1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8 #define pr_fmt(fmt) "damon: " fmt
9
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/damon.h>
19
20 #ifdef CONFIG_DAMON_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24
25 static DEFINE_MUTEX(damon_lock);
26 static int nr_running_ctxs;
27 static bool running_exclusive_ctxs;
28
29 static DEFINE_MUTEX(damon_ops_lock);
30 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
31
32 static struct kmem_cache *damon_region_cache __ro_after_init;
33
34 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)35 static bool __damon_is_registered_ops(enum damon_ops_id id)
36 {
37 struct damon_operations empty_ops = {};
38
39 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
40 return false;
41 return true;
42 }
43
44 /**
45 * damon_is_registered_ops() - Check if a given damon_operations is registered.
46 * @id: Id of the damon_operations to check if registered.
47 *
48 * Return: true if the ops is set, false otherwise.
49 */
damon_is_registered_ops(enum damon_ops_id id)50 bool damon_is_registered_ops(enum damon_ops_id id)
51 {
52 bool registered;
53
54 if (id >= NR_DAMON_OPS)
55 return false;
56 mutex_lock(&damon_ops_lock);
57 registered = __damon_is_registered_ops(id);
58 mutex_unlock(&damon_ops_lock);
59 return registered;
60 }
61
62 /**
63 * damon_register_ops() - Register a monitoring operations set to DAMON.
64 * @ops: monitoring operations set to register.
65 *
66 * This function registers a monitoring operations set of valid &struct
67 * damon_operations->id so that others can find and use them later.
68 *
69 * Return: 0 on success, negative error code otherwise.
70 */
damon_register_ops(struct damon_operations * ops)71 int damon_register_ops(struct damon_operations *ops)
72 {
73 int err = 0;
74
75 if (ops->id >= NR_DAMON_OPS)
76 return -EINVAL;
77 mutex_lock(&damon_ops_lock);
78 /* Fail for already registered ops */
79 if (__damon_is_registered_ops(ops->id)) {
80 err = -EINVAL;
81 goto out;
82 }
83 damon_registered_ops[ops->id] = *ops;
84 out:
85 mutex_unlock(&damon_ops_lock);
86 return err;
87 }
88
89 /**
90 * damon_select_ops() - Select a monitoring operations to use with the context.
91 * @ctx: monitoring context to use the operations.
92 * @id: id of the registered monitoring operations to select.
93 *
94 * This function finds registered monitoring operations set of @id and make
95 * @ctx to use it.
96 *
97 * Return: 0 on success, negative error code otherwise.
98 */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)99 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
100 {
101 int err = 0;
102
103 if (id >= NR_DAMON_OPS)
104 return -EINVAL;
105
106 mutex_lock(&damon_ops_lock);
107 if (!__damon_is_registered_ops(id))
108 err = -EINVAL;
109 else
110 ctx->ops = damon_registered_ops[id];
111 mutex_unlock(&damon_ops_lock);
112 return err;
113 }
114
115 /*
116 * Construct a damon_region struct
117 *
118 * Returns the pointer to the new struct if success, or NULL otherwise
119 */
damon_new_region(unsigned long start,unsigned long end)120 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
121 {
122 struct damon_region *region;
123
124 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
125 if (!region)
126 return NULL;
127
128 region->ar.start = start;
129 region->ar.end = end;
130 region->nr_accesses = 0;
131 INIT_LIST_HEAD(®ion->list);
132
133 region->age = 0;
134 region->last_nr_accesses = 0;
135
136 return region;
137 }
138
damon_add_region(struct damon_region * r,struct damon_target * t)139 void damon_add_region(struct damon_region *r, struct damon_target *t)
140 {
141 list_add_tail(&r->list, &t->regions_list);
142 t->nr_regions++;
143 }
144
damon_del_region(struct damon_region * r,struct damon_target * t)145 static void damon_del_region(struct damon_region *r, struct damon_target *t)
146 {
147 list_del(&r->list);
148 t->nr_regions--;
149 }
150
damon_free_region(struct damon_region * r)151 static void damon_free_region(struct damon_region *r)
152 {
153 kmem_cache_free(damon_region_cache, r);
154 }
155
damon_destroy_region(struct damon_region * r,struct damon_target * t)156 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
157 {
158 damon_del_region(r, t);
159 damon_free_region(r);
160 }
161
162 /*
163 * Check whether a region is intersecting an address range
164 *
165 * Returns true if it is.
166 */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)167 static bool damon_intersect(struct damon_region *r,
168 struct damon_addr_range *re)
169 {
170 return !(r->ar.end <= re->start || re->end <= r->ar.start);
171 }
172
173 /*
174 * Fill holes in regions with new regions.
175 */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)176 static int damon_fill_regions_holes(struct damon_region *first,
177 struct damon_region *last, struct damon_target *t)
178 {
179 struct damon_region *r = first;
180
181 damon_for_each_region_from(r, t) {
182 struct damon_region *next, *newr;
183
184 if (r == last)
185 break;
186 next = damon_next_region(r);
187 if (r->ar.end != next->ar.start) {
188 newr = damon_new_region(r->ar.end, next->ar.start);
189 if (!newr)
190 return -ENOMEM;
191 damon_insert_region(newr, r, next, t);
192 }
193 }
194 return 0;
195 }
196
197 /*
198 * damon_set_regions() - Set regions of a target for given address ranges.
199 * @t: the given target.
200 * @ranges: array of new monitoring target ranges.
201 * @nr_ranges: length of @ranges.
202 *
203 * This function adds new regions to, or modify existing regions of a
204 * monitoring target to fit in specific ranges.
205 *
206 * Return: 0 if success, or negative error code otherwise.
207 */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges)208 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
209 unsigned int nr_ranges)
210 {
211 struct damon_region *r, *next;
212 unsigned int i;
213 int err;
214
215 /* Remove regions which are not in the new ranges */
216 damon_for_each_region_safe(r, next, t) {
217 for (i = 0; i < nr_ranges; i++) {
218 if (damon_intersect(r, &ranges[i]))
219 break;
220 }
221 if (i == nr_ranges)
222 damon_destroy_region(r, t);
223 }
224
225 r = damon_first_region(t);
226 /* Add new regions or resize existing regions to fit in the ranges */
227 for (i = 0; i < nr_ranges; i++) {
228 struct damon_region *first = NULL, *last, *newr;
229 struct damon_addr_range *range;
230
231 range = &ranges[i];
232 /* Get the first/last regions intersecting with the range */
233 damon_for_each_region_from(r, t) {
234 if (damon_intersect(r, range)) {
235 if (!first)
236 first = r;
237 last = r;
238 }
239 if (r->ar.start >= range->end)
240 break;
241 }
242 if (!first) {
243 /* no region intersects with this range */
244 newr = damon_new_region(
245 ALIGN_DOWN(range->start,
246 DAMON_MIN_REGION),
247 ALIGN(range->end, DAMON_MIN_REGION));
248 if (!newr)
249 return -ENOMEM;
250 damon_insert_region(newr, damon_prev_region(r), r, t);
251 } else {
252 /* resize intersecting regions to fit in this range */
253 first->ar.start = ALIGN_DOWN(range->start,
254 DAMON_MIN_REGION);
255 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
256
257 /* fill possible holes in the range */
258 err = damon_fill_regions_holes(first, last, t);
259 if (err)
260 return err;
261 }
262 }
263 return 0;
264 }
265
damos_new_filter(enum damos_filter_type type,bool matching)266 struct damos_filter *damos_new_filter(enum damos_filter_type type,
267 bool matching)
268 {
269 struct damos_filter *filter;
270
271 filter = kmalloc(sizeof(*filter), GFP_KERNEL);
272 if (!filter)
273 return NULL;
274 filter->type = type;
275 filter->matching = matching;
276 INIT_LIST_HEAD(&filter->list);
277 return filter;
278 }
279
damos_add_filter(struct damos * s,struct damos_filter * f)280 void damos_add_filter(struct damos *s, struct damos_filter *f)
281 {
282 list_add_tail(&f->list, &s->filters);
283 }
284
damos_del_filter(struct damos_filter * f)285 static void damos_del_filter(struct damos_filter *f)
286 {
287 list_del(&f->list);
288 }
289
damos_free_filter(struct damos_filter * f)290 static void damos_free_filter(struct damos_filter *f)
291 {
292 kfree(f);
293 }
294
damos_destroy_filter(struct damos_filter * f)295 void damos_destroy_filter(struct damos_filter *f)
296 {
297 damos_del_filter(f);
298 damos_free_filter(f);
299 }
300
301 /* initialize private fields of damos_quota and return the pointer */
damos_quota_init_priv(struct damos_quota * quota)302 static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
303 {
304 quota->total_charged_sz = 0;
305 quota->total_charged_ns = 0;
306 quota->esz = 0;
307 quota->charged_sz = 0;
308 quota->charged_from = 0;
309 quota->charge_target_from = NULL;
310 quota->charge_addr_from = 0;
311 return quota;
312 }
313
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,struct damos_quota * quota,struct damos_watermarks * wmarks)314 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
315 enum damos_action action, struct damos_quota *quota,
316 struct damos_watermarks *wmarks)
317 {
318 struct damos *scheme;
319
320 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
321 if (!scheme)
322 return NULL;
323 scheme->pattern = *pattern;
324 scheme->action = action;
325 INIT_LIST_HEAD(&scheme->filters);
326 scheme->stat = (struct damos_stat){};
327 INIT_LIST_HEAD(&scheme->list);
328
329 scheme->quota = *(damos_quota_init_priv(quota));
330
331 scheme->wmarks = *wmarks;
332 scheme->wmarks.activated = true;
333
334 return scheme;
335 }
336
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)337 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
338 {
339 list_add_tail(&s->list, &ctx->schemes);
340 }
341
damon_del_scheme(struct damos * s)342 static void damon_del_scheme(struct damos *s)
343 {
344 list_del(&s->list);
345 }
346
damon_free_scheme(struct damos * s)347 static void damon_free_scheme(struct damos *s)
348 {
349 kfree(s);
350 }
351
damon_destroy_scheme(struct damos * s)352 void damon_destroy_scheme(struct damos *s)
353 {
354 struct damos_filter *f, *next;
355
356 damos_for_each_filter_safe(f, next, s)
357 damos_destroy_filter(f);
358 damon_del_scheme(s);
359 damon_free_scheme(s);
360 }
361
362 /*
363 * Construct a damon_target struct
364 *
365 * Returns the pointer to the new struct if success, or NULL otherwise
366 */
damon_new_target(void)367 struct damon_target *damon_new_target(void)
368 {
369 struct damon_target *t;
370
371 t = kmalloc(sizeof(*t), GFP_KERNEL);
372 if (!t)
373 return NULL;
374
375 t->pid = NULL;
376 t->nr_regions = 0;
377 INIT_LIST_HEAD(&t->regions_list);
378 INIT_LIST_HEAD(&t->list);
379
380 return t;
381 }
382
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)383 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
384 {
385 list_add_tail(&t->list, &ctx->adaptive_targets);
386 }
387
damon_targets_empty(struct damon_ctx * ctx)388 bool damon_targets_empty(struct damon_ctx *ctx)
389 {
390 return list_empty(&ctx->adaptive_targets);
391 }
392
damon_del_target(struct damon_target * t)393 static void damon_del_target(struct damon_target *t)
394 {
395 list_del(&t->list);
396 }
397
damon_free_target(struct damon_target * t)398 void damon_free_target(struct damon_target *t)
399 {
400 struct damon_region *r, *next;
401
402 damon_for_each_region_safe(r, next, t)
403 damon_free_region(r);
404 kfree(t);
405 }
406
damon_destroy_target(struct damon_target * t)407 void damon_destroy_target(struct damon_target *t)
408 {
409 damon_del_target(t);
410 damon_free_target(t);
411 }
412
damon_nr_regions(struct damon_target * t)413 unsigned int damon_nr_regions(struct damon_target *t)
414 {
415 return t->nr_regions;
416 }
417
damon_new_ctx(void)418 struct damon_ctx *damon_new_ctx(void)
419 {
420 struct damon_ctx *ctx;
421
422 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
423 if (!ctx)
424 return NULL;
425
426 init_completion(&ctx->kdamond_started);
427
428 ctx->attrs.sample_interval = 5 * 1000;
429 ctx->attrs.aggr_interval = 100 * 1000;
430 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
431
432 ctx->passed_sample_intervals = 0;
433 /* These will be set from kdamond_init_intervals_sis() */
434 ctx->next_aggregation_sis = 0;
435 ctx->next_ops_update_sis = 0;
436
437 mutex_init(&ctx->kdamond_lock);
438
439 ctx->attrs.min_nr_regions = 10;
440 ctx->attrs.max_nr_regions = 1000;
441
442 INIT_LIST_HEAD(&ctx->adaptive_targets);
443 INIT_LIST_HEAD(&ctx->schemes);
444
445 return ctx;
446 }
447
damon_destroy_targets(struct damon_ctx * ctx)448 static void damon_destroy_targets(struct damon_ctx *ctx)
449 {
450 struct damon_target *t, *next_t;
451
452 if (ctx->ops.cleanup) {
453 ctx->ops.cleanup(ctx);
454 return;
455 }
456
457 damon_for_each_target_safe(t, next_t, ctx)
458 damon_destroy_target(t);
459 }
460
damon_destroy_ctx(struct damon_ctx * ctx)461 void damon_destroy_ctx(struct damon_ctx *ctx)
462 {
463 struct damos *s, *next_s;
464
465 damon_destroy_targets(ctx);
466
467 damon_for_each_scheme_safe(s, next_s, ctx)
468 damon_destroy_scheme(s);
469
470 kfree(ctx);
471 }
472
damon_age_for_new_attrs(unsigned int age,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)473 static unsigned int damon_age_for_new_attrs(unsigned int age,
474 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
475 {
476 return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
477 }
478
479 /* convert access ratio in bp (per 10,000) to nr_accesses */
damon_accesses_bp_to_nr_accesses(unsigned int accesses_bp,struct damon_attrs * attrs)480 static unsigned int damon_accesses_bp_to_nr_accesses(
481 unsigned int accesses_bp, struct damon_attrs *attrs)
482 {
483 return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
484 }
485
486 /* convert nr_accesses to access ratio in bp (per 10,000) */
damon_nr_accesses_to_accesses_bp(unsigned int nr_accesses,struct damon_attrs * attrs)487 static unsigned int damon_nr_accesses_to_accesses_bp(
488 unsigned int nr_accesses, struct damon_attrs *attrs)
489 {
490 return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
491 }
492
damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)493 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
494 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
495 {
496 return damon_accesses_bp_to_nr_accesses(
497 damon_nr_accesses_to_accesses_bp(
498 nr_accesses, old_attrs),
499 new_attrs);
500 }
501
damon_update_monitoring_result(struct damon_region * r,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)502 static void damon_update_monitoring_result(struct damon_region *r,
503 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
504 {
505 r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
506 old_attrs, new_attrs);
507 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
508 }
509
510 /*
511 * region->nr_accesses is the number of sampling intervals in the last
512 * aggregation interval that access to the region has found, and region->age is
513 * the number of aggregation intervals that its access pattern has maintained.
514 * For the reason, the real meaning of the two fields depend on current
515 * sampling interval and aggregation interval. This function updates
516 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
517 */
damon_update_monitoring_results(struct damon_ctx * ctx,struct damon_attrs * new_attrs)518 static void damon_update_monitoring_results(struct damon_ctx *ctx,
519 struct damon_attrs *new_attrs)
520 {
521 struct damon_attrs *old_attrs = &ctx->attrs;
522 struct damon_target *t;
523 struct damon_region *r;
524
525 /* if any interval is zero, simply forgive conversion */
526 if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
527 !new_attrs->sample_interval ||
528 !new_attrs->aggr_interval)
529 return;
530
531 damon_for_each_target(t, ctx)
532 damon_for_each_region(r, t)
533 damon_update_monitoring_result(
534 r, old_attrs, new_attrs);
535 }
536
537 /**
538 * damon_set_attrs() - Set attributes for the monitoring.
539 * @ctx: monitoring context
540 * @attrs: monitoring attributes
541 *
542 * This function should not be called while the kdamond is running.
543 * Every time interval is in micro-seconds.
544 *
545 * Return: 0 on success, negative error code otherwise.
546 */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)547 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
548 {
549 unsigned long sample_interval = attrs->sample_interval ?
550 attrs->sample_interval : 1;
551
552 if (attrs->min_nr_regions < 3)
553 return -EINVAL;
554 if (attrs->min_nr_regions > attrs->max_nr_regions)
555 return -EINVAL;
556 if (attrs->sample_interval > attrs->aggr_interval)
557 return -EINVAL;
558
559 ctx->next_aggregation_sis = ctx->passed_sample_intervals +
560 attrs->aggr_interval / sample_interval;
561 ctx->next_ops_update_sis = ctx->passed_sample_intervals +
562 attrs->ops_update_interval / sample_interval;
563
564 damon_update_monitoring_results(ctx, attrs);
565 ctx->attrs = *attrs;
566 return 0;
567 }
568
569 /**
570 * damon_set_schemes() - Set data access monitoring based operation schemes.
571 * @ctx: monitoring context
572 * @schemes: array of the schemes
573 * @nr_schemes: number of entries in @schemes
574 *
575 * This function should not be called while the kdamond of the context is
576 * running.
577 */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)578 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
579 ssize_t nr_schemes)
580 {
581 struct damos *s, *next;
582 ssize_t i;
583
584 damon_for_each_scheme_safe(s, next, ctx)
585 damon_destroy_scheme(s);
586 for (i = 0; i < nr_schemes; i++)
587 damon_add_scheme(ctx, schemes[i]);
588 }
589
590 /**
591 * damon_nr_running_ctxs() - Return number of currently running contexts.
592 */
damon_nr_running_ctxs(void)593 int damon_nr_running_ctxs(void)
594 {
595 int nr_ctxs;
596
597 mutex_lock(&damon_lock);
598 nr_ctxs = nr_running_ctxs;
599 mutex_unlock(&damon_lock);
600
601 return nr_ctxs;
602 }
603
604 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)605 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
606 {
607 struct damon_target *t;
608 struct damon_region *r;
609 unsigned long sz = 0;
610
611 damon_for_each_target(t, ctx) {
612 damon_for_each_region(r, t)
613 sz += damon_sz_region(r);
614 }
615
616 if (ctx->attrs.min_nr_regions)
617 sz /= ctx->attrs.min_nr_regions;
618 if (sz < DAMON_MIN_REGION)
619 sz = DAMON_MIN_REGION;
620
621 return sz;
622 }
623
624 static int kdamond_fn(void *data);
625
626 /*
627 * __damon_start() - Starts monitoring with given context.
628 * @ctx: monitoring context
629 *
630 * This function should be called while damon_lock is hold.
631 *
632 * Return: 0 on success, negative error code otherwise.
633 */
__damon_start(struct damon_ctx * ctx)634 static int __damon_start(struct damon_ctx *ctx)
635 {
636 int err = -EBUSY;
637
638 mutex_lock(&ctx->kdamond_lock);
639 if (!ctx->kdamond) {
640 err = 0;
641 reinit_completion(&ctx->kdamond_started);
642 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
643 nr_running_ctxs);
644 if (IS_ERR(ctx->kdamond)) {
645 err = PTR_ERR(ctx->kdamond);
646 ctx->kdamond = NULL;
647 } else {
648 wait_for_completion(&ctx->kdamond_started);
649 }
650 }
651 mutex_unlock(&ctx->kdamond_lock);
652
653 return err;
654 }
655
656 /**
657 * damon_start() - Starts the monitorings for a given group of contexts.
658 * @ctxs: an array of the pointers for contexts to start monitoring
659 * @nr_ctxs: size of @ctxs
660 * @exclusive: exclusiveness of this contexts group
661 *
662 * This function starts a group of monitoring threads for a group of monitoring
663 * contexts. One thread per each context is created and run in parallel. The
664 * caller should handle synchronization between the threads by itself. If
665 * @exclusive is true and a group of threads that created by other
666 * 'damon_start()' call is currently running, this function does nothing but
667 * returns -EBUSY.
668 *
669 * Return: 0 on success, negative error code otherwise.
670 */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)671 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
672 {
673 int i;
674 int err = 0;
675
676 mutex_lock(&damon_lock);
677 if ((exclusive && nr_running_ctxs) ||
678 (!exclusive && running_exclusive_ctxs)) {
679 mutex_unlock(&damon_lock);
680 return -EBUSY;
681 }
682
683 for (i = 0; i < nr_ctxs; i++) {
684 err = __damon_start(ctxs[i]);
685 if (err)
686 break;
687 nr_running_ctxs++;
688 }
689 if (exclusive && nr_running_ctxs)
690 running_exclusive_ctxs = true;
691 mutex_unlock(&damon_lock);
692
693 return err;
694 }
695
696 /*
697 * __damon_stop() - Stops monitoring of a given context.
698 * @ctx: monitoring context
699 *
700 * Return: 0 on success, negative error code otherwise.
701 */
__damon_stop(struct damon_ctx * ctx)702 static int __damon_stop(struct damon_ctx *ctx)
703 {
704 struct task_struct *tsk;
705
706 mutex_lock(&ctx->kdamond_lock);
707 tsk = ctx->kdamond;
708 if (tsk) {
709 get_task_struct(tsk);
710 mutex_unlock(&ctx->kdamond_lock);
711 kthread_stop(tsk);
712 put_task_struct(tsk);
713 return 0;
714 }
715 mutex_unlock(&ctx->kdamond_lock);
716
717 return -EPERM;
718 }
719
720 /**
721 * damon_stop() - Stops the monitorings for a given group of contexts.
722 * @ctxs: an array of the pointers for contexts to stop monitoring
723 * @nr_ctxs: size of @ctxs
724 *
725 * Return: 0 on success, negative error code otherwise.
726 */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)727 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
728 {
729 int i, err = 0;
730
731 for (i = 0; i < nr_ctxs; i++) {
732 /* nr_running_ctxs is decremented in kdamond_fn */
733 err = __damon_stop(ctxs[i]);
734 if (err)
735 break;
736 }
737 return err;
738 }
739
740 /*
741 * Reset the aggregated monitoring results ('nr_accesses' of each region).
742 */
kdamond_reset_aggregated(struct damon_ctx * c)743 static void kdamond_reset_aggregated(struct damon_ctx *c)
744 {
745 struct damon_target *t;
746 unsigned int ti = 0; /* target's index */
747
748 damon_for_each_target(t, c) {
749 struct damon_region *r;
750
751 damon_for_each_region(r, t) {
752 trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
753 r->last_nr_accesses = r->nr_accesses;
754 r->nr_accesses = 0;
755 }
756 ti++;
757 }
758 }
759
760 static void damon_split_region_at(struct damon_target *t,
761 struct damon_region *r, unsigned long sz_r);
762
__damos_valid_target(struct damon_region * r,struct damos * s)763 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
764 {
765 unsigned long sz;
766
767 sz = damon_sz_region(r);
768 return s->pattern.min_sz_region <= sz &&
769 sz <= s->pattern.max_sz_region &&
770 s->pattern.min_nr_accesses <= r->nr_accesses &&
771 r->nr_accesses <= s->pattern.max_nr_accesses &&
772 s->pattern.min_age_region <= r->age &&
773 r->age <= s->pattern.max_age_region;
774 }
775
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)776 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
777 struct damon_region *r, struct damos *s)
778 {
779 bool ret = __damos_valid_target(r, s);
780
781 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
782 return ret;
783
784 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
785 }
786
787 /*
788 * damos_skip_charged_region() - Check if the given region or starting part of
789 * it is already charged for the DAMOS quota.
790 * @t: The target of the region.
791 * @rp: The pointer to the region.
792 * @s: The scheme to be applied.
793 *
794 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
795 * action would applied to only a part of the target access pattern fulfilling
796 * regions. To avoid applying the scheme action to only already applied
797 * regions, DAMON skips applying the scheme action to the regions that charged
798 * in the previous charge window.
799 *
800 * This function checks if a given region should be skipped or not for the
801 * reason. If only the starting part of the region has previously charged,
802 * this function splits the region into two so that the second one covers the
803 * area that not charged in the previous charge widnow and saves the second
804 * region in *rp and returns false, so that the caller can apply DAMON action
805 * to the second one.
806 *
807 * Return: true if the region should be entirely skipped, false otherwise.
808 */
damos_skip_charged_region(struct damon_target * t,struct damon_region ** rp,struct damos * s)809 static bool damos_skip_charged_region(struct damon_target *t,
810 struct damon_region **rp, struct damos *s)
811 {
812 struct damon_region *r = *rp;
813 struct damos_quota *quota = &s->quota;
814 unsigned long sz_to_skip;
815
816 /* Skip previously charged regions */
817 if (quota->charge_target_from) {
818 if (t != quota->charge_target_from)
819 return true;
820 if (r == damon_last_region(t)) {
821 quota->charge_target_from = NULL;
822 quota->charge_addr_from = 0;
823 return true;
824 }
825 if (quota->charge_addr_from &&
826 r->ar.end <= quota->charge_addr_from)
827 return true;
828
829 if (quota->charge_addr_from && r->ar.start <
830 quota->charge_addr_from) {
831 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
832 r->ar.start, DAMON_MIN_REGION);
833 if (!sz_to_skip) {
834 if (damon_sz_region(r) <= DAMON_MIN_REGION)
835 return true;
836 sz_to_skip = DAMON_MIN_REGION;
837 }
838 damon_split_region_at(t, r, sz_to_skip);
839 r = damon_next_region(r);
840 *rp = r;
841 }
842 quota->charge_target_from = NULL;
843 quota->charge_addr_from = 0;
844 }
845 return false;
846 }
847
damos_update_stat(struct damos * s,unsigned long sz_tried,unsigned long sz_applied)848 static void damos_update_stat(struct damos *s,
849 unsigned long sz_tried, unsigned long sz_applied)
850 {
851 s->stat.nr_tried++;
852 s->stat.sz_tried += sz_tried;
853 if (sz_applied)
854 s->stat.nr_applied++;
855 s->stat.sz_applied += sz_applied;
856 }
857
__damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos_filter * filter)858 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
859 struct damon_region *r, struct damos_filter *filter)
860 {
861 bool matched = false;
862 struct damon_target *ti;
863 int target_idx = 0;
864 unsigned long start, end;
865
866 switch (filter->type) {
867 case DAMOS_FILTER_TYPE_TARGET:
868 damon_for_each_target(ti, ctx) {
869 if (ti == t)
870 break;
871 target_idx++;
872 }
873 matched = target_idx == filter->target_idx;
874 break;
875 case DAMOS_FILTER_TYPE_ADDR:
876 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
877 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
878
879 /* inside the range */
880 if (start <= r->ar.start && r->ar.end <= end) {
881 matched = true;
882 break;
883 }
884 /* outside of the range */
885 if (r->ar.end <= start || end <= r->ar.start) {
886 matched = false;
887 break;
888 }
889 /* start before the range and overlap */
890 if (r->ar.start < start) {
891 damon_split_region_at(t, r, start - r->ar.start);
892 matched = false;
893 break;
894 }
895 /* start inside the range */
896 damon_split_region_at(t, r, end - r->ar.start);
897 matched = true;
898 break;
899 default:
900 return false;
901 }
902
903 return matched == filter->matching;
904 }
905
damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s)906 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
907 struct damon_region *r, struct damos *s)
908 {
909 struct damos_filter *filter;
910
911 damos_for_each_filter(filter, s) {
912 if (__damos_filter_out(ctx, t, r, filter))
913 return true;
914 }
915 return false;
916 }
917
damos_apply_scheme(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)918 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
919 struct damon_region *r, struct damos *s)
920 {
921 struct damos_quota *quota = &s->quota;
922 unsigned long sz = damon_sz_region(r);
923 struct timespec64 begin, end;
924 unsigned long sz_applied = 0;
925 int err = 0;
926
927 if (c->ops.apply_scheme) {
928 if (quota->esz && quota->charged_sz + sz > quota->esz) {
929 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
930 DAMON_MIN_REGION);
931 if (!sz)
932 goto update_stat;
933 damon_split_region_at(t, r, sz);
934 }
935 if (damos_filter_out(c, t, r, s))
936 return;
937 ktime_get_coarse_ts64(&begin);
938 if (c->callback.before_damos_apply)
939 err = c->callback.before_damos_apply(c, t, r, s);
940 if (!err)
941 sz_applied = c->ops.apply_scheme(c, t, r, s);
942 ktime_get_coarse_ts64(&end);
943 quota->total_charged_ns += timespec64_to_ns(&end) -
944 timespec64_to_ns(&begin);
945 quota->charged_sz += sz;
946 if (quota->esz && quota->charged_sz >= quota->esz) {
947 quota->charge_target_from = t;
948 quota->charge_addr_from = r->ar.end + 1;
949 }
950 }
951 if (s->action != DAMOS_STAT)
952 r->age = 0;
953
954 update_stat:
955 damos_update_stat(s, sz, sz_applied);
956 }
957
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)958 static void damon_do_apply_schemes(struct damon_ctx *c,
959 struct damon_target *t,
960 struct damon_region *r)
961 {
962 struct damos *s;
963
964 damon_for_each_scheme(s, c) {
965 struct damos_quota *quota = &s->quota;
966
967 if (!s->wmarks.activated)
968 continue;
969
970 /* Check the quota */
971 if (quota->esz && quota->charged_sz >= quota->esz)
972 continue;
973
974 if (damos_skip_charged_region(t, &r, s))
975 continue;
976
977 if (!damos_valid_target(c, t, r, s))
978 continue;
979
980 damos_apply_scheme(c, t, r, s);
981 }
982 }
983
984 /* Shouldn't be called if quota->ms and quota->sz are zero */
damos_set_effective_quota(struct damos_quota * quota)985 static void damos_set_effective_quota(struct damos_quota *quota)
986 {
987 unsigned long throughput;
988 unsigned long esz;
989
990 if (!quota->ms) {
991 quota->esz = quota->sz;
992 return;
993 }
994
995 if (quota->total_charged_ns)
996 throughput = quota->total_charged_sz * 1000000 /
997 quota->total_charged_ns;
998 else
999 throughput = PAGE_SIZE * 1024;
1000 esz = throughput * quota->ms;
1001
1002 if (quota->sz && quota->sz < esz)
1003 esz = quota->sz;
1004 quota->esz = esz;
1005 }
1006
damos_adjust_quota(struct damon_ctx * c,struct damos * s)1007 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1008 {
1009 struct damos_quota *quota = &s->quota;
1010 struct damon_target *t;
1011 struct damon_region *r;
1012 unsigned long cumulated_sz;
1013 unsigned int score, max_score = 0;
1014
1015 if (!quota->ms && !quota->sz)
1016 return;
1017
1018 /* New charge window starts */
1019 if (time_after_eq(jiffies, quota->charged_from +
1020 msecs_to_jiffies(quota->reset_interval))) {
1021 if (quota->esz && quota->charged_sz >= quota->esz)
1022 s->stat.qt_exceeds++;
1023 quota->total_charged_sz += quota->charged_sz;
1024 quota->charged_from = jiffies;
1025 quota->charged_sz = 0;
1026 damos_set_effective_quota(quota);
1027 }
1028
1029 if (!c->ops.get_scheme_score)
1030 return;
1031
1032 /* Fill up the score histogram */
1033 memset(quota->histogram, 0, sizeof(quota->histogram));
1034 damon_for_each_target(t, c) {
1035 damon_for_each_region(r, t) {
1036 if (!__damos_valid_target(r, s))
1037 continue;
1038 score = c->ops.get_scheme_score(c, t, r, s);
1039 quota->histogram[score] += damon_sz_region(r);
1040 if (score > max_score)
1041 max_score = score;
1042 }
1043 }
1044
1045 /* Set the min score limit */
1046 for (cumulated_sz = 0, score = max_score; ; score--) {
1047 cumulated_sz += quota->histogram[score];
1048 if (cumulated_sz >= quota->esz || !score)
1049 break;
1050 }
1051 quota->min_score = score;
1052 }
1053
kdamond_apply_schemes(struct damon_ctx * c)1054 static void kdamond_apply_schemes(struct damon_ctx *c)
1055 {
1056 struct damon_target *t;
1057 struct damon_region *r, *next_r;
1058 struct damos *s;
1059
1060 damon_for_each_scheme(s, c) {
1061 if (!s->wmarks.activated)
1062 continue;
1063
1064 damos_adjust_quota(c, s);
1065 }
1066
1067 damon_for_each_target(t, c) {
1068 damon_for_each_region_safe(r, next_r, t)
1069 damon_do_apply_schemes(c, t, r);
1070 }
1071 }
1072
1073 /*
1074 * Merge two adjacent regions into one region
1075 */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)1076 static void damon_merge_two_regions(struct damon_target *t,
1077 struct damon_region *l, struct damon_region *r)
1078 {
1079 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1080
1081 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1082 (sz_l + sz_r);
1083 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1084 l->ar.end = r->ar.end;
1085 damon_destroy_region(r, t);
1086 }
1087
1088 /*
1089 * Merge adjacent regions having similar access frequencies
1090 *
1091 * t target affected by this merge operation
1092 * thres '->nr_accesses' diff threshold for the merge
1093 * sz_limit size upper limit of each region
1094 */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)1095 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1096 unsigned long sz_limit)
1097 {
1098 struct damon_region *r, *prev = NULL, *next;
1099
1100 damon_for_each_region_safe(r, next, t) {
1101 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1102 r->age = 0;
1103 else
1104 r->age++;
1105
1106 if (prev && prev->ar.end == r->ar.start &&
1107 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1108 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1109 damon_merge_two_regions(t, prev, r);
1110 else
1111 prev = r;
1112 }
1113 }
1114
1115 /*
1116 * Merge adjacent regions having similar access frequencies
1117 *
1118 * threshold '->nr_accesses' diff threshold for the merge
1119 * sz_limit size upper limit of each region
1120 *
1121 * This function merges monitoring target regions which are adjacent and their
1122 * access frequencies are similar. This is for minimizing the monitoring
1123 * overhead under the dynamically changeable access pattern. If a merge was
1124 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1125 */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)1126 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1127 unsigned long sz_limit)
1128 {
1129 struct damon_target *t;
1130
1131 damon_for_each_target(t, c)
1132 damon_merge_regions_of(t, threshold, sz_limit);
1133 }
1134
1135 /*
1136 * Split a region in two
1137 *
1138 * r the region to be split
1139 * sz_r size of the first sub-region that will be made
1140 */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)1141 static void damon_split_region_at(struct damon_target *t,
1142 struct damon_region *r, unsigned long sz_r)
1143 {
1144 struct damon_region *new;
1145
1146 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1147 if (!new)
1148 return;
1149
1150 r->ar.end = new->ar.start;
1151
1152 new->age = r->age;
1153 new->last_nr_accesses = r->last_nr_accesses;
1154
1155 damon_insert_region(new, r, damon_next_region(r), t);
1156 }
1157
1158 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs)1159 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1160 {
1161 struct damon_region *r, *next;
1162 unsigned long sz_region, sz_sub = 0;
1163 int i;
1164
1165 damon_for_each_region_safe(r, next, t) {
1166 sz_region = damon_sz_region(r);
1167
1168 for (i = 0; i < nr_subs - 1 &&
1169 sz_region > 2 * DAMON_MIN_REGION; i++) {
1170 /*
1171 * Randomly select size of left sub-region to be at
1172 * least 10 percent and at most 90% of original region
1173 */
1174 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1175 sz_region / 10, DAMON_MIN_REGION);
1176 /* Do not allow blank region */
1177 if (sz_sub == 0 || sz_sub >= sz_region)
1178 continue;
1179
1180 damon_split_region_at(t, r, sz_sub);
1181 sz_region = sz_sub;
1182 }
1183 }
1184 }
1185
1186 /*
1187 * Split every target region into randomly-sized small regions
1188 *
1189 * This function splits every target region into random-sized small regions if
1190 * current total number of the regions is equal or smaller than half of the
1191 * user-specified maximum number of regions. This is for maximizing the
1192 * monitoring accuracy under the dynamically changeable access patterns. If a
1193 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1194 * it.
1195 */
kdamond_split_regions(struct damon_ctx * ctx)1196 static void kdamond_split_regions(struct damon_ctx *ctx)
1197 {
1198 struct damon_target *t;
1199 unsigned int nr_regions = 0;
1200 static unsigned int last_nr_regions;
1201 int nr_subregions = 2;
1202
1203 damon_for_each_target(t, ctx)
1204 nr_regions += damon_nr_regions(t);
1205
1206 if (nr_regions > ctx->attrs.max_nr_regions / 2)
1207 return;
1208
1209 /* Maybe the middle of the region has different access frequency */
1210 if (last_nr_regions == nr_regions &&
1211 nr_regions < ctx->attrs.max_nr_regions / 3)
1212 nr_subregions = 3;
1213
1214 damon_for_each_target(t, ctx)
1215 damon_split_regions_of(t, nr_subregions);
1216
1217 last_nr_regions = nr_regions;
1218 }
1219
1220 /*
1221 * Check whether current monitoring should be stopped
1222 *
1223 * The monitoring is stopped when either the user requested to stop, or all
1224 * monitoring targets are invalid.
1225 *
1226 * Returns true if need to stop current monitoring.
1227 */
kdamond_need_stop(struct damon_ctx * ctx)1228 static bool kdamond_need_stop(struct damon_ctx *ctx)
1229 {
1230 struct damon_target *t;
1231
1232 if (kthread_should_stop())
1233 return true;
1234
1235 if (!ctx->ops.target_valid)
1236 return false;
1237
1238 damon_for_each_target(t, ctx) {
1239 if (ctx->ops.target_valid(t))
1240 return false;
1241 }
1242
1243 return true;
1244 }
1245
damos_wmark_metric_value(enum damos_wmark_metric metric)1246 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1247 {
1248 struct sysinfo i;
1249
1250 switch (metric) {
1251 case DAMOS_WMARK_FREE_MEM_RATE:
1252 si_meminfo(&i);
1253 return i.freeram * 1000 / i.totalram;
1254 default:
1255 break;
1256 }
1257 return -EINVAL;
1258 }
1259
1260 /*
1261 * Returns zero if the scheme is active. Else, returns time to wait for next
1262 * watermark check in micro-seconds.
1263 */
damos_wmark_wait_us(struct damos * scheme)1264 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1265 {
1266 unsigned long metric;
1267
1268 if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1269 return 0;
1270
1271 metric = damos_wmark_metric_value(scheme->wmarks.metric);
1272 /* higher than high watermark or lower than low watermark */
1273 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1274 if (scheme->wmarks.activated)
1275 pr_debug("deactivate a scheme (%d) for %s wmark\n",
1276 scheme->action,
1277 metric > scheme->wmarks.high ?
1278 "high" : "low");
1279 scheme->wmarks.activated = false;
1280 return scheme->wmarks.interval;
1281 }
1282
1283 /* inactive and higher than middle watermark */
1284 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1285 !scheme->wmarks.activated)
1286 return scheme->wmarks.interval;
1287
1288 if (!scheme->wmarks.activated)
1289 pr_debug("activate a scheme (%d)\n", scheme->action);
1290 scheme->wmarks.activated = true;
1291 return 0;
1292 }
1293
kdamond_usleep(unsigned long usecs)1294 static void kdamond_usleep(unsigned long usecs)
1295 {
1296 /* See Documentation/timers/timers-howto.rst for the thresholds */
1297 if (usecs > 20 * USEC_PER_MSEC)
1298 schedule_timeout_idle(usecs_to_jiffies(usecs));
1299 else
1300 usleep_idle_range(usecs, usecs + 1);
1301 }
1302
1303 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)1304 static int kdamond_wait_activation(struct damon_ctx *ctx)
1305 {
1306 struct damos *s;
1307 unsigned long wait_time;
1308 unsigned long min_wait_time = 0;
1309 bool init_wait_time = false;
1310
1311 while (!kdamond_need_stop(ctx)) {
1312 damon_for_each_scheme(s, ctx) {
1313 wait_time = damos_wmark_wait_us(s);
1314 if (!init_wait_time || wait_time < min_wait_time) {
1315 init_wait_time = true;
1316 min_wait_time = wait_time;
1317 }
1318 }
1319 if (!min_wait_time)
1320 return 0;
1321
1322 kdamond_usleep(min_wait_time);
1323
1324 if (ctx->callback.after_wmarks_check &&
1325 ctx->callback.after_wmarks_check(ctx))
1326 break;
1327 }
1328 return -EBUSY;
1329 }
1330
kdamond_init_intervals_sis(struct damon_ctx * ctx)1331 static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
1332 {
1333 unsigned long sample_interval = ctx->attrs.sample_interval ?
1334 ctx->attrs.sample_interval : 1;
1335
1336 ctx->passed_sample_intervals = 0;
1337 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
1338 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
1339 sample_interval;
1340 }
1341
1342 /*
1343 * The monitoring daemon that runs as a kernel thread
1344 */
kdamond_fn(void * data)1345 static int kdamond_fn(void *data)
1346 {
1347 struct damon_ctx *ctx = data;
1348 struct damon_target *t;
1349 struct damon_region *r, *next;
1350 unsigned int max_nr_accesses = 0;
1351 unsigned long sz_limit = 0;
1352
1353 pr_debug("kdamond (%d) starts\n", current->pid);
1354
1355 complete(&ctx->kdamond_started);
1356 kdamond_init_intervals_sis(ctx);
1357
1358 if (ctx->ops.init)
1359 ctx->ops.init(ctx);
1360 if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1361 goto done;
1362
1363 sz_limit = damon_region_sz_limit(ctx);
1364
1365 while (!kdamond_need_stop(ctx)) {
1366 /*
1367 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
1368 * be changed from after_wmarks_check() or after_aggregation()
1369 * callbacks. Read the values here, and use those for this
1370 * iteration. That is, damon_set_attrs() updated new values
1371 * are respected from next iteration.
1372 */
1373 unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
1374 unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
1375 unsigned long sample_interval = ctx->attrs.sample_interval;
1376
1377 if (kdamond_wait_activation(ctx))
1378 break;
1379
1380 if (ctx->ops.prepare_access_checks)
1381 ctx->ops.prepare_access_checks(ctx);
1382 if (ctx->callback.after_sampling &&
1383 ctx->callback.after_sampling(ctx))
1384 break;
1385
1386 kdamond_usleep(sample_interval);
1387 ctx->passed_sample_intervals++;
1388
1389 if (ctx->ops.check_accesses)
1390 max_nr_accesses = ctx->ops.check_accesses(ctx);
1391
1392 sample_interval = ctx->attrs.sample_interval ?
1393 ctx->attrs.sample_interval : 1;
1394 if (ctx->passed_sample_intervals == next_aggregation_sis) {
1395 ctx->next_aggregation_sis = next_aggregation_sis +
1396 ctx->attrs.aggr_interval / sample_interval;
1397 kdamond_merge_regions(ctx,
1398 max_nr_accesses / 10,
1399 sz_limit);
1400 if (ctx->callback.after_aggregation &&
1401 ctx->callback.after_aggregation(ctx))
1402 break;
1403 if (!list_empty(&ctx->schemes))
1404 kdamond_apply_schemes(ctx);
1405 kdamond_reset_aggregated(ctx);
1406 kdamond_split_regions(ctx);
1407 if (ctx->ops.reset_aggregated)
1408 ctx->ops.reset_aggregated(ctx);
1409 }
1410
1411 if (ctx->passed_sample_intervals == next_ops_update_sis) {
1412 ctx->next_ops_update_sis = next_ops_update_sis +
1413 ctx->attrs.ops_update_interval /
1414 sample_interval;
1415 if (ctx->ops.update)
1416 ctx->ops.update(ctx);
1417 sz_limit = damon_region_sz_limit(ctx);
1418 }
1419 }
1420 done:
1421 damon_for_each_target(t, ctx) {
1422 damon_for_each_region_safe(r, next, t)
1423 damon_destroy_region(r, t);
1424 }
1425
1426 if (ctx->callback.before_terminate)
1427 ctx->callback.before_terminate(ctx);
1428 if (ctx->ops.cleanup)
1429 ctx->ops.cleanup(ctx);
1430
1431 pr_debug("kdamond (%d) finishes\n", current->pid);
1432 mutex_lock(&ctx->kdamond_lock);
1433 ctx->kdamond = NULL;
1434 mutex_unlock(&ctx->kdamond_lock);
1435
1436 mutex_lock(&damon_lock);
1437 nr_running_ctxs--;
1438 if (!nr_running_ctxs && running_exclusive_ctxs)
1439 running_exclusive_ctxs = false;
1440 mutex_unlock(&damon_lock);
1441
1442 return 0;
1443 }
1444
1445 /*
1446 * struct damon_system_ram_region - System RAM resource address region of
1447 * [@start, @end).
1448 * @start: Start address of the region (inclusive).
1449 * @end: End address of the region (exclusive).
1450 */
1451 struct damon_system_ram_region {
1452 unsigned long start;
1453 unsigned long end;
1454 };
1455
walk_system_ram(struct resource * res,void * arg)1456 static int walk_system_ram(struct resource *res, void *arg)
1457 {
1458 struct damon_system_ram_region *a = arg;
1459
1460 if (a->end - a->start < resource_size(res)) {
1461 a->start = res->start;
1462 a->end = res->end;
1463 }
1464 return 0;
1465 }
1466
1467 /*
1468 * Find biggest 'System RAM' resource and store its start and end address in
1469 * @start and @end, respectively. If no System RAM is found, returns false.
1470 */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)1471 static bool damon_find_biggest_system_ram(unsigned long *start,
1472 unsigned long *end)
1473
1474 {
1475 struct damon_system_ram_region arg = {};
1476
1477 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1478 if (arg.end <= arg.start)
1479 return false;
1480
1481 *start = arg.start;
1482 *end = arg.end;
1483 return true;
1484 }
1485
1486 /**
1487 * damon_set_region_biggest_system_ram_default() - Set the region of the given
1488 * monitoring target as requested, or biggest 'System RAM'.
1489 * @t: The monitoring target to set the region.
1490 * @start: The pointer to the start address of the region.
1491 * @end: The pointer to the end address of the region.
1492 *
1493 * This function sets the region of @t as requested by @start and @end. If the
1494 * values of @start and @end are zero, however, this function finds the biggest
1495 * 'System RAM' resource and sets the region to cover the resource. In the
1496 * latter case, this function saves the start and end addresses of the resource
1497 * in @start and @end, respectively.
1498 *
1499 * Return: 0 on success, negative error code otherwise.
1500 */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end)1501 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1502 unsigned long *start, unsigned long *end)
1503 {
1504 struct damon_addr_range addr_range;
1505
1506 if (*start > *end)
1507 return -EINVAL;
1508
1509 if (!*start && !*end &&
1510 !damon_find_biggest_system_ram(start, end))
1511 return -EINVAL;
1512
1513 addr_range.start = *start;
1514 addr_range.end = *end;
1515 return damon_set_regions(t, &addr_range, 1);
1516 }
1517
damon_init(void)1518 static int __init damon_init(void)
1519 {
1520 damon_region_cache = KMEM_CACHE(damon_region, 0);
1521 if (unlikely(!damon_region_cache)) {
1522 pr_err("creating damon_region_cache fails\n");
1523 return -ENOMEM;
1524 }
1525
1526 return 0;
1527 }
1528
1529 subsys_initcall(damon_init);
1530
1531 #include "core-test.h"
1532