = init_params->cgs_device;
863 dc_ctx->driver_context = init_params->driver;
864 dc_ctx->dc = dc;
865 dc_ctx->asic_id = init_params->asic_id;
866 dc_ctx->dc_sink_id_count = 0;
867 dc_ctx->dc_stream_id_count = 0;
868 dc_ctx->dce_environment = init_params->dce_environment;
869 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
870 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
871
872 /* Create logger */
873
874 dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
875
876 dc_ctx->perf_trace = dc_perf_trace_create();
877 if (!dc_ctx->perf_trace) {
878 kfree(dc_ctx);
879 ASSERT_CRITICAL(false);
880 return false;
881 }
882
883 dc->ctx = dc_ctx;
884
885 dc->link_srv = link_create_link_service();
886 if (!dc->link_srv)
887 return false;
888
889 return true;
890 }
891
dc_construct(struct dc * dc,const struct dc_init_data * init_params)892 static bool dc_construct(struct dc *dc,
893 const struct dc_init_data *init_params)
894 {
895 struct dc_context *dc_ctx;
896 struct bw_calcs_dceip *dc_dceip;
897 struct bw_calcs_vbios *dc_vbios;
898 struct dcn_soc_bounding_box *dcn_soc;
899 struct dcn_ip_params *dcn_ip;
900
901 dc->config = init_params->flags;
902
903 // Allocate memory for the vm_helper
904 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
905 if (!dc->vm_helper) {
906 dm_error("%s: failed to create dc->vm_helper\n", __func__);
907 goto fail;
908 }
909
910 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
911
912 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
913 if (!dc_dceip) {
914 dm_error("%s: failed to create dceip\n", __func__);
915 goto fail;
916 }
917
918 dc->bw_dceip = dc_dceip;
919
920 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
921 if (!dc_vbios) {
922 dm_error("%s: failed to create vbios\n", __func__);
923 goto fail;
924 }
925
926 dc->bw_vbios = dc_vbios;
927 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
928 if (!dcn_soc) {
929 dm_error("%s: failed to create dcn_soc\n", __func__);
930 goto fail;
931 }
932
933 dc->dcn_soc = dcn_soc;
934
935 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
936 if (!dcn_ip) {
937 dm_error("%s: failed to create dcn_ip\n", __func__);
938 goto fail;
939 }
940
941 dc->dcn_ip = dcn_ip;
942
943 if (!dc_construct_ctx(dc, init_params)) {
944 dm_error("%s: failed to create ctx\n", __func__);
945 goto fail;
946 }
947
948 dc_ctx = dc->ctx;
949
950 /* Resource should construct all asic specific resources.
951 * This should be the only place where we need to parse the asic id
952 */
953 if (init_params->vbios_override)
954 dc_ctx->dc_bios = init_params->vbios_override;
955 else {
956 /* Create BIOS parser */
957 struct bp_init_data bp_init_data;
958
959 bp_init_data.ctx = dc_ctx;
960 bp_init_data.bios = init_params->asic_id.atombios_base_address;
961
962 dc_ctx->dc_bios = dal_bios_parser_create(
963 &bp_init_data, dc_ctx->dce_version);
964
965 if (!dc_ctx->dc_bios) {
966 ASSERT_CRITICAL(false);
967 goto fail;
968 }
969
970 dc_ctx->created_bios = true;
971 }
972
973 dc->vendor_signature = init_params->vendor_signature;
974
975 /* Create GPIO service */
976 dc_ctx->gpio_service = dal_gpio_service_create(
977 dc_ctx->dce_version,
978 dc_ctx->dce_environment,
979 dc_ctx);
980
981 if (!dc_ctx->gpio_service) {
982 ASSERT_CRITICAL(false);
983 goto fail;
984 }
985
986 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
987 if (!dc->res_pool)
988 goto fail;
989
990 /* set i2c speed if not done by the respective dcnxxx__resource.c */
991 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
992 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
993 if (dc->caps.max_optimizable_video_width == 0)
994 dc->caps.max_optimizable_video_width = 5120;
995 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
996 if (!dc->clk_mgr)
997 goto fail;
998 #ifdef CONFIG_DRM_AMD_DC_FP
999 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1000
1001 if (dc->res_pool->funcs->update_bw_bounding_box) {
1002 DC_FP_START();
1003 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1004 DC_FP_END();
1005 }
1006 #endif
1007
1008 /* Creation of current_state must occur after dc->dml
1009 * is initialized in dc_create_resource_pool because
1010 * on creation it copies the contents of dc->dml
1011 */
1012
1013 dc->current_state = dc_create_state(dc);
1014
1015 if (!dc->current_state) {
1016 dm_error("%s: failed to create validate ctx\n", __func__);
1017 goto fail;
1018 }
1019
1020 if (!create_links(dc, init_params->num_virtual_links))
1021 goto fail;
1022
1023 /* Create additional DIG link encoder objects if fewer than the platform
1024 * supports were created during link construction.
1025 */
1026 if (!create_link_encoders(dc))
1027 goto fail;
1028
1029 dc_resource_state_construct(dc, dc->current_state);
1030
1031 return true;
1032
1033 fail:
1034 return false;
1035 }
1036
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1037 static void disable_all_writeback_pipes_for_stream(
1038 const struct dc *dc,
1039 struct dc_stream_state *stream,
1040 struct dc_state *context)
1041 {
1042 int i;
1043
1044 for (i = 0; i < stream->num_wb_info; i++)
1045 stream->writeback_info[i].wb_enabled = false;
1046 }
1047
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1048 static void apply_ctx_interdependent_lock(struct dc *dc,
1049 struct dc_state *context,
1050 struct dc_stream_state *stream,
1051 bool lock)
1052 {
1053 int i;
1054
1055 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1056 if (dc->hwss.interdependent_update_lock)
1057 dc->hwss.interdependent_update_lock(dc, context, lock);
1058 else {
1059 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1060 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1061 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1062
1063 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1064 if (stream == pipe_ctx->stream) {
1065 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1066 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1067 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1068 }
1069 }
1070 }
1071 }
1072
dc_update_viusal_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1073 static void dc_update_viusal_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1074 {
1075 if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1076 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1077
1078 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1079 get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1080 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1081 get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1082 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1083 get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1084 else {
1085 if (dc->ctx->dce_version < DCN_VERSION_2_0)
1086 color_space_to_black_color(
1087 dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1088 }
1089 if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1090 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1091 get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1092 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1093 get_subvp_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1094 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1095 get_mclk_switch_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1096 }
1097 }
1098 }
1099
disable_dangling_plane(struct dc * dc,struct dc_state * context)1100 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1101 {
1102 int i, j;
1103 struct dc_state *dangling_context = dc_create_state(dc);
1104 struct dc_state *current_ctx;
1105 struct pipe_ctx *pipe;
1106 struct timing_generator *tg;
1107
1108 if (dangling_context == NULL)
1109 return;
1110
1111 dc_resource_state_copy_construct(dc->current_state, dangling_context);
1112
1113 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1114 struct dc_stream_state *old_stream =
1115 dc->current_state->res_ctx.pipe_ctx[i].stream;
1116 bool should_disable = true;
1117 bool pipe_split_change = false;
1118
1119 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1120 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1121 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1122 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1123 else
1124 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1125 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1126
1127 for (j = 0; j < context->stream_count; j++) {
1128 if (old_stream == context->streams[j]) {
1129 should_disable = false;
1130 break;
1131 }
1132 }
1133 if (!should_disable && pipe_split_change &&
1134 dc->current_state->stream_count != context->stream_count)
1135 should_disable = true;
1136
1137 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1138 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1139 struct pipe_ctx *old_pipe, *new_pipe;
1140
1141 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1142 new_pipe = &context->res_ctx.pipe_ctx[i];
1143
1144 if (old_pipe->plane_state && !new_pipe->plane_state)
1145 should_disable = true;
1146 }
1147
1148 if (should_disable && old_stream) {
1149 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1150 tg = pipe->stream_res.tg;
1151 /* When disabling plane for a phantom pipe, we must turn on the
1152 * phantom OTG so the disable programming gets the double buffer
1153 * update. Otherwise the pipe will be left in a partially disabled
1154 * state that can result in underflow or hang when enabling it
1155 * again for different use.
1156 */
1157 if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1158 if (tg->funcs->enable_crtc) {
1159 int main_pipe_width, main_pipe_height;
1160
1161 main_pipe_width = old_stream->mall_stream_config.paired_stream->dst.width;
1162 main_pipe_height = old_stream->mall_stream_config.paired_stream->dst.height;
1163 if (dc->hwss.blank_phantom)
1164 dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height);
1165 tg->funcs->enable_crtc(tg);
1166 }
1167 }
1168 dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1169 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1170
1171 if (pipe->stream && pipe->plane_state)
1172 dc_update_viusal_confirm_color(dc, context, pipe);
1173
1174 if (dc->hwss.apply_ctx_for_surface) {
1175 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1176 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1177 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1178 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1179 }
1180 if (dc->hwss.program_front_end_for_ctx) {
1181 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1182 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1183 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1184 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1185 }
1186 /* We need to put the phantom OTG back into it's default (disabled) state or we
1187 * can get corruption when transition from one SubVP config to a different one.
1188 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1189 * will still get it's double buffer update.
1190 */
1191 if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1192 if (tg->funcs->disable_phantom_crtc)
1193 tg->funcs->disable_phantom_crtc(tg);
1194 }
1195 }
1196 }
1197
1198 current_ctx = dc->current_state;
1199 dc->current_state = dangling_context;
1200 dc_release_state(current_ctx);
1201 }
1202
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1203 static void disable_vbios_mode_if_required(
1204 struct dc *dc,
1205 struct dc_state *context)
1206 {
1207 unsigned int i, j;
1208
1209 /* check if timing_changed, disable stream*/
1210 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1211 struct dc_stream_state *stream = NULL;
1212 struct dc_link *link = NULL;
1213 struct pipe_ctx *pipe = NULL;
1214
1215 pipe = &context->res_ctx.pipe_ctx[i];
1216 stream = pipe->stream;
1217 if (stream == NULL)
1218 continue;
1219
1220 if (stream->apply_seamless_boot_optimization)
1221 continue;
1222
1223 // only looking for first odm pipe
1224 if (pipe->prev_odm_pipe)
1225 continue;
1226
1227 if (stream->link->local_sink &&
1228 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1229 link = stream->link;
1230 }
1231
1232 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1233 unsigned int enc_inst, tg_inst = 0;
1234 unsigned int pix_clk_100hz;
1235
1236 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1237 if (enc_inst != ENGINE_ID_UNKNOWN) {
1238 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1239 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1240 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1241 dc->res_pool->stream_enc[j]);
1242 break;
1243 }
1244 }
1245
1246 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1247 dc->res_pool->dp_clock_source,
1248 tg_inst, &pix_clk_100hz);
1249
1250 if (link->link_status.link_active) {
1251 uint32_t requested_pix_clk_100hz =
1252 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1253
1254 if (pix_clk_100hz != requested_pix_clk_100hz) {
1255 dc->link_srv->set_dpms_off(pipe);
1256 pipe->stream->dpms_off = false;
1257 }
1258 }
1259 }
1260 }
1261 }
1262 }
1263
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)1264 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1265 {
1266 int i;
1267 PERF_TRACE();
1268 for (i = 0; i < MAX_PIPES; i++) {
1269 int count = 0;
1270 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1271
1272 if (!pipe->plane_state || pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1273 continue;
1274
1275 /* Timeout 100 ms */
1276 while (count < 100000) {
1277 /* Must set to false to start with, due to OR in update function */
1278 pipe->plane_state->status.is_flip_pending = false;
1279 dc->hwss.update_pending_status(pipe);
1280 if (!pipe->plane_state->status.is_flip_pending)
1281 break;
1282 udelay(1);
1283 count++;
1284 }
1285 ASSERT(!pipe->plane_state->status.is_flip_pending);
1286 }
1287 PERF_TRACE();
1288 }
1289
1290 /* Public functions */
1291
dc_create(const struct dc_init_data * init_params)1292 struct dc *dc_create(const struct dc_init_data *init_params)
1293 {
1294 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1295 unsigned int full_pipe_count;
1296
1297 if (!dc)
1298 return NULL;
1299
1300 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1301 if (!dc_construct_ctx(dc, init_params))
1302 goto destruct_dc;
1303 } else {
1304 if (!dc_construct(dc, init_params))
1305 goto destruct_dc;
1306
1307 full_pipe_count = dc->res_pool->pipe_count;
1308 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1309 full_pipe_count--;
1310 dc->caps.max_streams = min(
1311 full_pipe_count,
1312 dc->res_pool->stream_enc_count);
1313
1314 dc->caps.max_links = dc->link_count;
1315 dc->caps.max_audios = dc->res_pool->audio_count;
1316 dc->caps.linear_pitch_alignment = 64;
1317
1318 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1319
1320 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1321
1322 if (dc->res_pool->dmcu != NULL)
1323 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1324 }
1325
1326 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1327 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1328
1329 /* Populate versioning information */
1330 dc->versions.dc_ver = DC_VER;
1331
1332 dc->build_id = DC_BUILD_ID;
1333
1334 DC_LOG_DC("Display Core initialized\n");
1335
1336
1337
1338 return dc;
1339
1340 destruct_dc:
1341 dc_destruct(dc);
1342 kfree(dc);
1343 return NULL;
1344 }
1345
detect_edp_presence(struct dc * dc)1346 static void detect_edp_presence(struct dc *dc)
1347 {
1348 struct dc_link *edp_links[MAX_NUM_EDP];
1349 struct dc_link *edp_link = NULL;
1350 enum dc_connection_type type;
1351 int i;
1352 int edp_num;
1353
1354 dc_get_edp_links(dc, edp_links, &edp_num);
1355 if (!edp_num)
1356 return;
1357
1358 for (i = 0; i < edp_num; i++) {
1359 edp_link = edp_links[i];
1360 if (dc->config.edp_not_connected) {
1361 edp_link->edp_sink_present = false;
1362 } else {
1363 dc_link_detect_connection_type(edp_link, &type);
1364 edp_link->edp_sink_present = (type != dc_connection_none);
1365 }
1366 }
1367 }
1368
dc_hardware_init(struct dc * dc)1369 void dc_hardware_init(struct dc *dc)
1370 {
1371
1372 detect_edp_presence(dc);
1373 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1374 dc->hwss.init_hw(dc);
1375 }
1376
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1377 void dc_init_callbacks(struct dc *dc,
1378 const struct dc_callback_init *init_params)
1379 {
1380 dc->ctx->cp_psp = init_params->cp_psp;
1381 }
1382
dc_deinit_callbacks(struct dc * dc)1383 void dc_deinit_callbacks(struct dc *dc)
1384 {
1385 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1386 }
1387
dc_destroy(struct dc ** dc)1388 void dc_destroy(struct dc **dc)
1389 {
1390 dc_destruct(*dc);
1391 kfree(*dc);
1392 *dc = NULL;
1393 }
1394
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1395 static void enable_timing_multisync(
1396 struct dc *dc,
1397 struct dc_state *ctx)
1398 {
1399 int i, multisync_count = 0;
1400 int pipe_count = dc->res_pool->pipe_count;
1401 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1402
1403 for (i = 0; i < pipe_count; i++) {
1404 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1405 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1406 continue;
1407 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1408 continue;
1409 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1410 multisync_count++;
1411 }
1412
1413 if (multisync_count > 0) {
1414 dc->hwss.enable_per_frame_crtc_position_reset(
1415 dc, multisync_count, multisync_pipes);
1416 }
1417 }
1418
program_timing_sync(struct dc * dc,struct dc_state * ctx)1419 static void program_timing_sync(
1420 struct dc *dc,
1421 struct dc_state *ctx)
1422 {
1423 int i, j, k;
1424 int group_index = 0;
1425 int num_group = 0;
1426 int pipe_count = dc->res_pool->pipe_count;
1427 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1428
1429 for (i = 0; i < pipe_count; i++) {
1430 if (!ctx->res_ctx.pipe_ctx[i].stream
1431 || ctx->res_ctx.pipe_ctx[i].top_pipe
1432 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1433 continue;
1434
1435 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1436 }
1437
1438 for (i = 0; i < pipe_count; i++) {
1439 int group_size = 1;
1440 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1441 struct pipe_ctx *pipe_set[MAX_PIPES];
1442
1443 if (!unsynced_pipes[i])
1444 continue;
1445
1446 pipe_set[0] = unsynced_pipes[i];
1447 unsynced_pipes[i] = NULL;
1448
1449 /* Add tg to the set, search rest of the tg's for ones with
1450 * same timing, add all tgs with same timing to the group
1451 */
1452 for (j = i + 1; j < pipe_count; j++) {
1453 if (!unsynced_pipes[j])
1454 continue;
1455 if (sync_type != TIMING_SYNCHRONIZABLE &&
1456 dc->hwss.enable_vblanks_synchronization &&
1457 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1458 resource_are_vblanks_synchronizable(
1459 unsynced_pipes[j]->stream,
1460 pipe_set[0]->stream)) {
1461 sync_type = VBLANK_SYNCHRONIZABLE;
1462 pipe_set[group_size] = unsynced_pipes[j];
1463 unsynced_pipes[j] = NULL;
1464 group_size++;
1465 } else
1466 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1467 resource_are_streams_timing_synchronizable(
1468 unsynced_pipes[j]->stream,
1469 pipe_set[0]->stream)) {
1470 sync_type = TIMING_SYNCHRONIZABLE;
1471 pipe_set[group_size] = unsynced_pipes[j];
1472 unsynced_pipes[j] = NULL;
1473 group_size++;
1474 }
1475 }
1476
1477 /* set first unblanked pipe as master */
1478 for (j = 0; j < group_size; j++) {
1479 bool is_blanked;
1480
1481 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1482 is_blanked =
1483 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1484 else
1485 is_blanked =
1486 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1487 if (!is_blanked) {
1488 if (j == 0)
1489 break;
1490
1491 swap(pipe_set[0], pipe_set[j]);
1492 break;
1493 }
1494 }
1495
1496 for (k = 0; k < group_size; k++) {
1497 struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1498
1499 status->timing_sync_info.group_id = num_group;
1500 status->timing_sync_info.group_size = group_size;
1501 if (k == 0)
1502 status->timing_sync_info.master = true;
1503 else
1504 status->timing_sync_info.master = false;
1505
1506 }
1507
1508 /* remove any other pipes that are already been synced */
1509 if (dc->config.use_pipe_ctx_sync_logic) {
1510 /* check pipe's syncd to decide which pipe to be removed */
1511 for (j = 1; j < group_size; j++) {
1512 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1513 group_size--;
1514 pipe_set[j] = pipe_set[group_size];
1515 j--;
1516 } else
1517 /* link slave pipe's syncd with master pipe */
1518 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1519 }
1520 } else {
1521 for (j = j + 1; j < group_size; j++) {
1522 bool is_blanked;
1523
1524 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1525 is_blanked =
1526 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1527 else
1528 is_blanked =
1529 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1530 if (!is_blanked) {
1531 group_size--;
1532 pipe_set[j] = pipe_set[group_size];
1533 j--;
1534 }
1535 }
1536 }
1537
1538 if (group_size > 1) {
1539 if (sync_type == TIMING_SYNCHRONIZABLE) {
1540 dc->hwss.enable_timing_synchronization(
1541 dc, group_index, group_size, pipe_set);
1542 } else
1543 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1544 dc->hwss.enable_vblanks_synchronization(
1545 dc, group_index, group_size, pipe_set);
1546 }
1547 group_index++;
1548 }
1549 num_group++;
1550 }
1551 }
1552
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1553 static bool streams_changed(struct dc *dc,
1554 struct dc_stream_state *streams[],
1555 uint8_t stream_count)
1556 {
1557 uint8_t i;
1558
1559 if (stream_count != dc->current_state->stream_count)
1560 return true;
1561
1562 for (i = 0; i < dc->current_state->stream_count; i++) {
1563 if (dc->current_state->streams[i] != streams[i])
1564 return true;
1565 if (!streams[i]->link->link_state_valid)
1566 return true;
1567 }
1568
1569 return false;
1570 }
1571
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1572 bool dc_validate_boot_timing(const struct dc *dc,
1573 const struct dc_sink *sink,
1574 struct dc_crtc_timing *crtc_timing)
1575 {
1576 struct timing_generator *tg;
1577 struct stream_encoder *se = NULL;
1578
1579 struct dc_crtc_timing hw_crtc_timing = {0};
1580
1581 struct dc_link *link = sink->link;
1582 unsigned int i, enc_inst, tg_inst = 0;
1583
1584 /* Support seamless boot on EDP displays only */
1585 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1586 return false;
1587 }
1588
1589 if (dc->debug.force_odm_combine)
1590 return false;
1591
1592 /* Check for enabled DIG to identify enabled display */
1593 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1594 return false;
1595
1596 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1597
1598 if (enc_inst == ENGINE_ID_UNKNOWN)
1599 return false;
1600
1601 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1602 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1603
1604 se = dc->res_pool->stream_enc[i];
1605
1606 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1607 dc->res_pool->stream_enc[i]);
1608 break;
1609 }
1610 }
1611
1612 // tg_inst not found
1613 if (i == dc->res_pool->stream_enc_count)
1614 return false;
1615
1616 if (tg_inst >= dc->res_pool->timing_generator_count)
1617 return false;
1618
1619 if (tg_inst != link->link_enc->preferred_engine)
1620 return false;
1621
1622 tg = dc->res_pool->timing_generators[tg_inst];
1623
1624 if (!tg->funcs->get_hw_timing)
1625 return false;
1626
1627 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1628 return false;
1629
1630 if (crtc_timing->h_total != hw_crtc_timing.h_total)
1631 return false;
1632
1633 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1634 return false;
1635
1636 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1637 return false;
1638
1639 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1640 return false;
1641
1642 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1643 return false;
1644
1645 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1646 return false;
1647
1648 if (crtc_timing->v_total != hw_crtc_timing.v_total)
1649 return false;
1650
1651 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1652 return false;
1653
1654 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1655 return false;
1656
1657 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1658 return false;
1659
1660 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1661 return false;
1662
1663 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1664 return false;
1665
1666 /* block DSC for now, as VBIOS does not currently support DSC timings */
1667 if (crtc_timing->flags.DSC)
1668 return false;
1669
1670 if (dc_is_dp_signal(link->connector_signal)) {
1671 unsigned int pix_clk_100hz;
1672 uint32_t numOdmPipes = 1;
1673 uint32_t id_src[4] = {0};
1674
1675 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1676 dc->res_pool->dp_clock_source,
1677 tg_inst, &pix_clk_100hz);
1678
1679 if (tg->funcs->get_optc_source)
1680 tg->funcs->get_optc_source(tg,
1681 &numOdmPipes, &id_src[0], &id_src[1]);
1682
1683 if (numOdmPipes == 2)
1684 pix_clk_100hz *= 2;
1685 if (numOdmPipes == 4)
1686 pix_clk_100hz *= 4;
1687
1688 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1689 // slightly due to rounding issues in 10 kHz units.
1690 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1691 return false;
1692
1693 if (!se->funcs->dp_get_pixel_format)
1694 return false;
1695
1696 if (!se->funcs->dp_get_pixel_format(
1697 se,
1698 &hw_crtc_timing.pixel_encoding,
1699 &hw_crtc_timing.display_color_depth))
1700 return false;
1701
1702 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1703 return false;
1704
1705 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1706 return false;
1707 }
1708
1709 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1710 return false;
1711 }
1712
1713 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1714 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1715 return false;
1716 }
1717
1718 return true;
1719 }
1720
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1721 static inline bool should_update_pipe_for_stream(
1722 struct dc_state *context,
1723 struct pipe_ctx *pipe_ctx,
1724 struct dc_stream_state *stream)
1725 {
1726 return (pipe_ctx->stream && pipe_ctx->stream == stream);
1727 }
1728
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1729 static inline bool should_update_pipe_for_plane(
1730 struct dc_state *context,
1731 struct pipe_ctx *pipe_ctx,
1732 struct dc_plane_state *plane_state)
1733 {
1734 return (pipe_ctx->plane_state == plane_state);
1735 }
1736
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1737 void dc_enable_stereo(
1738 struct dc *dc,
1739 struct dc_state *context,
1740 struct dc_stream_state *streams[],
1741 uint8_t stream_count)
1742 {
1743 int i, j;
1744 struct pipe_ctx *pipe;
1745
1746 for (i = 0; i < MAX_PIPES; i++) {
1747 if (context != NULL) {
1748 pipe = &context->res_ctx.pipe_ctx[i];
1749 } else {
1750 context = dc->current_state;
1751 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1752 }
1753
1754 for (j = 0; pipe && j < stream_count; j++) {
1755 if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1756 dc->hwss.setup_stereo)
1757 dc->hwss.setup_stereo(pipe, dc);
1758 }
1759 }
1760 }
1761
dc_trigger_sync(struct dc * dc,struct dc_state * context)1762 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1763 {
1764 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1765 enable_timing_multisync(dc, context);
1766 program_timing_sync(dc, context);
1767 }
1768 }
1769
get_stream_mask(struct dc * dc,struct dc_state * context)1770 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1771 {
1772 int i;
1773 unsigned int stream_mask = 0;
1774
1775 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1776 if (context->res_ctx.pipe_ctx[i].stream)
1777 stream_mask |= 1 << i;
1778 }
1779
1780 return stream_mask;
1781 }
1782
dc_z10_restore(const struct dc * dc)1783 void dc_z10_restore(const struct dc *dc)
1784 {
1785 if (dc->hwss.z10_restore)
1786 dc->hwss.z10_restore(dc);
1787 }
1788
dc_z10_save_init(struct dc * dc)1789 void dc_z10_save_init(struct dc *dc)
1790 {
1791 if (dc->hwss.z10_save_init)
1792 dc->hwss.z10_save_init(dc);
1793 }
1794
1795 /**
1796 * dc_commit_state_no_check - Apply context to the hardware
1797 *
1798 * @dc: DC object with the current status to be updated
1799 * @context: New state that will become the current status at the end of this function
1800 *
1801 * Applies given context to the hardware and copy it into current context.
1802 * It's up to the user to release the src context afterwards.
1803 *
1804 * Return: an enum dc_status result code for the operation
1805 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1806 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1807 {
1808 struct dc_bios *dcb = dc->ctx->dc_bios;
1809 enum dc_status result = DC_ERROR_UNEXPECTED;
1810 struct pipe_ctx *pipe;
1811 int i, k, l;
1812 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1813 struct dc_state *old_state;
1814 bool subvp_prev_use = false;
1815
1816 dc_z10_restore(dc);
1817 dc_allow_idle_optimizations(dc, false);
1818
1819 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1820 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1821
1822 /* Check old context for SubVP */
1823 subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
1824 if (subvp_prev_use)
1825 break;
1826 }
1827
1828 for (i = 0; i < context->stream_count; i++)
1829 dc_streams[i] = context->streams[i];
1830
1831 if (!dcb->funcs->is_accelerated_mode(dcb)) {
1832 disable_vbios_mode_if_required(dc, context);
1833 dc->hwss.enable_accelerated_mode(dc, context);
1834 }
1835
1836 if (context->stream_count > get_seamless_boot_stream_count(context) ||
1837 context->stream_count == 0)
1838 dc->hwss.prepare_bandwidth(dc, context);
1839
1840 /* When SubVP is active, all HW programming must be done while
1841 * SubVP lock is acquired
1842 */
1843 if (dc->hwss.subvp_pipe_control_lock)
1844 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1845
1846 if (dc->hwss.update_dsc_pg)
1847 dc->hwss.update_dsc_pg(dc, context, false);
1848
1849 disable_dangling_plane(dc, context);
1850 /* re-program planes for existing stream, in case we need to
1851 * free up plane resource for later use
1852 */
1853 if (dc->hwss.apply_ctx_for_surface) {
1854 for (i = 0; i < context->stream_count; i++) {
1855 if (context->streams[i]->mode_changed)
1856 continue;
1857 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1858 dc->hwss.apply_ctx_for_surface(
1859 dc, context->streams[i],
1860 context->stream_status[i].plane_count,
1861 context); /* use new pipe config in new context */
1862 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1863 dc->hwss.post_unlock_program_front_end(dc, context);
1864 }
1865 }
1866
1867 /* Program hardware */
1868 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1869 pipe = &context->res_ctx.pipe_ctx[i];
1870 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1871 }
1872
1873 result = dc->hwss.apply_ctx_to_hw(dc, context);
1874
1875 if (result != DC_OK) {
1876 /* Application of dc_state to hardware stopped. */
1877 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1878 return result;
1879 }
1880
1881 dc_trigger_sync(dc, context);
1882
1883 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
1884 for (i = 0; i < context->stream_count; i++) {
1885 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
1886
1887 context->streams[i]->update_flags.raw = 0xFFFFFFFF;
1888 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
1889 }
1890
1891 /* Program all planes within new context*/
1892 if (dc->hwss.program_front_end_for_ctx) {
1893 dc->hwss.interdependent_update_lock(dc, context, true);
1894 dc->hwss.program_front_end_for_ctx(dc, context);
1895 dc->hwss.interdependent_update_lock(dc, context, false);
1896 dc->hwss.post_unlock_program_front_end(dc, context);
1897 }
1898
1899 if (dc->hwss.commit_subvp_config)
1900 dc->hwss.commit_subvp_config(dc, context);
1901 if (dc->hwss.subvp_pipe_control_lock)
1902 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1903
1904 for (i = 0; i < context->stream_count; i++) {
1905 const struct dc_link *link = context->streams[i]->link;
1906
1907 if (!context->streams[i]->mode_changed)
1908 continue;
1909
1910 if (dc->hwss.apply_ctx_for_surface) {
1911 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1912 dc->hwss.apply_ctx_for_surface(
1913 dc, context->streams[i],
1914 context->stream_status[i].plane_count,
1915 context);
1916 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1917 dc->hwss.post_unlock_program_front_end(dc, context);
1918 }
1919
1920 /*
1921 * enable stereo
1922 * TODO rework dc_enable_stereo call to work with validation sets?
1923 */
1924 for (k = 0; k < MAX_PIPES; k++) {
1925 pipe = &context->res_ctx.pipe_ctx[k];
1926
1927 for (l = 0 ; pipe && l < context->stream_count; l++) {
1928 if (context->streams[l] &&
1929 context->streams[l] == pipe->stream &&
1930 dc->hwss.setup_stereo)
1931 dc->hwss.setup_stereo(pipe, dc);
1932 }
1933 }
1934
1935 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1936 context->streams[i]->timing.h_addressable,
1937 context->streams[i]->timing.v_addressable,
1938 context->streams[i]->timing.h_total,
1939 context->streams[i]->timing.v_total,
1940 context->streams[i]->timing.pix_clk_100hz / 10);
1941 }
1942
1943 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1944
1945 if (context->stream_count > get_seamless_boot_stream_count(context) ||
1946 context->stream_count == 0) {
1947 /* Must wait for no flips to be pending before doing optimize bw */
1948 wait_for_no_pipes_pending(dc, context);
1949 /* pplib is notified if disp_num changed */
1950 dc->hwss.optimize_bandwidth(dc, context);
1951 /* Need to do otg sync again as otg could be out of sync due to otg
1952 * workaround applied during clock update
1953 */
1954 dc_trigger_sync(dc, context);
1955 }
1956
1957 if (dc->hwss.update_dsc_pg)
1958 dc->hwss.update_dsc_pg(dc, context, true);
1959
1960 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
1961 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
1962 else
1963 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
1964
1965 context->stream_mask = get_stream_mask(dc, context);
1966
1967 if (context->stream_mask != dc->current_state->stream_mask)
1968 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1969
1970 for (i = 0; i < context->stream_count; i++)
1971 context->streams[i]->mode_changed = false;
1972
1973 /* Clear update flags that were set earlier to avoid redundant programming */
1974 for (i = 0; i < context->stream_count; i++) {
1975 context->streams[i]->update_flags.raw = 0x0;
1976 }
1977
1978 old_state = dc->current_state;
1979 dc->current_state = context;
1980
1981 dc_release_state(old_state);
1982
1983 dc_retain_state(dc->current_state);
1984
1985 return result;
1986 }
1987
1988 static bool commit_minimal_transition_state(struct dc *dc,
1989 struct dc_state *transition_base_context);
1990
1991 /**
1992 * dc_commit_streams - Commit current stream state
1993 *
1994 * @dc: DC object with the commit state to be configured in the hardware
1995 * @streams: Array with a list of stream state
1996 * @stream_count: Total of streams
1997 *
1998 * Function responsible for commit streams change to the hardware.
1999 *
2000 * Return:
2001 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2002 * code.
2003 */
dc_commit_streams(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)2004 enum dc_status dc_commit_streams(struct dc *dc,
2005 struct dc_stream_state *streams[],
2006 uint8_t stream_count)
2007 {
2008 int i, j;
2009 struct dc_state *context;
2010 enum dc_status res = DC_OK;
2011 struct dc_validation_set set[MAX_STREAMS] = {0};
2012 struct pipe_ctx *pipe;
2013 bool handle_exit_odm2to1 = false;
2014
2015 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2016 return res;
2017
2018 if (!streams_changed(dc, streams, stream_count))
2019 return res;
2020
2021 DC_LOG_DC("%s: %d streams\n", __func__, stream_count);
2022
2023 for (i = 0; i < stream_count; i++) {
2024 struct dc_stream_state *stream = streams[i];
2025 struct dc_stream_status *status = dc_stream_get_status(stream);
2026
2027 dc_stream_log(dc, stream);
2028
2029 set[i].stream = stream;
2030
2031 if (status) {
2032 set[i].plane_count = status->plane_count;
2033 for (j = 0; j < status->plane_count; j++)
2034 set[i].plane_states[j] = status->plane_states[j];
2035 }
2036 }
2037
2038 /* ODM Combine 2:1 power optimization is only applied for single stream
2039 * scenario, it uses extra pipes than needed to reduce power consumption
2040 * We need to switch off this feature to make room for new streams.
2041 */
2042 if (stream_count > dc->current_state->stream_count &&
2043 dc->current_state->stream_count == 1) {
2044 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2045 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2046 if (pipe->next_odm_pipe)
2047 handle_exit_odm2to1 = true;
2048 }
2049 }
2050
2051 if (handle_exit_odm2to1)
2052 res = commit_minimal_transition_state(dc, dc->current_state);
2053
2054 context = dc_create_state(dc);
2055 if (!context)
2056 goto context_alloc_fail;
2057
2058 dc_resource_state_copy_construct_current(dc, context);
2059
2060 res = dc_validate_with_context(dc, set, stream_count, context, false);
2061 if (res != DC_OK) {
2062 BREAK_TO_DEBUGGER();
2063 goto fail;
2064 }
2065
2066 res = dc_commit_state_no_check(dc, context);
2067
2068 for (i = 0; i < stream_count; i++) {
2069 for (j = 0; j < context->stream_count; j++) {
2070 if (streams[i]->stream_id == context->streams[j]->stream_id)
2071 streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2072
2073 if (dc_is_embedded_signal(streams[i]->signal)) {
2074 struct dc_stream_status *status = dc_stream_get_status_from_state(context, streams[i]);
2075
2076 if (dc->hwss.is_abm_supported)
2077 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, streams[i]);
2078 else
2079 status->is_abm_supported = true;
2080 }
2081 }
2082 }
2083
2084 fail:
2085 dc_release_state(context);
2086
2087 context_alloc_fail:
2088
2089 DC_LOG_DC("%s Finished.\n", __func__);
2090
2091 return res;
2092 }
2093
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2094 bool dc_acquire_release_mpc_3dlut(
2095 struct dc *dc, bool acquire,
2096 struct dc_stream_state *stream,
2097 struct dc_3dlut **lut,
2098 struct dc_transfer_func **shaper)
2099 {
2100 int pipe_idx;
2101 bool ret = false;
2102 bool found_pipe_idx = false;
2103 const struct resource_pool *pool = dc->res_pool;
2104 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2105 int mpcc_id = 0;
2106
2107 if (pool && res_ctx) {
2108 if (acquire) {
2109 /*find pipe idx for the given stream*/
2110 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2111 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2112 found_pipe_idx = true;
2113 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2114 break;
2115 }
2116 }
2117 } else
2118 found_pipe_idx = true;/*for release pipe_idx is not required*/
2119
2120 if (found_pipe_idx) {
2121 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2122 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2123 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2124 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2125 }
2126 }
2127 return ret;
2128 }
2129
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2130 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2131 {
2132 int i;
2133 struct pipe_ctx *pipe;
2134
2135 for (i = 0; i < MAX_PIPES; i++) {
2136 pipe = &context->res_ctx.pipe_ctx[i];
2137
2138 // Don't check flip pending on phantom pipes
2139 if (!pipe->plane_state || (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM))
2140 continue;
2141
2142 /* Must set to false to start with, due to OR in update function */
2143 pipe->plane_state->status.is_flip_pending = false;
2144 dc->hwss.update_pending_status(pipe);
2145 if (pipe->plane_state->status.is_flip_pending)
2146 return true;
2147 }
2148 return false;
2149 }
2150
2151 /* Perform updates here which need to be deferred until next vupdate
2152 *
2153 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2154 * but forcing lut memory to shutdown state is immediate. This causes
2155 * single frame corruption as lut gets disabled mid-frame unless shutdown
2156 * is deferred until after entering bypass.
2157 */
process_deferred_updates(struct dc * dc)2158 static void process_deferred_updates(struct dc *dc)
2159 {
2160 int i = 0;
2161
2162 if (dc->debug.enable_mem_low_power.bits.cm) {
2163 ASSERT(dc->dcn_ip->max_num_dpp);
2164 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2165 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2166 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2167 }
2168 }
2169
dc_post_update_surfaces_to_stream(struct dc * dc)2170 void dc_post_update_surfaces_to_stream(struct dc *dc)
2171 {
2172 int i;
2173 struct dc_state *context = dc->current_state;
2174
2175 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2176 return;
2177
2178 post_surface_trace(dc);
2179
2180 /*
2181 * Only relevant for DCN behavior where we can guarantee the optimization
2182 * is safe to apply - retain the legacy behavior for DCE.
2183 */
2184
2185 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2186 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2187 else {
2188 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2189
2190 if (is_flip_pending_in_pipes(dc, context))
2191 return;
2192
2193 for (i = 0; i < dc->res_pool->pipe_count; i++)
2194 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2195 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2196 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2197 dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
2198 }
2199
2200 process_deferred_updates(dc);
2201
2202 dc->hwss.optimize_bandwidth(dc, context);
2203
2204 if (dc->hwss.update_dsc_pg)
2205 dc->hwss.update_dsc_pg(dc, context, true);
2206 }
2207
2208 dc->optimized_required = false;
2209 dc->wm_optimized_required = false;
2210 }
2211
init_state(struct dc * dc,struct dc_state * context)2212 static void init_state(struct dc *dc, struct dc_state *context)
2213 {
2214 /* Each context must have their own instance of VBA and in order to
2215 * initialize and obtain IP and SOC the base DML instance from DC is
2216 * initially copied into every context
2217 */
2218 memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
2219 }
2220
dc_create_state(struct dc * dc)2221 struct dc_state *dc_create_state(struct dc *dc)
2222 {
2223 struct dc_state *context = kvzalloc(sizeof(struct dc_state),
2224 GFP_KERNEL);
2225
2226 if (!context)
2227 return NULL;
2228
2229 init_state(dc, context);
2230
2231 kref_init(&context->refcount);
2232
2233 return context;
2234 }
2235
dc_copy_state(struct dc_state * src_ctx)2236 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
2237 {
2238 int i, j;
2239 struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
2240
2241 if (!new_ctx)
2242 return NULL;
2243 memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
2244
2245 for (i = 0; i < MAX_PIPES; i++) {
2246 struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
2247
2248 if (cur_pipe->top_pipe)
2249 cur_pipe->top_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2250
2251 if (cur_pipe->bottom_pipe)
2252 cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2253
2254 if (cur_pipe->prev_odm_pipe)
2255 cur_pipe->prev_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2256
2257 if (cur_pipe->next_odm_pipe)
2258 cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2259
2260 }
2261
2262 for (i = 0; i < new_ctx->stream_count; i++) {
2263 dc_stream_retain(new_ctx->streams[i]);
2264 for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
2265 dc_plane_state_retain(
2266 new_ctx->stream_status[i].plane_states[j]);
2267 }
2268
2269 kref_init(&new_ctx->refcount);
2270
2271 return new_ctx;
2272 }
2273
dc_retain_state(struct dc_state * context)2274 void dc_retain_state(struct dc_state *context)
2275 {
2276 kref_get(&context->refcount);
2277 }
2278
dc_state_free(struct kref * kref)2279 static void dc_state_free(struct kref *kref)
2280 {
2281 struct dc_state *context = container_of(kref, struct dc_state, refcount);
2282 dc_resource_state_destruct(context);
2283 kvfree(context);
2284 }
2285
dc_release_state(struct dc_state * context)2286 void dc_release_state(struct dc_state *context)
2287 {
2288 kref_put(&context->refcount, dc_state_free);
2289 }
2290
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2291 bool dc_set_generic_gpio_for_stereo(bool enable,
2292 struct gpio_service *gpio_service)
2293 {
2294 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2295 struct gpio_pin_info pin_info;
2296 struct gpio *generic;
2297 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2298 GFP_KERNEL);
2299
2300 if (!config)
2301 return false;
2302 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2303
2304 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2305 kfree(config);
2306 return false;
2307 } else {
2308 generic = dal_gpio_service_create_generic_mux(
2309 gpio_service,
2310 pin_info.offset,
2311 pin_info.mask);
2312 }
2313
2314 if (!generic) {
2315 kfree(config);
2316 return false;
2317 }
2318
2319 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2320
2321 config->enable_output_from_mux = enable;
2322 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2323
2324 if (gpio_result == GPIO_RESULT_OK)
2325 gpio_result = dal_mux_setup_config(generic, config);
2326
2327 if (gpio_result == GPIO_RESULT_OK) {
2328 dal_gpio_close(generic);
2329 dal_gpio_destroy_generic_mux(&generic);
2330 kfree(config);
2331 return true;
2332 } else {
2333 dal_gpio_close(generic);
2334 dal_gpio_destroy_generic_mux(&generic);
2335 kfree(config);
2336 return false;
2337 }
2338 }
2339
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2340 static bool is_surface_in_context(
2341 const struct dc_state *context,
2342 const struct dc_plane_state *plane_state)
2343 {
2344 int j;
2345
2346 for (j = 0; j < MAX_PIPES; j++) {
2347 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2348
2349 if (plane_state == pipe_ctx->plane_state) {
2350 return true;
2351 }
2352 }
2353
2354 return false;
2355 }
2356
get_plane_info_update_type(const struct dc_surface_update * u)2357 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2358 {
2359 union surface_update_flags *update_flags = &u->surface->update_flags;
2360 enum surface_update_type update_type = UPDATE_TYPE_FAST;
2361
2362 if (!u->plane_info)
2363 return UPDATE_TYPE_FAST;
2364
2365 if (u->plane_info->color_space != u->surface->color_space) {
2366 update_flags->bits.color_space_change = 1;
2367 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2368 }
2369
2370 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2371 update_flags->bits.horizontal_mirror_change = 1;
2372 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2373 }
2374
2375 if (u->plane_info->rotation != u->surface->rotation) {
2376 update_flags->bits.rotation_change = 1;
2377 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2378 }
2379
2380 if (u->plane_info->format != u->surface->format) {
2381 update_flags->bits.pixel_format_change = 1;
2382 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2383 }
2384
2385 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2386 update_flags->bits.stereo_format_change = 1;
2387 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2388 }
2389
2390 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2391 update_flags->bits.per_pixel_alpha_change = 1;
2392 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2393 }
2394
2395 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2396 update_flags->bits.global_alpha_change = 1;
2397 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2398 }
2399
2400 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2401 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2402 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2403 /* During DCC on/off, stutter period is calculated before
2404 * DCC has fully transitioned. This results in incorrect
2405 * stutter period calculation. Triggering a full update will
2406 * recalculate stutter period.
2407 */
2408 update_flags->bits.dcc_change = 1;
2409 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2410 }
2411
2412 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2413 resource_pixel_format_to_bpp(u->surface->format)) {
2414 /* different bytes per element will require full bandwidth
2415 * and DML calculation
2416 */
2417 update_flags->bits.bpp_change = 1;
2418 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2419 }
2420
2421 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2422 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2423 update_flags->bits.plane_size_change = 1;
2424 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2425 }
2426
2427
2428 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2429 sizeof(union dc_tiling_info)) != 0) {
2430 update_flags->bits.swizzle_change = 1;
2431 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2432
2433 /* todo: below are HW dependent, we should add a hook to
2434 * DCE/N resource and validated there.
2435 */
2436 if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2437 /* swizzled mode requires RQ to be setup properly,
2438 * thus need to run DML to calculate RQ settings
2439 */
2440 update_flags->bits.bandwidth_change = 1;
2441 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2442 }
2443 }
2444
2445 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2446 return update_type;
2447 }
2448
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2449 static enum surface_update_type get_scaling_info_update_type(
2450 const struct dc *dc,
2451 const struct dc_surface_update *u)
2452 {
2453 union surface_update_flags *update_flags = &u->surface->update_flags;
2454
2455 if (!u->scaling_info)
2456 return UPDATE_TYPE_FAST;
2457
2458 if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2459 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2460 || u->scaling_info->scaling_quality.integer_scaling !=
2461 u->surface->scaling_quality.integer_scaling
2462 ) {
2463 update_flags->bits.scaling_change = 1;
2464
2465 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2466 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2467 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2468 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2469 /* Making dst rect smaller requires a bandwidth change */
2470 update_flags->bits.bandwidth_change = 1;
2471 }
2472
2473 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2474 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2475
2476 update_flags->bits.scaling_change = 1;
2477 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2478 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2479 /* Making src rect bigger requires a bandwidth change */
2480 update_flags->bits.clock_change = 1;
2481 }
2482
2483 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2484 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2485 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2486 /* Changing clip size of a large surface may result in MPC slice count change */
2487 update_flags->bits.bandwidth_change = 1;
2488
2489 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2490 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2491 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2492 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2493 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2494 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2495 update_flags->bits.position_change = 1;
2496
2497 if (update_flags->bits.clock_change
2498 || update_flags->bits.bandwidth_change
2499 || update_flags->bits.scaling_change)
2500 return UPDATE_TYPE_FULL;
2501
2502 if (update_flags->bits.position_change)
2503 return UPDATE_TYPE_MED;
2504
2505 return UPDATE_TYPE_FAST;
2506 }
2507
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2508 static enum surface_update_type det_surface_update(const struct dc *dc,
2509 const struct dc_surface_update *u)
2510 {
2511 const struct dc_state *context = dc->current_state;
2512 enum surface_update_type type;
2513 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2514 union surface_update_flags *update_flags = &u->surface->update_flags;
2515
2516 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2517 update_flags->raw = 0xFFFFFFFF;
2518 return UPDATE_TYPE_FULL;
2519 }
2520
2521 update_flags->raw = 0; // Reset all flags
2522
2523 type = get_plane_info_update_type(u);
2524 elevate_update_type(&overall_type, type);
2525
2526 type = get_scaling_info_update_type(dc, u);
2527 elevate_update_type(&overall_type, type);
2528
2529 if (u->flip_addr) {
2530 update_flags->bits.addr_update = 1;
2531 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2532 update_flags->bits.tmz_changed = 1;
2533 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2534 }
2535 }
2536 if (u->in_transfer_func)
2537 update_flags->bits.in_transfer_func_change = 1;
2538
2539 if (u->input_csc_color_matrix)
2540 update_flags->bits.input_csc_change = 1;
2541
2542 if (u->coeff_reduction_factor)
2543 update_flags->bits.coeff_reduction_change = 1;
2544
2545 if (u->gamut_remap_matrix)
2546 update_flags->bits.gamut_remap_change = 1;
2547
2548 if (u->gamma) {
2549 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2550
2551 if (u->plane_info)
2552 format = u->plane_info->format;
2553 else if (u->surface)
2554 format = u->surface->format;
2555
2556 if (dce_use_lut(format))
2557 update_flags->bits.gamma_change = 1;
2558 }
2559
2560 if (u->lut3d_func || u->func_shaper)
2561 update_flags->bits.lut_3d = 1;
2562
2563 if (u->hdr_mult.value)
2564 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2565 update_flags->bits.hdr_mult = 1;
2566 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2567 }
2568
2569 if (update_flags->bits.in_transfer_func_change) {
2570 type = UPDATE_TYPE_MED;
2571 elevate_update_type(&overall_type, type);
2572 }
2573
2574 if (update_flags->bits.lut_3d) {
2575 type = UPDATE_TYPE_FULL;
2576 elevate_update_type(&overall_type, type);
2577 }
2578
2579 if (dc->debug.enable_legacy_fast_update &&
2580 (update_flags->bits.gamma_change ||
2581 update_flags->bits.gamut_remap_change ||
2582 update_flags->bits.input_csc_change ||
2583 update_flags->bits.coeff_reduction_change)) {
2584 type = UPDATE_TYPE_FULL;
2585 elevate_update_type(&overall_type, type);
2586 }
2587 return overall_type;
2588 }
2589
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2590 static enum surface_update_type check_update_surfaces_for_stream(
2591 struct dc *dc,
2592 struct dc_surface_update *updates,
2593 int surface_count,
2594 struct dc_stream_update *stream_update,
2595 const struct dc_stream_status *stream_status)
2596 {
2597 int i;
2598 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2599
2600 if (dc->idle_optimizations_allowed)
2601 overall_type = UPDATE_TYPE_FULL;
2602
2603 if (stream_status == NULL || stream_status->plane_count != surface_count)
2604 overall_type = UPDATE_TYPE_FULL;
2605
2606 if (stream_update && stream_update->pending_test_pattern) {
2607 overall_type = UPDATE_TYPE_FULL;
2608 }
2609
2610 /* some stream updates require passive update */
2611 if (stream_update) {
2612 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2613
2614 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2615 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2616 stream_update->integer_scaling_update)
2617 su_flags->bits.scaling = 1;
2618
2619 if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2620 su_flags->bits.out_tf = 1;
2621
2622 if (stream_update->abm_level)
2623 su_flags->bits.abm_level = 1;
2624
2625 if (stream_update->dpms_off)
2626 su_flags->bits.dpms_off = 1;
2627
2628 if (stream_update->gamut_remap)
2629 su_flags->bits.gamut_remap = 1;
2630
2631 if (stream_update->wb_update)
2632 su_flags->bits.wb_update = 1;
2633
2634 if (stream_update->dsc_config)
2635 su_flags->bits.dsc_changed = 1;
2636
2637 if (stream_update->mst_bw_update)
2638 su_flags->bits.mst_bw = 1;
2639
2640 if (stream_update->stream && stream_update->stream->freesync_on_desktop &&
2641 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
2642 stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2643 su_flags->bits.fams_changed = 1;
2644
2645 if (su_flags->raw != 0)
2646 overall_type = UPDATE_TYPE_FULL;
2647
2648 if (stream_update->output_csc_transform || stream_update->output_color_space)
2649 su_flags->bits.out_csc = 1;
2650
2651 /* Output transfer function changes do not require bandwidth recalculation,
2652 * so don't trigger a full update
2653 */
2654 if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2655 su_flags->bits.out_tf = 1;
2656 }
2657
2658 for (i = 0 ; i < surface_count; i++) {
2659 enum surface_update_type type =
2660 det_surface_update(dc, &updates[i]);
2661
2662 elevate_update_type(&overall_type, type);
2663 }
2664
2665 return overall_type;
2666 }
2667
2668 /*
2669 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2670 *
2671 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2672 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2673 enum surface_update_type dc_check_update_surfaces_for_stream(
2674 struct dc *dc,
2675 struct dc_surface_update *updates,
2676 int surface_count,
2677 struct dc_stream_update *stream_update,
2678 const struct dc_stream_status *stream_status)
2679 {
2680 int i;
2681 enum surface_update_type type;
2682
2683 if (stream_update)
2684 stream_update->stream->update_flags.raw = 0;
2685 for (i = 0; i < surface_count; i++)
2686 updates[i].surface->update_flags.raw = 0;
2687
2688 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2689 if (type == UPDATE_TYPE_FULL) {
2690 if (stream_update) {
2691 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2692 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2693 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2694 }
2695 for (i = 0; i < surface_count; i++)
2696 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2697 }
2698
2699 if (type == UPDATE_TYPE_FAST) {
2700 // If there's an available clock comparator, we use that.
2701 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2702 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2703 dc->optimized_required = true;
2704 // Else we fallback to mem compare.
2705 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2706 dc->optimized_required = true;
2707 }
2708
2709 dc->optimized_required |= dc->wm_optimized_required;
2710 }
2711
2712 return type;
2713 }
2714
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2715 static struct dc_stream_status *stream_get_status(
2716 struct dc_state *ctx,
2717 struct dc_stream_state *stream)
2718 {
2719 uint8_t i;
2720
2721 for (i = 0; i < ctx->stream_count; i++) {
2722 if (stream == ctx->streams[i]) {
2723 return &ctx->stream_status[i];
2724 }
2725 }
2726
2727 return NULL;
2728 }
2729
2730 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2731
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2732 static void copy_surface_update_to_plane(
2733 struct dc_plane_state *surface,
2734 struct dc_surface_update *srf_update)
2735 {
2736 if (srf_update->flip_addr) {
2737 surface->address = srf_update->flip_addr->address;
2738 surface->flip_immediate =
2739 srf_update->flip_addr->flip_immediate;
2740 surface->time.time_elapsed_in_us[surface->time.index] =
2741 srf_update->flip_addr->flip_timestamp_in_us -
2742 surface->time.prev_update_time_in_us;
2743 surface->time.prev_update_time_in_us =
2744 srf_update->flip_addr->flip_timestamp_in_us;
2745 surface->time.index++;
2746 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2747 surface->time.index = 0;
2748
2749 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2750 }
2751
2752 if (srf_update->scaling_info) {
2753 surface->scaling_quality =
2754 srf_update->scaling_info->scaling_quality;
2755 surface->dst_rect =
2756 srf_update->scaling_info->dst_rect;
2757 surface->src_rect =
2758 srf_update->scaling_info->src_rect;
2759 surface->clip_rect =
2760 srf_update->scaling_info->clip_rect;
2761 }
2762
2763 if (srf_update->plane_info) {
2764 surface->color_space =
2765 srf_update->plane_info->color_space;
2766 surface->format =
2767 srf_update->plane_info->format;
2768 surface->plane_size =
2769 srf_update->plane_info->plane_size;
2770 surface->rotation =
2771 srf_update->plane_info->rotation;
2772 surface->horizontal_mirror =
2773 srf_update->plane_info->horizontal_mirror;
2774 surface->stereo_format =
2775 srf_update->plane_info->stereo_format;
2776 surface->tiling_info =
2777 srf_update->plane_info->tiling_info;
2778 surface->visible =
2779 srf_update->plane_info->visible;
2780 surface->per_pixel_alpha =
2781 srf_update->plane_info->per_pixel_alpha;
2782 surface->global_alpha =
2783 srf_update->plane_info->global_alpha;
2784 surface->global_alpha_value =
2785 srf_update->plane_info->global_alpha_value;
2786 surface->dcc =
2787 srf_update->plane_info->dcc;
2788 surface->layer_index =
2789 srf_update->plane_info->layer_index;
2790 }
2791
2792 if (srf_update->gamma &&
2793 (surface->gamma_correction !=
2794 srf_update->gamma)) {
2795 memcpy(&surface->gamma_correction->entries,
2796 &srf_update->gamma->entries,
2797 sizeof(struct dc_gamma_entries));
2798 surface->gamma_correction->is_identity =
2799 srf_update->gamma->is_identity;
2800 surface->gamma_correction->num_entries =
2801 srf_update->gamma->num_entries;
2802 surface->gamma_correction->type =
2803 srf_update->gamma->type;
2804 }
2805
2806 if (srf_update->in_transfer_func &&
2807 (surface->in_transfer_func !=
2808 srf_update->in_transfer_func)) {
2809 surface->in_transfer_func->sdr_ref_white_level =
2810 srf_update->in_transfer_func->sdr_ref_white_level;
2811 surface->in_transfer_func->tf =
2812 srf_update->in_transfer_func->tf;
2813 surface->in_transfer_func->type =
2814 srf_update->in_transfer_func->type;
2815 memcpy(&surface->in_transfer_func->tf_pts,
2816 &srf_update->in_transfer_func->tf_pts,
2817 sizeof(struct dc_transfer_func_distributed_points));
2818 }
2819
2820 if (srf_update->func_shaper &&
2821 (surface->in_shaper_func !=
2822 srf_update->func_shaper))
2823 memcpy(surface->in_shaper_func, srf_update->func_shaper,
2824 sizeof(*surface->in_shaper_func));
2825
2826 if (srf_update->lut3d_func &&
2827 (surface->lut3d_func !=
2828 srf_update->lut3d_func))
2829 memcpy(surface->lut3d_func, srf_update->lut3d_func,
2830 sizeof(*surface->lut3d_func));
2831
2832 if (srf_update->hdr_mult.value)
2833 surface->hdr_mult =
2834 srf_update->hdr_mult;
2835
2836 if (srf_update->blend_tf &&
2837 (surface->blend_tf !=
2838 srf_update->blend_tf))
2839 memcpy(surface->blend_tf, srf_update->blend_tf,
2840 sizeof(*surface->blend_tf));
2841
2842 if (srf_update->input_csc_color_matrix)
2843 surface->input_csc_color_matrix =
2844 *srf_update->input_csc_color_matrix;
2845
2846 if (srf_update->coeff_reduction_factor)
2847 surface->coeff_reduction_factor =
2848 *srf_update->coeff_reduction_factor;
2849
2850 if (srf_update->gamut_remap_matrix)
2851 surface->gamut_remap_matrix =
2852 *srf_update->gamut_remap_matrix;
2853 }
2854
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2855 static void copy_stream_update_to_stream(struct dc *dc,
2856 struct dc_state *context,
2857 struct dc_stream_state *stream,
2858 struct dc_stream_update *update)
2859 {
2860 struct dc_context *dc_ctx = dc->ctx;
2861
2862 if (update == NULL || stream == NULL)
2863 return;
2864
2865 if (update->src.height && update->src.width)
2866 stream->src = update->src;
2867
2868 if (update->dst.height && update->dst.width)
2869 stream->dst = update->dst;
2870
2871 if (update->out_transfer_func &&
2872 stream->out_transfer_func != update->out_transfer_func) {
2873 stream->out_transfer_func->sdr_ref_white_level =
2874 update->out_transfer_func->sdr_ref_white_level;
2875 stream->out_transfer_func->tf = update->out_transfer_func->tf;
2876 stream->out_transfer_func->type =
2877 update->out_transfer_func->type;
2878 memcpy(&stream->out_transfer_func->tf_pts,
2879 &update->out_transfer_func->tf_pts,
2880 sizeof(struct dc_transfer_func_distributed_points));
2881 }
2882
2883 if (update->hdr_static_metadata)
2884 stream->hdr_static_metadata = *update->hdr_static_metadata;
2885
2886 if (update->abm_level)
2887 stream->abm_level = *update->abm_level;
2888
2889 if (update->periodic_interrupt)
2890 stream->periodic_interrupt = *update->periodic_interrupt;
2891
2892 if (update->gamut_remap)
2893 stream->gamut_remap_matrix = *update->gamut_remap;
2894
2895 /* Note: this being updated after mode set is currently not a use case
2896 * however if it arises OCSC would need to be reprogrammed at the
2897 * minimum
2898 */
2899 if (update->output_color_space)
2900 stream->output_color_space = *update->output_color_space;
2901
2902 if (update->output_csc_transform)
2903 stream->csc_color_matrix = *update->output_csc_transform;
2904
2905 if (update->vrr_infopacket)
2906 stream->vrr_infopacket = *update->vrr_infopacket;
2907
2908 if (update->allow_freesync)
2909 stream->allow_freesync = *update->allow_freesync;
2910
2911 if (update->vrr_active_variable)
2912 stream->vrr_active_variable = *update->vrr_active_variable;
2913
2914 if (update->vrr_active_fixed)
2915 stream->vrr_active_fixed = *update->vrr_active_fixed;
2916
2917 if (update->crtc_timing_adjust)
2918 stream->adjust = *update->crtc_timing_adjust;
2919
2920 if (update->dpms_off)
2921 stream->dpms_off = *update->dpms_off;
2922
2923 if (update->hfvsif_infopacket)
2924 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2925
2926 if (update->vtem_infopacket)
2927 stream->vtem_infopacket = *update->vtem_infopacket;
2928
2929 if (update->vsc_infopacket)
2930 stream->vsc_infopacket = *update->vsc_infopacket;
2931
2932 if (update->vsp_infopacket)
2933 stream->vsp_infopacket = *update->vsp_infopacket;
2934
2935 if (update->adaptive_sync_infopacket)
2936 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2937
2938 if (update->dither_option)
2939 stream->dither_option = *update->dither_option;
2940
2941 if (update->pending_test_pattern)
2942 stream->test_pattern = *update->pending_test_pattern;
2943 /* update current stream with writeback info */
2944 if (update->wb_update) {
2945 int i;
2946
2947 stream->num_wb_info = update->wb_update->num_wb_info;
2948 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2949 for (i = 0; i < stream->num_wb_info; i++)
2950 stream->writeback_info[i] =
2951 update->wb_update->writeback_info[i];
2952 }
2953 if (update->dsc_config) {
2954 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2955 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2956 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2957 update->dsc_config->num_slices_v != 0);
2958
2959 /* Use temporarry context for validating new DSC config */
2960 struct dc_state *dsc_validate_context = dc_create_state(dc);
2961
2962 if (dsc_validate_context) {
2963 dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2964
2965 stream->timing.dsc_cfg = *update->dsc_config;
2966 stream->timing.flags.DSC = enable_dsc;
2967 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2968 stream->timing.dsc_cfg = old_dsc_cfg;
2969 stream->timing.flags.DSC = old_dsc_enabled;
2970 update->dsc_config = NULL;
2971 }
2972
2973 dc_release_state(dsc_validate_context);
2974 } else {
2975 DC_ERROR("Failed to allocate new validate context for DSC change\n");
2976 update->dsc_config = NULL;
2977 }
2978 }
2979 }
2980
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)2981 static bool update_planes_and_stream_state(struct dc *dc,
2982 struct dc_surface_update *srf_updates, int surface_count,
2983 struct dc_stream_state *stream,
2984 struct dc_stream_update *stream_update,
2985 enum surface_update_type *new_update_type,
2986 struct dc_state **new_context)
2987 {
2988 struct dc_state *context;
2989 int i, j;
2990 enum surface_update_type update_type;
2991 const struct dc_stream_status *stream_status;
2992 struct dc_context *dc_ctx = dc->ctx;
2993
2994 stream_status = dc_stream_get_status(stream);
2995
2996 if (!stream_status) {
2997 if (surface_count) /* Only an error condition if surf_count non-zero*/
2998 ASSERT(false);
2999
3000 return false; /* Cannot commit surface to stream that is not committed */
3001 }
3002
3003 context = dc->current_state;
3004
3005 update_type = dc_check_update_surfaces_for_stream(
3006 dc, srf_updates, surface_count, stream_update, stream_status);
3007
3008 /* update current stream with the new updates */
3009 copy_stream_update_to_stream(dc, context, stream, stream_update);
3010
3011 /* do not perform surface update if surface has invalid dimensions
3012 * (all zero) and no scaling_info is provided
3013 */
3014 if (surface_count > 0) {
3015 for (i = 0; i < surface_count; i++) {
3016 if ((srf_updates[i].surface->src_rect.width == 0 ||
3017 srf_updates[i].surface->src_rect.height == 0 ||
3018 srf_updates[i].surface->dst_rect.width == 0 ||
3019 srf_updates[i].surface->dst_rect.height == 0) &&
3020 (!srf_updates[i].scaling_info ||
3021 srf_updates[i].scaling_info->src_rect.width == 0 ||
3022 srf_updates[i].scaling_info->src_rect.height == 0 ||
3023 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3024 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3025 DC_ERROR("Invalid src/dst rects in surface update!\n");
3026 return false;
3027 }
3028 }
3029 }
3030
3031 if (update_type >= update_surface_trace_level)
3032 update_surface_trace(dc, srf_updates, surface_count);
3033
3034 if (update_type >= UPDATE_TYPE_FULL) {
3035 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3036
3037 for (i = 0; i < surface_count; i++)
3038 new_planes[i] = srf_updates[i].surface;
3039
3040 /* initialize scratch memory for building context */
3041 context = dc_create_state(dc);
3042 if (context == NULL) {
3043 DC_ERROR("Failed to allocate new validate context!\n");
3044 return false;
3045 }
3046
3047 dc_resource_state_copy_construct(
3048 dc->current_state, context);
3049
3050 /* For each full update, remove all existing phantom pipes first.
3051 * Ensures that we have enough pipes for newly added MPO planes
3052 */
3053 if (dc->res_pool->funcs->remove_phantom_pipes)
3054 dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
3055
3056 /*remove old surfaces from context */
3057 if (!dc_rem_all_planes_for_stream(dc, stream, context)) {
3058
3059 BREAK_TO_DEBUGGER();
3060 goto fail;
3061 }
3062
3063 /* add surface to context */
3064 if (!dc_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3065
3066 BREAK_TO_DEBUGGER();
3067 goto fail;
3068 }
3069 }
3070
3071 /* save update parameters into surface */
3072 for (i = 0; i < surface_count; i++) {
3073 struct dc_plane_state *surface = srf_updates[i].surface;
3074
3075 copy_surface_update_to_plane(surface, &srf_updates[i]);
3076
3077 if (update_type >= UPDATE_TYPE_MED) {
3078 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3079 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3080
3081 if (pipe_ctx->plane_state != surface)
3082 continue;
3083
3084 resource_build_scaling_params(pipe_ctx);
3085 }
3086 }
3087 }
3088
3089 if (update_type == UPDATE_TYPE_FULL) {
3090 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3091 /* For phantom pipes we remove and create a new set of phantom pipes
3092 * for each full update (because we don't know if we'll need phantom
3093 * pipes until after the first round of validation). However, if validation
3094 * fails we need to keep the existing phantom pipes (because we don't update
3095 * the dc->current_state).
3096 *
3097 * The phantom stream/plane refcount is decremented for validation because
3098 * we assume it'll be removed (the free comes when the dc_state is freed),
3099 * but if validation fails we have to increment back the refcount so it's
3100 * consistent.
3101 */
3102 if (dc->res_pool->funcs->retain_phantom_pipes)
3103 dc->res_pool->funcs->retain_phantom_pipes(dc, dc->current_state);
3104 BREAK_TO_DEBUGGER();
3105 goto fail;
3106 }
3107 }
3108
3109 *new_context = context;
3110 *new_update_type = update_type;
3111
3112 return true;
3113
3114 fail:
3115 dc_release_state(context);
3116
3117 return false;
3118
3119 }
3120
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3121 static void commit_planes_do_stream_update(struct dc *dc,
3122 struct dc_stream_state *stream,
3123 struct dc_stream_update *stream_update,
3124 enum surface_update_type update_type,
3125 struct dc_state *context)
3126 {
3127 int j;
3128
3129 // Stream updates
3130 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3131 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3132
3133 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3134
3135 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3136 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3137
3138 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3139 stream_update->vrr_infopacket ||
3140 stream_update->vsc_infopacket ||
3141 stream_update->vsp_infopacket ||
3142 stream_update->hfvsif_infopacket ||
3143 stream_update->adaptive_sync_infopacket ||
3144 stream_update->vtem_infopacket) {
3145 resource_build_info_frame(pipe_ctx);
3146 dc->hwss.update_info_frame(pipe_ctx);
3147
3148 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3149 dc->link_srv->dp_trace_source_sequence(
3150 pipe_ctx->stream->link,
3151 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3152 }
3153
3154 if (stream_update->hdr_static_metadata &&
3155 stream->use_dynamic_meta &&
3156 dc->hwss.set_dmdata_attributes &&
3157 pipe_ctx->stream->dmdata_address.quad_part != 0)
3158 dc->hwss.set_dmdata_attributes(pipe_ctx);
3159
3160 if (stream_update->gamut_remap)
3161 dc_stream_set_gamut_remap(dc, stream);
3162
3163 if (stream_update->output_csc_transform)
3164 dc_stream_program_csc_matrix(dc, stream);
3165
3166 if (stream_update->dither_option) {
3167 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3168 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3169 &pipe_ctx->stream->bit_depth_params);
3170 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3171 &stream->bit_depth_params,
3172 &stream->clamping);
3173 while (odm_pipe) {
3174 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3175 &stream->bit_depth_params,
3176 &stream->clamping);
3177 odm_pipe = odm_pipe->next_odm_pipe;
3178 }
3179 }
3180
3181
3182 /* Full fe update*/
3183 if (update_type == UPDATE_TYPE_FAST)
3184 continue;
3185
3186 if (stream_update->dsc_config)
3187 dc->link_srv->update_dsc_config(pipe_ctx);
3188
3189 if (stream_update->mst_bw_update) {
3190 if (stream_update->mst_bw_update->is_increase)
3191 dc->link_srv->increase_mst_payload(pipe_ctx,
3192 stream_update->mst_bw_update->mst_stream_bw);
3193 else
3194 dc->link_srv->reduce_mst_payload(pipe_ctx,
3195 stream_update->mst_bw_update->mst_stream_bw);
3196 }
3197
3198 if (stream_update->pending_test_pattern) {
3199 dc_link_dp_set_test_pattern(stream->link,
3200 stream->test_pattern.type,
3201 stream->test_pattern.color_space,
3202 stream->test_pattern.p_link_settings,
3203 stream->test_pattern.p_custom_pattern,
3204 stream->test_pattern.cust_pattern_size);
3205 }
3206
3207 if (stream_update->dpms_off) {
3208 if (*stream_update->dpms_off) {
3209 dc->link_srv->set_dpms_off(pipe_ctx);
3210 /* for dpms, keep acquired resources*/
3211 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3212 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3213
3214 dc->optimized_required = true;
3215
3216 } else {
3217 if (get_seamless_boot_stream_count(context) == 0)
3218 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3219 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3220 }
3221 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3222 && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3223 /*
3224 * Workaround for firmware issue in some receivers where they don't pick up
3225 * correct output color space unless DP link is disabled/re-enabled
3226 */
3227 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3228 }
3229
3230 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3231 bool should_program_abm = true;
3232
3233 // if otg funcs defined check if blanked before programming
3234 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3235 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3236 should_program_abm = false;
3237
3238 if (should_program_abm) {
3239 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3240 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3241 } else {
3242 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3243 pipe_ctx->stream_res.abm, stream->abm_level);
3244 }
3245 }
3246 }
3247 }
3248 }
3249 }
3250
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3251 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3252 {
3253 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3254 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3255 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3256 return true;
3257
3258 if (stream->link->replay_settings.config.replay_supported)
3259 return true;
3260
3261 return false;
3262 }
3263
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3264 void dc_dmub_update_dirty_rect(struct dc *dc,
3265 int surface_count,
3266 struct dc_stream_state *stream,
3267 struct dc_surface_update *srf_updates,
3268 struct dc_state *context)
3269 {
3270 union dmub_rb_cmd cmd;
3271 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3272 unsigned int i, j;
3273 unsigned int panel_inst = 0;
3274
3275 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3276 return;
3277
3278 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3279 return;
3280
3281 memset(&cmd, 0x0, sizeof(cmd));
3282 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3283 cmd.update_dirty_rect.header.sub_type = 0;
3284 cmd.update_dirty_rect.header.payload_bytes =
3285 sizeof(cmd.update_dirty_rect) -
3286 sizeof(cmd.update_dirty_rect.header);
3287 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3288 for (i = 0; i < surface_count; i++) {
3289 struct dc_plane_state *plane_state = srf_updates[i].surface;
3290 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3291
3292 if (!srf_updates[i].surface || !flip_addr)
3293 continue;
3294 /* Do not send in immediate flip mode */
3295 if (srf_updates[i].surface->flip_immediate)
3296 continue;
3297
3298 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3299 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3300 sizeof(flip_addr->dirty_rects));
3301 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3302 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3303
3304 if (pipe_ctx->stream != stream)
3305 continue;
3306 if (pipe_ctx->plane_state != plane_state)
3307 continue;
3308
3309 update_dirty_rect->panel_inst = panel_inst;
3310 update_dirty_rect->pipe_idx = j;
3311 dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3312 }
3313 }
3314 }
3315
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3316 static void build_dmub_update_dirty_rect(
3317 struct dc *dc,
3318 int surface_count,
3319 struct dc_stream_state *stream,
3320 struct dc_surface_update *srf_updates,
3321 struct dc_state *context,
3322 struct dc_dmub_cmd dc_dmub_cmd[],
3323 unsigned int *dmub_cmd_count)
3324 {
3325 union dmub_rb_cmd cmd;
3326 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3327 unsigned int i, j;
3328 unsigned int panel_inst = 0;
3329
3330 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3331 return;
3332
3333 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3334 return;
3335
3336 memset(&cmd, 0x0, sizeof(cmd));
3337 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3338 cmd.update_dirty_rect.header.sub_type = 0;
3339 cmd.update_dirty_rect.header.payload_bytes =
3340 sizeof(cmd.update_dirty_rect) -
3341 sizeof(cmd.update_dirty_rect.header);
3342 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3343 for (i = 0; i < surface_count; i++) {
3344 struct dc_plane_state *plane_state = srf_updates[i].surface;
3345 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3346
3347 if (!srf_updates[i].surface || !flip_addr)
3348 continue;
3349 /* Do not send in immediate flip mode */
3350 if (srf_updates[i].surface->flip_immediate)
3351 continue;
3352 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3353 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3354 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3355 sizeof(flip_addr->dirty_rects));
3356 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3357 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3358
3359 if (pipe_ctx->stream != stream)
3360 continue;
3361 if (pipe_ctx->plane_state != plane_state)
3362 continue;
3363 update_dirty_rect->panel_inst = panel_inst;
3364 update_dirty_rect->pipe_idx = j;
3365 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3366 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3367 (*dmub_cmd_count)++;
3368 }
3369 }
3370 }
3371
3372
3373 /**
3374 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3375 *
3376 * @dc: Current DC state
3377 * @srf_updates: Array of surface updates
3378 * @surface_count: Number of surfaces that have an updated
3379 * @stream: Corresponding stream to be updated in the current flip
3380 * @context: New DC state to be programmed
3381 *
3382 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3383 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3384 *
3385 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3386 * to build an array of commands and have them sent while the OTG lock is acquired.
3387 *
3388 * Return: void
3389 */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3390 static void build_dmub_cmd_list(struct dc *dc,
3391 struct dc_surface_update *srf_updates,
3392 int surface_count,
3393 struct dc_stream_state *stream,
3394 struct dc_state *context,
3395 struct dc_dmub_cmd dc_dmub_cmd[],
3396 unsigned int *dmub_cmd_count)
3397 {
3398 // Initialize cmd count to 0
3399 *dmub_cmd_count = 0;
3400 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3401 }
3402
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3403 static void commit_planes_for_stream_fast(struct dc *dc,
3404 struct dc_surface_update *srf_updates,
3405 int surface_count,
3406 struct dc_stream_state *stream,
3407 struct dc_stream_update *stream_update,
3408 enum surface_update_type update_type,
3409 struct dc_state *context)
3410 {
3411 int i, j;
3412 struct pipe_ctx *top_pipe_to_program = NULL;
3413 dc_z10_restore(dc);
3414
3415 top_pipe_to_program = resource_get_otg_master_for_stream(
3416 &context->res_ctx,
3417 stream);
3418
3419 if (dc->debug.visual_confirm) {
3420 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3421 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3422
3423 if (pipe->stream && pipe->plane_state)
3424 dc_update_viusal_confirm_color(dc, context, pipe);
3425 }
3426 }
3427
3428 for (i = 0; i < surface_count; i++) {
3429 struct dc_plane_state *plane_state = srf_updates[i].surface;
3430 /*set logical flag for lock/unlock use*/
3431 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3432 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3433
3434 if (!pipe_ctx->plane_state)
3435 continue;
3436 if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3437 continue;
3438 pipe_ctx->plane_state->triplebuffer_flips = false;
3439 if (update_type == UPDATE_TYPE_FAST &&
3440 dc->hwss.program_triplebuffer &&
3441 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3442 /*triple buffer for VUpdate only*/
3443 pipe_ctx->plane_state->triplebuffer_flips = true;
3444 }
3445 }
3446 }
3447
3448 build_dmub_cmd_list(dc,
3449 srf_updates,
3450 surface_count,
3451 stream,
3452 context,
3453 context->dc_dmub_cmd,
3454 &(context->dmub_cmd_count));
3455 hwss_build_fast_sequence(dc,
3456 context->dc_dmub_cmd,
3457 context->dmub_cmd_count,
3458 context->block_sequence,
3459 &(context->block_sequence_steps),
3460 top_pipe_to_program);
3461 hwss_execute_sequence(dc,
3462 context->block_sequence,
3463 context->block_sequence_steps);
3464 /* Clear update flags so next flip doesn't have redundant programming
3465 * (if there's no stream update, the update flags are not cleared).
3466 * Surface updates are cleared unconditionally at the beginning of each flip,
3467 * so no need to clear here.
3468 */
3469 if (top_pipe_to_program->stream)
3470 top_pipe_to_program->stream->update_flags.raw = 0;
3471 }
3472
wait_for_outstanding_hw_updates(struct dc * dc,const struct dc_state * dc_context)3473 static void wait_for_outstanding_hw_updates(struct dc *dc, const struct dc_state *dc_context)
3474 {
3475 /*
3476 * This function calls HWSS to wait for any potentially double buffered
3477 * operations to complete. It should be invoked as a pre-amble prior
3478 * to full update programming before asserting any HW locks.
3479 */
3480 int pipe_idx;
3481 int opp_inst;
3482 int opp_count = dc->res_pool->pipe_count;
3483 struct hubp *hubp;
3484 int mpcc_inst;
3485 const struct pipe_ctx *pipe_ctx;
3486
3487 for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
3488 pipe_ctx = &dc_context->res_ctx.pipe_ctx[pipe_idx];
3489
3490 if (!pipe_ctx->stream)
3491 continue;
3492
3493 if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
3494 pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
3495
3496 hubp = pipe_ctx->plane_res.hubp;
3497 if (!hubp)
3498 continue;
3499
3500 mpcc_inst = hubp->inst;
3501 // MPCC inst is equal to pipe index in practice
3502 for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
3503 if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
3504 dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
3505 dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
3506 break;
3507 }
3508 }
3509 }
3510 }
3511
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3512 static void commit_planes_for_stream(struct dc *dc,
3513 struct dc_surface_update *srf_updates,
3514 int surface_count,
3515 struct dc_stream_state *stream,
3516 struct dc_stream_update *stream_update,
3517 enum surface_update_type update_type,
3518 struct dc_state *context)
3519 {
3520 int i, j;
3521 struct pipe_ctx *top_pipe_to_program = NULL;
3522 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3523 bool subvp_prev_use = false;
3524 bool subvp_curr_use = false;
3525
3526 // Once we apply the new subvp context to hardware it won't be in the
3527 // dc->current_state anymore, so we have to cache it before we apply
3528 // the new SubVP context
3529 subvp_prev_use = false;
3530 dc_z10_restore(dc);
3531 if (update_type == UPDATE_TYPE_FULL)
3532 wait_for_outstanding_hw_updates(dc, context);
3533
3534 if (update_type == UPDATE_TYPE_FULL) {
3535 dc_allow_idle_optimizations(dc, false);
3536
3537 if (get_seamless_boot_stream_count(context) == 0)
3538 dc->hwss.prepare_bandwidth(dc, context);
3539
3540 if (dc->hwss.update_dsc_pg)
3541 dc->hwss.update_dsc_pg(dc, context, false);
3542
3543 context_clock_trace(dc, context);
3544 }
3545
3546 top_pipe_to_program = resource_get_otg_master_for_stream(
3547 &context->res_ctx,
3548 stream);
3549
3550 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3551 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3552
3553 // Check old context for SubVP
3554 subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
3555 if (subvp_prev_use)
3556 break;
3557 }
3558
3559 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3560 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3561
3562 if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
3563 subvp_curr_use = true;
3564 break;
3565 }
3566 }
3567
3568 if (dc->debug.visual_confirm)
3569 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3570 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3571
3572 if (pipe->stream && pipe->plane_state)
3573 dc_update_viusal_confirm_color(dc, context, pipe);
3574 }
3575
3576 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3577 struct pipe_ctx *mpcc_pipe;
3578 struct pipe_ctx *odm_pipe;
3579
3580 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3581 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3582 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3583 }
3584
3585 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3586 if (top_pipe_to_program &&
3587 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3588 if (should_use_dmub_lock(stream->link)) {
3589 union dmub_hw_lock_flags hw_locks = { 0 };
3590 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3591
3592 hw_locks.bits.lock_dig = 1;
3593 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3594
3595 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3596 true,
3597 &hw_locks,
3598 &inst_flags);
3599 } else
3600 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3601 top_pipe_to_program->stream_res.tg);
3602 }
3603
3604 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3605 if (dc->hwss.subvp_pipe_control_lock)
3606 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3607 dc->hwss.interdependent_update_lock(dc, context, true);
3608
3609 } else {
3610 if (dc->hwss.subvp_pipe_control_lock)
3611 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3612 /* Lock the top pipe while updating plane addrs, since freesync requires
3613 * plane addr update event triggers to be synchronized.
3614 * top_pipe_to_program is expected to never be NULL
3615 */
3616 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3617 }
3618
3619 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3620
3621 // Stream updates
3622 if (stream_update)
3623 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3624
3625 if (surface_count == 0) {
3626 /*
3627 * In case of turning off screen, no need to program front end a second time.
3628 * just return after program blank.
3629 */
3630 if (dc->hwss.apply_ctx_for_surface)
3631 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3632 if (dc->hwss.program_front_end_for_ctx)
3633 dc->hwss.program_front_end_for_ctx(dc, context);
3634
3635 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3636 dc->hwss.interdependent_update_lock(dc, context, false);
3637 } else {
3638 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3639 }
3640 dc->hwss.post_unlock_program_front_end(dc, context);
3641
3642 if (update_type != UPDATE_TYPE_FAST)
3643 if (dc->hwss.commit_subvp_config)
3644 dc->hwss.commit_subvp_config(dc, context);
3645
3646 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
3647 * move the SubVP lock to after the phantom pipes have been setup
3648 */
3649 if (dc->hwss.subvp_pipe_control_lock)
3650 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3651 NULL, subvp_prev_use);
3652 return;
3653 }
3654
3655 if (update_type != UPDATE_TYPE_FAST) {
3656 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3657 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3658
3659 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3660 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3661 pipe_ctx->stream && pipe_ctx->plane_state) {
3662 /* Only update visual confirm for SUBVP and Mclk switching here.
3663 * The bar appears on all pipes, so we need to update the bar on all displays,
3664 * so the information doesn't get stale.
3665 */
3666 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3667 pipe_ctx->plane_res.hubp->inst);
3668 }
3669 }
3670 }
3671
3672 for (i = 0; i < surface_count; i++) {
3673 struct dc_plane_state *plane_state = srf_updates[i].surface;
3674 /*set logical flag for lock/unlock use*/
3675 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3676 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3677 if (!pipe_ctx->plane_state)
3678 continue;
3679 if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3680 continue;
3681 pipe_ctx->plane_state->triplebuffer_flips = false;
3682 if (update_type == UPDATE_TYPE_FAST &&
3683 dc->hwss.program_triplebuffer != NULL &&
3684 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3685 /*triple buffer for VUpdate only*/
3686 pipe_ctx->plane_state->triplebuffer_flips = true;
3687 }
3688 }
3689 if (update_type == UPDATE_TYPE_FULL) {
3690 /* force vsync flip when reconfiguring pipes to prevent underflow */
3691 plane_state->flip_immediate = false;
3692 }
3693 }
3694
3695 // Update Type FULL, Surface updates
3696 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3697 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3698
3699 if (!pipe_ctx->top_pipe &&
3700 !pipe_ctx->prev_odm_pipe &&
3701 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3702 struct dc_stream_status *stream_status = NULL;
3703
3704 if (!pipe_ctx->plane_state)
3705 continue;
3706
3707 /* Full fe update*/
3708 if (update_type == UPDATE_TYPE_FAST)
3709 continue;
3710
3711 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3712
3713 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3714 /*turn off triple buffer for full update*/
3715 dc->hwss.program_triplebuffer(
3716 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3717 }
3718 stream_status =
3719 stream_get_status(context, pipe_ctx->stream);
3720
3721 if (dc->hwss.apply_ctx_for_surface)
3722 dc->hwss.apply_ctx_for_surface(
3723 dc, pipe_ctx->stream, stream_status->plane_count, context);
3724 }
3725 }
3726 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3727 dc->hwss.program_front_end_for_ctx(dc, context);
3728 if (dc->debug.validate_dml_output) {
3729 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3730 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3731 if (cur_pipe->stream == NULL)
3732 continue;
3733
3734 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3735 cur_pipe->plane_res.hubp, dc->ctx,
3736 &context->res_ctx.pipe_ctx[i].rq_regs,
3737 &context->res_ctx.pipe_ctx[i].dlg_regs,
3738 &context->res_ctx.pipe_ctx[i].ttu_regs);
3739 }
3740 }
3741 }
3742
3743 // Update Type FAST, Surface updates
3744 if (update_type == UPDATE_TYPE_FAST) {
3745 if (dc->hwss.set_flip_control_gsl)
3746 for (i = 0; i < surface_count; i++) {
3747 struct dc_plane_state *plane_state = srf_updates[i].surface;
3748
3749 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3750 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3751
3752 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3753 continue;
3754
3755 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3756 continue;
3757
3758 // GSL has to be used for flip immediate
3759 dc->hwss.set_flip_control_gsl(pipe_ctx,
3760 pipe_ctx->plane_state->flip_immediate);
3761 }
3762 }
3763
3764 /* Perform requested Updates */
3765 for (i = 0; i < surface_count; i++) {
3766 struct dc_plane_state *plane_state = srf_updates[i].surface;
3767
3768 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3769 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3770
3771 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3772 continue;
3773
3774 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3775 continue;
3776
3777 /*program triple buffer after lock based on flip type*/
3778 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3779 /*only enable triplebuffer for fast_update*/
3780 dc->hwss.program_triplebuffer(
3781 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3782 }
3783 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3784 dc->hwss.update_plane_addr(dc, pipe_ctx);
3785 }
3786 }
3787 }
3788
3789 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3790 dc->hwss.interdependent_update_lock(dc, context, false);
3791 } else {
3792 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3793 }
3794
3795 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3796 if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3797 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3798 top_pipe_to_program->stream_res.tg,
3799 CRTC_STATE_VACTIVE);
3800 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3801 top_pipe_to_program->stream_res.tg,
3802 CRTC_STATE_VBLANK);
3803 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3804 top_pipe_to_program->stream_res.tg,
3805 CRTC_STATE_VACTIVE);
3806
3807 if (should_use_dmub_lock(stream->link)) {
3808 union dmub_hw_lock_flags hw_locks = { 0 };
3809 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3810
3811 hw_locks.bits.lock_dig = 1;
3812 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3813
3814 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3815 false,
3816 &hw_locks,
3817 &inst_flags);
3818 } else
3819 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3820 top_pipe_to_program->stream_res.tg);
3821 }
3822
3823 if (subvp_curr_use) {
3824 /* If enabling subvp or transitioning from subvp->subvp, enable the
3825 * phantom streams before we program front end for the phantom pipes.
3826 */
3827 if (update_type != UPDATE_TYPE_FAST) {
3828 if (dc->hwss.enable_phantom_streams)
3829 dc->hwss.enable_phantom_streams(dc, context);
3830 }
3831 }
3832
3833 if (update_type != UPDATE_TYPE_FAST)
3834 dc->hwss.post_unlock_program_front_end(dc, context);
3835
3836 if (subvp_prev_use && !subvp_curr_use) {
3837 /* If disabling subvp, disable phantom streams after front end
3838 * programming has completed (we turn on phantom OTG in order
3839 * to complete the plane disable for phantom pipes).
3840 */
3841 dc->hwss.apply_ctx_to_hw(dc, context);
3842 }
3843
3844 if (update_type != UPDATE_TYPE_FAST)
3845 if (dc->hwss.commit_subvp_config)
3846 dc->hwss.commit_subvp_config(dc, context);
3847 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
3848 * move the SubVP lock to after the phantom pipes have been setup
3849 */
3850 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3851 if (dc->hwss.subvp_pipe_control_lock)
3852 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3853 } else {
3854 if (dc->hwss.subvp_pipe_control_lock)
3855 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3856 }
3857
3858 // Fire manual trigger only when bottom plane is flipped
3859 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3860 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3861
3862 if (!pipe_ctx->plane_state)
3863 continue;
3864
3865 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
3866 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
3867 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
3868 pipe_ctx->plane_state->skip_manual_trigger)
3869 continue;
3870
3871 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
3872 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
3873 }
3874 }
3875
3876 /**
3877 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
3878 *
3879 * @dc: Used to get the current state status
3880 * @stream: Target stream, which we want to remove the attached planes
3881 * @surface_count: Number of surface update
3882 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
3883 *
3884 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
3885 * the MPO if used simultaneously in some specific configurations (e.g.,
3886 * 4k@144). This function checks if the incoming context requires applying a
3887 * transition state with unnecessary pipe splitting and ODM disabled to
3888 * circumvent our hardware limitations to prevent this edge case. If the OPP
3889 * associated with an MPCC might change due to plane additions, this function
3890 * returns true.
3891 *
3892 * Return:
3893 * Return true if OPP and MPCC might change, otherwise, return false.
3894 */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,int surface_count,bool * is_plane_addition)3895 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
3896 struct dc_stream_state *stream,
3897 int surface_count,
3898 bool *is_plane_addition)
3899 {
3900
3901 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
3902 bool force_minimal_pipe_splitting = false;
3903 bool subvp_active = false;
3904 uint32_t i;
3905
3906 *is_plane_addition = false;
3907
3908 if (cur_stream_status &&
3909 dc->current_state->stream_count > 0 &&
3910 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
3911 /* determine if minimal transition is required due to MPC*/
3912 if (surface_count > 0) {
3913 if (cur_stream_status->plane_count > surface_count) {
3914 force_minimal_pipe_splitting = true;
3915 } else if (cur_stream_status->plane_count < surface_count) {
3916 force_minimal_pipe_splitting = true;
3917 *is_plane_addition = true;
3918 }
3919 }
3920 }
3921
3922 if (cur_stream_status &&
3923 dc->current_state->stream_count == 1 &&
3924 dc->debug.enable_single_display_2to1_odm_policy) {
3925 /* determine if minimal transition is required due to dynamic ODM*/
3926 if (surface_count > 0) {
3927 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
3928 force_minimal_pipe_splitting = true;
3929 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
3930 force_minimal_pipe_splitting = true;
3931 *is_plane_addition = true;
3932 }
3933 }
3934 }
3935
3936 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3937 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3938
3939 if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
3940 subvp_active = true;
3941 break;
3942 }
3943 }
3944
3945 /* For SubVP when adding or removing planes we need to add a minimal transition
3946 * (even when disabling all planes). Whenever disabling a phantom pipe, we
3947 * must use the minimal transition path to disable the pipe correctly.
3948 *
3949 * We want to use the minimal transition whenever subvp is active, not only if
3950 * a plane is being added / removed from a subvp stream (MPO plane can be added
3951 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
3952 * a min transition to disable subvp.
3953 */
3954 if (cur_stream_status && subvp_active) {
3955 /* determine if minimal transition is required due to SubVP*/
3956 if (cur_stream_status->plane_count > surface_count) {
3957 force_minimal_pipe_splitting = true;
3958 } else if (cur_stream_status->plane_count < surface_count) {
3959 force_minimal_pipe_splitting = true;
3960 *is_plane_addition = true;
3961 }
3962 }
3963
3964 return force_minimal_pipe_splitting;
3965 }
3966
3967 /**
3968 * commit_minimal_transition_state - Create a transition pipe split state
3969 *
3970 * @dc: Used to get the current state status
3971 * @transition_base_context: New transition state
3972 *
3973 * In some specific configurations, such as pipe split on multi-display with
3974 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
3975 * programming when moving to new planes. To mitigate those types of problems,
3976 * this function adds a transition state that minimizes pipe usage before
3977 * programming the new configuration. When adding a new plane, the current
3978 * state requires the least pipes, so it is applied without splitting. When
3979 * removing a plane, the new state requires the least pipes, so it is applied
3980 * without splitting.
3981 *
3982 * Return:
3983 * Return false if something is wrong in the transition state.
3984 */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)3985 static bool commit_minimal_transition_state(struct dc *dc,
3986 struct dc_state *transition_base_context)
3987 {
3988 struct dc_state *transition_context = dc_create_state(dc);
3989 enum pipe_split_policy tmp_mpc_policy = 0;
3990 bool temp_dynamic_odm_policy = 0;
3991 bool temp_subvp_policy = 0;
3992 enum dc_status ret = DC_ERROR_UNEXPECTED;
3993 unsigned int i, j;
3994 unsigned int pipe_in_use = 0;
3995 bool subvp_in_use = false;
3996 bool odm_in_use = false;
3997
3998 if (!transition_context)
3999 return false;
4000 /* Setup:
4001 * Store the current ODM and MPC config in some temp variables to be
4002 * restored after we commit the transition state.
4003 */
4004
4005 /* check current pipes in use*/
4006 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4007 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4008
4009 if (pipe->plane_state)
4010 pipe_in_use++;
4011 }
4012
4013 /* If SubVP is enabled and we are adding or removing planes from any main subvp
4014 * pipe, we must use the minimal transition.
4015 */
4016 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4017 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4018
4019 if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
4020 subvp_in_use = true;
4021 break;
4022 }
4023 }
4024
4025 /* If ODM is enabled and we are adding or removing planes from any ODM
4026 * pipe, we must use the minimal transition.
4027 */
4028 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4029 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4030
4031 if (pipe->stream && pipe->next_odm_pipe) {
4032 odm_in_use = true;
4033 break;
4034 }
4035 }
4036
4037 /* When the OS add a new surface if we have been used all of pipes with odm combine
4038 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4039 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4040 * call it again. Otherwise return true to skip.
4041 *
4042 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4043 * enter/exit MPO when DCN still have enough resources.
4044 */
4045 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use) {
4046 dc_release_state(transition_context);
4047 return true;
4048 }
4049
4050 if (!dc->config.is_vmin_only_asic) {
4051 tmp_mpc_policy = dc->debug.pipe_split_policy;
4052 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4053 }
4054
4055 temp_dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4056 dc->debug.enable_single_display_2to1_odm_policy = false;
4057
4058 temp_subvp_policy = dc->debug.force_disable_subvp;
4059 dc->debug.force_disable_subvp = true;
4060
4061 dc_resource_state_copy_construct(transition_base_context, transition_context);
4062
4063 /* commit minimal state */
4064 if (dc->res_pool->funcs->validate_bandwidth(dc, transition_context, false)) {
4065 for (i = 0; i < transition_context->stream_count; i++) {
4066 struct dc_stream_status *stream_status = &transition_context->stream_status[i];
4067
4068 for (j = 0; j < stream_status->plane_count; j++) {
4069 struct dc_plane_state *plane_state = stream_status->plane_states[j];
4070
4071 /* force vsync flip when reconfiguring pipes to prevent underflow
4072 * and corruption
4073 */
4074 plane_state->flip_immediate = false;
4075 }
4076 }
4077
4078 ret = dc_commit_state_no_check(dc, transition_context);
4079 }
4080
4081 /* always release as dc_commit_state_no_check retains in good case */
4082 dc_release_state(transition_context);
4083
4084 /* TearDown:
4085 * Restore original configuration for ODM and MPO.
4086 */
4087 if (!dc->config.is_vmin_only_asic)
4088 dc->debug.pipe_split_policy = tmp_mpc_policy;
4089
4090 dc->debug.enable_single_display_2to1_odm_policy = temp_dynamic_odm_policy;
4091 dc->debug.force_disable_subvp = temp_subvp_policy;
4092
4093 if (ret != DC_OK) {
4094 /* this should never happen */
4095 BREAK_TO_DEBUGGER();
4096 return false;
4097 }
4098
4099 /* force full surface update */
4100 for (i = 0; i < dc->current_state->stream_count; i++) {
4101 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4102 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4103 }
4104 }
4105
4106 return true;
4107 }
4108
4109 /**
4110 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
4111 *
4112 * @dc: Current DC state
4113 * @context: New DC state to be programmed
4114 * @surface_count: Number of surfaces that have an updated
4115 * @stream: Corresponding stream to be updated in the current flip
4116 *
4117 * Updating seamless boot flags do not need to be part of the commit sequence. This
4118 * helper function will update the seamless boot flags on each flip (if required)
4119 * outside of the HW commit sequence (fast or slow).
4120 *
4121 * Return: void
4122 */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)4123 static void update_seamless_boot_flags(struct dc *dc,
4124 struct dc_state *context,
4125 int surface_count,
4126 struct dc_stream_state *stream)
4127 {
4128 if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
4129 /* Optimize seamless boot flag keeps clocks and watermarks high until
4130 * first flip. After first flip, optimization is required to lower
4131 * bandwidth. Important to note that it is expected UEFI will
4132 * only light up a single display on POST, therefore we only expect
4133 * one stream with seamless boot flag set.
4134 */
4135 if (stream->apply_seamless_boot_optimization) {
4136 stream->apply_seamless_boot_optimization = false;
4137
4138 if (get_seamless_boot_stream_count(context) == 0)
4139 dc->optimized_required = true;
4140 }
4141 }
4142 }
4143
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4144 static void populate_fast_updates(struct dc_fast_update *fast_update,
4145 struct dc_surface_update *srf_updates,
4146 int surface_count,
4147 struct dc_stream_update *stream_update)
4148 {
4149 int i = 0;
4150
4151 if (stream_update) {
4152 fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4153 fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4154 }
4155
4156 for (i = 0; i < surface_count; i++) {
4157 fast_update[i].flip_addr = srf_updates[i].flip_addr;
4158 fast_update[i].gamma = srf_updates[i].gamma;
4159 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4160 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4161 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4162 }
4163 }
4164
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4165 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4166 {
4167 int i;
4168
4169 if (fast_update[0].out_transfer_func ||
4170 fast_update[0].output_csc_transform)
4171 return true;
4172
4173 for (i = 0; i < surface_count; i++) {
4174 if (fast_update[i].flip_addr ||
4175 fast_update[i].gamma ||
4176 fast_update[i].gamut_remap_matrix ||
4177 fast_update[i].input_csc_color_matrix ||
4178 fast_update[i].coeff_reduction_factor)
4179 return true;
4180 }
4181
4182 return false;
4183 }
4184
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4185 static bool full_update_required(struct dc *dc,
4186 struct dc_surface_update *srf_updates,
4187 int surface_count,
4188 struct dc_stream_update *stream_update,
4189 struct dc_stream_state *stream)
4190 {
4191
4192 int i;
4193 struct dc_stream_status *stream_status;
4194 const struct dc_state *context = dc->current_state;
4195
4196 for (i = 0; i < surface_count; i++) {
4197 if (srf_updates &&
4198 (srf_updates[i].plane_info ||
4199 srf_updates[i].scaling_info ||
4200 (srf_updates[i].hdr_mult.value &&
4201 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4202 srf_updates[i].in_transfer_func ||
4203 srf_updates[i].func_shaper ||
4204 srf_updates[i].lut3d_func ||
4205 srf_updates[i].blend_tf ||
4206 srf_updates[i].surface->force_full_update ||
4207 (srf_updates[i].flip_addr &&
4208 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4209 !is_surface_in_context(context, srf_updates[i].surface)))
4210 return true;
4211 }
4212
4213 if (stream_update &&
4214 (((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4215 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4216 stream_update->integer_scaling_update) ||
4217 stream_update->hdr_static_metadata ||
4218 stream_update->abm_level ||
4219 stream_update->periodic_interrupt ||
4220 stream_update->vrr_infopacket ||
4221 stream_update->vsc_infopacket ||
4222 stream_update->vsp_infopacket ||
4223 stream_update->hfvsif_infopacket ||
4224 stream_update->vtem_infopacket ||
4225 stream_update->adaptive_sync_infopacket ||
4226 stream_update->dpms_off ||
4227 stream_update->allow_freesync ||
4228 stream_update->vrr_active_variable ||
4229 stream_update->vrr_active_fixed ||
4230 stream_update->gamut_remap ||
4231 stream_update->output_color_space ||
4232 stream_update->dither_option ||
4233 stream_update->wb_update ||
4234 stream_update->dsc_config ||
4235 stream_update->mst_bw_update ||
4236 stream_update->func_shaper ||
4237 stream_update->lut3d_func ||
4238 stream_update->pending_test_pattern ||
4239 stream_update->crtc_timing_adjust))
4240 return true;
4241
4242 if (stream) {
4243 stream_status = dc_stream_get_status(stream);
4244 if (stream_status == NULL || stream_status->plane_count != surface_count)
4245 return true;
4246 }
4247 if (dc->idle_optimizations_allowed)
4248 return true;
4249
4250 return false;
4251 }
4252
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4253 static bool fast_update_only(struct dc *dc,
4254 struct dc_fast_update *fast_update,
4255 struct dc_surface_update *srf_updates,
4256 int surface_count,
4257 struct dc_stream_update *stream_update,
4258 struct dc_stream_state *stream)
4259 {
4260 return fast_updates_exist(fast_update, surface_count)
4261 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4262 }
4263
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)4264 bool dc_update_planes_and_stream(struct dc *dc,
4265 struct dc_surface_update *srf_updates, int surface_count,
4266 struct dc_stream_state *stream,
4267 struct dc_stream_update *stream_update)
4268 {
4269 struct dc_state *context;
4270 enum surface_update_type update_type;
4271 int i;
4272 struct mall_temp_config mall_temp_config;
4273 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4274
4275 /* In cases where MPO and split or ODM are used transitions can
4276 * cause underflow. Apply stream configuration with minimal pipe
4277 * split first to avoid unsupported transitions for active pipes.
4278 */
4279 bool force_minimal_pipe_splitting = 0;
4280 bool is_plane_addition = 0;
4281
4282 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4283 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4284 dc,
4285 stream,
4286 surface_count,
4287 &is_plane_addition);
4288
4289 /* on plane addition, minimal state is the current one */
4290 if (force_minimal_pipe_splitting && is_plane_addition &&
4291 !commit_minimal_transition_state(dc, dc->current_state))
4292 return false;
4293
4294 if (!update_planes_and_stream_state(
4295 dc,
4296 srf_updates,
4297 surface_count,
4298 stream,
4299 stream_update,
4300 &update_type,
4301 &context))
4302 return false;
4303
4304 /* on plane removal, minimal state is the new one */
4305 if (force_minimal_pipe_splitting && !is_plane_addition) {
4306 /* Since all phantom pipes are removed in full validation,
4307 * we have to save and restore the subvp/mall config when
4308 * we do a minimal transition since the flags marking the
4309 * pipe as subvp/phantom will be cleared (dc copy constructor
4310 * creates a shallow copy).
4311 */
4312 if (dc->res_pool->funcs->save_mall_state)
4313 dc->res_pool->funcs->save_mall_state(dc, context, &mall_temp_config);
4314 if (!commit_minimal_transition_state(dc, context)) {
4315 dc_release_state(context);
4316 return false;
4317 }
4318 if (dc->res_pool->funcs->restore_mall_state)
4319 dc->res_pool->funcs->restore_mall_state(dc, context, &mall_temp_config);
4320
4321 /* If we do a minimal transition with plane removal and the context
4322 * has subvp we also have to retain back the phantom stream / planes
4323 * since the refcount is decremented as part of the min transition
4324 * (we commit a state with no subvp, so the phantom streams / planes
4325 * had to be removed).
4326 */
4327 if (dc->res_pool->funcs->retain_phantom_pipes)
4328 dc->res_pool->funcs->retain_phantom_pipes(dc, context);
4329 update_type = UPDATE_TYPE_FULL;
4330 }
4331
4332 update_seamless_boot_flags(dc, context, surface_count, stream);
4333 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4334 !dc->debug.enable_legacy_fast_update) {
4335 commit_planes_for_stream_fast(dc,
4336 srf_updates,
4337 surface_count,
4338 stream,
4339 stream_update,
4340 update_type,
4341 context);
4342 } else {
4343 if (!stream_update &&
4344 dc->hwss.is_pipe_topology_transition_seamless &&
4345 !dc->hwss.is_pipe_topology_transition_seamless(
4346 dc, dc->current_state, context)) {
4347
4348 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
4349 BREAK_TO_DEBUGGER();
4350 }
4351 commit_planes_for_stream(
4352 dc,
4353 srf_updates,
4354 surface_count,
4355 stream,
4356 stream_update,
4357 update_type,
4358 context);
4359 }
4360
4361 if (dc->current_state != context) {
4362
4363 /* Since memory free requires elevated IRQL, an interrupt
4364 * request is generated by mem free. If this happens
4365 * between freeing and reassigning the context, our vsync
4366 * interrupt will call into dc and cause a memory
4367 * corruption BSOD. Hence, we first reassign the context,
4368 * then free the old context.
4369 */
4370
4371 struct dc_state *old = dc->current_state;
4372
4373 dc->current_state = context;
4374 dc_release_state(old);
4375
4376 // clear any forced full updates
4377 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4378 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4379
4380 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4381 pipe_ctx->plane_state->force_full_update = false;
4382 }
4383 }
4384 return true;
4385 }
4386
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4387 void dc_commit_updates_for_stream(struct dc *dc,
4388 struct dc_surface_update *srf_updates,
4389 int surface_count,
4390 struct dc_stream_state *stream,
4391 struct dc_stream_update *stream_update,
4392 struct dc_state *state)
4393 {
4394 const struct dc_stream_status *stream_status;
4395 enum surface_update_type update_type;
4396 struct dc_state *context;
4397 struct dc_context *dc_ctx = dc->ctx;
4398 int i, j;
4399 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4400
4401 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4402 stream_status = dc_stream_get_status(stream);
4403 context = dc->current_state;
4404
4405 update_type = dc_check_update_surfaces_for_stream(
4406 dc, srf_updates, surface_count, stream_update, stream_status);
4407
4408 /* TODO: Since change commit sequence can have a huge impact,
4409 * we decided to only enable it for DCN3x. However, as soon as
4410 * we get more confident about this change we'll need to enable
4411 * the new sequence for all ASICs.
4412 */
4413 if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
4414 /*
4415 * Previous frame finished and HW is ready for optimization.
4416 */
4417 if (update_type == UPDATE_TYPE_FAST)
4418 dc_post_update_surfaces_to_stream(dc);
4419
4420 dc_update_planes_and_stream(dc, srf_updates,
4421 surface_count, stream,
4422 stream_update);
4423 return;
4424 }
4425
4426 if (update_type >= update_surface_trace_level)
4427 update_surface_trace(dc, srf_updates, surface_count);
4428
4429
4430 if (update_type >= UPDATE_TYPE_FULL) {
4431
4432 /* initialize scratch memory for building context */
4433 context = dc_create_state(dc);
4434 if (context == NULL) {
4435 DC_ERROR("Failed to allocate new validate context!\n");
4436 return;
4437 }
4438
4439 dc_resource_state_copy_construct(state, context);
4440
4441 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4442 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4443 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4444
4445 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4446 new_pipe->plane_state->force_full_update = true;
4447 }
4448 } else if (update_type == UPDATE_TYPE_FAST) {
4449 /*
4450 * Previous frame finished and HW is ready for optimization.
4451 */
4452 dc_post_update_surfaces_to_stream(dc);
4453 }
4454
4455
4456 for (i = 0; i < surface_count; i++) {
4457 struct dc_plane_state *surface = srf_updates[i].surface;
4458
4459 copy_surface_update_to_plane(surface, &srf_updates[i]);
4460
4461 if (update_type >= UPDATE_TYPE_MED) {
4462 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4463 struct pipe_ctx *pipe_ctx =
4464 &context->res_ctx.pipe_ctx[j];
4465
4466 if (pipe_ctx->plane_state != surface)
4467 continue;
4468
4469 resource_build_scaling_params(pipe_ctx);
4470 }
4471 }
4472 }
4473
4474 copy_stream_update_to_stream(dc, context, stream, stream_update);
4475
4476 if (update_type >= UPDATE_TYPE_FULL) {
4477 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4478 DC_ERROR("Mode validation failed for stream update!\n");
4479 dc_release_state(context);
4480 return;
4481 }
4482 }
4483
4484 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4485
4486 update_seamless_boot_flags(dc, context, surface_count, stream);
4487 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4488 !dc->debug.enable_legacy_fast_update) {
4489 commit_planes_for_stream_fast(dc,
4490 srf_updates,
4491 surface_count,
4492 stream,
4493 stream_update,
4494 update_type,
4495 context);
4496 } else {
4497 commit_planes_for_stream(
4498 dc,
4499 srf_updates,
4500 surface_count,
4501 stream,
4502 stream_update,
4503 update_type,
4504 context);
4505 }
4506 /*update current_State*/
4507 if (dc->current_state != context) {
4508
4509 struct dc_state *old = dc->current_state;
4510
4511 dc->current_state = context;
4512 dc_release_state(old);
4513
4514 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4515 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4516
4517 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4518 pipe_ctx->plane_state->force_full_update = false;
4519 }
4520 }
4521
4522 /* Legacy optimization path for DCE. */
4523 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4524 dc_post_update_surfaces_to_stream(dc);
4525 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4526 }
4527
4528 return;
4529
4530 }
4531
dc_get_current_stream_count(struct dc * dc)4532 uint8_t dc_get_current_stream_count(struct dc *dc)
4533 {
4534 return dc->current_state->stream_count;
4535 }
4536
dc_get_stream_at_index(struct dc * dc,uint8_t i)4537 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
4538 {
4539 if (i < dc->current_state->stream_count)
4540 return dc->current_state->streams[i];
4541 return NULL;
4542 }
4543
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)4544 enum dc_irq_source dc_interrupt_to_irq_source(
4545 struct dc *dc,
4546 uint32_t src_id,
4547 uint32_t ext_id)
4548 {
4549 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
4550 }
4551
4552 /*
4553 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
4554 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)4555 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
4556 {
4557
4558 if (dc == NULL)
4559 return false;
4560
4561 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
4562 }
4563
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)4564 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
4565 {
4566 dal_irq_service_ack(dc->res_pool->irqs, src);
4567 }
4568
dc_power_down_on_boot(struct dc * dc)4569 void dc_power_down_on_boot(struct dc *dc)
4570 {
4571 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
4572 dc->hwss.power_down_on_boot)
4573 dc->hwss.power_down_on_boot(dc);
4574 }
4575
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)4576 void dc_set_power_state(
4577 struct dc *dc,
4578 enum dc_acpi_cm_power_state power_state)
4579 {
4580 struct kref refcount;
4581 struct display_mode_lib *dml;
4582
4583 if (!dc->current_state)
4584 return;
4585
4586 switch (power_state) {
4587 case DC_ACPI_CM_POWER_STATE_D0:
4588 dc_resource_state_construct(dc, dc->current_state);
4589
4590 dc_z10_restore(dc);
4591
4592 dc->hwss.init_hw(dc);
4593
4594 if (dc->hwss.init_sys_ctx != NULL &&
4595 dc->vm_pa_config.valid) {
4596 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
4597 }
4598
4599 break;
4600 default:
4601 ASSERT(dc->current_state->stream_count == 0);
4602 /* Zero out the current context so that on resume we start with
4603 * clean state, and dc hw programming optimizations will not
4604 * cause any trouble.
4605 */
4606 dml = kzalloc(sizeof(struct display_mode_lib),
4607 GFP_KERNEL);
4608
4609 ASSERT(dml);
4610 if (!dml)
4611 return;
4612
4613 /* Preserve refcount */
4614 refcount = dc->current_state->refcount;
4615 /* Preserve display mode lib */
4616 memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
4617
4618 dc_resource_state_destruct(dc->current_state);
4619 memset(dc->current_state, 0,
4620 sizeof(*dc->current_state));
4621
4622 dc->current_state->refcount = refcount;
4623 dc->current_state->bw_ctx.dml = *dml;
4624
4625 kfree(dml);
4626
4627 break;
4628 }
4629 }
4630
dc_resume(struct dc * dc)4631 void dc_resume(struct dc *dc)
4632 {
4633 uint32_t i;
4634
4635 for (i = 0; i < dc->link_count; i++)
4636 dc->link_srv->resume(dc->links[i]);
4637 }
4638
dc_is_dmcu_initialized(struct dc * dc)4639 bool dc_is_dmcu_initialized(struct dc *dc)
4640 {
4641 struct dmcu *dmcu = dc->res_pool->dmcu;
4642
4643 if (dmcu)
4644 return dmcu->funcs->is_dmcu_initialized(dmcu);
4645 return false;
4646 }
4647
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)4648 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
4649 {
4650 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
4651 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
4652 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
4653 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
4654 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
4655 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
4656 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
4657 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
4658 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
4659 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)4660 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
4661 {
4662 if (dc->hwss.set_clock)
4663 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
4664 return DC_ERROR_UNEXPECTED;
4665 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)4666 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
4667 {
4668 if (dc->hwss.get_clock)
4669 dc->hwss.get_clock(dc, clock_type, clock_cfg);
4670 }
4671
4672 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)4673 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
4674 {
4675 int i;
4676 bool allow_active;
4677
4678 for (i = 0; i < dc->current_state->stream_count ; i++) {
4679 struct dc_link *link;
4680 struct dc_stream_state *stream = dc->current_state->streams[i];
4681
4682 link = stream->link;
4683 if (!link)
4684 continue;
4685
4686 if (link->psr_settings.psr_feature_enabled) {
4687 if (enable && !link->psr_settings.psr_allow_active) {
4688 allow_active = true;
4689 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
4690 return false;
4691 } else if (!enable && link->psr_settings.psr_allow_active) {
4692 allow_active = false;
4693 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
4694 return false;
4695 }
4696 }
4697 }
4698
4699 return true;
4700 }
4701
dc_allow_idle_optimizations(struct dc * dc,bool allow)4702 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
4703 {
4704 if (dc->debug.disable_idle_power_optimizations)
4705 return;
4706
4707 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
4708 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
4709 return;
4710
4711 if (allow == dc->idle_optimizations_allowed)
4712 return;
4713
4714 if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
4715 dc->idle_optimizations_allowed = allow;
4716 }
4717
4718 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)4719 void dc_unlock_memory_clock_frequency(struct dc *dc)
4720 {
4721 if (dc->clk_mgr->funcs->set_hard_min_memclk)
4722 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
4723
4724 if (dc->clk_mgr->funcs->set_hard_max_memclk)
4725 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4726 }
4727
4728 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)4729 void dc_lock_memory_clock_frequency(struct dc *dc)
4730 {
4731 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
4732 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
4733
4734 if (dc->clk_mgr->funcs->set_hard_min_memclk)
4735 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
4736
4737 if (dc->clk_mgr->funcs->set_hard_max_memclk)
4738 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4739 }
4740
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)4741 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
4742 {
4743 struct dc_state *context = dc->current_state;
4744 struct hubp *hubp;
4745 struct pipe_ctx *pipe;
4746 int i;
4747
4748 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4749 pipe = &context->res_ctx.pipe_ctx[i];
4750
4751 if (pipe->stream != NULL) {
4752 dc->hwss.disable_pixel_data(dc, pipe, true);
4753
4754 // wait for double buffer
4755 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4756 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
4757 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4758
4759 hubp = pipe->plane_res.hubp;
4760 hubp->funcs->set_blank_regs(hubp, true);
4761 }
4762 }
4763
4764 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
4765 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
4766
4767 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4768 pipe = &context->res_ctx.pipe_ctx[i];
4769
4770 if (pipe->stream != NULL) {
4771 dc->hwss.disable_pixel_data(dc, pipe, false);
4772
4773 hubp = pipe->plane_res.hubp;
4774 hubp->funcs->set_blank_regs(hubp, false);
4775 }
4776 }
4777 }
4778
4779
4780 /**
4781 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
4782 * @dc: pointer to dc of the dm calling this
4783 * @enable: True = transition to DC mode, false = transition back to AC mode
4784 *
4785 * Some SoCs define additional clock limits when in DC mode, DM should
4786 * invoke this function when the platform undergoes a power source transition
4787 * so DC can apply/unapply the limit. This interface may be disruptive to
4788 * the onscreen content.
4789 *
4790 * Context: Triggered by OS through DM interface, or manually by escape calls.
4791 * Need to hold a dclock when doing so.
4792 *
4793 * Return: none (void function)
4794 *
4795 */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)4796 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
4797 {
4798 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
4799 bool p_state_change_support;
4800
4801 if (!dc->config.dc_mode_clk_limit_support)
4802 return;
4803
4804 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
4805 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
4806 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
4807 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
4808 }
4809 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
4810 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
4811
4812 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
4813 if (p_state_change_support) {
4814 if (funcMin <= softMax)
4815 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
4816 // else: No-Op
4817 } else {
4818 if (funcMin <= softMax)
4819 blank_and_force_memclk(dc, true, softMax);
4820 // else: No-Op
4821 }
4822 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
4823 if (p_state_change_support) {
4824 if (funcMin <= softMax)
4825 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
4826 // else: No-Op
4827 } else {
4828 if (funcMin <= softMax)
4829 blank_and_force_memclk(dc, true, maxDPM);
4830 // else: No-Op
4831 }
4832 }
4833 dc->clk_mgr->dc_mode_softmax_enabled = enable;
4834 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,struct dc_plane_state * plane,struct dc_cursor_attributes * cursor_attr)4835 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
4836 struct dc_cursor_attributes *cursor_attr)
4837 {
4838 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
4839 return true;
4840 return false;
4841 }
4842
4843 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)4844 void dc_hardware_release(struct dc *dc)
4845 {
4846 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
4847
4848 if (dc->hwss.hardware_release)
4849 dc->hwss.hardware_release(dc);
4850 }
4851
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)4852 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
4853 {
4854 if (dc->current_state)
4855 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
4856 }
4857
4858 /**
4859 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
4860 *
4861 * @dc: [in] dc structure
4862 *
4863 * Checks whether DMUB FW supports outbox notifications, if supported DM
4864 * should register outbox interrupt prior to actually enabling interrupts
4865 * via dc_enable_dmub_outbox
4866 *
4867 * Return:
4868 * True if DMUB FW supports outbox notifications, False otherwise
4869 */
dc_is_dmub_outbox_supported(struct dc * dc)4870 bool dc_is_dmub_outbox_supported(struct dc *dc)
4871 {
4872 switch (dc->ctx->asic_id.chip_family) {
4873
4874 case FAMILY_YELLOW_CARP:
4875 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
4876 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
4877 !dc->debug.dpia_debug.bits.disable_dpia)
4878 return true;
4879 break;
4880
4881 case AMDGPU_FAMILY_GC_11_0_1:
4882 case AMDGPU_FAMILY_GC_11_5_0:
4883 if (!dc->debug.dpia_debug.bits.disable_dpia)
4884 return true;
4885 break;
4886
4887 default:
4888 break;
4889 }
4890
4891 /* dmub aux needs dmub notifications to be enabled */
4892 return dc->debug.enable_dmub_aux_for_legacy_ddc;
4893
4894 }
4895
4896 /**
4897 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
4898 *
4899 * @dc: [in] dc structure
4900 *
4901 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
4902 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
4903 * API shall be removed after switching.
4904 *
4905 * Return:
4906 * True if DMUB FW supports outbox notifications, False otherwise
4907 */
dc_enable_dmub_notifications(struct dc * dc)4908 bool dc_enable_dmub_notifications(struct dc *dc)
4909 {
4910 return dc_is_dmub_outbox_supported(dc);
4911 }
4912
4913 /**
4914 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
4915 *
4916 * @dc: [in] dc structure
4917 *
4918 * Enables DMUB unsolicited notifications to x86 via outbox.
4919 */
dc_enable_dmub_outbox(struct dc * dc)4920 void dc_enable_dmub_outbox(struct dc *dc)
4921 {
4922 struct dc_context *dc_ctx = dc->ctx;
4923
4924 dmub_enable_outbox_notification(dc_ctx->dmub_srv);
4925 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
4926 }
4927
4928 /**
4929 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
4930 * Sets port index appropriately for legacy DDC
4931 * @dc: dc structure
4932 * @link_index: link index
4933 * @payload: aux payload
4934 *
4935 * Returns: True if successful, False if failure
4936 */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)4937 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
4938 uint32_t link_index,
4939 struct aux_payload *payload)
4940 {
4941 uint8_t action;
4942 union dmub_rb_cmd cmd = {0};
4943
4944 ASSERT(payload->length <= 16);
4945
4946 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
4947 cmd.dp_aux_access.header.payload_bytes = 0;
4948 /* For dpia, ddc_pin is set to NULL */
4949 if (!dc->links[link_index]->ddc->ddc_pin)
4950 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
4951 else
4952 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
4953
4954 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
4955 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
4956 cmd.dp_aux_access.aux_control.timeout = 0;
4957 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
4958 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
4959 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
4960
4961 /* set aux action */
4962 if (payload->i2c_over_aux) {
4963 if (payload->write) {
4964 if (payload->mot)
4965 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
4966 else
4967 action = DP_AUX_REQ_ACTION_I2C_WRITE;
4968 } else {
4969 if (payload->mot)
4970 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
4971 else
4972 action = DP_AUX_REQ_ACTION_I2C_READ;
4973 }
4974 } else {
4975 if (payload->write)
4976 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
4977 else
4978 action = DP_AUX_REQ_ACTION_DPCD_READ;
4979 }
4980
4981 cmd.dp_aux_access.aux_control.dpaux.action = action;
4982
4983 if (payload->length && payload->write) {
4984 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
4985 payload->data,
4986 payload->length
4987 );
4988 }
4989
4990 dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
4991
4992 return true;
4993 }
4994
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)4995 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
4996 uint8_t dpia_port_index)
4997 {
4998 uint8_t index, link_index = 0xFF;
4999
5000 for (index = 0; index < dc->link_count; index++) {
5001 /* ddc_hw_inst has dpia port index for dpia links
5002 * and ddc instance for legacy links
5003 */
5004 if (!dc->links[index]->ddc->ddc_pin) {
5005 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5006 link_index = index;
5007 break;
5008 }
5009 }
5010 }
5011 ASSERT(link_index != 0xFF);
5012 return link_index;
5013 }
5014
5015 /**
5016 * dc_process_dmub_set_config_async - Submits set_config command
5017 *
5018 * @dc: [in] dc structure
5019 * @link_index: [in] link_index: link index
5020 * @payload: [in] aux payload
5021 * @notify: [out] set_config immediate reply
5022 *
5023 * Submits set_config command to dmub via inbox message.
5024 *
5025 * Return:
5026 * True if successful, False if failure
5027 */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5028 bool dc_process_dmub_set_config_async(struct dc *dc,
5029 uint32_t link_index,
5030 struct set_config_cmd_payload *payload,
5031 struct dmub_notification *notify)
5032 {
5033 union dmub_rb_cmd cmd = {0};
5034 bool is_cmd_complete = true;
5035
5036 /* prepare SET_CONFIG command */
5037 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5038 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5039
5040 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5041 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5042 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5043
5044 if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5045 /* command is not processed by dmub */
5046 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5047 return is_cmd_complete;
5048 }
5049
5050 /* command processed by dmub, if ret_status is 1, it is completed instantly */
5051 if (cmd.set_config_access.header.ret_status == 1)
5052 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5053 else
5054 /* cmd pending, will receive notification via outbox */
5055 is_cmd_complete = false;
5056
5057 return is_cmd_complete;
5058 }
5059
5060 /**
5061 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5062 *
5063 * @dc: [in] dc structure
5064 * @link_index: [in] link index
5065 * @mst_alloc_slots: [in] mst slots to be allotted
5066 * @mst_slots_in_use: [out] mst slots in use returned in failure case
5067 *
5068 * Submits mst slot allocation command to dmub via inbox message
5069 *
5070 * Return:
5071 * DC_OK if successful, DC_ERROR if failure
5072 */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5073 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5074 uint32_t link_index,
5075 uint8_t mst_alloc_slots,
5076 uint8_t *mst_slots_in_use)
5077 {
5078 union dmub_rb_cmd cmd = {0};
5079
5080 /* prepare MST_ALLOC_SLOTS command */
5081 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5082 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5083
5084 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5085 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5086
5087 if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5088 /* command is not processed by dmub */
5089 return DC_ERROR_UNEXPECTED;
5090
5091 /* command processed by dmub, if ret_status is 1 */
5092 if (cmd.set_config_access.header.ret_status != 1)
5093 /* command processing error */
5094 return DC_ERROR_UNEXPECTED;
5095
5096 /* command processed and we have a status of 2, mst not enabled in dpia */
5097 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5098 return DC_FAIL_UNSUPPORTED_1;
5099
5100 /* previously configured mst alloc and used slots did not match */
5101 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5102 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5103 return DC_NOT_SUPPORTED;
5104 }
5105
5106 return DC_OK;
5107 }
5108
5109 /**
5110 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5111 *
5112 * @dc: [in] dc structure
5113 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5114 *
5115 * Submits dpia hpd int enable command to dmub via inbox message
5116 */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)5117 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5118 uint32_t hpd_int_enable)
5119 {
5120 union dmub_rb_cmd cmd = {0};
5121
5122 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5123 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5124
5125 dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5126
5127 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5128 }
5129
5130 /**
5131 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5132 *
5133 * @dc: [in] dc structure
5134 *
5135 *
5136 */
dc_print_dmub_diagnostic_data(const struct dc * dc)5137 void dc_print_dmub_diagnostic_data(const struct dc *dc)
5138 {
5139 dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5140 }
5141
5142 /**
5143 * dc_disable_accelerated_mode - disable accelerated mode
5144 * @dc: dc structure
5145 */
dc_disable_accelerated_mode(struct dc * dc)5146 void dc_disable_accelerated_mode(struct dc *dc)
5147 {
5148 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5149 }
5150
5151
5152 /**
5153 * dc_notify_vsync_int_state - notifies vsync enable/disable state
5154 * @dc: dc structure
5155 * @stream: stream where vsync int state changed
5156 * @enable: whether vsync is enabled or disabled
5157 *
5158 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5159 * interrupts after steady state is reached.
5160 */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)5161 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5162 {
5163 int i;
5164 int edp_num;
5165 struct pipe_ctx *pipe = NULL;
5166 struct dc_link *link = stream->sink->link;
5167 struct dc_link *edp_links[MAX_NUM_EDP];
5168
5169
5170 if (link->psr_settings.psr_feature_enabled)
5171 return;
5172
5173 if (link->replay_settings.replay_feature_enabled)
5174 return;
5175
5176 /*find primary pipe associated with stream*/
5177 for (i = 0; i < MAX_PIPES; i++) {
5178 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5179
5180 if (pipe->stream == stream && pipe->stream_res.tg)
5181 break;
5182 }
5183
5184 if (i == MAX_PIPES) {
5185 ASSERT(0);
5186 return;
5187 }
5188
5189 dc_get_edp_links(dc, edp_links, &edp_num);
5190
5191 /* Determine panel inst */
5192 for (i = 0; i < edp_num; i++) {
5193 if (edp_links[i] == link)
5194 break;
5195 }
5196
5197 if (i == edp_num) {
5198 return;
5199 }
5200
5201 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5202 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5203 }
5204
5205 /*****************************************************************************
5206 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5207 * ABM
5208 * @dc: dc structure
5209 * @stream: stream where vsync int state changed
5210 * @pData: abm hw states
5211 *
5212 ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)5213 bool dc_abm_save_restore(
5214 struct dc *dc,
5215 struct dc_stream_state *stream,
5216 struct abm_save_restore *pData)
5217 {
5218 int i;
5219 int edp_num;
5220 struct pipe_ctx *pipe = NULL;
5221 struct dc_link *link = stream->sink->link;
5222 struct dc_link *edp_links[MAX_NUM_EDP];
5223
5224
5225 /*find primary pipe associated with stream*/
5226 for (i = 0; i < MAX_PIPES; i++) {
5227 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5228
5229 if (pipe->stream == stream && pipe->stream_res.tg)
5230 break;
5231 }
5232
5233 if (i == MAX_PIPES) {
5234 ASSERT(0);
5235 return false;
5236 }
5237
5238 dc_get_edp_links(dc, edp_links, &edp_num);
5239
5240 /* Determine panel inst */
5241 for (i = 0; i < edp_num; i++)
5242 if (edp_links[i] == link)
5243 break;
5244
5245 if (i == edp_num)
5246 return false;
5247
5248 if (pipe->stream_res.abm &&
5249 pipe->stream_res.abm->funcs->save_restore)
5250 return pipe->stream_res.abm->funcs->save_restore(
5251 pipe->stream_res.abm,
5252 i,
5253 pData);
5254 return false;
5255 }
5256
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)5257 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5258 {
5259 unsigned int i;
5260 bool subvp_in_use = false;
5261
5262 for (i = 0; i < dc->current_state->stream_count; i++) {
5263 if (dc->current_state->streams[i]->mall_stream_config.type != SUBVP_NONE) {
5264 subvp_in_use = true;
5265 break;
5266 }
5267 }
5268 properties->cursor_size_limit = subvp_in_use ? 64 : dc->caps.max_cursor_size;
5269 }
5270
5271 /**
5272 *****************************************************************************
5273 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
5274 *
5275 * Called when DM wants to power on/off eDP.
5276 * Only work on links with flag skip_implict_edp_power_control is set.
5277 *
5278 *****************************************************************************
5279 */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)5280 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
5281 bool powerOn)
5282 {
5283 if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
5284 return;
5285
5286 if (edp_link->skip_implict_edp_power_control == false)
5287 return;
5288
5289 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
5290 }
5291
5292