1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2017 Intel Corporation. All rights reserved.
4 */
5 #include <linux/pagemap.h>
6 #include <linux/module.h>
7 #include <linux/mount.h>
8 #include <linux/pseudo_fs.h>
9 #include <linux/magic.h>
10 #include <linux/pfn_t.h>
11 #include <linux/cdev.h>
12 #include <linux/slab.h>
13 #include <linux/uio.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include "dax-private.h"
17
18 /**
19 * struct dax_device - anchor object for dax services
20 * @inode: core vfs
21 * @cdev: optional character interface for "device dax"
22 * @private: dax driver private data
23 * @flags: state and boolean properties
24 * @ops: operations for this device
25 */
26 struct dax_device {
27 struct inode inode;
28 struct cdev cdev;
29 void *private;
30 unsigned long flags;
31 const struct dax_operations *ops;
32 };
33
34 static dev_t dax_devt;
35 DEFINE_STATIC_SRCU(dax_srcu);
36 static struct vfsmount *dax_mnt;
37 static DEFINE_IDA(dax_minor_ida);
38 static struct kmem_cache *dax_cache __read_mostly;
39 static struct super_block *dax_superblock __read_mostly;
40
dax_read_lock(void)41 int dax_read_lock(void)
42 {
43 return srcu_read_lock(&dax_srcu);
44 }
45 EXPORT_SYMBOL_GPL(dax_read_lock);
46
dax_read_unlock(int id)47 void dax_read_unlock(int id)
48 {
49 srcu_read_unlock(&dax_srcu, id);
50 }
51 EXPORT_SYMBOL_GPL(dax_read_unlock);
52
53 #if defined(CONFIG_BLOCK) && defined(CONFIG_FS_DAX)
54 #include <linux/blkdev.h>
55
56 static DEFINE_XARRAY(dax_hosts);
57
dax_add_host(struct dax_device * dax_dev,struct gendisk * disk)58 int dax_add_host(struct dax_device *dax_dev, struct gendisk *disk)
59 {
60 return xa_insert(&dax_hosts, (unsigned long)disk, dax_dev, GFP_KERNEL);
61 }
62 EXPORT_SYMBOL_GPL(dax_add_host);
63
dax_remove_host(struct gendisk * disk)64 void dax_remove_host(struct gendisk *disk)
65 {
66 xa_erase(&dax_hosts, (unsigned long)disk);
67 }
68 EXPORT_SYMBOL_GPL(dax_remove_host);
69
70 /**
71 * fs_dax_get_by_bdev() - temporary lookup mechanism for filesystem-dax
72 * @bdev: block device to find a dax_device for
73 * @start_off: returns the byte offset into the dax_device that @bdev starts
74 */
fs_dax_get_by_bdev(struct block_device * bdev,u64 * start_off)75 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev, u64 *start_off)
76 {
77 struct dax_device *dax_dev;
78 u64 part_size;
79 int id;
80
81 if (!blk_queue_dax(bdev->bd_disk->queue))
82 return NULL;
83
84 *start_off = get_start_sect(bdev) * SECTOR_SIZE;
85 part_size = bdev_nr_sectors(bdev) * SECTOR_SIZE;
86 if (*start_off % PAGE_SIZE || part_size % PAGE_SIZE) {
87 pr_info("%pg: error: unaligned partition for dax\n", bdev);
88 return NULL;
89 }
90
91 id = dax_read_lock();
92 dax_dev = xa_load(&dax_hosts, (unsigned long)bdev->bd_disk);
93 if (!dax_dev || !dax_alive(dax_dev) || !igrab(&dax_dev->inode))
94 dax_dev = NULL;
95 dax_read_unlock(id);
96
97 return dax_dev;
98 }
99 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev);
100 #endif /* CONFIG_BLOCK && CONFIG_FS_DAX */
101
102 enum dax_device_flags {
103 /* !alive + rcu grace period == no new operations / mappings */
104 DAXDEV_ALIVE,
105 /* gate whether dax_flush() calls the low level flush routine */
106 DAXDEV_WRITE_CACHE,
107 /* flag to check if device supports synchronous flush */
108 DAXDEV_SYNC,
109 /* do not leave the caches dirty after writes */
110 DAXDEV_NOCACHE,
111 /* handle CPU fetch exceptions during reads */
112 DAXDEV_NOMC,
113 };
114
115 /**
116 * dax_direct_access() - translate a device pgoff to an absolute pfn
117 * @dax_dev: a dax_device instance representing the logical memory range
118 * @pgoff: offset in pages from the start of the device to translate
119 * @nr_pages: number of consecutive pages caller can handle relative to @pfn
120 * @mode: indicator on normal access or recovery write
121 * @kaddr: output parameter that returns a virtual address mapping of pfn
122 * @pfn: output parameter that returns an absolute pfn translation of @pgoff
123 *
124 * Return: negative errno if an error occurs, otherwise the number of
125 * pages accessible at the device relative @pgoff.
126 */
dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)127 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages,
128 enum dax_access_mode mode, void **kaddr, pfn_t *pfn)
129 {
130 long avail;
131
132 if (!dax_dev)
133 return -EOPNOTSUPP;
134
135 if (!dax_alive(dax_dev))
136 return -ENXIO;
137
138 if (nr_pages < 0)
139 return -EINVAL;
140
141 avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages,
142 mode, kaddr, pfn);
143 if (!avail)
144 return -ERANGE;
145 return min(avail, nr_pages);
146 }
147 EXPORT_SYMBOL_GPL(dax_direct_access);
148
dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)149 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
150 size_t bytes, struct iov_iter *i)
151 {
152 if (!dax_alive(dax_dev))
153 return 0;
154
155 /*
156 * The userspace address for the memory copy has already been validated
157 * via access_ok() in vfs_write, so use the 'no check' version to bypass
158 * the HARDENED_USERCOPY overhead.
159 */
160 if (test_bit(DAXDEV_NOCACHE, &dax_dev->flags))
161 return _copy_from_iter_flushcache(addr, bytes, i);
162 return _copy_from_iter(addr, bytes, i);
163 }
164
dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)165 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
166 size_t bytes, struct iov_iter *i)
167 {
168 if (!dax_alive(dax_dev))
169 return 0;
170
171 /*
172 * The userspace address for the memory copy has already been validated
173 * via access_ok() in vfs_red, so use the 'no check' version to bypass
174 * the HARDENED_USERCOPY overhead.
175 */
176 if (test_bit(DAXDEV_NOMC, &dax_dev->flags))
177 return _copy_mc_to_iter(addr, bytes, i);
178 return _copy_to_iter(addr, bytes, i);
179 }
180
dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)181 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
182 size_t nr_pages)
183 {
184 if (!dax_alive(dax_dev))
185 return -ENXIO;
186 /*
187 * There are no callers that want to zero more than one page as of now.
188 * Once users are there, this check can be removed after the
189 * device mapper code has been updated to split ranges across targets.
190 */
191 if (nr_pages != 1)
192 return -EIO;
193
194 return dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages);
195 }
196 EXPORT_SYMBOL_GPL(dax_zero_page_range);
197
dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * iter)198 size_t dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
199 void *addr, size_t bytes, struct iov_iter *iter)
200 {
201 if (!dax_dev->ops->recovery_write)
202 return 0;
203 return dax_dev->ops->recovery_write(dax_dev, pgoff, addr, bytes, iter);
204 }
205 EXPORT_SYMBOL_GPL(dax_recovery_write);
206
207 #ifdef CONFIG_ARCH_HAS_PMEM_API
208 void arch_wb_cache_pmem(void *addr, size_t size);
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)209 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
210 {
211 if (unlikely(!dax_write_cache_enabled(dax_dev)))
212 return;
213
214 arch_wb_cache_pmem(addr, size);
215 }
216 #else
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)217 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
218 {
219 }
220 #endif
221 EXPORT_SYMBOL_GPL(dax_flush);
222
dax_write_cache(struct dax_device * dax_dev,bool wc)223 void dax_write_cache(struct dax_device *dax_dev, bool wc)
224 {
225 if (wc)
226 set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
227 else
228 clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
229 }
230 EXPORT_SYMBOL_GPL(dax_write_cache);
231
dax_write_cache_enabled(struct dax_device * dax_dev)232 bool dax_write_cache_enabled(struct dax_device *dax_dev)
233 {
234 return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
235 }
236 EXPORT_SYMBOL_GPL(dax_write_cache_enabled);
237
dax_synchronous(struct dax_device * dax_dev)238 bool dax_synchronous(struct dax_device *dax_dev)
239 {
240 return test_bit(DAXDEV_SYNC, &dax_dev->flags);
241 }
242 EXPORT_SYMBOL_GPL(dax_synchronous);
243
set_dax_synchronous(struct dax_device * dax_dev)244 void set_dax_synchronous(struct dax_device *dax_dev)
245 {
246 set_bit(DAXDEV_SYNC, &dax_dev->flags);
247 }
248 EXPORT_SYMBOL_GPL(set_dax_synchronous);
249
set_dax_nocache(struct dax_device * dax_dev)250 void set_dax_nocache(struct dax_device *dax_dev)
251 {
252 set_bit(DAXDEV_NOCACHE, &dax_dev->flags);
253 }
254 EXPORT_SYMBOL_GPL(set_dax_nocache);
255
set_dax_nomc(struct dax_device * dax_dev)256 void set_dax_nomc(struct dax_device *dax_dev)
257 {
258 set_bit(DAXDEV_NOMC, &dax_dev->flags);
259 }
260 EXPORT_SYMBOL_GPL(set_dax_nomc);
261
dax_alive(struct dax_device * dax_dev)262 bool dax_alive(struct dax_device *dax_dev)
263 {
264 lockdep_assert_held(&dax_srcu);
265 return test_bit(DAXDEV_ALIVE, &dax_dev->flags);
266 }
267 EXPORT_SYMBOL_GPL(dax_alive);
268
269 /*
270 * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring
271 * that any fault handlers or operations that might have seen
272 * dax_alive(), have completed. Any operations that start after
273 * synchronize_srcu() has run will abort upon seeing !dax_alive().
274 */
kill_dax(struct dax_device * dax_dev)275 void kill_dax(struct dax_device *dax_dev)
276 {
277 if (!dax_dev)
278 return;
279
280 clear_bit(DAXDEV_ALIVE, &dax_dev->flags);
281 synchronize_srcu(&dax_srcu);
282 }
283 EXPORT_SYMBOL_GPL(kill_dax);
284
run_dax(struct dax_device * dax_dev)285 void run_dax(struct dax_device *dax_dev)
286 {
287 set_bit(DAXDEV_ALIVE, &dax_dev->flags);
288 }
289 EXPORT_SYMBOL_GPL(run_dax);
290
dax_alloc_inode(struct super_block * sb)291 static struct inode *dax_alloc_inode(struct super_block *sb)
292 {
293 struct dax_device *dax_dev;
294 struct inode *inode;
295
296 dax_dev = alloc_inode_sb(sb, dax_cache, GFP_KERNEL);
297 if (!dax_dev)
298 return NULL;
299
300 inode = &dax_dev->inode;
301 inode->i_rdev = 0;
302 return inode;
303 }
304
to_dax_dev(struct inode * inode)305 static struct dax_device *to_dax_dev(struct inode *inode)
306 {
307 return container_of(inode, struct dax_device, inode);
308 }
309
dax_free_inode(struct inode * inode)310 static void dax_free_inode(struct inode *inode)
311 {
312 struct dax_device *dax_dev = to_dax_dev(inode);
313 if (inode->i_rdev)
314 ida_simple_remove(&dax_minor_ida, iminor(inode));
315 kmem_cache_free(dax_cache, dax_dev);
316 }
317
dax_destroy_inode(struct inode * inode)318 static void dax_destroy_inode(struct inode *inode)
319 {
320 struct dax_device *dax_dev = to_dax_dev(inode);
321 WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags),
322 "kill_dax() must be called before final iput()\n");
323 }
324
325 static const struct super_operations dax_sops = {
326 .statfs = simple_statfs,
327 .alloc_inode = dax_alloc_inode,
328 .destroy_inode = dax_destroy_inode,
329 .free_inode = dax_free_inode,
330 .drop_inode = generic_delete_inode,
331 };
332
dax_init_fs_context(struct fs_context * fc)333 static int dax_init_fs_context(struct fs_context *fc)
334 {
335 struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC);
336 if (!ctx)
337 return -ENOMEM;
338 ctx->ops = &dax_sops;
339 return 0;
340 }
341
342 static struct file_system_type dax_fs_type = {
343 .name = "dax",
344 .init_fs_context = dax_init_fs_context,
345 .kill_sb = kill_anon_super,
346 };
347
dax_test(struct inode * inode,void * data)348 static int dax_test(struct inode *inode, void *data)
349 {
350 dev_t devt = *(dev_t *) data;
351
352 return inode->i_rdev == devt;
353 }
354
dax_set(struct inode * inode,void * data)355 static int dax_set(struct inode *inode, void *data)
356 {
357 dev_t devt = *(dev_t *) data;
358
359 inode->i_rdev = devt;
360 return 0;
361 }
362
dax_dev_get(dev_t devt)363 static struct dax_device *dax_dev_get(dev_t devt)
364 {
365 struct dax_device *dax_dev;
366 struct inode *inode;
367
368 inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31),
369 dax_test, dax_set, &devt);
370
371 if (!inode)
372 return NULL;
373
374 dax_dev = to_dax_dev(inode);
375 if (inode->i_state & I_NEW) {
376 set_bit(DAXDEV_ALIVE, &dax_dev->flags);
377 inode->i_cdev = &dax_dev->cdev;
378 inode->i_mode = S_IFCHR;
379 inode->i_flags = S_DAX;
380 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
381 unlock_new_inode(inode);
382 }
383
384 return dax_dev;
385 }
386
alloc_dax(void * private,const struct dax_operations * ops)387 struct dax_device *alloc_dax(void *private, const struct dax_operations *ops)
388 {
389 struct dax_device *dax_dev;
390 dev_t devt;
391 int minor;
392
393 if (WARN_ON_ONCE(ops && !ops->zero_page_range))
394 return ERR_PTR(-EINVAL);
395
396 minor = ida_simple_get(&dax_minor_ida, 0, MINORMASK+1, GFP_KERNEL);
397 if (minor < 0)
398 return ERR_PTR(-ENOMEM);
399
400 devt = MKDEV(MAJOR(dax_devt), minor);
401 dax_dev = dax_dev_get(devt);
402 if (!dax_dev)
403 goto err_dev;
404
405 dax_dev->ops = ops;
406 dax_dev->private = private;
407 return dax_dev;
408
409 err_dev:
410 ida_simple_remove(&dax_minor_ida, minor);
411 return ERR_PTR(-ENOMEM);
412 }
413 EXPORT_SYMBOL_GPL(alloc_dax);
414
put_dax(struct dax_device * dax_dev)415 void put_dax(struct dax_device *dax_dev)
416 {
417 if (!dax_dev)
418 return;
419 iput(&dax_dev->inode);
420 }
421 EXPORT_SYMBOL_GPL(put_dax);
422
423 /**
424 * inode_dax: convert a public inode into its dax_dev
425 * @inode: An inode with i_cdev pointing to a dax_dev
426 *
427 * Note this is not equivalent to to_dax_dev() which is for private
428 * internal use where we know the inode filesystem type == dax_fs_type.
429 */
inode_dax(struct inode * inode)430 struct dax_device *inode_dax(struct inode *inode)
431 {
432 struct cdev *cdev = inode->i_cdev;
433
434 return container_of(cdev, struct dax_device, cdev);
435 }
436 EXPORT_SYMBOL_GPL(inode_dax);
437
dax_inode(struct dax_device * dax_dev)438 struct inode *dax_inode(struct dax_device *dax_dev)
439 {
440 return &dax_dev->inode;
441 }
442 EXPORT_SYMBOL_GPL(dax_inode);
443
dax_get_private(struct dax_device * dax_dev)444 void *dax_get_private(struct dax_device *dax_dev)
445 {
446 if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags))
447 return NULL;
448 return dax_dev->private;
449 }
450 EXPORT_SYMBOL_GPL(dax_get_private);
451
init_once(void * _dax_dev)452 static void init_once(void *_dax_dev)
453 {
454 struct dax_device *dax_dev = _dax_dev;
455 struct inode *inode = &dax_dev->inode;
456
457 memset(dax_dev, 0, sizeof(*dax_dev));
458 inode_init_once(inode);
459 }
460
dax_fs_init(void)461 static int dax_fs_init(void)
462 {
463 int rc;
464
465 dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0,
466 (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
467 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
468 init_once);
469 if (!dax_cache)
470 return -ENOMEM;
471
472 dax_mnt = kern_mount(&dax_fs_type);
473 if (IS_ERR(dax_mnt)) {
474 rc = PTR_ERR(dax_mnt);
475 goto err_mount;
476 }
477 dax_superblock = dax_mnt->mnt_sb;
478
479 return 0;
480
481 err_mount:
482 kmem_cache_destroy(dax_cache);
483
484 return rc;
485 }
486
dax_fs_exit(void)487 static void dax_fs_exit(void)
488 {
489 kern_unmount(dax_mnt);
490 rcu_barrier();
491 kmem_cache_destroy(dax_cache);
492 }
493
dax_core_init(void)494 static int __init dax_core_init(void)
495 {
496 int rc;
497
498 rc = dax_fs_init();
499 if (rc)
500 return rc;
501
502 rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax");
503 if (rc)
504 goto err_chrdev;
505
506 rc = dax_bus_init();
507 if (rc)
508 goto err_bus;
509 return 0;
510
511 err_bus:
512 unregister_chrdev_region(dax_devt, MINORMASK+1);
513 err_chrdev:
514 dax_fs_exit();
515 return 0;
516 }
517
dax_core_exit(void)518 static void __exit dax_core_exit(void)
519 {
520 dax_bus_exit();
521 unregister_chrdev_region(dax_devt, MINORMASK+1);
522 ida_destroy(&dax_minor_ida);
523 dax_fs_exit();
524 }
525
526 MODULE_AUTHOR("Intel Corporation");
527 MODULE_LICENSE("GPL v2");
528 subsys_initcall(dax_core_init);
529 module_exit(dax_core_exit);
530