1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #define UBIFS_DBG_PRESERVE_UBI
31 
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37 #include <linux/slab.h>
38 
39 #ifdef CONFIG_UBIFS_FS_DEBUG
40 
41 DEFINE_SPINLOCK(dbg_lock);
42 
43 static char dbg_key_buf0[128];
44 static char dbg_key_buf1[128];
45 
46 unsigned int ubifs_msg_flags;
47 unsigned int ubifs_chk_flags;
48 unsigned int ubifs_tst_flags;
49 
50 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
52 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
53 
54 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
55 MODULE_PARM_DESC(debug_chks, "Debug check flags");
56 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
57 
get_key_fmt(int fmt)58 static const char *get_key_fmt(int fmt)
59 {
60 	switch (fmt) {
61 	case UBIFS_SIMPLE_KEY_FMT:
62 		return "simple";
63 	default:
64 		return "unknown/invalid format";
65 	}
66 }
67 
get_key_hash(int hash)68 static const char *get_key_hash(int hash)
69 {
70 	switch (hash) {
71 	case UBIFS_KEY_HASH_R5:
72 		return "R5";
73 	case UBIFS_KEY_HASH_TEST:
74 		return "test";
75 	default:
76 		return "unknown/invalid name hash";
77 	}
78 }
79 
get_key_type(int type)80 static const char *get_key_type(int type)
81 {
82 	switch (type) {
83 	case UBIFS_INO_KEY:
84 		return "inode";
85 	case UBIFS_DENT_KEY:
86 		return "direntry";
87 	case UBIFS_XENT_KEY:
88 		return "xentry";
89 	case UBIFS_DATA_KEY:
90 		return "data";
91 	case UBIFS_TRUN_KEY:
92 		return "truncate";
93 	default:
94 		return "unknown/invalid key";
95 	}
96 }
97 
sprintf_key(const struct ubifs_info * c,const union ubifs_key * key,char * buffer)98 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
99 			char *buffer)
100 {
101 	char *p = buffer;
102 	int type = key_type(c, key);
103 
104 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
105 		switch (type) {
106 		case UBIFS_INO_KEY:
107 			sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
108 			       get_key_type(type));
109 			break;
110 		case UBIFS_DENT_KEY:
111 		case UBIFS_XENT_KEY:
112 			sprintf(p, "(%lu, %s, %#08x)",
113 				(unsigned long)key_inum(c, key),
114 				get_key_type(type), key_hash(c, key));
115 			break;
116 		case UBIFS_DATA_KEY:
117 			sprintf(p, "(%lu, %s, %u)",
118 				(unsigned long)key_inum(c, key),
119 				get_key_type(type), key_block(c, key));
120 			break;
121 		case UBIFS_TRUN_KEY:
122 			sprintf(p, "(%lu, %s)",
123 				(unsigned long)key_inum(c, key),
124 				get_key_type(type));
125 			break;
126 		default:
127 			sprintf(p, "(bad key type: %#08x, %#08x)",
128 				key->u32[0], key->u32[1]);
129 		}
130 	} else
131 		sprintf(p, "bad key format %d", c->key_fmt);
132 }
133 
dbg_key_str0(const struct ubifs_info * c,const union ubifs_key * key)134 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
135 {
136 	/* dbg_lock must be held */
137 	sprintf_key(c, key, dbg_key_buf0);
138 	return dbg_key_buf0;
139 }
140 
dbg_key_str1(const struct ubifs_info * c,const union ubifs_key * key)141 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
142 {
143 	/* dbg_lock must be held */
144 	sprintf_key(c, key, dbg_key_buf1);
145 	return dbg_key_buf1;
146 }
147 
dbg_ntype(int type)148 const char *dbg_ntype(int type)
149 {
150 	switch (type) {
151 	case UBIFS_PAD_NODE:
152 		return "padding node";
153 	case UBIFS_SB_NODE:
154 		return "superblock node";
155 	case UBIFS_MST_NODE:
156 		return "master node";
157 	case UBIFS_REF_NODE:
158 		return "reference node";
159 	case UBIFS_INO_NODE:
160 		return "inode node";
161 	case UBIFS_DENT_NODE:
162 		return "direntry node";
163 	case UBIFS_XENT_NODE:
164 		return "xentry node";
165 	case UBIFS_DATA_NODE:
166 		return "data node";
167 	case UBIFS_TRUN_NODE:
168 		return "truncate node";
169 	case UBIFS_IDX_NODE:
170 		return "indexing node";
171 	case UBIFS_CS_NODE:
172 		return "commit start node";
173 	case UBIFS_ORPH_NODE:
174 		return "orphan node";
175 	default:
176 		return "unknown node";
177 	}
178 }
179 
dbg_gtype(int type)180 static const char *dbg_gtype(int type)
181 {
182 	switch (type) {
183 	case UBIFS_NO_NODE_GROUP:
184 		return "no node group";
185 	case UBIFS_IN_NODE_GROUP:
186 		return "in node group";
187 	case UBIFS_LAST_OF_NODE_GROUP:
188 		return "last of node group";
189 	default:
190 		return "unknown";
191 	}
192 }
193 
dbg_cstate(int cmt_state)194 const char *dbg_cstate(int cmt_state)
195 {
196 	switch (cmt_state) {
197 	case COMMIT_RESTING:
198 		return "commit resting";
199 	case COMMIT_BACKGROUND:
200 		return "background commit requested";
201 	case COMMIT_REQUIRED:
202 		return "commit required";
203 	case COMMIT_RUNNING_BACKGROUND:
204 		return "BACKGROUND commit running";
205 	case COMMIT_RUNNING_REQUIRED:
206 		return "commit running and required";
207 	case COMMIT_BROKEN:
208 		return "broken commit";
209 	default:
210 		return "unknown commit state";
211 	}
212 }
213 
dbg_jhead(int jhead)214 const char *dbg_jhead(int jhead)
215 {
216 	switch (jhead) {
217 	case GCHD:
218 		return "0 (GC)";
219 	case BASEHD:
220 		return "1 (base)";
221 	case DATAHD:
222 		return "2 (data)";
223 	default:
224 		return "unknown journal head";
225 	}
226 }
227 
dump_ch(const struct ubifs_ch * ch)228 static void dump_ch(const struct ubifs_ch *ch)
229 {
230 	printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
231 	printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
232 	printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
233 	       dbg_ntype(ch->node_type));
234 	printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
235 	       dbg_gtype(ch->group_type));
236 	printk(KERN_DEBUG "\tsqnum          %llu\n",
237 	       (unsigned long long)le64_to_cpu(ch->sqnum));
238 	printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
239 }
240 
dbg_dump_inode(const struct ubifs_info * c,const struct inode * inode)241 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
242 {
243 	const struct ubifs_inode *ui = ubifs_inode(inode);
244 
245 	printk(KERN_DEBUG "Dump in-memory inode:");
246 	printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
247 	printk(KERN_DEBUG "\tsize           %llu\n",
248 	       (unsigned long long)i_size_read(inode));
249 	printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
250 	printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
251 	printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
252 	printk(KERN_DEBUG "\tatime          %u.%u\n",
253 	       (unsigned int)inode->i_atime.tv_sec,
254 	       (unsigned int)inode->i_atime.tv_nsec);
255 	printk(KERN_DEBUG "\tmtime          %u.%u\n",
256 	       (unsigned int)inode->i_mtime.tv_sec,
257 	       (unsigned int)inode->i_mtime.tv_nsec);
258 	printk(KERN_DEBUG "\tctime          %u.%u\n",
259 	       (unsigned int)inode->i_ctime.tv_sec,
260 	       (unsigned int)inode->i_ctime.tv_nsec);
261 	printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
262 	printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
263 	printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
264 	printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
265 	printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
266 	printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
267 	printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
268 	printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
269 	       (unsigned long long)ui->synced_i_size);
270 	printk(KERN_DEBUG "\tui_size        %llu\n",
271 	       (unsigned long long)ui->ui_size);
272 	printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
273 	printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
274 	printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
275 	printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
276 	printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
277 }
278 
dbg_dump_node(const struct ubifs_info * c,const void * node)279 void dbg_dump_node(const struct ubifs_info *c, const void *node)
280 {
281 	int i, n;
282 	union ubifs_key key;
283 	const struct ubifs_ch *ch = node;
284 
285 	if (dbg_failure_mode)
286 		return;
287 
288 	/* If the magic is incorrect, just hexdump the first bytes */
289 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
290 		printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
291 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
292 			       (void *)node, UBIFS_CH_SZ, 1);
293 		return;
294 	}
295 
296 	spin_lock(&dbg_lock);
297 	dump_ch(node);
298 
299 	switch (ch->node_type) {
300 	case UBIFS_PAD_NODE:
301 	{
302 		const struct ubifs_pad_node *pad = node;
303 
304 		printk(KERN_DEBUG "\tpad_len        %u\n",
305 		       le32_to_cpu(pad->pad_len));
306 		break;
307 	}
308 	case UBIFS_SB_NODE:
309 	{
310 		const struct ubifs_sb_node *sup = node;
311 		unsigned int sup_flags = le32_to_cpu(sup->flags);
312 
313 		printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
314 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
315 		printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
316 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
317 		printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
318 		printk(KERN_DEBUG "\t  big_lpt      %u\n",
319 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
320 		printk(KERN_DEBUG "\tmin_io_size    %u\n",
321 		       le32_to_cpu(sup->min_io_size));
322 		printk(KERN_DEBUG "\tleb_size       %u\n",
323 		       le32_to_cpu(sup->leb_size));
324 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
325 		       le32_to_cpu(sup->leb_cnt));
326 		printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
327 		       le32_to_cpu(sup->max_leb_cnt));
328 		printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
329 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
330 		printk(KERN_DEBUG "\tlog_lebs       %u\n",
331 		       le32_to_cpu(sup->log_lebs));
332 		printk(KERN_DEBUG "\tlpt_lebs       %u\n",
333 		       le32_to_cpu(sup->lpt_lebs));
334 		printk(KERN_DEBUG "\torph_lebs      %u\n",
335 		       le32_to_cpu(sup->orph_lebs));
336 		printk(KERN_DEBUG "\tjhead_cnt      %u\n",
337 		       le32_to_cpu(sup->jhead_cnt));
338 		printk(KERN_DEBUG "\tfanout         %u\n",
339 		       le32_to_cpu(sup->fanout));
340 		printk(KERN_DEBUG "\tlsave_cnt      %u\n",
341 		       le32_to_cpu(sup->lsave_cnt));
342 		printk(KERN_DEBUG "\tdefault_compr  %u\n",
343 		       (int)le16_to_cpu(sup->default_compr));
344 		printk(KERN_DEBUG "\trp_size        %llu\n",
345 		       (unsigned long long)le64_to_cpu(sup->rp_size));
346 		printk(KERN_DEBUG "\trp_uid         %u\n",
347 		       le32_to_cpu(sup->rp_uid));
348 		printk(KERN_DEBUG "\trp_gid         %u\n",
349 		       le32_to_cpu(sup->rp_gid));
350 		printk(KERN_DEBUG "\tfmt_version    %u\n",
351 		       le32_to_cpu(sup->fmt_version));
352 		printk(KERN_DEBUG "\ttime_gran      %u\n",
353 		       le32_to_cpu(sup->time_gran));
354 		printk(KERN_DEBUG "\tUUID           %pUB\n",
355 		       sup->uuid);
356 		break;
357 	}
358 	case UBIFS_MST_NODE:
359 	{
360 		const struct ubifs_mst_node *mst = node;
361 
362 		printk(KERN_DEBUG "\thighest_inum   %llu\n",
363 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
364 		printk(KERN_DEBUG "\tcommit number  %llu\n",
365 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
366 		printk(KERN_DEBUG "\tflags          %#x\n",
367 		       le32_to_cpu(mst->flags));
368 		printk(KERN_DEBUG "\tlog_lnum       %u\n",
369 		       le32_to_cpu(mst->log_lnum));
370 		printk(KERN_DEBUG "\troot_lnum      %u\n",
371 		       le32_to_cpu(mst->root_lnum));
372 		printk(KERN_DEBUG "\troot_offs      %u\n",
373 		       le32_to_cpu(mst->root_offs));
374 		printk(KERN_DEBUG "\troot_len       %u\n",
375 		       le32_to_cpu(mst->root_len));
376 		printk(KERN_DEBUG "\tgc_lnum        %u\n",
377 		       le32_to_cpu(mst->gc_lnum));
378 		printk(KERN_DEBUG "\tihead_lnum     %u\n",
379 		       le32_to_cpu(mst->ihead_lnum));
380 		printk(KERN_DEBUG "\tihead_offs     %u\n",
381 		       le32_to_cpu(mst->ihead_offs));
382 		printk(KERN_DEBUG "\tindex_size     %llu\n",
383 		       (unsigned long long)le64_to_cpu(mst->index_size));
384 		printk(KERN_DEBUG "\tlpt_lnum       %u\n",
385 		       le32_to_cpu(mst->lpt_lnum));
386 		printk(KERN_DEBUG "\tlpt_offs       %u\n",
387 		       le32_to_cpu(mst->lpt_offs));
388 		printk(KERN_DEBUG "\tnhead_lnum     %u\n",
389 		       le32_to_cpu(mst->nhead_lnum));
390 		printk(KERN_DEBUG "\tnhead_offs     %u\n",
391 		       le32_to_cpu(mst->nhead_offs));
392 		printk(KERN_DEBUG "\tltab_lnum      %u\n",
393 		       le32_to_cpu(mst->ltab_lnum));
394 		printk(KERN_DEBUG "\tltab_offs      %u\n",
395 		       le32_to_cpu(mst->ltab_offs));
396 		printk(KERN_DEBUG "\tlsave_lnum     %u\n",
397 		       le32_to_cpu(mst->lsave_lnum));
398 		printk(KERN_DEBUG "\tlsave_offs     %u\n",
399 		       le32_to_cpu(mst->lsave_offs));
400 		printk(KERN_DEBUG "\tlscan_lnum     %u\n",
401 		       le32_to_cpu(mst->lscan_lnum));
402 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
403 		       le32_to_cpu(mst->leb_cnt));
404 		printk(KERN_DEBUG "\tempty_lebs     %u\n",
405 		       le32_to_cpu(mst->empty_lebs));
406 		printk(KERN_DEBUG "\tidx_lebs       %u\n",
407 		       le32_to_cpu(mst->idx_lebs));
408 		printk(KERN_DEBUG "\ttotal_free     %llu\n",
409 		       (unsigned long long)le64_to_cpu(mst->total_free));
410 		printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
411 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
412 		printk(KERN_DEBUG "\ttotal_used     %llu\n",
413 		       (unsigned long long)le64_to_cpu(mst->total_used));
414 		printk(KERN_DEBUG "\ttotal_dead     %llu\n",
415 		       (unsigned long long)le64_to_cpu(mst->total_dead));
416 		printk(KERN_DEBUG "\ttotal_dark     %llu\n",
417 		       (unsigned long long)le64_to_cpu(mst->total_dark));
418 		break;
419 	}
420 	case UBIFS_REF_NODE:
421 	{
422 		const struct ubifs_ref_node *ref = node;
423 
424 		printk(KERN_DEBUG "\tlnum           %u\n",
425 		       le32_to_cpu(ref->lnum));
426 		printk(KERN_DEBUG "\toffs           %u\n",
427 		       le32_to_cpu(ref->offs));
428 		printk(KERN_DEBUG "\tjhead          %u\n",
429 		       le32_to_cpu(ref->jhead));
430 		break;
431 	}
432 	case UBIFS_INO_NODE:
433 	{
434 		const struct ubifs_ino_node *ino = node;
435 
436 		key_read(c, &ino->key, &key);
437 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
438 		printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
439 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
440 		printk(KERN_DEBUG "\tsize           %llu\n",
441 		       (unsigned long long)le64_to_cpu(ino->size));
442 		printk(KERN_DEBUG "\tnlink          %u\n",
443 		       le32_to_cpu(ino->nlink));
444 		printk(KERN_DEBUG "\tatime          %lld.%u\n",
445 		       (long long)le64_to_cpu(ino->atime_sec),
446 		       le32_to_cpu(ino->atime_nsec));
447 		printk(KERN_DEBUG "\tmtime          %lld.%u\n",
448 		       (long long)le64_to_cpu(ino->mtime_sec),
449 		       le32_to_cpu(ino->mtime_nsec));
450 		printk(KERN_DEBUG "\tctime          %lld.%u\n",
451 		       (long long)le64_to_cpu(ino->ctime_sec),
452 		       le32_to_cpu(ino->ctime_nsec));
453 		printk(KERN_DEBUG "\tuid            %u\n",
454 		       le32_to_cpu(ino->uid));
455 		printk(KERN_DEBUG "\tgid            %u\n",
456 		       le32_to_cpu(ino->gid));
457 		printk(KERN_DEBUG "\tmode           %u\n",
458 		       le32_to_cpu(ino->mode));
459 		printk(KERN_DEBUG "\tflags          %#x\n",
460 		       le32_to_cpu(ino->flags));
461 		printk(KERN_DEBUG "\txattr_cnt      %u\n",
462 		       le32_to_cpu(ino->xattr_cnt));
463 		printk(KERN_DEBUG "\txattr_size     %u\n",
464 		       le32_to_cpu(ino->xattr_size));
465 		printk(KERN_DEBUG "\txattr_names    %u\n",
466 		       le32_to_cpu(ino->xattr_names));
467 		printk(KERN_DEBUG "\tcompr_type     %#x\n",
468 		       (int)le16_to_cpu(ino->compr_type));
469 		printk(KERN_DEBUG "\tdata len       %u\n",
470 		       le32_to_cpu(ino->data_len));
471 		break;
472 	}
473 	case UBIFS_DENT_NODE:
474 	case UBIFS_XENT_NODE:
475 	{
476 		const struct ubifs_dent_node *dent = node;
477 		int nlen = le16_to_cpu(dent->nlen);
478 
479 		key_read(c, &dent->key, &key);
480 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
481 		printk(KERN_DEBUG "\tinum           %llu\n",
482 		       (unsigned long long)le64_to_cpu(dent->inum));
483 		printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
484 		printk(KERN_DEBUG "\tnlen           %d\n", nlen);
485 		printk(KERN_DEBUG "\tname           ");
486 
487 		if (nlen > UBIFS_MAX_NLEN)
488 			printk(KERN_DEBUG "(bad name length, not printing, "
489 					  "bad or corrupted node)");
490 		else {
491 			for (i = 0; i < nlen && dent->name[i]; i++)
492 				printk(KERN_CONT "%c", dent->name[i]);
493 		}
494 		printk(KERN_CONT "\n");
495 
496 		break;
497 	}
498 	case UBIFS_DATA_NODE:
499 	{
500 		const struct ubifs_data_node *dn = node;
501 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
502 
503 		key_read(c, &dn->key, &key);
504 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
505 		printk(KERN_DEBUG "\tsize           %u\n",
506 		       le32_to_cpu(dn->size));
507 		printk(KERN_DEBUG "\tcompr_typ      %d\n",
508 		       (int)le16_to_cpu(dn->compr_type));
509 		printk(KERN_DEBUG "\tdata size      %d\n",
510 		       dlen);
511 		printk(KERN_DEBUG "\tdata:\n");
512 		print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 			       (void *)&dn->data, dlen, 0);
514 		break;
515 	}
516 	case UBIFS_TRUN_NODE:
517 	{
518 		const struct ubifs_trun_node *trun = node;
519 
520 		printk(KERN_DEBUG "\tinum           %u\n",
521 		       le32_to_cpu(trun->inum));
522 		printk(KERN_DEBUG "\told_size       %llu\n",
523 		       (unsigned long long)le64_to_cpu(trun->old_size));
524 		printk(KERN_DEBUG "\tnew_size       %llu\n",
525 		       (unsigned long long)le64_to_cpu(trun->new_size));
526 		break;
527 	}
528 	case UBIFS_IDX_NODE:
529 	{
530 		const struct ubifs_idx_node *idx = node;
531 
532 		n = le16_to_cpu(idx->child_cnt);
533 		printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
534 		printk(KERN_DEBUG "\tlevel          %d\n",
535 		       (int)le16_to_cpu(idx->level));
536 		printk(KERN_DEBUG "\tBranches:\n");
537 
538 		for (i = 0; i < n && i < c->fanout - 1; i++) {
539 			const struct ubifs_branch *br;
540 
541 			br = ubifs_idx_branch(c, idx, i);
542 			key_read(c, &br->key, &key);
543 			printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
544 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
545 			       le32_to_cpu(br->len), DBGKEY(&key));
546 		}
547 		break;
548 	}
549 	case UBIFS_CS_NODE:
550 		break;
551 	case UBIFS_ORPH_NODE:
552 	{
553 		const struct ubifs_orph_node *orph = node;
554 
555 		printk(KERN_DEBUG "\tcommit number  %llu\n",
556 		       (unsigned long long)
557 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
558 		printk(KERN_DEBUG "\tlast node flag %llu\n",
559 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
560 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
561 		printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
562 		for (i = 0; i < n; i++)
563 			printk(KERN_DEBUG "\t  ino %llu\n",
564 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
565 		break;
566 	}
567 	default:
568 		printk(KERN_DEBUG "node type %d was not recognized\n",
569 		       (int)ch->node_type);
570 	}
571 	spin_unlock(&dbg_lock);
572 }
573 
dbg_dump_budget_req(const struct ubifs_budget_req * req)574 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
575 {
576 	spin_lock(&dbg_lock);
577 	printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
578 	       req->new_ino, req->dirtied_ino);
579 	printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
580 	       req->new_ino_d, req->dirtied_ino_d);
581 	printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
582 	       req->new_page, req->dirtied_page);
583 	printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
584 	       req->new_dent, req->mod_dent);
585 	printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
586 	printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
587 	       req->data_growth, req->dd_growth);
588 	spin_unlock(&dbg_lock);
589 }
590 
dbg_dump_lstats(const struct ubifs_lp_stats * lst)591 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
592 {
593 	spin_lock(&dbg_lock);
594 	printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
595 	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
596 	printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
597 	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
598 	       lst->total_dirty);
599 	printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
600 	       "total_dead %lld\n", lst->total_used, lst->total_dark,
601 	       lst->total_dead);
602 	spin_unlock(&dbg_lock);
603 }
604 
dbg_dump_budg(struct ubifs_info * c)605 void dbg_dump_budg(struct ubifs_info *c)
606 {
607 	int i;
608 	struct rb_node *rb;
609 	struct ubifs_bud *bud;
610 	struct ubifs_gced_idx_leb *idx_gc;
611 	long long available, outstanding, free;
612 
613 	ubifs_assert(spin_is_locked(&c->space_lock));
614 	spin_lock(&dbg_lock);
615 	printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
616 	       "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
617 	       c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
618 	printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
619 	       "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
620 	       c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
621 	       c->freeable_cnt);
622 	printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
623 	       "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
624 	       c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
625 	printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
626 	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
627 	       atomic_long_read(&c->dirty_zn_cnt),
628 	       atomic_long_read(&c->clean_zn_cnt));
629 	printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
630 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
631 	printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
632 	       c->gc_lnum, c->ihead_lnum);
633 	/* If we are in R/O mode, journal heads do not exist */
634 	if (c->jheads)
635 		for (i = 0; i < c->jhead_cnt; i++)
636 			printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
637 			       dbg_jhead(c->jheads[i].wbuf.jhead),
638 			       c->jheads[i].wbuf.lnum);
639 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
640 		bud = rb_entry(rb, struct ubifs_bud, rb);
641 		printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
642 	}
643 	list_for_each_entry(bud, &c->old_buds, list)
644 		printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
645 	list_for_each_entry(idx_gc, &c->idx_gc, list)
646 		printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
647 		       idx_gc->lnum, idx_gc->unmap);
648 	printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
649 
650 	/* Print budgeting predictions */
651 	available = ubifs_calc_available(c, c->min_idx_lebs);
652 	outstanding = c->budg_data_growth + c->budg_dd_growth;
653 	free = ubifs_get_free_space_nolock(c);
654 	printk(KERN_DEBUG "Budgeting predictions:\n");
655 	printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
656 	       available, outstanding, free);
657 	spin_unlock(&dbg_lock);
658 }
659 
dbg_dump_lprop(const struct ubifs_info * c,const struct ubifs_lprops * lp)660 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
661 {
662 	int i, spc, dark = 0, dead = 0;
663 	struct rb_node *rb;
664 	struct ubifs_bud *bud;
665 
666 	spc = lp->free + lp->dirty;
667 	if (spc < c->dead_wm)
668 		dead = spc;
669 	else
670 		dark = ubifs_calc_dark(c, spc);
671 
672 	if (lp->flags & LPROPS_INDEX)
673 		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
674 		       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
675 		       lp->dirty, c->leb_size - spc, spc, lp->flags);
676 	else
677 		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
678 		       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
679 		       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
680 		       c->leb_size - spc, spc, dark, dead,
681 		       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
682 
683 	if (lp->flags & LPROPS_TAKEN) {
684 		if (lp->flags & LPROPS_INDEX)
685 			printk(KERN_CONT "index, taken");
686 		else
687 			printk(KERN_CONT "taken");
688 	} else {
689 		const char *s;
690 
691 		if (lp->flags & LPROPS_INDEX) {
692 			switch (lp->flags & LPROPS_CAT_MASK) {
693 			case LPROPS_DIRTY_IDX:
694 				s = "dirty index";
695 				break;
696 			case LPROPS_FRDI_IDX:
697 				s = "freeable index";
698 				break;
699 			default:
700 				s = "index";
701 			}
702 		} else {
703 			switch (lp->flags & LPROPS_CAT_MASK) {
704 			case LPROPS_UNCAT:
705 				s = "not categorized";
706 				break;
707 			case LPROPS_DIRTY:
708 				s = "dirty";
709 				break;
710 			case LPROPS_FREE:
711 				s = "free";
712 				break;
713 			case LPROPS_EMPTY:
714 				s = "empty";
715 				break;
716 			case LPROPS_FREEABLE:
717 				s = "freeable";
718 				break;
719 			default:
720 				s = NULL;
721 				break;
722 			}
723 		}
724 		printk(KERN_CONT "%s", s);
725 	}
726 
727 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
728 		bud = rb_entry(rb, struct ubifs_bud, rb);
729 		if (bud->lnum == lp->lnum) {
730 			int head = 0;
731 			for (i = 0; i < c->jhead_cnt; i++) {
732 				if (lp->lnum == c->jheads[i].wbuf.lnum) {
733 					printk(KERN_CONT ", jhead %s",
734 					       dbg_jhead(i));
735 					head = 1;
736 				}
737 			}
738 			if (!head)
739 				printk(KERN_CONT ", bud of jhead %s",
740 				       dbg_jhead(bud->jhead));
741 		}
742 	}
743 	if (lp->lnum == c->gc_lnum)
744 		printk(KERN_CONT ", GC LEB");
745 	printk(KERN_CONT ")\n");
746 }
747 
dbg_dump_lprops(struct ubifs_info * c)748 void dbg_dump_lprops(struct ubifs_info *c)
749 {
750 	int lnum, err;
751 	struct ubifs_lprops lp;
752 	struct ubifs_lp_stats lst;
753 
754 	printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
755 	       current->pid);
756 	ubifs_get_lp_stats(c, &lst);
757 	dbg_dump_lstats(&lst);
758 
759 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
760 		err = ubifs_read_one_lp(c, lnum, &lp);
761 		if (err)
762 			ubifs_err("cannot read lprops for LEB %d", lnum);
763 
764 		dbg_dump_lprop(c, &lp);
765 	}
766 	printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
767 	       current->pid);
768 }
769 
dbg_dump_lpt_info(struct ubifs_info * c)770 void dbg_dump_lpt_info(struct ubifs_info *c)
771 {
772 	int i;
773 
774 	spin_lock(&dbg_lock);
775 	printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
776 	printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
777 	printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
778 	printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
779 	printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
780 	printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
781 	printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
782 	printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
783 	printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
784 	printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
785 	printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
786 	printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
787 	printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
788 	printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
789 	printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
790 	printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
791 	printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
792 	printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
793 	printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
794 	printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
795 	printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
796 	       c->nhead_lnum, c->nhead_offs);
797 	printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
798 	       c->ltab_lnum, c->ltab_offs);
799 	if (c->big_lpt)
800 		printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
801 		       c->lsave_lnum, c->lsave_offs);
802 	for (i = 0; i < c->lpt_lebs; i++)
803 		printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
804 		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
805 		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
806 	spin_unlock(&dbg_lock);
807 }
808 
dbg_dump_leb(const struct ubifs_info * c,int lnum)809 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
810 {
811 	struct ubifs_scan_leb *sleb;
812 	struct ubifs_scan_node *snod;
813 	void *buf;
814 
815 	if (dbg_failure_mode)
816 		return;
817 
818 	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
819 	       current->pid, lnum);
820 
821 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
822 	if (!buf) {
823 		ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
824 		return;
825 	}
826 
827 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
828 	if (IS_ERR(sleb)) {
829 		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
830 		goto out;
831 	}
832 
833 	printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
834 	       sleb->nodes_cnt, sleb->endpt);
835 
836 	list_for_each_entry(snod, &sleb->nodes, list) {
837 		cond_resched();
838 		printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
839 		       snod->offs, snod->len);
840 		dbg_dump_node(c, snod->node);
841 	}
842 
843 	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
844 	       current->pid, lnum);
845 	ubifs_scan_destroy(sleb);
846 
847 out:
848 	vfree(buf);
849 	return;
850 }
851 
dbg_dump_znode(const struct ubifs_info * c,const struct ubifs_znode * znode)852 void dbg_dump_znode(const struct ubifs_info *c,
853 		    const struct ubifs_znode *znode)
854 {
855 	int n;
856 	const struct ubifs_zbranch *zbr;
857 
858 	spin_lock(&dbg_lock);
859 	if (znode->parent)
860 		zbr = &znode->parent->zbranch[znode->iip];
861 	else
862 		zbr = &c->zroot;
863 
864 	printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
865 	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
866 	       zbr->len, znode->parent, znode->iip, znode->level,
867 	       znode->child_cnt, znode->flags);
868 
869 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
870 		spin_unlock(&dbg_lock);
871 		return;
872 	}
873 
874 	printk(KERN_DEBUG "zbranches:\n");
875 	for (n = 0; n < znode->child_cnt; n++) {
876 		zbr = &znode->zbranch[n];
877 		if (znode->level > 0)
878 			printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
879 					  "%s\n", n, zbr->znode, zbr->lnum,
880 					  zbr->offs, zbr->len,
881 					  DBGKEY(&zbr->key));
882 		else
883 			printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
884 					  "%s\n", n, zbr->znode, zbr->lnum,
885 					  zbr->offs, zbr->len,
886 					  DBGKEY(&zbr->key));
887 	}
888 	spin_unlock(&dbg_lock);
889 }
890 
dbg_dump_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat)891 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
892 {
893 	int i;
894 
895 	printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
896 	       current->pid, cat, heap->cnt);
897 	for (i = 0; i < heap->cnt; i++) {
898 		struct ubifs_lprops *lprops = heap->arr[i];
899 
900 		printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
901 		       "flags %d\n", i, lprops->lnum, lprops->hpos,
902 		       lprops->free, lprops->dirty, lprops->flags);
903 	}
904 	printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
905 }
906 
dbg_dump_pnode(struct ubifs_info * c,struct ubifs_pnode * pnode,struct ubifs_nnode * parent,int iip)907 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
908 		    struct ubifs_nnode *parent, int iip)
909 {
910 	int i;
911 
912 	printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
913 	printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
914 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
915 	printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
916 	       pnode->flags, iip, pnode->level, pnode->num);
917 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
918 		struct ubifs_lprops *lp = &pnode->lprops[i];
919 
920 		printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
921 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
922 	}
923 }
924 
dbg_dump_tnc(struct ubifs_info * c)925 void dbg_dump_tnc(struct ubifs_info *c)
926 {
927 	struct ubifs_znode *znode;
928 	int level;
929 
930 	printk(KERN_DEBUG "\n");
931 	printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
932 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
933 	level = znode->level;
934 	printk(KERN_DEBUG "== Level %d ==\n", level);
935 	while (znode) {
936 		if (level != znode->level) {
937 			level = znode->level;
938 			printk(KERN_DEBUG "== Level %d ==\n", level);
939 		}
940 		dbg_dump_znode(c, znode);
941 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
942 	}
943 	printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
944 }
945 
dump_znode(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)946 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
947 		      void *priv)
948 {
949 	dbg_dump_znode(c, znode);
950 	return 0;
951 }
952 
953 /**
954  * dbg_dump_index - dump the on-flash index.
955  * @c: UBIFS file-system description object
956  *
957  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
958  * which dumps only in-memory znodes and does not read znodes which from flash.
959  */
dbg_dump_index(struct ubifs_info * c)960 void dbg_dump_index(struct ubifs_info *c)
961 {
962 	dbg_walk_index(c, NULL, dump_znode, NULL);
963 }
964 
965 /**
966  * dbg_save_space_info - save information about flash space.
967  * @c: UBIFS file-system description object
968  *
969  * This function saves information about UBIFS free space, dirty space, etc, in
970  * order to check it later.
971  */
dbg_save_space_info(struct ubifs_info * c)972 void dbg_save_space_info(struct ubifs_info *c)
973 {
974 	struct ubifs_debug_info *d = c->dbg;
975 	int freeable_cnt;
976 
977 	spin_lock(&c->space_lock);
978 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
979 
980 	/*
981 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
982 	 * affects the free space calculations, and UBIFS might not know about
983 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
984 	 * only when we read their lprops, and we do this only lazily, upon the
985 	 * need. So at any given point of time @c->freeable_cnt might be not
986 	 * exactly accurate.
987 	 *
988 	 * Just one example about the issue we hit when we did not zero
989 	 * @c->freeable_cnt.
990 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
991 	 *    amount of free space in @d->saved_free
992 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
993 	 *    information from flash, where we cache LEBs from various
994 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
995 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
996 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
997 	 *    -> 'ubifs_add_to_cat()').
998 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
999 	 *    becomes %1.
1000 	 * 4. We calculate the amount of free space when the re-mount is
1001 	 *    finished in 'dbg_check_space_info()' and it does not match
1002 	 *    @d->saved_free.
1003 	 */
1004 	freeable_cnt = c->freeable_cnt;
1005 	c->freeable_cnt = 0;
1006 	d->saved_free = ubifs_get_free_space_nolock(c);
1007 	c->freeable_cnt = freeable_cnt;
1008 	spin_unlock(&c->space_lock);
1009 }
1010 
1011 /**
1012  * dbg_check_space_info - check flash space information.
1013  * @c: UBIFS file-system description object
1014  *
1015  * This function compares current flash space information with the information
1016  * which was saved when the 'dbg_save_space_info()' function was called.
1017  * Returns zero if the information has not changed, and %-EINVAL it it has
1018  * changed.
1019  */
dbg_check_space_info(struct ubifs_info * c)1020 int dbg_check_space_info(struct ubifs_info *c)
1021 {
1022 	struct ubifs_debug_info *d = c->dbg;
1023 	struct ubifs_lp_stats lst;
1024 	long long free;
1025 	int freeable_cnt;
1026 
1027 	spin_lock(&c->space_lock);
1028 	freeable_cnt = c->freeable_cnt;
1029 	c->freeable_cnt = 0;
1030 	free = ubifs_get_free_space_nolock(c);
1031 	c->freeable_cnt = freeable_cnt;
1032 	spin_unlock(&c->space_lock);
1033 
1034 	if (free != d->saved_free) {
1035 		ubifs_err("free space changed from %lld to %lld",
1036 			  d->saved_free, free);
1037 		goto out;
1038 	}
1039 
1040 	return 0;
1041 
1042 out:
1043 	ubifs_msg("saved lprops statistics dump");
1044 	dbg_dump_lstats(&d->saved_lst);
1045 	ubifs_get_lp_stats(c, &lst);
1046 
1047 	ubifs_msg("current lprops statistics dump");
1048 	dbg_dump_lstats(&lst);
1049 
1050 	spin_lock(&c->space_lock);
1051 	dbg_dump_budg(c);
1052 	spin_unlock(&c->space_lock);
1053 	dump_stack();
1054 	return -EINVAL;
1055 }
1056 
1057 /**
1058  * dbg_check_synced_i_size - check synchronized inode size.
1059  * @inode: inode to check
1060  *
1061  * If inode is clean, synchronized inode size has to be equivalent to current
1062  * inode size. This function has to be called only for locked inodes (@i_mutex
1063  * has to be locked). Returns %0 if synchronized inode size if correct, and
1064  * %-EINVAL if not.
1065  */
dbg_check_synced_i_size(struct inode * inode)1066 int dbg_check_synced_i_size(struct inode *inode)
1067 {
1068 	int err = 0;
1069 	struct ubifs_inode *ui = ubifs_inode(inode);
1070 
1071 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1072 		return 0;
1073 	if (!S_ISREG(inode->i_mode))
1074 		return 0;
1075 
1076 	mutex_lock(&ui->ui_mutex);
1077 	spin_lock(&ui->ui_lock);
1078 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1079 		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1080 			  "is clean", ui->ui_size, ui->synced_i_size);
1081 		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1082 			  inode->i_mode, i_size_read(inode));
1083 		dbg_dump_stack();
1084 		err = -EINVAL;
1085 	}
1086 	spin_unlock(&ui->ui_lock);
1087 	mutex_unlock(&ui->ui_mutex);
1088 	return err;
1089 }
1090 
1091 /*
1092  * dbg_check_dir - check directory inode size and link count.
1093  * @c: UBIFS file-system description object
1094  * @dir: the directory to calculate size for
1095  * @size: the result is returned here
1096  *
1097  * This function makes sure that directory size and link count are correct.
1098  * Returns zero in case of success and a negative error code in case of
1099  * failure.
1100  *
1101  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1102  * calling this function.
1103  */
dbg_check_dir_size(struct ubifs_info * c,const struct inode * dir)1104 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1105 {
1106 	unsigned int nlink = 2;
1107 	union ubifs_key key;
1108 	struct ubifs_dent_node *dent, *pdent = NULL;
1109 	struct qstr nm = { .name = NULL };
1110 	loff_t size = UBIFS_INO_NODE_SZ;
1111 
1112 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1113 		return 0;
1114 
1115 	if (!S_ISDIR(dir->i_mode))
1116 		return 0;
1117 
1118 	lowest_dent_key(c, &key, dir->i_ino);
1119 	while (1) {
1120 		int err;
1121 
1122 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1123 		if (IS_ERR(dent)) {
1124 			err = PTR_ERR(dent);
1125 			if (err == -ENOENT)
1126 				break;
1127 			return err;
1128 		}
1129 
1130 		nm.name = dent->name;
1131 		nm.len = le16_to_cpu(dent->nlen);
1132 		size += CALC_DENT_SIZE(nm.len);
1133 		if (dent->type == UBIFS_ITYPE_DIR)
1134 			nlink += 1;
1135 		kfree(pdent);
1136 		pdent = dent;
1137 		key_read(c, &dent->key, &key);
1138 	}
1139 	kfree(pdent);
1140 
1141 	if (i_size_read(dir) != size) {
1142 		ubifs_err("directory inode %lu has size %llu, "
1143 			  "but calculated size is %llu", dir->i_ino,
1144 			  (unsigned long long)i_size_read(dir),
1145 			  (unsigned long long)size);
1146 		dump_stack();
1147 		return -EINVAL;
1148 	}
1149 	if (dir->i_nlink != nlink) {
1150 		ubifs_err("directory inode %lu has nlink %u, but calculated "
1151 			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1152 		dump_stack();
1153 		return -EINVAL;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
1159 /**
1160  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1161  * @c: UBIFS file-system description object
1162  * @zbr1: first zbranch
1163  * @zbr2: following zbranch
1164  *
1165  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1166  * names of the direntries/xentries which are referred by the keys. This
1167  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1168  * sure the name of direntry/xentry referred by @zbr1 is less than
1169  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1170  * and a negative error code in case of failure.
1171  */
dbg_check_key_order(struct ubifs_info * c,struct ubifs_zbranch * zbr1,struct ubifs_zbranch * zbr2)1172 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1173 			       struct ubifs_zbranch *zbr2)
1174 {
1175 	int err, nlen1, nlen2, cmp;
1176 	struct ubifs_dent_node *dent1, *dent2;
1177 	union ubifs_key key;
1178 
1179 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1180 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1181 	if (!dent1)
1182 		return -ENOMEM;
1183 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1184 	if (!dent2) {
1185 		err = -ENOMEM;
1186 		goto out_free;
1187 	}
1188 
1189 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1190 	if (err)
1191 		goto out_free;
1192 	err = ubifs_validate_entry(c, dent1);
1193 	if (err)
1194 		goto out_free;
1195 
1196 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1197 	if (err)
1198 		goto out_free;
1199 	err = ubifs_validate_entry(c, dent2);
1200 	if (err)
1201 		goto out_free;
1202 
1203 	/* Make sure node keys are the same as in zbranch */
1204 	err = 1;
1205 	key_read(c, &dent1->key, &key);
1206 	if (keys_cmp(c, &zbr1->key, &key)) {
1207 		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1208 			zbr1->offs, DBGKEY(&key));
1209 		dbg_err("but it should have key %s according to tnc",
1210 			DBGKEY(&zbr1->key));
1211 		dbg_dump_node(c, dent1);
1212 		goto out_free;
1213 	}
1214 
1215 	key_read(c, &dent2->key, &key);
1216 	if (keys_cmp(c, &zbr2->key, &key)) {
1217 		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1218 			zbr1->offs, DBGKEY(&key));
1219 		dbg_err("but it should have key %s according to tnc",
1220 			DBGKEY(&zbr2->key));
1221 		dbg_dump_node(c, dent2);
1222 		goto out_free;
1223 	}
1224 
1225 	nlen1 = le16_to_cpu(dent1->nlen);
1226 	nlen2 = le16_to_cpu(dent2->nlen);
1227 
1228 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1229 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1230 		err = 0;
1231 		goto out_free;
1232 	}
1233 	if (cmp == 0 && nlen1 == nlen2)
1234 		dbg_err("2 xent/dent nodes with the same name");
1235 	else
1236 		dbg_err("bad order of colliding key %s",
1237 			DBGKEY(&key));
1238 
1239 	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1240 	dbg_dump_node(c, dent1);
1241 	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1242 	dbg_dump_node(c, dent2);
1243 
1244 out_free:
1245 	kfree(dent2);
1246 	kfree(dent1);
1247 	return err;
1248 }
1249 
1250 /**
1251  * dbg_check_znode - check if znode is all right.
1252  * @c: UBIFS file-system description object
1253  * @zbr: zbranch which points to this znode
1254  *
1255  * This function makes sure that znode referred to by @zbr is all right.
1256  * Returns zero if it is, and %-EINVAL if it is not.
1257  */
dbg_check_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)1258 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1259 {
1260 	struct ubifs_znode *znode = zbr->znode;
1261 	struct ubifs_znode *zp = znode->parent;
1262 	int n, err, cmp;
1263 
1264 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1265 		err = 1;
1266 		goto out;
1267 	}
1268 	if (znode->level < 0) {
1269 		err = 2;
1270 		goto out;
1271 	}
1272 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1273 		err = 3;
1274 		goto out;
1275 	}
1276 
1277 	if (zbr->len == 0)
1278 		/* Only dirty zbranch may have no on-flash nodes */
1279 		if (!ubifs_zn_dirty(znode)) {
1280 			err = 4;
1281 			goto out;
1282 		}
1283 
1284 	if (ubifs_zn_dirty(znode)) {
1285 		/*
1286 		 * If znode is dirty, its parent has to be dirty as well. The
1287 		 * order of the operation is important, so we have to have
1288 		 * memory barriers.
1289 		 */
1290 		smp_mb();
1291 		if (zp && !ubifs_zn_dirty(zp)) {
1292 			/*
1293 			 * The dirty flag is atomic and is cleared outside the
1294 			 * TNC mutex, so znode's dirty flag may now have
1295 			 * been cleared. The child is always cleared before the
1296 			 * parent, so we just need to check again.
1297 			 */
1298 			smp_mb();
1299 			if (ubifs_zn_dirty(znode)) {
1300 				err = 5;
1301 				goto out;
1302 			}
1303 		}
1304 	}
1305 
1306 	if (zp) {
1307 		const union ubifs_key *min, *max;
1308 
1309 		if (znode->level != zp->level - 1) {
1310 			err = 6;
1311 			goto out;
1312 		}
1313 
1314 		/* Make sure the 'parent' pointer in our znode is correct */
1315 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1316 		if (!err) {
1317 			/* This zbranch does not exist in the parent */
1318 			err = 7;
1319 			goto out;
1320 		}
1321 
1322 		if (znode->iip >= zp->child_cnt) {
1323 			err = 8;
1324 			goto out;
1325 		}
1326 
1327 		if (znode->iip != n) {
1328 			/* This may happen only in case of collisions */
1329 			if (keys_cmp(c, &zp->zbranch[n].key,
1330 				     &zp->zbranch[znode->iip].key)) {
1331 				err = 9;
1332 				goto out;
1333 			}
1334 			n = znode->iip;
1335 		}
1336 
1337 		/*
1338 		 * Make sure that the first key in our znode is greater than or
1339 		 * equal to the key in the pointing zbranch.
1340 		 */
1341 		min = &zbr->key;
1342 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1343 		if (cmp == 1) {
1344 			err = 10;
1345 			goto out;
1346 		}
1347 
1348 		if (n + 1 < zp->child_cnt) {
1349 			max = &zp->zbranch[n + 1].key;
1350 
1351 			/*
1352 			 * Make sure the last key in our znode is less or
1353 			 * equivalent than the key in the zbranch which goes
1354 			 * after our pointing zbranch.
1355 			 */
1356 			cmp = keys_cmp(c, max,
1357 				&znode->zbranch[znode->child_cnt - 1].key);
1358 			if (cmp == -1) {
1359 				err = 11;
1360 				goto out;
1361 			}
1362 		}
1363 	} else {
1364 		/* This may only be root znode */
1365 		if (zbr != &c->zroot) {
1366 			err = 12;
1367 			goto out;
1368 		}
1369 	}
1370 
1371 	/*
1372 	 * Make sure that next key is greater or equivalent then the previous
1373 	 * one.
1374 	 */
1375 	for (n = 1; n < znode->child_cnt; n++) {
1376 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1377 			       &znode->zbranch[n].key);
1378 		if (cmp > 0) {
1379 			err = 13;
1380 			goto out;
1381 		}
1382 		if (cmp == 0) {
1383 			/* This can only be keys with colliding hash */
1384 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1385 				err = 14;
1386 				goto out;
1387 			}
1388 
1389 			if (znode->level != 0 || c->replaying)
1390 				continue;
1391 
1392 			/*
1393 			 * Colliding keys should follow binary order of
1394 			 * corresponding xentry/dentry names.
1395 			 */
1396 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1397 						  &znode->zbranch[n]);
1398 			if (err < 0)
1399 				return err;
1400 			if (err) {
1401 				err = 15;
1402 				goto out;
1403 			}
1404 		}
1405 	}
1406 
1407 	for (n = 0; n < znode->child_cnt; n++) {
1408 		if (!znode->zbranch[n].znode &&
1409 		    (znode->zbranch[n].lnum == 0 ||
1410 		     znode->zbranch[n].len == 0)) {
1411 			err = 16;
1412 			goto out;
1413 		}
1414 
1415 		if (znode->zbranch[n].lnum != 0 &&
1416 		    znode->zbranch[n].len == 0) {
1417 			err = 17;
1418 			goto out;
1419 		}
1420 
1421 		if (znode->zbranch[n].lnum == 0 &&
1422 		    znode->zbranch[n].len != 0) {
1423 			err = 18;
1424 			goto out;
1425 		}
1426 
1427 		if (znode->zbranch[n].lnum == 0 &&
1428 		    znode->zbranch[n].offs != 0) {
1429 			err = 19;
1430 			goto out;
1431 		}
1432 
1433 		if (znode->level != 0 && znode->zbranch[n].znode)
1434 			if (znode->zbranch[n].znode->parent != znode) {
1435 				err = 20;
1436 				goto out;
1437 			}
1438 	}
1439 
1440 	return 0;
1441 
1442 out:
1443 	ubifs_err("failed, error %d", err);
1444 	ubifs_msg("dump of the znode");
1445 	dbg_dump_znode(c, znode);
1446 	if (zp) {
1447 		ubifs_msg("dump of the parent znode");
1448 		dbg_dump_znode(c, zp);
1449 	}
1450 	dump_stack();
1451 	return -EINVAL;
1452 }
1453 
1454 /**
1455  * dbg_check_tnc - check TNC tree.
1456  * @c: UBIFS file-system description object
1457  * @extra: do extra checks that are possible at start commit
1458  *
1459  * This function traverses whole TNC tree and checks every znode. Returns zero
1460  * if everything is all right and %-EINVAL if something is wrong with TNC.
1461  */
dbg_check_tnc(struct ubifs_info * c,int extra)1462 int dbg_check_tnc(struct ubifs_info *c, int extra)
1463 {
1464 	struct ubifs_znode *znode;
1465 	long clean_cnt = 0, dirty_cnt = 0;
1466 	int err, last;
1467 
1468 	if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1469 		return 0;
1470 
1471 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1472 	if (!c->zroot.znode)
1473 		return 0;
1474 
1475 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1476 	while (1) {
1477 		struct ubifs_znode *prev;
1478 		struct ubifs_zbranch *zbr;
1479 
1480 		if (!znode->parent)
1481 			zbr = &c->zroot;
1482 		else
1483 			zbr = &znode->parent->zbranch[znode->iip];
1484 
1485 		err = dbg_check_znode(c, zbr);
1486 		if (err)
1487 			return err;
1488 
1489 		if (extra) {
1490 			if (ubifs_zn_dirty(znode))
1491 				dirty_cnt += 1;
1492 			else
1493 				clean_cnt += 1;
1494 		}
1495 
1496 		prev = znode;
1497 		znode = ubifs_tnc_postorder_next(znode);
1498 		if (!znode)
1499 			break;
1500 
1501 		/*
1502 		 * If the last key of this znode is equivalent to the first key
1503 		 * of the next znode (collision), then check order of the keys.
1504 		 */
1505 		last = prev->child_cnt - 1;
1506 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1507 		    !keys_cmp(c, &prev->zbranch[last].key,
1508 			      &znode->zbranch[0].key)) {
1509 			err = dbg_check_key_order(c, &prev->zbranch[last],
1510 						  &znode->zbranch[0]);
1511 			if (err < 0)
1512 				return err;
1513 			if (err) {
1514 				ubifs_msg("first znode");
1515 				dbg_dump_znode(c, prev);
1516 				ubifs_msg("second znode");
1517 				dbg_dump_znode(c, znode);
1518 				return -EINVAL;
1519 			}
1520 		}
1521 	}
1522 
1523 	if (extra) {
1524 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1525 			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1526 				  atomic_long_read(&c->clean_zn_cnt),
1527 				  clean_cnt);
1528 			return -EINVAL;
1529 		}
1530 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1531 			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1532 				  atomic_long_read(&c->dirty_zn_cnt),
1533 				  dirty_cnt);
1534 			return -EINVAL;
1535 		}
1536 	}
1537 
1538 	return 0;
1539 }
1540 
1541 /**
1542  * dbg_walk_index - walk the on-flash index.
1543  * @c: UBIFS file-system description object
1544  * @leaf_cb: called for each leaf node
1545  * @znode_cb: called for each indexing node
1546  * @priv: private data which is passed to callbacks
1547  *
1548  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1549  * node and @znode_cb for each indexing node. Returns zero in case of success
1550  * and a negative error code in case of failure.
1551  *
1552  * It would be better if this function removed every znode it pulled to into
1553  * the TNC, so that the behavior more closely matched the non-debugging
1554  * behavior.
1555  */
dbg_walk_index(struct ubifs_info * c,dbg_leaf_callback leaf_cb,dbg_znode_callback znode_cb,void * priv)1556 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1557 		   dbg_znode_callback znode_cb, void *priv)
1558 {
1559 	int err;
1560 	struct ubifs_zbranch *zbr;
1561 	struct ubifs_znode *znode, *child;
1562 
1563 	mutex_lock(&c->tnc_mutex);
1564 	/* If the root indexing node is not in TNC - pull it */
1565 	if (!c->zroot.znode) {
1566 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1567 		if (IS_ERR(c->zroot.znode)) {
1568 			err = PTR_ERR(c->zroot.znode);
1569 			c->zroot.znode = NULL;
1570 			goto out_unlock;
1571 		}
1572 	}
1573 
1574 	/*
1575 	 * We are going to traverse the indexing tree in the postorder manner.
1576 	 * Go down and find the leftmost indexing node where we are going to
1577 	 * start from.
1578 	 */
1579 	znode = c->zroot.znode;
1580 	while (znode->level > 0) {
1581 		zbr = &znode->zbranch[0];
1582 		child = zbr->znode;
1583 		if (!child) {
1584 			child = ubifs_load_znode(c, zbr, znode, 0);
1585 			if (IS_ERR(child)) {
1586 				err = PTR_ERR(child);
1587 				goto out_unlock;
1588 			}
1589 			zbr->znode = child;
1590 		}
1591 
1592 		znode = child;
1593 	}
1594 
1595 	/* Iterate over all indexing nodes */
1596 	while (1) {
1597 		int idx;
1598 
1599 		cond_resched();
1600 
1601 		if (znode_cb) {
1602 			err = znode_cb(c, znode, priv);
1603 			if (err) {
1604 				ubifs_err("znode checking function returned "
1605 					  "error %d", err);
1606 				dbg_dump_znode(c, znode);
1607 				goto out_dump;
1608 			}
1609 		}
1610 		if (leaf_cb && znode->level == 0) {
1611 			for (idx = 0; idx < znode->child_cnt; idx++) {
1612 				zbr = &znode->zbranch[idx];
1613 				err = leaf_cb(c, zbr, priv);
1614 				if (err) {
1615 					ubifs_err("leaf checking function "
1616 						  "returned error %d, for leaf "
1617 						  "at LEB %d:%d",
1618 						  err, zbr->lnum, zbr->offs);
1619 					goto out_dump;
1620 				}
1621 			}
1622 		}
1623 
1624 		if (!znode->parent)
1625 			break;
1626 
1627 		idx = znode->iip + 1;
1628 		znode = znode->parent;
1629 		if (idx < znode->child_cnt) {
1630 			/* Switch to the next index in the parent */
1631 			zbr = &znode->zbranch[idx];
1632 			child = zbr->znode;
1633 			if (!child) {
1634 				child = ubifs_load_znode(c, zbr, znode, idx);
1635 				if (IS_ERR(child)) {
1636 					err = PTR_ERR(child);
1637 					goto out_unlock;
1638 				}
1639 				zbr->znode = child;
1640 			}
1641 			znode = child;
1642 		} else
1643 			/*
1644 			 * This is the last child, switch to the parent and
1645 			 * continue.
1646 			 */
1647 			continue;
1648 
1649 		/* Go to the lowest leftmost znode in the new sub-tree */
1650 		while (znode->level > 0) {
1651 			zbr = &znode->zbranch[0];
1652 			child = zbr->znode;
1653 			if (!child) {
1654 				child = ubifs_load_znode(c, zbr, znode, 0);
1655 				if (IS_ERR(child)) {
1656 					err = PTR_ERR(child);
1657 					goto out_unlock;
1658 				}
1659 				zbr->znode = child;
1660 			}
1661 			znode = child;
1662 		}
1663 	}
1664 
1665 	mutex_unlock(&c->tnc_mutex);
1666 	return 0;
1667 
1668 out_dump:
1669 	if (znode->parent)
1670 		zbr = &znode->parent->zbranch[znode->iip];
1671 	else
1672 		zbr = &c->zroot;
1673 	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1674 	dbg_dump_znode(c, znode);
1675 out_unlock:
1676 	mutex_unlock(&c->tnc_mutex);
1677 	return err;
1678 }
1679 
1680 /**
1681  * add_size - add znode size to partially calculated index size.
1682  * @c: UBIFS file-system description object
1683  * @znode: znode to add size for
1684  * @priv: partially calculated index size
1685  *
1686  * This is a helper function for 'dbg_check_idx_size()' which is called for
1687  * every indexing node and adds its size to the 'long long' variable pointed to
1688  * by @priv.
1689  */
add_size(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)1690 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1691 {
1692 	long long *idx_size = priv;
1693 	int add;
1694 
1695 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1696 	add = ALIGN(add, 8);
1697 	*idx_size += add;
1698 	return 0;
1699 }
1700 
1701 /**
1702  * dbg_check_idx_size - check index size.
1703  * @c: UBIFS file-system description object
1704  * @idx_size: size to check
1705  *
1706  * This function walks the UBIFS index, calculates its size and checks that the
1707  * size is equivalent to @idx_size. Returns zero in case of success and a
1708  * negative error code in case of failure.
1709  */
dbg_check_idx_size(struct ubifs_info * c,long long idx_size)1710 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1711 {
1712 	int err;
1713 	long long calc = 0;
1714 
1715 	if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1716 		return 0;
1717 
1718 	err = dbg_walk_index(c, NULL, add_size, &calc);
1719 	if (err) {
1720 		ubifs_err("error %d while walking the index", err);
1721 		return err;
1722 	}
1723 
1724 	if (calc != idx_size) {
1725 		ubifs_err("index size check failed: calculated size is %lld, "
1726 			  "should be %lld", calc, idx_size);
1727 		dump_stack();
1728 		return -EINVAL;
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 /**
1735  * struct fsck_inode - information about an inode used when checking the file-system.
1736  * @rb: link in the RB-tree of inodes
1737  * @inum: inode number
1738  * @mode: inode type, permissions, etc
1739  * @nlink: inode link count
1740  * @xattr_cnt: count of extended attributes
1741  * @references: how many directory/xattr entries refer this inode (calculated
1742  *              while walking the index)
1743  * @calc_cnt: for directory inode count of child directories
1744  * @size: inode size (read from on-flash inode)
1745  * @xattr_sz: summary size of all extended attributes (read from on-flash
1746  *            inode)
1747  * @calc_sz: for directories calculated directory size
1748  * @calc_xcnt: count of extended attributes
1749  * @calc_xsz: calculated summary size of all extended attributes
1750  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1751  *             inode (read from on-flash inode)
1752  * @calc_xnms: calculated sum of lengths of all extended attribute names
1753  */
1754 struct fsck_inode {
1755 	struct rb_node rb;
1756 	ino_t inum;
1757 	umode_t mode;
1758 	unsigned int nlink;
1759 	unsigned int xattr_cnt;
1760 	int references;
1761 	int calc_cnt;
1762 	long long size;
1763 	unsigned int xattr_sz;
1764 	long long calc_sz;
1765 	long long calc_xcnt;
1766 	long long calc_xsz;
1767 	unsigned int xattr_nms;
1768 	long long calc_xnms;
1769 };
1770 
1771 /**
1772  * struct fsck_data - private FS checking information.
1773  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1774  */
1775 struct fsck_data {
1776 	struct rb_root inodes;
1777 };
1778 
1779 /**
1780  * add_inode - add inode information to RB-tree of inodes.
1781  * @c: UBIFS file-system description object
1782  * @fsckd: FS checking information
1783  * @ino: raw UBIFS inode to add
1784  *
1785  * This is a helper function for 'check_leaf()' which adds information about
1786  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1787  * case of success and a negative error code in case of failure.
1788  */
add_inode(struct ubifs_info * c,struct fsck_data * fsckd,struct ubifs_ino_node * ino)1789 static struct fsck_inode *add_inode(struct ubifs_info *c,
1790 				    struct fsck_data *fsckd,
1791 				    struct ubifs_ino_node *ino)
1792 {
1793 	struct rb_node **p, *parent = NULL;
1794 	struct fsck_inode *fscki;
1795 	ino_t inum = key_inum_flash(c, &ino->key);
1796 
1797 	p = &fsckd->inodes.rb_node;
1798 	while (*p) {
1799 		parent = *p;
1800 		fscki = rb_entry(parent, struct fsck_inode, rb);
1801 		if (inum < fscki->inum)
1802 			p = &(*p)->rb_left;
1803 		else if (inum > fscki->inum)
1804 			p = &(*p)->rb_right;
1805 		else
1806 			return fscki;
1807 	}
1808 
1809 	if (inum > c->highest_inum) {
1810 		ubifs_err("too high inode number, max. is %lu",
1811 			  (unsigned long)c->highest_inum);
1812 		return ERR_PTR(-EINVAL);
1813 	}
1814 
1815 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1816 	if (!fscki)
1817 		return ERR_PTR(-ENOMEM);
1818 
1819 	fscki->inum = inum;
1820 	fscki->nlink = le32_to_cpu(ino->nlink);
1821 	fscki->size = le64_to_cpu(ino->size);
1822 	fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1823 	fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1824 	fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1825 	fscki->mode = le32_to_cpu(ino->mode);
1826 	if (S_ISDIR(fscki->mode)) {
1827 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1828 		fscki->calc_cnt = 2;
1829 	}
1830 	rb_link_node(&fscki->rb, parent, p);
1831 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1832 	return fscki;
1833 }
1834 
1835 /**
1836  * search_inode - search inode in the RB-tree of inodes.
1837  * @fsckd: FS checking information
1838  * @inum: inode number to search
1839  *
1840  * This is a helper function for 'check_leaf()' which searches inode @inum in
1841  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1842  * the inode was not found.
1843  */
search_inode(struct fsck_data * fsckd,ino_t inum)1844 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1845 {
1846 	struct rb_node *p;
1847 	struct fsck_inode *fscki;
1848 
1849 	p = fsckd->inodes.rb_node;
1850 	while (p) {
1851 		fscki = rb_entry(p, struct fsck_inode, rb);
1852 		if (inum < fscki->inum)
1853 			p = p->rb_left;
1854 		else if (inum > fscki->inum)
1855 			p = p->rb_right;
1856 		else
1857 			return fscki;
1858 	}
1859 	return NULL;
1860 }
1861 
1862 /**
1863  * read_add_inode - read inode node and add it to RB-tree of inodes.
1864  * @c: UBIFS file-system description object
1865  * @fsckd: FS checking information
1866  * @inum: inode number to read
1867  *
1868  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1869  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1870  * information pointer in case of success and a negative error code in case of
1871  * failure.
1872  */
read_add_inode(struct ubifs_info * c,struct fsck_data * fsckd,ino_t inum)1873 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1874 					 struct fsck_data *fsckd, ino_t inum)
1875 {
1876 	int n, err;
1877 	union ubifs_key key;
1878 	struct ubifs_znode *znode;
1879 	struct ubifs_zbranch *zbr;
1880 	struct ubifs_ino_node *ino;
1881 	struct fsck_inode *fscki;
1882 
1883 	fscki = search_inode(fsckd, inum);
1884 	if (fscki)
1885 		return fscki;
1886 
1887 	ino_key_init(c, &key, inum);
1888 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1889 	if (!err) {
1890 		ubifs_err("inode %lu not found in index", (unsigned long)inum);
1891 		return ERR_PTR(-ENOENT);
1892 	} else if (err < 0) {
1893 		ubifs_err("error %d while looking up inode %lu",
1894 			  err, (unsigned long)inum);
1895 		return ERR_PTR(err);
1896 	}
1897 
1898 	zbr = &znode->zbranch[n];
1899 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1900 		ubifs_err("bad node %lu node length %d",
1901 			  (unsigned long)inum, zbr->len);
1902 		return ERR_PTR(-EINVAL);
1903 	}
1904 
1905 	ino = kmalloc(zbr->len, GFP_NOFS);
1906 	if (!ino)
1907 		return ERR_PTR(-ENOMEM);
1908 
1909 	err = ubifs_tnc_read_node(c, zbr, ino);
1910 	if (err) {
1911 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1912 			  zbr->lnum, zbr->offs, err);
1913 		kfree(ino);
1914 		return ERR_PTR(err);
1915 	}
1916 
1917 	fscki = add_inode(c, fsckd, ino);
1918 	kfree(ino);
1919 	if (IS_ERR(fscki)) {
1920 		ubifs_err("error %ld while adding inode %lu node",
1921 			  PTR_ERR(fscki), (unsigned long)inum);
1922 		return fscki;
1923 	}
1924 
1925 	return fscki;
1926 }
1927 
1928 /**
1929  * check_leaf - check leaf node.
1930  * @c: UBIFS file-system description object
1931  * @zbr: zbranch of the leaf node to check
1932  * @priv: FS checking information
1933  *
1934  * This is a helper function for 'dbg_check_filesystem()' which is called for
1935  * every single leaf node while walking the indexing tree. It checks that the
1936  * leaf node referred from the indexing tree exists, has correct CRC, and does
1937  * some other basic validation. This function is also responsible for building
1938  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1939  * calculates reference count, size, etc for each inode in order to later
1940  * compare them to the information stored inside the inodes and detect possible
1941  * inconsistencies. Returns zero in case of success and a negative error code
1942  * in case of failure.
1943  */
check_leaf(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)1944 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1945 		      void *priv)
1946 {
1947 	ino_t inum;
1948 	void *node;
1949 	struct ubifs_ch *ch;
1950 	int err, type = key_type(c, &zbr->key);
1951 	struct fsck_inode *fscki;
1952 
1953 	if (zbr->len < UBIFS_CH_SZ) {
1954 		ubifs_err("bad leaf length %d (LEB %d:%d)",
1955 			  zbr->len, zbr->lnum, zbr->offs);
1956 		return -EINVAL;
1957 	}
1958 
1959 	node = kmalloc(zbr->len, GFP_NOFS);
1960 	if (!node)
1961 		return -ENOMEM;
1962 
1963 	err = ubifs_tnc_read_node(c, zbr, node);
1964 	if (err) {
1965 		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1966 			  zbr->lnum, zbr->offs, err);
1967 		goto out_free;
1968 	}
1969 
1970 	/* If this is an inode node, add it to RB-tree of inodes */
1971 	if (type == UBIFS_INO_KEY) {
1972 		fscki = add_inode(c, priv, node);
1973 		if (IS_ERR(fscki)) {
1974 			err = PTR_ERR(fscki);
1975 			ubifs_err("error %d while adding inode node", err);
1976 			goto out_dump;
1977 		}
1978 		goto out;
1979 	}
1980 
1981 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1982 	    type != UBIFS_DATA_KEY) {
1983 		ubifs_err("unexpected node type %d at LEB %d:%d",
1984 			  type, zbr->lnum, zbr->offs);
1985 		err = -EINVAL;
1986 		goto out_free;
1987 	}
1988 
1989 	ch = node;
1990 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1991 		ubifs_err("too high sequence number, max. is %llu",
1992 			  c->max_sqnum);
1993 		err = -EINVAL;
1994 		goto out_dump;
1995 	}
1996 
1997 	if (type == UBIFS_DATA_KEY) {
1998 		long long blk_offs;
1999 		struct ubifs_data_node *dn = node;
2000 
2001 		/*
2002 		 * Search the inode node this data node belongs to and insert
2003 		 * it to the RB-tree of inodes.
2004 		 */
2005 		inum = key_inum_flash(c, &dn->key);
2006 		fscki = read_add_inode(c, priv, inum);
2007 		if (IS_ERR(fscki)) {
2008 			err = PTR_ERR(fscki);
2009 			ubifs_err("error %d while processing data node and "
2010 				  "trying to find inode node %lu",
2011 				  err, (unsigned long)inum);
2012 			goto out_dump;
2013 		}
2014 
2015 		/* Make sure the data node is within inode size */
2016 		blk_offs = key_block_flash(c, &dn->key);
2017 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2018 		blk_offs += le32_to_cpu(dn->size);
2019 		if (blk_offs > fscki->size) {
2020 			ubifs_err("data node at LEB %d:%d is not within inode "
2021 				  "size %lld", zbr->lnum, zbr->offs,
2022 				  fscki->size);
2023 			err = -EINVAL;
2024 			goto out_dump;
2025 		}
2026 	} else {
2027 		int nlen;
2028 		struct ubifs_dent_node *dent = node;
2029 		struct fsck_inode *fscki1;
2030 
2031 		err = ubifs_validate_entry(c, dent);
2032 		if (err)
2033 			goto out_dump;
2034 
2035 		/*
2036 		 * Search the inode node this entry refers to and the parent
2037 		 * inode node and insert them to the RB-tree of inodes.
2038 		 */
2039 		inum = le64_to_cpu(dent->inum);
2040 		fscki = read_add_inode(c, priv, inum);
2041 		if (IS_ERR(fscki)) {
2042 			err = PTR_ERR(fscki);
2043 			ubifs_err("error %d while processing entry node and "
2044 				  "trying to find inode node %lu",
2045 				  err, (unsigned long)inum);
2046 			goto out_dump;
2047 		}
2048 
2049 		/* Count how many direntries or xentries refers this inode */
2050 		fscki->references += 1;
2051 
2052 		inum = key_inum_flash(c, &dent->key);
2053 		fscki1 = read_add_inode(c, priv, inum);
2054 		if (IS_ERR(fscki1)) {
2055 			err = PTR_ERR(fscki1);
2056 			ubifs_err("error %d while processing entry node and "
2057 				  "trying to find parent inode node %lu",
2058 				  err, (unsigned long)inum);
2059 			goto out_dump;
2060 		}
2061 
2062 		nlen = le16_to_cpu(dent->nlen);
2063 		if (type == UBIFS_XENT_KEY) {
2064 			fscki1->calc_xcnt += 1;
2065 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2066 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2067 			fscki1->calc_xnms += nlen;
2068 		} else {
2069 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2070 			if (dent->type == UBIFS_ITYPE_DIR)
2071 				fscki1->calc_cnt += 1;
2072 		}
2073 	}
2074 
2075 out:
2076 	kfree(node);
2077 	return 0;
2078 
2079 out_dump:
2080 	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2081 	dbg_dump_node(c, node);
2082 out_free:
2083 	kfree(node);
2084 	return err;
2085 }
2086 
2087 /**
2088  * free_inodes - free RB-tree of inodes.
2089  * @fsckd: FS checking information
2090  */
free_inodes(struct fsck_data * fsckd)2091 static void free_inodes(struct fsck_data *fsckd)
2092 {
2093 	struct rb_node *this = fsckd->inodes.rb_node;
2094 	struct fsck_inode *fscki;
2095 
2096 	while (this) {
2097 		if (this->rb_left)
2098 			this = this->rb_left;
2099 		else if (this->rb_right)
2100 			this = this->rb_right;
2101 		else {
2102 			fscki = rb_entry(this, struct fsck_inode, rb);
2103 			this = rb_parent(this);
2104 			if (this) {
2105 				if (this->rb_left == &fscki->rb)
2106 					this->rb_left = NULL;
2107 				else
2108 					this->rb_right = NULL;
2109 			}
2110 			kfree(fscki);
2111 		}
2112 	}
2113 }
2114 
2115 /**
2116  * check_inodes - checks all inodes.
2117  * @c: UBIFS file-system description object
2118  * @fsckd: FS checking information
2119  *
2120  * This is a helper function for 'dbg_check_filesystem()' which walks the
2121  * RB-tree of inodes after the index scan has been finished, and checks that
2122  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2123  * %-EINVAL if not, and a negative error code in case of failure.
2124  */
check_inodes(struct ubifs_info * c,struct fsck_data * fsckd)2125 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2126 {
2127 	int n, err;
2128 	union ubifs_key key;
2129 	struct ubifs_znode *znode;
2130 	struct ubifs_zbranch *zbr;
2131 	struct ubifs_ino_node *ino;
2132 	struct fsck_inode *fscki;
2133 	struct rb_node *this = rb_first(&fsckd->inodes);
2134 
2135 	while (this) {
2136 		fscki = rb_entry(this, struct fsck_inode, rb);
2137 		this = rb_next(this);
2138 
2139 		if (S_ISDIR(fscki->mode)) {
2140 			/*
2141 			 * Directories have to have exactly one reference (they
2142 			 * cannot have hardlinks), although root inode is an
2143 			 * exception.
2144 			 */
2145 			if (fscki->inum != UBIFS_ROOT_INO &&
2146 			    fscki->references != 1) {
2147 				ubifs_err("directory inode %lu has %d "
2148 					  "direntries which refer it, but "
2149 					  "should be 1",
2150 					  (unsigned long)fscki->inum,
2151 					  fscki->references);
2152 				goto out_dump;
2153 			}
2154 			if (fscki->inum == UBIFS_ROOT_INO &&
2155 			    fscki->references != 0) {
2156 				ubifs_err("root inode %lu has non-zero (%d) "
2157 					  "direntries which refer it",
2158 					  (unsigned long)fscki->inum,
2159 					  fscki->references);
2160 				goto out_dump;
2161 			}
2162 			if (fscki->calc_sz != fscki->size) {
2163 				ubifs_err("directory inode %lu size is %lld, "
2164 					  "but calculated size is %lld",
2165 					  (unsigned long)fscki->inum,
2166 					  fscki->size, fscki->calc_sz);
2167 				goto out_dump;
2168 			}
2169 			if (fscki->calc_cnt != fscki->nlink) {
2170 				ubifs_err("directory inode %lu nlink is %d, "
2171 					  "but calculated nlink is %d",
2172 					  (unsigned long)fscki->inum,
2173 					  fscki->nlink, fscki->calc_cnt);
2174 				goto out_dump;
2175 			}
2176 		} else {
2177 			if (fscki->references != fscki->nlink) {
2178 				ubifs_err("inode %lu nlink is %d, but "
2179 					  "calculated nlink is %d",
2180 					  (unsigned long)fscki->inum,
2181 					  fscki->nlink, fscki->references);
2182 				goto out_dump;
2183 			}
2184 		}
2185 		if (fscki->xattr_sz != fscki->calc_xsz) {
2186 			ubifs_err("inode %lu has xattr size %u, but "
2187 				  "calculated size is %lld",
2188 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2189 				  fscki->calc_xsz);
2190 			goto out_dump;
2191 		}
2192 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2193 			ubifs_err("inode %lu has %u xattrs, but "
2194 				  "calculated count is %lld",
2195 				  (unsigned long)fscki->inum,
2196 				  fscki->xattr_cnt, fscki->calc_xcnt);
2197 			goto out_dump;
2198 		}
2199 		if (fscki->xattr_nms != fscki->calc_xnms) {
2200 			ubifs_err("inode %lu has xattr names' size %u, but "
2201 				  "calculated names' size is %lld",
2202 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2203 				  fscki->calc_xnms);
2204 			goto out_dump;
2205 		}
2206 	}
2207 
2208 	return 0;
2209 
2210 out_dump:
2211 	/* Read the bad inode and dump it */
2212 	ino_key_init(c, &key, fscki->inum);
2213 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2214 	if (!err) {
2215 		ubifs_err("inode %lu not found in index",
2216 			  (unsigned long)fscki->inum);
2217 		return -ENOENT;
2218 	} else if (err < 0) {
2219 		ubifs_err("error %d while looking up inode %lu",
2220 			  err, (unsigned long)fscki->inum);
2221 		return err;
2222 	}
2223 
2224 	zbr = &znode->zbranch[n];
2225 	ino = kmalloc(zbr->len, GFP_NOFS);
2226 	if (!ino)
2227 		return -ENOMEM;
2228 
2229 	err = ubifs_tnc_read_node(c, zbr, ino);
2230 	if (err) {
2231 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2232 			  zbr->lnum, zbr->offs, err);
2233 		kfree(ino);
2234 		return err;
2235 	}
2236 
2237 	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2238 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2239 	dbg_dump_node(c, ino);
2240 	kfree(ino);
2241 	return -EINVAL;
2242 }
2243 
2244 /**
2245  * dbg_check_filesystem - check the file-system.
2246  * @c: UBIFS file-system description object
2247  *
2248  * This function checks the file system, namely:
2249  * o makes sure that all leaf nodes exist and their CRCs are correct;
2250  * o makes sure inode nlink, size, xattr size/count are correct (for all
2251  *   inodes).
2252  *
2253  * The function reads whole indexing tree and all nodes, so it is pretty
2254  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2255  * not, and a negative error code in case of failure.
2256  */
dbg_check_filesystem(struct ubifs_info * c)2257 int dbg_check_filesystem(struct ubifs_info *c)
2258 {
2259 	int err;
2260 	struct fsck_data fsckd;
2261 
2262 	if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2263 		return 0;
2264 
2265 	fsckd.inodes = RB_ROOT;
2266 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2267 	if (err)
2268 		goto out_free;
2269 
2270 	err = check_inodes(c, &fsckd);
2271 	if (err)
2272 		goto out_free;
2273 
2274 	free_inodes(&fsckd);
2275 	return 0;
2276 
2277 out_free:
2278 	ubifs_err("file-system check failed with error %d", err);
2279 	dump_stack();
2280 	free_inodes(&fsckd);
2281 	return err;
2282 }
2283 
2284 /**
2285  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2286  * @c: UBIFS file-system description object
2287  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2288  *
2289  * This function returns zero if the list of data nodes is sorted correctly,
2290  * and %-EINVAL if not.
2291  */
dbg_check_data_nodes_order(struct ubifs_info * c,struct list_head * head)2292 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2293 {
2294 	struct list_head *cur;
2295 	struct ubifs_scan_node *sa, *sb;
2296 
2297 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2298 		return 0;
2299 
2300 	for (cur = head->next; cur->next != head; cur = cur->next) {
2301 		ino_t inuma, inumb;
2302 		uint32_t blka, blkb;
2303 
2304 		cond_resched();
2305 		sa = container_of(cur, struct ubifs_scan_node, list);
2306 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2307 
2308 		if (sa->type != UBIFS_DATA_NODE) {
2309 			ubifs_err("bad node type %d", sa->type);
2310 			dbg_dump_node(c, sa->node);
2311 			return -EINVAL;
2312 		}
2313 		if (sb->type != UBIFS_DATA_NODE) {
2314 			ubifs_err("bad node type %d", sb->type);
2315 			dbg_dump_node(c, sb->node);
2316 			return -EINVAL;
2317 		}
2318 
2319 		inuma = key_inum(c, &sa->key);
2320 		inumb = key_inum(c, &sb->key);
2321 
2322 		if (inuma < inumb)
2323 			continue;
2324 		if (inuma > inumb) {
2325 			ubifs_err("larger inum %lu goes before inum %lu",
2326 				  (unsigned long)inuma, (unsigned long)inumb);
2327 			goto error_dump;
2328 		}
2329 
2330 		blka = key_block(c, &sa->key);
2331 		blkb = key_block(c, &sb->key);
2332 
2333 		if (blka > blkb) {
2334 			ubifs_err("larger block %u goes before %u", blka, blkb);
2335 			goto error_dump;
2336 		}
2337 		if (blka == blkb) {
2338 			ubifs_err("two data nodes for the same block");
2339 			goto error_dump;
2340 		}
2341 	}
2342 
2343 	return 0;
2344 
2345 error_dump:
2346 	dbg_dump_node(c, sa->node);
2347 	dbg_dump_node(c, sb->node);
2348 	return -EINVAL;
2349 }
2350 
2351 /**
2352  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2353  * @c: UBIFS file-system description object
2354  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2355  *
2356  * This function returns zero if the list of non-data nodes is sorted correctly,
2357  * and %-EINVAL if not.
2358  */
dbg_check_nondata_nodes_order(struct ubifs_info * c,struct list_head * head)2359 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2360 {
2361 	struct list_head *cur;
2362 	struct ubifs_scan_node *sa, *sb;
2363 
2364 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2365 		return 0;
2366 
2367 	for (cur = head->next; cur->next != head; cur = cur->next) {
2368 		ino_t inuma, inumb;
2369 		uint32_t hasha, hashb;
2370 
2371 		cond_resched();
2372 		sa = container_of(cur, struct ubifs_scan_node, list);
2373 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2374 
2375 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2376 		    sa->type != UBIFS_XENT_NODE) {
2377 			ubifs_err("bad node type %d", sa->type);
2378 			dbg_dump_node(c, sa->node);
2379 			return -EINVAL;
2380 		}
2381 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2382 		    sa->type != UBIFS_XENT_NODE) {
2383 			ubifs_err("bad node type %d", sb->type);
2384 			dbg_dump_node(c, sb->node);
2385 			return -EINVAL;
2386 		}
2387 
2388 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2389 			ubifs_err("non-inode node goes before inode node");
2390 			goto error_dump;
2391 		}
2392 
2393 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2394 			continue;
2395 
2396 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2397 			/* Inode nodes are sorted in descending size order */
2398 			if (sa->len < sb->len) {
2399 				ubifs_err("smaller inode node goes first");
2400 				goto error_dump;
2401 			}
2402 			continue;
2403 		}
2404 
2405 		/*
2406 		 * This is either a dentry or xentry, which should be sorted in
2407 		 * ascending (parent ino, hash) order.
2408 		 */
2409 		inuma = key_inum(c, &sa->key);
2410 		inumb = key_inum(c, &sb->key);
2411 
2412 		if (inuma < inumb)
2413 			continue;
2414 		if (inuma > inumb) {
2415 			ubifs_err("larger inum %lu goes before inum %lu",
2416 				  (unsigned long)inuma, (unsigned long)inumb);
2417 			goto error_dump;
2418 		}
2419 
2420 		hasha = key_block(c, &sa->key);
2421 		hashb = key_block(c, &sb->key);
2422 
2423 		if (hasha > hashb) {
2424 			ubifs_err("larger hash %u goes before %u", hasha, hashb);
2425 			goto error_dump;
2426 		}
2427 	}
2428 
2429 	return 0;
2430 
2431 error_dump:
2432 	ubifs_msg("dumping first node");
2433 	dbg_dump_node(c, sa->node);
2434 	ubifs_msg("dumping second node");
2435 	dbg_dump_node(c, sb->node);
2436 	return -EINVAL;
2437 	return 0;
2438 }
2439 
2440 static int invocation_cnt;
2441 
dbg_force_in_the_gaps(void)2442 int dbg_force_in_the_gaps(void)
2443 {
2444 	if (!dbg_force_in_the_gaps_enabled)
2445 		return 0;
2446 	/* Force in-the-gaps every 8th commit */
2447 	return !((invocation_cnt++) & 0x7);
2448 }
2449 
2450 /* Failure mode for recovery testing */
2451 
2452 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2453 
2454 struct failure_mode_info {
2455 	struct list_head list;
2456 	struct ubifs_info *c;
2457 };
2458 
2459 static LIST_HEAD(fmi_list);
2460 static DEFINE_SPINLOCK(fmi_lock);
2461 
2462 static unsigned int next;
2463 
simple_rand(void)2464 static int simple_rand(void)
2465 {
2466 	if (next == 0)
2467 		next = current->pid;
2468 	next = next * 1103515245 + 12345;
2469 	return (next >> 16) & 32767;
2470 }
2471 
failure_mode_init(struct ubifs_info * c)2472 static void failure_mode_init(struct ubifs_info *c)
2473 {
2474 	struct failure_mode_info *fmi;
2475 
2476 	fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2477 	if (!fmi) {
2478 		ubifs_err("Failed to register failure mode - no memory");
2479 		return;
2480 	}
2481 	fmi->c = c;
2482 	spin_lock(&fmi_lock);
2483 	list_add_tail(&fmi->list, &fmi_list);
2484 	spin_unlock(&fmi_lock);
2485 }
2486 
failure_mode_exit(struct ubifs_info * c)2487 static void failure_mode_exit(struct ubifs_info *c)
2488 {
2489 	struct failure_mode_info *fmi, *tmp;
2490 
2491 	spin_lock(&fmi_lock);
2492 	list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2493 		if (fmi->c == c) {
2494 			list_del(&fmi->list);
2495 			kfree(fmi);
2496 		}
2497 	spin_unlock(&fmi_lock);
2498 }
2499 
dbg_find_info(struct ubi_volume_desc * desc)2500 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2501 {
2502 	struct failure_mode_info *fmi;
2503 
2504 	spin_lock(&fmi_lock);
2505 	list_for_each_entry(fmi, &fmi_list, list)
2506 		if (fmi->c->ubi == desc) {
2507 			struct ubifs_info *c = fmi->c;
2508 
2509 			spin_unlock(&fmi_lock);
2510 			return c;
2511 		}
2512 	spin_unlock(&fmi_lock);
2513 	return NULL;
2514 }
2515 
in_failure_mode(struct ubi_volume_desc * desc)2516 static int in_failure_mode(struct ubi_volume_desc *desc)
2517 {
2518 	struct ubifs_info *c = dbg_find_info(desc);
2519 
2520 	if (c && dbg_failure_mode)
2521 		return c->dbg->failure_mode;
2522 	return 0;
2523 }
2524 
do_fail(struct ubi_volume_desc * desc,int lnum,int write)2525 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2526 {
2527 	struct ubifs_info *c = dbg_find_info(desc);
2528 	struct ubifs_debug_info *d;
2529 
2530 	if (!c || !dbg_failure_mode)
2531 		return 0;
2532 	d = c->dbg;
2533 	if (d->failure_mode)
2534 		return 1;
2535 	if (!d->fail_cnt) {
2536 		/* First call - decide delay to failure */
2537 		if (chance(1, 2)) {
2538 			unsigned int delay = 1 << (simple_rand() >> 11);
2539 
2540 			if (chance(1, 2)) {
2541 				d->fail_delay = 1;
2542 				d->fail_timeout = jiffies +
2543 						  msecs_to_jiffies(delay);
2544 				dbg_rcvry("failing after %ums", delay);
2545 			} else {
2546 				d->fail_delay = 2;
2547 				d->fail_cnt_max = delay;
2548 				dbg_rcvry("failing after %u calls", delay);
2549 			}
2550 		}
2551 		d->fail_cnt += 1;
2552 	}
2553 	/* Determine if failure delay has expired */
2554 	if (d->fail_delay == 1) {
2555 		if (time_before(jiffies, d->fail_timeout))
2556 			return 0;
2557 	} else if (d->fail_delay == 2)
2558 		if (d->fail_cnt++ < d->fail_cnt_max)
2559 			return 0;
2560 	if (lnum == UBIFS_SB_LNUM) {
2561 		if (write) {
2562 			if (chance(1, 2))
2563 				return 0;
2564 		} else if (chance(19, 20))
2565 			return 0;
2566 		dbg_rcvry("failing in super block LEB %d", lnum);
2567 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2568 		if (chance(19, 20))
2569 			return 0;
2570 		dbg_rcvry("failing in master LEB %d", lnum);
2571 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2572 		if (write) {
2573 			if (chance(99, 100))
2574 				return 0;
2575 		} else if (chance(399, 400))
2576 			return 0;
2577 		dbg_rcvry("failing in log LEB %d", lnum);
2578 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2579 		if (write) {
2580 			if (chance(7, 8))
2581 				return 0;
2582 		} else if (chance(19, 20))
2583 			return 0;
2584 		dbg_rcvry("failing in LPT LEB %d", lnum);
2585 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2586 		if (write) {
2587 			if (chance(1, 2))
2588 				return 0;
2589 		} else if (chance(9, 10))
2590 			return 0;
2591 		dbg_rcvry("failing in orphan LEB %d", lnum);
2592 	} else if (lnum == c->ihead_lnum) {
2593 		if (chance(99, 100))
2594 			return 0;
2595 		dbg_rcvry("failing in index head LEB %d", lnum);
2596 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2597 		if (chance(9, 10))
2598 			return 0;
2599 		dbg_rcvry("failing in GC head LEB %d", lnum);
2600 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2601 		   !ubifs_search_bud(c, lnum)) {
2602 		if (chance(19, 20))
2603 			return 0;
2604 		dbg_rcvry("failing in non-bud LEB %d", lnum);
2605 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2606 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2607 		if (chance(999, 1000))
2608 			return 0;
2609 		dbg_rcvry("failing in bud LEB %d commit running", lnum);
2610 	} else {
2611 		if (chance(9999, 10000))
2612 			return 0;
2613 		dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2614 	}
2615 	ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2616 	d->failure_mode = 1;
2617 	dump_stack();
2618 	return 1;
2619 }
2620 
cut_data(const void * buf,int len)2621 static void cut_data(const void *buf, int len)
2622 {
2623 	int flen, i;
2624 	unsigned char *p = (void *)buf;
2625 
2626 	flen = (len * (long long)simple_rand()) >> 15;
2627 	for (i = flen; i < len; i++)
2628 		p[i] = 0xff;
2629 }
2630 
dbg_leb_read(struct ubi_volume_desc * desc,int lnum,char * buf,int offset,int len,int check)2631 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2632 		 int len, int check)
2633 {
2634 	if (in_failure_mode(desc))
2635 		return -EIO;
2636 	return ubi_leb_read(desc, lnum, buf, offset, len, check);
2637 }
2638 
dbg_leb_write(struct ubi_volume_desc * desc,int lnum,const void * buf,int offset,int len,int dtype)2639 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2640 		  int offset, int len, int dtype)
2641 {
2642 	int err, failing;
2643 
2644 	if (in_failure_mode(desc))
2645 		return -EIO;
2646 	failing = do_fail(desc, lnum, 1);
2647 	if (failing)
2648 		cut_data(buf, len);
2649 	err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2650 	if (err)
2651 		return err;
2652 	if (failing)
2653 		return -EIO;
2654 	return 0;
2655 }
2656 
dbg_leb_change(struct ubi_volume_desc * desc,int lnum,const void * buf,int len,int dtype)2657 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2658 		   int len, int dtype)
2659 {
2660 	int err;
2661 
2662 	if (do_fail(desc, lnum, 1))
2663 		return -EIO;
2664 	err = ubi_leb_change(desc, lnum, buf, len, dtype);
2665 	if (err)
2666 		return err;
2667 	if (do_fail(desc, lnum, 1))
2668 		return -EIO;
2669 	return 0;
2670 }
2671 
dbg_leb_erase(struct ubi_volume_desc * desc,int lnum)2672 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2673 {
2674 	int err;
2675 
2676 	if (do_fail(desc, lnum, 0))
2677 		return -EIO;
2678 	err = ubi_leb_erase(desc, lnum);
2679 	if (err)
2680 		return err;
2681 	if (do_fail(desc, lnum, 0))
2682 		return -EIO;
2683 	return 0;
2684 }
2685 
dbg_leb_unmap(struct ubi_volume_desc * desc,int lnum)2686 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2687 {
2688 	int err;
2689 
2690 	if (do_fail(desc, lnum, 0))
2691 		return -EIO;
2692 	err = ubi_leb_unmap(desc, lnum);
2693 	if (err)
2694 		return err;
2695 	if (do_fail(desc, lnum, 0))
2696 		return -EIO;
2697 	return 0;
2698 }
2699 
dbg_is_mapped(struct ubi_volume_desc * desc,int lnum)2700 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2701 {
2702 	if (in_failure_mode(desc))
2703 		return -EIO;
2704 	return ubi_is_mapped(desc, lnum);
2705 }
2706 
dbg_leb_map(struct ubi_volume_desc * desc,int lnum,int dtype)2707 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2708 {
2709 	int err;
2710 
2711 	if (do_fail(desc, lnum, 0))
2712 		return -EIO;
2713 	err = ubi_leb_map(desc, lnum, dtype);
2714 	if (err)
2715 		return err;
2716 	if (do_fail(desc, lnum, 0))
2717 		return -EIO;
2718 	return 0;
2719 }
2720 
2721 /**
2722  * ubifs_debugging_init - initialize UBIFS debugging.
2723  * @c: UBIFS file-system description object
2724  *
2725  * This function initializes debugging-related data for the file system.
2726  * Returns zero in case of success and a negative error code in case of
2727  * failure.
2728  */
ubifs_debugging_init(struct ubifs_info * c)2729 int ubifs_debugging_init(struct ubifs_info *c)
2730 {
2731 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2732 	if (!c->dbg)
2733 		return -ENOMEM;
2734 
2735 	failure_mode_init(c);
2736 	return 0;
2737 }
2738 
2739 /**
2740  * ubifs_debugging_exit - free debugging data.
2741  * @c: UBIFS file-system description object
2742  */
ubifs_debugging_exit(struct ubifs_info * c)2743 void ubifs_debugging_exit(struct ubifs_info *c)
2744 {
2745 	failure_mode_exit(c);
2746 	kfree(c->dbg);
2747 }
2748 
2749 /*
2750  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2751  * contain the stuff specific to particular file-system mounts.
2752  */
2753 static struct dentry *dfs_rootdir;
2754 
2755 /**
2756  * dbg_debugfs_init - initialize debugfs file-system.
2757  *
2758  * UBIFS uses debugfs file-system to expose various debugging knobs to
2759  * user-space. This function creates "ubifs" directory in the debugfs
2760  * file-system. Returns zero in case of success and a negative error code in
2761  * case of failure.
2762  */
dbg_debugfs_init(void)2763 int dbg_debugfs_init(void)
2764 {
2765 	dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2766 	if (IS_ERR(dfs_rootdir)) {
2767 		int err = PTR_ERR(dfs_rootdir);
2768 		ubifs_err("cannot create \"ubifs\" debugfs directory, "
2769 			  "error %d\n", err);
2770 		return err;
2771 	}
2772 
2773 	return 0;
2774 }
2775 
2776 /**
2777  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2778  */
dbg_debugfs_exit(void)2779 void dbg_debugfs_exit(void)
2780 {
2781 	debugfs_remove(dfs_rootdir);
2782 }
2783 
open_debugfs_file(struct inode * inode,struct file * file)2784 static int open_debugfs_file(struct inode *inode, struct file *file)
2785 {
2786 	file->private_data = inode->i_private;
2787 	return 0;
2788 }
2789 
write_debugfs_file(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2790 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2791 				  size_t count, loff_t *ppos)
2792 {
2793 	struct ubifs_info *c = file->private_data;
2794 	struct ubifs_debug_info *d = c->dbg;
2795 
2796 	if (file->f_path.dentry == d->dfs_dump_lprops)
2797 		dbg_dump_lprops(c);
2798 	else if (file->f_path.dentry == d->dfs_dump_budg) {
2799 		spin_lock(&c->space_lock);
2800 		dbg_dump_budg(c);
2801 		spin_unlock(&c->space_lock);
2802 	} else if (file->f_path.dentry == d->dfs_dump_tnc) {
2803 		mutex_lock(&c->tnc_mutex);
2804 		dbg_dump_tnc(c);
2805 		mutex_unlock(&c->tnc_mutex);
2806 	} else
2807 		return -EINVAL;
2808 
2809 	*ppos += count;
2810 	return count;
2811 }
2812 
2813 static const struct file_operations dfs_fops = {
2814 	.open = open_debugfs_file,
2815 	.write = write_debugfs_file,
2816 	.owner = THIS_MODULE,
2817 	.llseek = default_llseek,
2818 };
2819 
2820 /**
2821  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2822  * @c: UBIFS file-system description object
2823  *
2824  * This function creates all debugfs files for this instance of UBIFS. Returns
2825  * zero in case of success and a negative error code in case of failure.
2826  *
2827  * Note, the only reason we have not merged this function with the
2828  * 'ubifs_debugging_init()' function is because it is better to initialize
2829  * debugfs interfaces at the very end of the mount process, and remove them at
2830  * the very beginning of the mount process.
2831  */
dbg_debugfs_init_fs(struct ubifs_info * c)2832 int dbg_debugfs_init_fs(struct ubifs_info *c)
2833 {
2834 	int err;
2835 	const char *fname;
2836 	struct dentry *dent;
2837 	struct ubifs_debug_info *d = c->dbg;
2838 
2839 	sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2840 	fname = d->dfs_dir_name;
2841 	dent = debugfs_create_dir(fname, dfs_rootdir);
2842 	if (IS_ERR_OR_NULL(dent))
2843 		goto out;
2844 	d->dfs_dir = dent;
2845 
2846 	fname = "dump_lprops";
2847 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2848 	if (IS_ERR_OR_NULL(dent))
2849 		goto out_remove;
2850 	d->dfs_dump_lprops = dent;
2851 
2852 	fname = "dump_budg";
2853 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2854 	if (IS_ERR_OR_NULL(dent))
2855 		goto out_remove;
2856 	d->dfs_dump_budg = dent;
2857 
2858 	fname = "dump_tnc";
2859 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2860 	if (IS_ERR_OR_NULL(dent))
2861 		goto out_remove;
2862 	d->dfs_dump_tnc = dent;
2863 
2864 	return 0;
2865 
2866 out_remove:
2867 	debugfs_remove_recursive(d->dfs_dir);
2868 out:
2869 	err = dent ? PTR_ERR(dent) : -ENODEV;
2870 	ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2871 		  fname, err);
2872 	return err;
2873 }
2874 
2875 /**
2876  * dbg_debugfs_exit_fs - remove all debugfs files.
2877  * @c: UBIFS file-system description object
2878  */
dbg_debugfs_exit_fs(struct ubifs_info * c)2879 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2880 {
2881 	debugfs_remove_recursive(c->dbg->dfs_dir);
2882 }
2883 
2884 #endif /* CONFIG_UBIFS_FS_DEBUG */
2885