1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2017 Intel Corporation. All rights reserved.
4 */
5 #include <linux/pagemap.h>
6 #include <linux/module.h>
7 #include <linux/mount.h>
8 #include <linux/pseudo_fs.h>
9 #include <linux/magic.h>
10 #include <linux/pfn_t.h>
11 #include <linux/cdev.h>
12 #include <linux/slab.h>
13 #include <linux/uio.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include "dax-private.h"
17
18 /**
19 * struct dax_device - anchor object for dax services
20 * @inode: core vfs
21 * @cdev: optional character interface for "device dax"
22 * @private: dax driver private data
23 * @flags: state and boolean properties
24 * @ops: operations for this device
25 * @holder_data: holder of a dax_device: could be filesystem or mapped device
26 * @holder_ops: operations for the inner holder
27 */
28 struct dax_device {
29 struct inode inode;
30 struct cdev cdev;
31 void *private;
32 unsigned long flags;
33 const struct dax_operations *ops;
34 void *holder_data;
35 const struct dax_holder_operations *holder_ops;
36 };
37
38 static dev_t dax_devt;
39 DEFINE_STATIC_SRCU(dax_srcu);
40 static struct vfsmount *dax_mnt;
41 static DEFINE_IDA(dax_minor_ida);
42 static struct kmem_cache *dax_cache __read_mostly;
43 static struct super_block *dax_superblock __read_mostly;
44
dax_read_lock(void)45 int dax_read_lock(void)
46 {
47 return srcu_read_lock(&dax_srcu);
48 }
49 EXPORT_SYMBOL_GPL(dax_read_lock);
50
dax_read_unlock(int id)51 void dax_read_unlock(int id)
52 {
53 srcu_read_unlock(&dax_srcu, id);
54 }
55 EXPORT_SYMBOL_GPL(dax_read_unlock);
56
57 #if defined(CONFIG_BLOCK) && defined(CONFIG_FS_DAX)
58 #include <linux/blkdev.h>
59
60 static DEFINE_XARRAY(dax_hosts);
61
dax_add_host(struct dax_device * dax_dev,struct gendisk * disk)62 int dax_add_host(struct dax_device *dax_dev, struct gendisk *disk)
63 {
64 return xa_insert(&dax_hosts, (unsigned long)disk, dax_dev, GFP_KERNEL);
65 }
66 EXPORT_SYMBOL_GPL(dax_add_host);
67
dax_remove_host(struct gendisk * disk)68 void dax_remove_host(struct gendisk *disk)
69 {
70 xa_erase(&dax_hosts, (unsigned long)disk);
71 }
72 EXPORT_SYMBOL_GPL(dax_remove_host);
73
74 /**
75 * fs_dax_get_by_bdev() - temporary lookup mechanism for filesystem-dax
76 * @bdev: block device to find a dax_device for
77 * @start_off: returns the byte offset into the dax_device that @bdev starts
78 * @holder: filesystem or mapped device inside the dax_device
79 * @ops: operations for the inner holder
80 */
fs_dax_get_by_bdev(struct block_device * bdev,u64 * start_off,void * holder,const struct dax_holder_operations * ops)81 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev, u64 *start_off,
82 void *holder, const struct dax_holder_operations *ops)
83 {
84 struct dax_device *dax_dev;
85 u64 part_size;
86 int id;
87
88 if (!blk_queue_dax(bdev->bd_disk->queue))
89 return NULL;
90
91 *start_off = get_start_sect(bdev) * SECTOR_SIZE;
92 part_size = bdev_nr_sectors(bdev) * SECTOR_SIZE;
93 if (*start_off % PAGE_SIZE || part_size % PAGE_SIZE) {
94 pr_info("%pg: error: unaligned partition for dax\n", bdev);
95 return NULL;
96 }
97
98 id = dax_read_lock();
99 dax_dev = xa_load(&dax_hosts, (unsigned long)bdev->bd_disk);
100 if (!dax_dev || !dax_alive(dax_dev) || !igrab(&dax_dev->inode))
101 dax_dev = NULL;
102 else if (holder) {
103 if (!cmpxchg(&dax_dev->holder_data, NULL, holder))
104 dax_dev->holder_ops = ops;
105 else
106 dax_dev = NULL;
107 }
108 dax_read_unlock(id);
109
110 return dax_dev;
111 }
112 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev);
113
fs_put_dax(struct dax_device * dax_dev,void * holder)114 void fs_put_dax(struct dax_device *dax_dev, void *holder)
115 {
116 if (dax_dev && holder &&
117 cmpxchg(&dax_dev->holder_data, holder, NULL) == holder)
118 dax_dev->holder_ops = NULL;
119 put_dax(dax_dev);
120 }
121 EXPORT_SYMBOL_GPL(fs_put_dax);
122 #endif /* CONFIG_BLOCK && CONFIG_FS_DAX */
123
124 enum dax_device_flags {
125 /* !alive + rcu grace period == no new operations / mappings */
126 DAXDEV_ALIVE,
127 /* gate whether dax_flush() calls the low level flush routine */
128 DAXDEV_WRITE_CACHE,
129 /* flag to check if device supports synchronous flush */
130 DAXDEV_SYNC,
131 /* do not leave the caches dirty after writes */
132 DAXDEV_NOCACHE,
133 /* handle CPU fetch exceptions during reads */
134 DAXDEV_NOMC,
135 };
136
137 /**
138 * dax_direct_access() - translate a device pgoff to an absolute pfn
139 * @dax_dev: a dax_device instance representing the logical memory range
140 * @pgoff: offset in pages from the start of the device to translate
141 * @nr_pages: number of consecutive pages caller can handle relative to @pfn
142 * @mode: indicator on normal access or recovery write
143 * @kaddr: output parameter that returns a virtual address mapping of pfn
144 * @pfn: output parameter that returns an absolute pfn translation of @pgoff
145 *
146 * Return: negative errno if an error occurs, otherwise the number of
147 * pages accessible at the device relative @pgoff.
148 */
dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)149 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages,
150 enum dax_access_mode mode, void **kaddr, pfn_t *pfn)
151 {
152 long avail;
153
154 if (!dax_dev)
155 return -EOPNOTSUPP;
156
157 if (!dax_alive(dax_dev))
158 return -ENXIO;
159
160 if (nr_pages < 0)
161 return -EINVAL;
162
163 avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages,
164 mode, kaddr, pfn);
165 if (!avail)
166 return -ERANGE;
167 return min(avail, nr_pages);
168 }
169 EXPORT_SYMBOL_GPL(dax_direct_access);
170
dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)171 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
172 size_t bytes, struct iov_iter *i)
173 {
174 if (!dax_alive(dax_dev))
175 return 0;
176
177 /*
178 * The userspace address for the memory copy has already been validated
179 * via access_ok() in vfs_write, so use the 'no check' version to bypass
180 * the HARDENED_USERCOPY overhead.
181 */
182 if (test_bit(DAXDEV_NOCACHE, &dax_dev->flags))
183 return _copy_from_iter_flushcache(addr, bytes, i);
184 return _copy_from_iter(addr, bytes, i);
185 }
186
dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)187 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
188 size_t bytes, struct iov_iter *i)
189 {
190 if (!dax_alive(dax_dev))
191 return 0;
192
193 /*
194 * The userspace address for the memory copy has already been validated
195 * via access_ok() in vfs_red, so use the 'no check' version to bypass
196 * the HARDENED_USERCOPY overhead.
197 */
198 if (test_bit(DAXDEV_NOMC, &dax_dev->flags))
199 return _copy_mc_to_iter(addr, bytes, i);
200 return _copy_to_iter(addr, bytes, i);
201 }
202
dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)203 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
204 size_t nr_pages)
205 {
206 int ret;
207
208 if (!dax_alive(dax_dev))
209 return -ENXIO;
210 /*
211 * There are no callers that want to zero more than one page as of now.
212 * Once users are there, this check can be removed after the
213 * device mapper code has been updated to split ranges across targets.
214 */
215 if (nr_pages != 1)
216 return -EIO;
217
218 ret = dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages);
219 return dax_mem2blk_err(ret);
220 }
221 EXPORT_SYMBOL_GPL(dax_zero_page_range);
222
dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * iter)223 size_t dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
224 void *addr, size_t bytes, struct iov_iter *iter)
225 {
226 if (!dax_dev->ops->recovery_write)
227 return 0;
228 return dax_dev->ops->recovery_write(dax_dev, pgoff, addr, bytes, iter);
229 }
230 EXPORT_SYMBOL_GPL(dax_recovery_write);
231
dax_holder_notify_failure(struct dax_device * dax_dev,u64 off,u64 len,int mf_flags)232 int dax_holder_notify_failure(struct dax_device *dax_dev, u64 off,
233 u64 len, int mf_flags)
234 {
235 int rc, id;
236
237 id = dax_read_lock();
238 if (!dax_alive(dax_dev)) {
239 rc = -ENXIO;
240 goto out;
241 }
242
243 if (!dax_dev->holder_ops) {
244 rc = -EOPNOTSUPP;
245 goto out;
246 }
247
248 rc = dax_dev->holder_ops->notify_failure(dax_dev, off, len, mf_flags);
249 out:
250 dax_read_unlock(id);
251 return rc;
252 }
253 EXPORT_SYMBOL_GPL(dax_holder_notify_failure);
254
255 #ifdef CONFIG_ARCH_HAS_PMEM_API
256 void arch_wb_cache_pmem(void *addr, size_t size);
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)257 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
258 {
259 if (unlikely(!dax_write_cache_enabled(dax_dev)))
260 return;
261
262 arch_wb_cache_pmem(addr, size);
263 }
264 #else
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)265 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
266 {
267 }
268 #endif
269 EXPORT_SYMBOL_GPL(dax_flush);
270
dax_write_cache(struct dax_device * dax_dev,bool wc)271 void dax_write_cache(struct dax_device *dax_dev, bool wc)
272 {
273 if (wc)
274 set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
275 else
276 clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
277 }
278 EXPORT_SYMBOL_GPL(dax_write_cache);
279
dax_write_cache_enabled(struct dax_device * dax_dev)280 bool dax_write_cache_enabled(struct dax_device *dax_dev)
281 {
282 return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
283 }
284 EXPORT_SYMBOL_GPL(dax_write_cache_enabled);
285
dax_synchronous(struct dax_device * dax_dev)286 bool dax_synchronous(struct dax_device *dax_dev)
287 {
288 return test_bit(DAXDEV_SYNC, &dax_dev->flags);
289 }
290 EXPORT_SYMBOL_GPL(dax_synchronous);
291
set_dax_synchronous(struct dax_device * dax_dev)292 void set_dax_synchronous(struct dax_device *dax_dev)
293 {
294 set_bit(DAXDEV_SYNC, &dax_dev->flags);
295 }
296 EXPORT_SYMBOL_GPL(set_dax_synchronous);
297
set_dax_nocache(struct dax_device * dax_dev)298 void set_dax_nocache(struct dax_device *dax_dev)
299 {
300 set_bit(DAXDEV_NOCACHE, &dax_dev->flags);
301 }
302 EXPORT_SYMBOL_GPL(set_dax_nocache);
303
set_dax_nomc(struct dax_device * dax_dev)304 void set_dax_nomc(struct dax_device *dax_dev)
305 {
306 set_bit(DAXDEV_NOMC, &dax_dev->flags);
307 }
308 EXPORT_SYMBOL_GPL(set_dax_nomc);
309
dax_alive(struct dax_device * dax_dev)310 bool dax_alive(struct dax_device *dax_dev)
311 {
312 lockdep_assert_held(&dax_srcu);
313 return test_bit(DAXDEV_ALIVE, &dax_dev->flags);
314 }
315 EXPORT_SYMBOL_GPL(dax_alive);
316
317 /*
318 * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring
319 * that any fault handlers or operations that might have seen
320 * dax_alive(), have completed. Any operations that start after
321 * synchronize_srcu() has run will abort upon seeing !dax_alive().
322 */
kill_dax(struct dax_device * dax_dev)323 void kill_dax(struct dax_device *dax_dev)
324 {
325 if (!dax_dev)
326 return;
327
328 if (dax_dev->holder_data != NULL)
329 dax_holder_notify_failure(dax_dev, 0, U64_MAX, 0);
330
331 clear_bit(DAXDEV_ALIVE, &dax_dev->flags);
332 synchronize_srcu(&dax_srcu);
333
334 /* clear holder data */
335 dax_dev->holder_ops = NULL;
336 dax_dev->holder_data = NULL;
337 }
338 EXPORT_SYMBOL_GPL(kill_dax);
339
run_dax(struct dax_device * dax_dev)340 void run_dax(struct dax_device *dax_dev)
341 {
342 set_bit(DAXDEV_ALIVE, &dax_dev->flags);
343 }
344 EXPORT_SYMBOL_GPL(run_dax);
345
dax_alloc_inode(struct super_block * sb)346 static struct inode *dax_alloc_inode(struct super_block *sb)
347 {
348 struct dax_device *dax_dev;
349 struct inode *inode;
350
351 dax_dev = alloc_inode_sb(sb, dax_cache, GFP_KERNEL);
352 if (!dax_dev)
353 return NULL;
354
355 inode = &dax_dev->inode;
356 inode->i_rdev = 0;
357 return inode;
358 }
359
to_dax_dev(struct inode * inode)360 static struct dax_device *to_dax_dev(struct inode *inode)
361 {
362 return container_of(inode, struct dax_device, inode);
363 }
364
dax_free_inode(struct inode * inode)365 static void dax_free_inode(struct inode *inode)
366 {
367 struct dax_device *dax_dev = to_dax_dev(inode);
368 if (inode->i_rdev)
369 ida_free(&dax_minor_ida, iminor(inode));
370 kmem_cache_free(dax_cache, dax_dev);
371 }
372
dax_destroy_inode(struct inode * inode)373 static void dax_destroy_inode(struct inode *inode)
374 {
375 struct dax_device *dax_dev = to_dax_dev(inode);
376 WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags),
377 "kill_dax() must be called before final iput()\n");
378 }
379
380 static const struct super_operations dax_sops = {
381 .statfs = simple_statfs,
382 .alloc_inode = dax_alloc_inode,
383 .destroy_inode = dax_destroy_inode,
384 .free_inode = dax_free_inode,
385 .drop_inode = generic_delete_inode,
386 };
387
dax_init_fs_context(struct fs_context * fc)388 static int dax_init_fs_context(struct fs_context *fc)
389 {
390 struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC);
391 if (!ctx)
392 return -ENOMEM;
393 ctx->ops = &dax_sops;
394 return 0;
395 }
396
397 static struct file_system_type dax_fs_type = {
398 .name = "dax",
399 .init_fs_context = dax_init_fs_context,
400 .kill_sb = kill_anon_super,
401 };
402
dax_test(struct inode * inode,void * data)403 static int dax_test(struct inode *inode, void *data)
404 {
405 dev_t devt = *(dev_t *) data;
406
407 return inode->i_rdev == devt;
408 }
409
dax_set(struct inode * inode,void * data)410 static int dax_set(struct inode *inode, void *data)
411 {
412 dev_t devt = *(dev_t *) data;
413
414 inode->i_rdev = devt;
415 return 0;
416 }
417
dax_dev_get(dev_t devt)418 static struct dax_device *dax_dev_get(dev_t devt)
419 {
420 struct dax_device *dax_dev;
421 struct inode *inode;
422
423 inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31),
424 dax_test, dax_set, &devt);
425
426 if (!inode)
427 return NULL;
428
429 dax_dev = to_dax_dev(inode);
430 if (inode->i_state & I_NEW) {
431 set_bit(DAXDEV_ALIVE, &dax_dev->flags);
432 inode->i_cdev = &dax_dev->cdev;
433 inode->i_mode = S_IFCHR;
434 inode->i_flags = S_DAX;
435 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
436 unlock_new_inode(inode);
437 }
438
439 return dax_dev;
440 }
441
alloc_dax(void * private,const struct dax_operations * ops)442 struct dax_device *alloc_dax(void *private, const struct dax_operations *ops)
443 {
444 struct dax_device *dax_dev;
445 dev_t devt;
446 int minor;
447
448 if (WARN_ON_ONCE(ops && !ops->zero_page_range))
449 return ERR_PTR(-EINVAL);
450
451 minor = ida_alloc_max(&dax_minor_ida, MINORMASK, GFP_KERNEL);
452 if (minor < 0)
453 return ERR_PTR(-ENOMEM);
454
455 devt = MKDEV(MAJOR(dax_devt), minor);
456 dax_dev = dax_dev_get(devt);
457 if (!dax_dev)
458 goto err_dev;
459
460 dax_dev->ops = ops;
461 dax_dev->private = private;
462 return dax_dev;
463
464 err_dev:
465 ida_free(&dax_minor_ida, minor);
466 return ERR_PTR(-ENOMEM);
467 }
468 EXPORT_SYMBOL_GPL(alloc_dax);
469
put_dax(struct dax_device * dax_dev)470 void put_dax(struct dax_device *dax_dev)
471 {
472 if (!dax_dev)
473 return;
474 iput(&dax_dev->inode);
475 }
476 EXPORT_SYMBOL_GPL(put_dax);
477
478 /**
479 * dax_holder() - obtain the holder of a dax device
480 * @dax_dev: a dax_device instance
481 *
482 * Return: the holder's data which represents the holder if registered,
483 * otherwize NULL.
484 */
dax_holder(struct dax_device * dax_dev)485 void *dax_holder(struct dax_device *dax_dev)
486 {
487 return dax_dev->holder_data;
488 }
489 EXPORT_SYMBOL_GPL(dax_holder);
490
491 /**
492 * inode_dax: convert a public inode into its dax_dev
493 * @inode: An inode with i_cdev pointing to a dax_dev
494 *
495 * Note this is not equivalent to to_dax_dev() which is for private
496 * internal use where we know the inode filesystem type == dax_fs_type.
497 */
inode_dax(struct inode * inode)498 struct dax_device *inode_dax(struct inode *inode)
499 {
500 struct cdev *cdev = inode->i_cdev;
501
502 return container_of(cdev, struct dax_device, cdev);
503 }
504 EXPORT_SYMBOL_GPL(inode_dax);
505
dax_inode(struct dax_device * dax_dev)506 struct inode *dax_inode(struct dax_device *dax_dev)
507 {
508 return &dax_dev->inode;
509 }
510 EXPORT_SYMBOL_GPL(dax_inode);
511
dax_get_private(struct dax_device * dax_dev)512 void *dax_get_private(struct dax_device *dax_dev)
513 {
514 if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags))
515 return NULL;
516 return dax_dev->private;
517 }
518 EXPORT_SYMBOL_GPL(dax_get_private);
519
init_once(void * _dax_dev)520 static void init_once(void *_dax_dev)
521 {
522 struct dax_device *dax_dev = _dax_dev;
523 struct inode *inode = &dax_dev->inode;
524
525 memset(dax_dev, 0, sizeof(*dax_dev));
526 inode_init_once(inode);
527 }
528
dax_fs_init(void)529 static int dax_fs_init(void)
530 {
531 int rc;
532
533 dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0,
534 (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
535 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
536 init_once);
537 if (!dax_cache)
538 return -ENOMEM;
539
540 dax_mnt = kern_mount(&dax_fs_type);
541 if (IS_ERR(dax_mnt)) {
542 rc = PTR_ERR(dax_mnt);
543 goto err_mount;
544 }
545 dax_superblock = dax_mnt->mnt_sb;
546
547 return 0;
548
549 err_mount:
550 kmem_cache_destroy(dax_cache);
551
552 return rc;
553 }
554
dax_fs_exit(void)555 static void dax_fs_exit(void)
556 {
557 kern_unmount(dax_mnt);
558 rcu_barrier();
559 kmem_cache_destroy(dax_cache);
560 }
561
dax_core_init(void)562 static int __init dax_core_init(void)
563 {
564 int rc;
565
566 rc = dax_fs_init();
567 if (rc)
568 return rc;
569
570 rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax");
571 if (rc)
572 goto err_chrdev;
573
574 rc = dax_bus_init();
575 if (rc)
576 goto err_bus;
577 return 0;
578
579 err_bus:
580 unregister_chrdev_region(dax_devt, MINORMASK+1);
581 err_chrdev:
582 dax_fs_exit();
583 return 0;
584 }
585
dax_core_exit(void)586 static void __exit dax_core_exit(void)
587 {
588 dax_bus_exit();
589 unregister_chrdev_region(dax_devt, MINORMASK+1);
590 ida_destroy(&dax_minor_ida);
591 dax_fs_exit();
592 }
593
594 MODULE_AUTHOR("Intel Corporation");
595 MODULE_LICENSE("GPL v2");
596 subsys_initcall(dax_core_init);
597 module_exit(dax_core_exit);
598