1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8 #define pr_fmt(fmt) "damon: " fmt
9
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/damon.h>
19
20 #ifdef CONFIG_DAMON_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24
25 static DEFINE_MUTEX(damon_lock);
26 static int nr_running_ctxs;
27 static bool running_exclusive_ctxs;
28
29 static DEFINE_MUTEX(damon_ops_lock);
30 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
31
32 static struct kmem_cache *damon_region_cache __ro_after_init;
33
34 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)35 static bool __damon_is_registered_ops(enum damon_ops_id id)
36 {
37 struct damon_operations empty_ops = {};
38
39 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
40 return false;
41 return true;
42 }
43
44 /**
45 * damon_is_registered_ops() - Check if a given damon_operations is registered.
46 * @id: Id of the damon_operations to check if registered.
47 *
48 * Return: true if the ops is set, false otherwise.
49 */
damon_is_registered_ops(enum damon_ops_id id)50 bool damon_is_registered_ops(enum damon_ops_id id)
51 {
52 bool registered;
53
54 if (id >= NR_DAMON_OPS)
55 return false;
56 mutex_lock(&damon_ops_lock);
57 registered = __damon_is_registered_ops(id);
58 mutex_unlock(&damon_ops_lock);
59 return registered;
60 }
61
62 /**
63 * damon_register_ops() - Register a monitoring operations set to DAMON.
64 * @ops: monitoring operations set to register.
65 *
66 * This function registers a monitoring operations set of valid &struct
67 * damon_operations->id so that others can find and use them later.
68 *
69 * Return: 0 on success, negative error code otherwise.
70 */
damon_register_ops(struct damon_operations * ops)71 int damon_register_ops(struct damon_operations *ops)
72 {
73 int err = 0;
74
75 if (ops->id >= NR_DAMON_OPS)
76 return -EINVAL;
77 mutex_lock(&damon_ops_lock);
78 /* Fail for already registered ops */
79 if (__damon_is_registered_ops(ops->id)) {
80 err = -EINVAL;
81 goto out;
82 }
83 damon_registered_ops[ops->id] = *ops;
84 out:
85 mutex_unlock(&damon_ops_lock);
86 return err;
87 }
88
89 /**
90 * damon_select_ops() - Select a monitoring operations to use with the context.
91 * @ctx: monitoring context to use the operations.
92 * @id: id of the registered monitoring operations to select.
93 *
94 * This function finds registered monitoring operations set of @id and make
95 * @ctx to use it.
96 *
97 * Return: 0 on success, negative error code otherwise.
98 */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)99 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
100 {
101 int err = 0;
102
103 if (id >= NR_DAMON_OPS)
104 return -EINVAL;
105
106 mutex_lock(&damon_ops_lock);
107 if (!__damon_is_registered_ops(id))
108 err = -EINVAL;
109 else
110 ctx->ops = damon_registered_ops[id];
111 mutex_unlock(&damon_ops_lock);
112 return err;
113 }
114
115 /*
116 * Construct a damon_region struct
117 *
118 * Returns the pointer to the new struct if success, or NULL otherwise
119 */
damon_new_region(unsigned long start,unsigned long end)120 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
121 {
122 struct damon_region *region;
123
124 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
125 if (!region)
126 return NULL;
127
128 region->ar.start = start;
129 region->ar.end = end;
130 region->nr_accesses = 0;
131 INIT_LIST_HEAD(®ion->list);
132
133 region->age = 0;
134 region->last_nr_accesses = 0;
135
136 return region;
137 }
138
damon_add_region(struct damon_region * r,struct damon_target * t)139 void damon_add_region(struct damon_region *r, struct damon_target *t)
140 {
141 list_add_tail(&r->list, &t->regions_list);
142 t->nr_regions++;
143 }
144
damon_del_region(struct damon_region * r,struct damon_target * t)145 static void damon_del_region(struct damon_region *r, struct damon_target *t)
146 {
147 list_del(&r->list);
148 t->nr_regions--;
149 }
150
damon_free_region(struct damon_region * r)151 static void damon_free_region(struct damon_region *r)
152 {
153 kmem_cache_free(damon_region_cache, r);
154 }
155
damon_destroy_region(struct damon_region * r,struct damon_target * t)156 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
157 {
158 damon_del_region(r, t);
159 damon_free_region(r);
160 }
161
162 /*
163 * Check whether a region is intersecting an address range
164 *
165 * Returns true if it is.
166 */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)167 static bool damon_intersect(struct damon_region *r,
168 struct damon_addr_range *re)
169 {
170 return !(r->ar.end <= re->start || re->end <= r->ar.start);
171 }
172
173 /*
174 * Fill holes in regions with new regions.
175 */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)176 static int damon_fill_regions_holes(struct damon_region *first,
177 struct damon_region *last, struct damon_target *t)
178 {
179 struct damon_region *r = first;
180
181 damon_for_each_region_from(r, t) {
182 struct damon_region *next, *newr;
183
184 if (r == last)
185 break;
186 next = damon_next_region(r);
187 if (r->ar.end != next->ar.start) {
188 newr = damon_new_region(r->ar.end, next->ar.start);
189 if (!newr)
190 return -ENOMEM;
191 damon_insert_region(newr, r, next, t);
192 }
193 }
194 return 0;
195 }
196
197 /*
198 * damon_set_regions() - Set regions of a target for given address ranges.
199 * @t: the given target.
200 * @ranges: array of new monitoring target ranges.
201 * @nr_ranges: length of @ranges.
202 *
203 * This function adds new regions to, or modify existing regions of a
204 * monitoring target to fit in specific ranges.
205 *
206 * Return: 0 if success, or negative error code otherwise.
207 */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges)208 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
209 unsigned int nr_ranges)
210 {
211 struct damon_region *r, *next;
212 unsigned int i;
213 int err;
214
215 /* Remove regions which are not in the new ranges */
216 damon_for_each_region_safe(r, next, t) {
217 for (i = 0; i < nr_ranges; i++) {
218 if (damon_intersect(r, &ranges[i]))
219 break;
220 }
221 if (i == nr_ranges)
222 damon_destroy_region(r, t);
223 }
224
225 r = damon_first_region(t);
226 /* Add new regions or resize existing regions to fit in the ranges */
227 for (i = 0; i < nr_ranges; i++) {
228 struct damon_region *first = NULL, *last, *newr;
229 struct damon_addr_range *range;
230
231 range = &ranges[i];
232 /* Get the first/last regions intersecting with the range */
233 damon_for_each_region_from(r, t) {
234 if (damon_intersect(r, range)) {
235 if (!first)
236 first = r;
237 last = r;
238 }
239 if (r->ar.start >= range->end)
240 break;
241 }
242 if (!first) {
243 /* no region intersects with this range */
244 newr = damon_new_region(
245 ALIGN_DOWN(range->start,
246 DAMON_MIN_REGION),
247 ALIGN(range->end, DAMON_MIN_REGION));
248 if (!newr)
249 return -ENOMEM;
250 damon_insert_region(newr, damon_prev_region(r), r, t);
251 } else {
252 /* resize intersecting regions to fit in this range */
253 first->ar.start = ALIGN_DOWN(range->start,
254 DAMON_MIN_REGION);
255 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
256
257 /* fill possible holes in the range */
258 err = damon_fill_regions_holes(first, last, t);
259 if (err)
260 return err;
261 }
262 }
263 return 0;
264 }
265
266 /* initialize private fields of damos_quota and return the pointer */
damos_quota_init_priv(struct damos_quota * quota)267 static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
268 {
269 quota->total_charged_sz = 0;
270 quota->total_charged_ns = 0;
271 quota->esz = 0;
272 quota->charged_sz = 0;
273 quota->charged_from = 0;
274 quota->charge_target_from = NULL;
275 quota->charge_addr_from = 0;
276 return quota;
277 }
278
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,struct damos_quota * quota,struct damos_watermarks * wmarks)279 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
280 enum damos_action action, struct damos_quota *quota,
281 struct damos_watermarks *wmarks)
282 {
283 struct damos *scheme;
284
285 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
286 if (!scheme)
287 return NULL;
288 scheme->pattern = *pattern;
289 scheme->action = action;
290 scheme->stat = (struct damos_stat){};
291 INIT_LIST_HEAD(&scheme->list);
292
293 scheme->quota = *(damos_quota_init_priv(quota));
294
295 scheme->wmarks = *wmarks;
296 scheme->wmarks.activated = true;
297
298 return scheme;
299 }
300
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)301 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
302 {
303 list_add_tail(&s->list, &ctx->schemes);
304 }
305
damon_del_scheme(struct damos * s)306 static void damon_del_scheme(struct damos *s)
307 {
308 list_del(&s->list);
309 }
310
damon_free_scheme(struct damos * s)311 static void damon_free_scheme(struct damos *s)
312 {
313 kfree(s);
314 }
315
damon_destroy_scheme(struct damos * s)316 void damon_destroy_scheme(struct damos *s)
317 {
318 damon_del_scheme(s);
319 damon_free_scheme(s);
320 }
321
322 /*
323 * Construct a damon_target struct
324 *
325 * Returns the pointer to the new struct if success, or NULL otherwise
326 */
damon_new_target(void)327 struct damon_target *damon_new_target(void)
328 {
329 struct damon_target *t;
330
331 t = kmalloc(sizeof(*t), GFP_KERNEL);
332 if (!t)
333 return NULL;
334
335 t->pid = NULL;
336 t->nr_regions = 0;
337 INIT_LIST_HEAD(&t->regions_list);
338 INIT_LIST_HEAD(&t->list);
339
340 return t;
341 }
342
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)343 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
344 {
345 list_add_tail(&t->list, &ctx->adaptive_targets);
346 }
347
damon_targets_empty(struct damon_ctx * ctx)348 bool damon_targets_empty(struct damon_ctx *ctx)
349 {
350 return list_empty(&ctx->adaptive_targets);
351 }
352
damon_del_target(struct damon_target * t)353 static void damon_del_target(struct damon_target *t)
354 {
355 list_del(&t->list);
356 }
357
damon_free_target(struct damon_target * t)358 void damon_free_target(struct damon_target *t)
359 {
360 struct damon_region *r, *next;
361
362 damon_for_each_region_safe(r, next, t)
363 damon_free_region(r);
364 kfree(t);
365 }
366
damon_destroy_target(struct damon_target * t)367 void damon_destroy_target(struct damon_target *t)
368 {
369 damon_del_target(t);
370 damon_free_target(t);
371 }
372
damon_nr_regions(struct damon_target * t)373 unsigned int damon_nr_regions(struct damon_target *t)
374 {
375 return t->nr_regions;
376 }
377
damon_new_ctx(void)378 struct damon_ctx *damon_new_ctx(void)
379 {
380 struct damon_ctx *ctx;
381
382 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
383 if (!ctx)
384 return NULL;
385
386 ctx->attrs.sample_interval = 5 * 1000;
387 ctx->attrs.aggr_interval = 100 * 1000;
388 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
389
390 ktime_get_coarse_ts64(&ctx->last_aggregation);
391 ctx->last_ops_update = ctx->last_aggregation;
392
393 mutex_init(&ctx->kdamond_lock);
394
395 ctx->attrs.min_nr_regions = 10;
396 ctx->attrs.max_nr_regions = 1000;
397
398 INIT_LIST_HEAD(&ctx->adaptive_targets);
399 INIT_LIST_HEAD(&ctx->schemes);
400
401 return ctx;
402 }
403
damon_destroy_targets(struct damon_ctx * ctx)404 static void damon_destroy_targets(struct damon_ctx *ctx)
405 {
406 struct damon_target *t, *next_t;
407
408 if (ctx->ops.cleanup) {
409 ctx->ops.cleanup(ctx);
410 return;
411 }
412
413 damon_for_each_target_safe(t, next_t, ctx)
414 damon_destroy_target(t);
415 }
416
damon_destroy_ctx(struct damon_ctx * ctx)417 void damon_destroy_ctx(struct damon_ctx *ctx)
418 {
419 struct damos *s, *next_s;
420
421 damon_destroy_targets(ctx);
422
423 damon_for_each_scheme_safe(s, next_s, ctx)
424 damon_destroy_scheme(s);
425
426 kfree(ctx);
427 }
428
429 /**
430 * damon_set_attrs() - Set attributes for the monitoring.
431 * @ctx: monitoring context
432 * @attrs: monitoring attributes
433 *
434 * This function should not be called while the kdamond is running.
435 * Every time interval is in micro-seconds.
436 *
437 * Return: 0 on success, negative error code otherwise.
438 */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)439 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
440 {
441 if (attrs->min_nr_regions < 3)
442 return -EINVAL;
443 if (attrs->min_nr_regions > attrs->max_nr_regions)
444 return -EINVAL;
445
446 ctx->attrs = *attrs;
447 return 0;
448 }
449
450 /**
451 * damon_set_schemes() - Set data access monitoring based operation schemes.
452 * @ctx: monitoring context
453 * @schemes: array of the schemes
454 * @nr_schemes: number of entries in @schemes
455 *
456 * This function should not be called while the kdamond of the context is
457 * running.
458 */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)459 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
460 ssize_t nr_schemes)
461 {
462 struct damos *s, *next;
463 ssize_t i;
464
465 damon_for_each_scheme_safe(s, next, ctx)
466 damon_destroy_scheme(s);
467 for (i = 0; i < nr_schemes; i++)
468 damon_add_scheme(ctx, schemes[i]);
469 }
470
471 /**
472 * damon_nr_running_ctxs() - Return number of currently running contexts.
473 */
damon_nr_running_ctxs(void)474 int damon_nr_running_ctxs(void)
475 {
476 int nr_ctxs;
477
478 mutex_lock(&damon_lock);
479 nr_ctxs = nr_running_ctxs;
480 mutex_unlock(&damon_lock);
481
482 return nr_ctxs;
483 }
484
485 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)486 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
487 {
488 struct damon_target *t;
489 struct damon_region *r;
490 unsigned long sz = 0;
491
492 damon_for_each_target(t, ctx) {
493 damon_for_each_region(r, t)
494 sz += damon_sz_region(r);
495 }
496
497 if (ctx->attrs.min_nr_regions)
498 sz /= ctx->attrs.min_nr_regions;
499 if (sz < DAMON_MIN_REGION)
500 sz = DAMON_MIN_REGION;
501
502 return sz;
503 }
504
505 static int kdamond_fn(void *data);
506
507 /*
508 * __damon_start() - Starts monitoring with given context.
509 * @ctx: monitoring context
510 *
511 * This function should be called while damon_lock is hold.
512 *
513 * Return: 0 on success, negative error code otherwise.
514 */
__damon_start(struct damon_ctx * ctx)515 static int __damon_start(struct damon_ctx *ctx)
516 {
517 int err = -EBUSY;
518
519 mutex_lock(&ctx->kdamond_lock);
520 if (!ctx->kdamond) {
521 err = 0;
522 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
523 nr_running_ctxs);
524 if (IS_ERR(ctx->kdamond)) {
525 err = PTR_ERR(ctx->kdamond);
526 ctx->kdamond = NULL;
527 }
528 }
529 mutex_unlock(&ctx->kdamond_lock);
530
531 return err;
532 }
533
534 /**
535 * damon_start() - Starts the monitorings for a given group of contexts.
536 * @ctxs: an array of the pointers for contexts to start monitoring
537 * @nr_ctxs: size of @ctxs
538 * @exclusive: exclusiveness of this contexts group
539 *
540 * This function starts a group of monitoring threads for a group of monitoring
541 * contexts. One thread per each context is created and run in parallel. The
542 * caller should handle synchronization between the threads by itself. If
543 * @exclusive is true and a group of threads that created by other
544 * 'damon_start()' call is currently running, this function does nothing but
545 * returns -EBUSY.
546 *
547 * Return: 0 on success, negative error code otherwise.
548 */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)549 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
550 {
551 int i;
552 int err = 0;
553
554 mutex_lock(&damon_lock);
555 if ((exclusive && nr_running_ctxs) ||
556 (!exclusive && running_exclusive_ctxs)) {
557 mutex_unlock(&damon_lock);
558 return -EBUSY;
559 }
560
561 for (i = 0; i < nr_ctxs; i++) {
562 err = __damon_start(ctxs[i]);
563 if (err)
564 break;
565 nr_running_ctxs++;
566 }
567 if (exclusive && nr_running_ctxs)
568 running_exclusive_ctxs = true;
569 mutex_unlock(&damon_lock);
570
571 return err;
572 }
573
574 /*
575 * __damon_stop() - Stops monitoring of a given context.
576 * @ctx: monitoring context
577 *
578 * Return: 0 on success, negative error code otherwise.
579 */
__damon_stop(struct damon_ctx * ctx)580 static int __damon_stop(struct damon_ctx *ctx)
581 {
582 struct task_struct *tsk;
583
584 mutex_lock(&ctx->kdamond_lock);
585 tsk = ctx->kdamond;
586 if (tsk) {
587 get_task_struct(tsk);
588 mutex_unlock(&ctx->kdamond_lock);
589 kthread_stop(tsk);
590 put_task_struct(tsk);
591 return 0;
592 }
593 mutex_unlock(&ctx->kdamond_lock);
594
595 return -EPERM;
596 }
597
598 /**
599 * damon_stop() - Stops the monitorings for a given group of contexts.
600 * @ctxs: an array of the pointers for contexts to stop monitoring
601 * @nr_ctxs: size of @ctxs
602 *
603 * Return: 0 on success, negative error code otherwise.
604 */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)605 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
606 {
607 int i, err = 0;
608
609 for (i = 0; i < nr_ctxs; i++) {
610 /* nr_running_ctxs is decremented in kdamond_fn */
611 err = __damon_stop(ctxs[i]);
612 if (err)
613 break;
614 }
615 return err;
616 }
617
618 /*
619 * damon_check_reset_time_interval() - Check if a time interval is elapsed.
620 * @baseline: the time to check whether the interval has elapsed since
621 * @interval: the time interval (microseconds)
622 *
623 * See whether the given time interval has passed since the given baseline
624 * time. If so, it also updates the baseline to current time for next check.
625 *
626 * Return: true if the time interval has passed, or false otherwise.
627 */
damon_check_reset_time_interval(struct timespec64 * baseline,unsigned long interval)628 static bool damon_check_reset_time_interval(struct timespec64 *baseline,
629 unsigned long interval)
630 {
631 struct timespec64 now;
632
633 ktime_get_coarse_ts64(&now);
634 if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
635 interval * 1000)
636 return false;
637 *baseline = now;
638 return true;
639 }
640
641 /*
642 * Check whether it is time to flush the aggregated information
643 */
kdamond_aggregate_interval_passed(struct damon_ctx * ctx)644 static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
645 {
646 return damon_check_reset_time_interval(&ctx->last_aggregation,
647 ctx->attrs.aggr_interval);
648 }
649
650 /*
651 * Reset the aggregated monitoring results ('nr_accesses' of each region).
652 */
kdamond_reset_aggregated(struct damon_ctx * c)653 static void kdamond_reset_aggregated(struct damon_ctx *c)
654 {
655 struct damon_target *t;
656 unsigned int ti = 0; /* target's index */
657
658 damon_for_each_target(t, c) {
659 struct damon_region *r;
660
661 damon_for_each_region(r, t) {
662 trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
663 r->last_nr_accesses = r->nr_accesses;
664 r->nr_accesses = 0;
665 }
666 ti++;
667 }
668 }
669
670 static void damon_split_region_at(struct damon_target *t,
671 struct damon_region *r, unsigned long sz_r);
672
__damos_valid_target(struct damon_region * r,struct damos * s)673 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
674 {
675 unsigned long sz;
676
677 sz = damon_sz_region(r);
678 return s->pattern.min_sz_region <= sz &&
679 sz <= s->pattern.max_sz_region &&
680 s->pattern.min_nr_accesses <= r->nr_accesses &&
681 r->nr_accesses <= s->pattern.max_nr_accesses &&
682 s->pattern.min_age_region <= r->age &&
683 r->age <= s->pattern.max_age_region;
684 }
685
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)686 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
687 struct damon_region *r, struct damos *s)
688 {
689 bool ret = __damos_valid_target(r, s);
690
691 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
692 return ret;
693
694 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
695 }
696
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)697 static void damon_do_apply_schemes(struct damon_ctx *c,
698 struct damon_target *t,
699 struct damon_region *r)
700 {
701 struct damos *s;
702
703 damon_for_each_scheme(s, c) {
704 struct damos_quota *quota = &s->quota;
705 unsigned long sz = damon_sz_region(r);
706 struct timespec64 begin, end;
707 unsigned long sz_applied = 0;
708
709 if (!s->wmarks.activated)
710 continue;
711
712 /* Check the quota */
713 if (quota->esz && quota->charged_sz >= quota->esz)
714 continue;
715
716 /* Skip previously charged regions */
717 if (quota->charge_target_from) {
718 if (t != quota->charge_target_from)
719 continue;
720 if (r == damon_last_region(t)) {
721 quota->charge_target_from = NULL;
722 quota->charge_addr_from = 0;
723 continue;
724 }
725 if (quota->charge_addr_from &&
726 r->ar.end <= quota->charge_addr_from)
727 continue;
728
729 if (quota->charge_addr_from && r->ar.start <
730 quota->charge_addr_from) {
731 sz = ALIGN_DOWN(quota->charge_addr_from -
732 r->ar.start, DAMON_MIN_REGION);
733 if (!sz) {
734 if (damon_sz_region(r) <=
735 DAMON_MIN_REGION)
736 continue;
737 sz = DAMON_MIN_REGION;
738 }
739 damon_split_region_at(t, r, sz);
740 r = damon_next_region(r);
741 sz = damon_sz_region(r);
742 }
743 quota->charge_target_from = NULL;
744 quota->charge_addr_from = 0;
745 }
746
747 if (!damos_valid_target(c, t, r, s))
748 continue;
749
750 /* Apply the scheme */
751 if (c->ops.apply_scheme) {
752 if (quota->esz &&
753 quota->charged_sz + sz > quota->esz) {
754 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
755 DAMON_MIN_REGION);
756 if (!sz)
757 goto update_stat;
758 damon_split_region_at(t, r, sz);
759 }
760 ktime_get_coarse_ts64(&begin);
761 sz_applied = c->ops.apply_scheme(c, t, r, s);
762 ktime_get_coarse_ts64(&end);
763 quota->total_charged_ns += timespec64_to_ns(&end) -
764 timespec64_to_ns(&begin);
765 quota->charged_sz += sz;
766 if (quota->esz && quota->charged_sz >= quota->esz) {
767 quota->charge_target_from = t;
768 quota->charge_addr_from = r->ar.end + 1;
769 }
770 }
771 if (s->action != DAMOS_STAT)
772 r->age = 0;
773
774 update_stat:
775 s->stat.nr_tried++;
776 s->stat.sz_tried += sz;
777 if (sz_applied)
778 s->stat.nr_applied++;
779 s->stat.sz_applied += sz_applied;
780 }
781 }
782
783 /* Shouldn't be called if quota->ms and quota->sz are zero */
damos_set_effective_quota(struct damos_quota * quota)784 static void damos_set_effective_quota(struct damos_quota *quota)
785 {
786 unsigned long throughput;
787 unsigned long esz;
788
789 if (!quota->ms) {
790 quota->esz = quota->sz;
791 return;
792 }
793
794 if (quota->total_charged_ns)
795 throughput = quota->total_charged_sz * 1000000 /
796 quota->total_charged_ns;
797 else
798 throughput = PAGE_SIZE * 1024;
799 esz = throughput * quota->ms;
800
801 if (quota->sz && quota->sz < esz)
802 esz = quota->sz;
803 quota->esz = esz;
804 }
805
kdamond_apply_schemes(struct damon_ctx * c)806 static void kdamond_apply_schemes(struct damon_ctx *c)
807 {
808 struct damon_target *t;
809 struct damon_region *r, *next_r;
810 struct damos *s;
811
812 damon_for_each_scheme(s, c) {
813 struct damos_quota *quota = &s->quota;
814 unsigned long cumulated_sz;
815 unsigned int score, max_score = 0;
816
817 if (!s->wmarks.activated)
818 continue;
819
820 if (!quota->ms && !quota->sz)
821 continue;
822
823 /* New charge window starts */
824 if (time_after_eq(jiffies, quota->charged_from +
825 msecs_to_jiffies(
826 quota->reset_interval))) {
827 if (quota->esz && quota->charged_sz >= quota->esz)
828 s->stat.qt_exceeds++;
829 quota->total_charged_sz += quota->charged_sz;
830 quota->charged_from = jiffies;
831 quota->charged_sz = 0;
832 damos_set_effective_quota(quota);
833 }
834
835 if (!c->ops.get_scheme_score)
836 continue;
837
838 /* Fill up the score histogram */
839 memset(quota->histogram, 0, sizeof(quota->histogram));
840 damon_for_each_target(t, c) {
841 damon_for_each_region(r, t) {
842 if (!__damos_valid_target(r, s))
843 continue;
844 score = c->ops.get_scheme_score(
845 c, t, r, s);
846 quota->histogram[score] += damon_sz_region(r);
847 if (score > max_score)
848 max_score = score;
849 }
850 }
851
852 /* Set the min score limit */
853 for (cumulated_sz = 0, score = max_score; ; score--) {
854 cumulated_sz += quota->histogram[score];
855 if (cumulated_sz >= quota->esz || !score)
856 break;
857 }
858 quota->min_score = score;
859 }
860
861 damon_for_each_target(t, c) {
862 damon_for_each_region_safe(r, next_r, t)
863 damon_do_apply_schemes(c, t, r);
864 }
865 }
866
867 /*
868 * Merge two adjacent regions into one region
869 */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)870 static void damon_merge_two_regions(struct damon_target *t,
871 struct damon_region *l, struct damon_region *r)
872 {
873 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
874
875 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
876 (sz_l + sz_r);
877 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
878 l->ar.end = r->ar.end;
879 damon_destroy_region(r, t);
880 }
881
882 /*
883 * Merge adjacent regions having similar access frequencies
884 *
885 * t target affected by this merge operation
886 * thres '->nr_accesses' diff threshold for the merge
887 * sz_limit size upper limit of each region
888 */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)889 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
890 unsigned long sz_limit)
891 {
892 struct damon_region *r, *prev = NULL, *next;
893
894 damon_for_each_region_safe(r, next, t) {
895 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
896 r->age = 0;
897 else
898 r->age++;
899
900 if (prev && prev->ar.end == r->ar.start &&
901 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
902 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
903 damon_merge_two_regions(t, prev, r);
904 else
905 prev = r;
906 }
907 }
908
909 /*
910 * Merge adjacent regions having similar access frequencies
911 *
912 * threshold '->nr_accesses' diff threshold for the merge
913 * sz_limit size upper limit of each region
914 *
915 * This function merges monitoring target regions which are adjacent and their
916 * access frequencies are similar. This is for minimizing the monitoring
917 * overhead under the dynamically changeable access pattern. If a merge was
918 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
919 */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)920 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
921 unsigned long sz_limit)
922 {
923 struct damon_target *t;
924
925 damon_for_each_target(t, c)
926 damon_merge_regions_of(t, threshold, sz_limit);
927 }
928
929 /*
930 * Split a region in two
931 *
932 * r the region to be split
933 * sz_r size of the first sub-region that will be made
934 */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)935 static void damon_split_region_at(struct damon_target *t,
936 struct damon_region *r, unsigned long sz_r)
937 {
938 struct damon_region *new;
939
940 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
941 if (!new)
942 return;
943
944 r->ar.end = new->ar.start;
945
946 new->age = r->age;
947 new->last_nr_accesses = r->last_nr_accesses;
948
949 damon_insert_region(new, r, damon_next_region(r), t);
950 }
951
952 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs)953 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
954 {
955 struct damon_region *r, *next;
956 unsigned long sz_region, sz_sub = 0;
957 int i;
958
959 damon_for_each_region_safe(r, next, t) {
960 sz_region = damon_sz_region(r);
961
962 for (i = 0; i < nr_subs - 1 &&
963 sz_region > 2 * DAMON_MIN_REGION; i++) {
964 /*
965 * Randomly select size of left sub-region to be at
966 * least 10 percent and at most 90% of original region
967 */
968 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
969 sz_region / 10, DAMON_MIN_REGION);
970 /* Do not allow blank region */
971 if (sz_sub == 0 || sz_sub >= sz_region)
972 continue;
973
974 damon_split_region_at(t, r, sz_sub);
975 sz_region = sz_sub;
976 }
977 }
978 }
979
980 /*
981 * Split every target region into randomly-sized small regions
982 *
983 * This function splits every target region into random-sized small regions if
984 * current total number of the regions is equal or smaller than half of the
985 * user-specified maximum number of regions. This is for maximizing the
986 * monitoring accuracy under the dynamically changeable access patterns. If a
987 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
988 * it.
989 */
kdamond_split_regions(struct damon_ctx * ctx)990 static void kdamond_split_regions(struct damon_ctx *ctx)
991 {
992 struct damon_target *t;
993 unsigned int nr_regions = 0;
994 static unsigned int last_nr_regions;
995 int nr_subregions = 2;
996
997 damon_for_each_target(t, ctx)
998 nr_regions += damon_nr_regions(t);
999
1000 if (nr_regions > ctx->attrs.max_nr_regions / 2)
1001 return;
1002
1003 /* Maybe the middle of the region has different access frequency */
1004 if (last_nr_regions == nr_regions &&
1005 nr_regions < ctx->attrs.max_nr_regions / 3)
1006 nr_subregions = 3;
1007
1008 damon_for_each_target(t, ctx)
1009 damon_split_regions_of(t, nr_subregions);
1010
1011 last_nr_regions = nr_regions;
1012 }
1013
1014 /*
1015 * Check whether it is time to check and apply the operations-related data
1016 * structures.
1017 *
1018 * Returns true if it is.
1019 */
kdamond_need_update_operations(struct damon_ctx * ctx)1020 static bool kdamond_need_update_operations(struct damon_ctx *ctx)
1021 {
1022 return damon_check_reset_time_interval(&ctx->last_ops_update,
1023 ctx->attrs.ops_update_interval);
1024 }
1025
1026 /*
1027 * Check whether current monitoring should be stopped
1028 *
1029 * The monitoring is stopped when either the user requested to stop, or all
1030 * monitoring targets are invalid.
1031 *
1032 * Returns true if need to stop current monitoring.
1033 */
kdamond_need_stop(struct damon_ctx * ctx)1034 static bool kdamond_need_stop(struct damon_ctx *ctx)
1035 {
1036 struct damon_target *t;
1037
1038 if (kthread_should_stop())
1039 return true;
1040
1041 if (!ctx->ops.target_valid)
1042 return false;
1043
1044 damon_for_each_target(t, ctx) {
1045 if (ctx->ops.target_valid(t))
1046 return false;
1047 }
1048
1049 return true;
1050 }
1051
damos_wmark_metric_value(enum damos_wmark_metric metric)1052 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1053 {
1054 struct sysinfo i;
1055
1056 switch (metric) {
1057 case DAMOS_WMARK_FREE_MEM_RATE:
1058 si_meminfo(&i);
1059 return i.freeram * 1000 / i.totalram;
1060 default:
1061 break;
1062 }
1063 return -EINVAL;
1064 }
1065
1066 /*
1067 * Returns zero if the scheme is active. Else, returns time to wait for next
1068 * watermark check in micro-seconds.
1069 */
damos_wmark_wait_us(struct damos * scheme)1070 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1071 {
1072 unsigned long metric;
1073
1074 if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1075 return 0;
1076
1077 metric = damos_wmark_metric_value(scheme->wmarks.metric);
1078 /* higher than high watermark or lower than low watermark */
1079 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1080 if (scheme->wmarks.activated)
1081 pr_debug("deactivate a scheme (%d) for %s wmark\n",
1082 scheme->action,
1083 metric > scheme->wmarks.high ?
1084 "high" : "low");
1085 scheme->wmarks.activated = false;
1086 return scheme->wmarks.interval;
1087 }
1088
1089 /* inactive and higher than middle watermark */
1090 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1091 !scheme->wmarks.activated)
1092 return scheme->wmarks.interval;
1093
1094 if (!scheme->wmarks.activated)
1095 pr_debug("activate a scheme (%d)\n", scheme->action);
1096 scheme->wmarks.activated = true;
1097 return 0;
1098 }
1099
kdamond_usleep(unsigned long usecs)1100 static void kdamond_usleep(unsigned long usecs)
1101 {
1102 /* See Documentation/timers/timers-howto.rst for the thresholds */
1103 if (usecs > 20 * USEC_PER_MSEC)
1104 schedule_timeout_idle(usecs_to_jiffies(usecs));
1105 else
1106 usleep_idle_range(usecs, usecs + 1);
1107 }
1108
1109 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)1110 static int kdamond_wait_activation(struct damon_ctx *ctx)
1111 {
1112 struct damos *s;
1113 unsigned long wait_time;
1114 unsigned long min_wait_time = 0;
1115 bool init_wait_time = false;
1116
1117 while (!kdamond_need_stop(ctx)) {
1118 damon_for_each_scheme(s, ctx) {
1119 wait_time = damos_wmark_wait_us(s);
1120 if (!init_wait_time || wait_time < min_wait_time) {
1121 init_wait_time = true;
1122 min_wait_time = wait_time;
1123 }
1124 }
1125 if (!min_wait_time)
1126 return 0;
1127
1128 kdamond_usleep(min_wait_time);
1129
1130 if (ctx->callback.after_wmarks_check &&
1131 ctx->callback.after_wmarks_check(ctx))
1132 break;
1133 }
1134 return -EBUSY;
1135 }
1136
1137 /*
1138 * The monitoring daemon that runs as a kernel thread
1139 */
kdamond_fn(void * data)1140 static int kdamond_fn(void *data)
1141 {
1142 struct damon_ctx *ctx = data;
1143 struct damon_target *t;
1144 struct damon_region *r, *next;
1145 unsigned int max_nr_accesses = 0;
1146 unsigned long sz_limit = 0;
1147
1148 pr_debug("kdamond (%d) starts\n", current->pid);
1149
1150 if (ctx->ops.init)
1151 ctx->ops.init(ctx);
1152 if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1153 goto done;
1154
1155 sz_limit = damon_region_sz_limit(ctx);
1156
1157 while (!kdamond_need_stop(ctx)) {
1158 if (kdamond_wait_activation(ctx))
1159 break;
1160
1161 if (ctx->ops.prepare_access_checks)
1162 ctx->ops.prepare_access_checks(ctx);
1163 if (ctx->callback.after_sampling &&
1164 ctx->callback.after_sampling(ctx))
1165 break;
1166
1167 kdamond_usleep(ctx->attrs.sample_interval);
1168
1169 if (ctx->ops.check_accesses)
1170 max_nr_accesses = ctx->ops.check_accesses(ctx);
1171
1172 if (kdamond_aggregate_interval_passed(ctx)) {
1173 kdamond_merge_regions(ctx,
1174 max_nr_accesses / 10,
1175 sz_limit);
1176 if (ctx->callback.after_aggregation &&
1177 ctx->callback.after_aggregation(ctx))
1178 break;
1179 kdamond_apply_schemes(ctx);
1180 kdamond_reset_aggregated(ctx);
1181 kdamond_split_regions(ctx);
1182 if (ctx->ops.reset_aggregated)
1183 ctx->ops.reset_aggregated(ctx);
1184 }
1185
1186 if (kdamond_need_update_operations(ctx)) {
1187 if (ctx->ops.update)
1188 ctx->ops.update(ctx);
1189 sz_limit = damon_region_sz_limit(ctx);
1190 }
1191 }
1192 done:
1193 damon_for_each_target(t, ctx) {
1194 damon_for_each_region_safe(r, next, t)
1195 damon_destroy_region(r, t);
1196 }
1197
1198 if (ctx->callback.before_terminate)
1199 ctx->callback.before_terminate(ctx);
1200 if (ctx->ops.cleanup)
1201 ctx->ops.cleanup(ctx);
1202
1203 pr_debug("kdamond (%d) finishes\n", current->pid);
1204 mutex_lock(&ctx->kdamond_lock);
1205 ctx->kdamond = NULL;
1206 mutex_unlock(&ctx->kdamond_lock);
1207
1208 mutex_lock(&damon_lock);
1209 nr_running_ctxs--;
1210 if (!nr_running_ctxs && running_exclusive_ctxs)
1211 running_exclusive_ctxs = false;
1212 mutex_unlock(&damon_lock);
1213
1214 return 0;
1215 }
1216
1217 /*
1218 * struct damon_system_ram_region - System RAM resource address region of
1219 * [@start, @end).
1220 * @start: Start address of the region (inclusive).
1221 * @end: End address of the region (exclusive).
1222 */
1223 struct damon_system_ram_region {
1224 unsigned long start;
1225 unsigned long end;
1226 };
1227
walk_system_ram(struct resource * res,void * arg)1228 static int walk_system_ram(struct resource *res, void *arg)
1229 {
1230 struct damon_system_ram_region *a = arg;
1231
1232 if (a->end - a->start < resource_size(res)) {
1233 a->start = res->start;
1234 a->end = res->end;
1235 }
1236 return 0;
1237 }
1238
1239 /*
1240 * Find biggest 'System RAM' resource and store its start and end address in
1241 * @start and @end, respectively. If no System RAM is found, returns false.
1242 */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)1243 static bool damon_find_biggest_system_ram(unsigned long *start,
1244 unsigned long *end)
1245
1246 {
1247 struct damon_system_ram_region arg = {};
1248
1249 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1250 if (arg.end <= arg.start)
1251 return false;
1252
1253 *start = arg.start;
1254 *end = arg.end;
1255 return true;
1256 }
1257
1258 /**
1259 * damon_set_region_biggest_system_ram_default() - Set the region of the given
1260 * monitoring target as requested, or biggest 'System RAM'.
1261 * @t: The monitoring target to set the region.
1262 * @start: The pointer to the start address of the region.
1263 * @end: The pointer to the end address of the region.
1264 *
1265 * This function sets the region of @t as requested by @start and @end. If the
1266 * values of @start and @end are zero, however, this function finds the biggest
1267 * 'System RAM' resource and sets the region to cover the resource. In the
1268 * latter case, this function saves the start and end addresses of the resource
1269 * in @start and @end, respectively.
1270 *
1271 * Return: 0 on success, negative error code otherwise.
1272 */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end)1273 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1274 unsigned long *start, unsigned long *end)
1275 {
1276 struct damon_addr_range addr_range;
1277
1278 if (*start > *end)
1279 return -EINVAL;
1280
1281 if (!*start && !*end &&
1282 !damon_find_biggest_system_ram(start, end))
1283 return -EINVAL;
1284
1285 addr_range.start = *start;
1286 addr_range.end = *end;
1287 return damon_set_regions(t, &addr_range, 1);
1288 }
1289
damon_init(void)1290 static int __init damon_init(void)
1291 {
1292 damon_region_cache = KMEM_CACHE(damon_region, 0);
1293 if (unlikely(!damon_region_cache)) {
1294 pr_err("creating damon_region_cache fails\n");
1295 return -ENOMEM;
1296 }
1297
1298 return 0;
1299 }
1300
1301 subsys_initcall(damon_init);
1302
1303 #include "core-test.h"
1304