1 /*
2 * Copyright (C) 2014-2015 Broadcom Corporation
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation version 2.
7 *
8 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9 * kind, whether express or implied; without even the implied warranty
10 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13 #include <linux/debugfs.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/init.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/timer.h>
20 #include <sound/core.h>
21 #include <sound/pcm.h>
22 #include <sound/pcm_params.h>
23 #include <sound/soc.h>
24 #include <sound/soc-dai.h>
25
26 #include "cygnus-ssp.h"
27
28 /* Register offset needed for ASoC PCM module */
29
30 #define INTH_R5F_STATUS_OFFSET 0x040
31 #define INTH_R5F_CLEAR_OFFSET 0x048
32 #define INTH_R5F_MASK_SET_OFFSET 0x050
33 #define INTH_R5F_MASK_CLEAR_OFFSET 0x054
34
35 #define BF_REARM_FREE_MARK_OFFSET 0x344
36 #define BF_REARM_FULL_MARK_OFFSET 0x348
37
38 /* Ring Buffer Ctrl Regs --- Start */
39 /* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_RDADDR_REG_BASE */
40 #define SRC_RBUF_0_RDADDR_OFFSET 0x500
41 #define SRC_RBUF_1_RDADDR_OFFSET 0x518
42 #define SRC_RBUF_2_RDADDR_OFFSET 0x530
43 #define SRC_RBUF_3_RDADDR_OFFSET 0x548
44 #define SRC_RBUF_4_RDADDR_OFFSET 0x560
45 #define SRC_RBUF_5_RDADDR_OFFSET 0x578
46 #define SRC_RBUF_6_RDADDR_OFFSET 0x590
47
48 /* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_WRADDR_REG_BASE */
49 #define SRC_RBUF_0_WRADDR_OFFSET 0x504
50 #define SRC_RBUF_1_WRADDR_OFFSET 0x51c
51 #define SRC_RBUF_2_WRADDR_OFFSET 0x534
52 #define SRC_RBUF_3_WRADDR_OFFSET 0x54c
53 #define SRC_RBUF_4_WRADDR_OFFSET 0x564
54 #define SRC_RBUF_5_WRADDR_OFFSET 0x57c
55 #define SRC_RBUF_6_WRADDR_OFFSET 0x594
56
57 /* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_BASEADDR_REG_BASE */
58 #define SRC_RBUF_0_BASEADDR_OFFSET 0x508
59 #define SRC_RBUF_1_BASEADDR_OFFSET 0x520
60 #define SRC_RBUF_2_BASEADDR_OFFSET 0x538
61 #define SRC_RBUF_3_BASEADDR_OFFSET 0x550
62 #define SRC_RBUF_4_BASEADDR_OFFSET 0x568
63 #define SRC_RBUF_5_BASEADDR_OFFSET 0x580
64 #define SRC_RBUF_6_BASEADDR_OFFSET 0x598
65
66 /* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_ENDADDR_REG_BASE */
67 #define SRC_RBUF_0_ENDADDR_OFFSET 0x50c
68 #define SRC_RBUF_1_ENDADDR_OFFSET 0x524
69 #define SRC_RBUF_2_ENDADDR_OFFSET 0x53c
70 #define SRC_RBUF_3_ENDADDR_OFFSET 0x554
71 #define SRC_RBUF_4_ENDADDR_OFFSET 0x56c
72 #define SRC_RBUF_5_ENDADDR_OFFSET 0x584
73 #define SRC_RBUF_6_ENDADDR_OFFSET 0x59c
74
75 /* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_FREE_MARK_REG_BASE */
76 #define SRC_RBUF_0_FREE_MARK_OFFSET 0x510
77 #define SRC_RBUF_1_FREE_MARK_OFFSET 0x528
78 #define SRC_RBUF_2_FREE_MARK_OFFSET 0x540
79 #define SRC_RBUF_3_FREE_MARK_OFFSET 0x558
80 #define SRC_RBUF_4_FREE_MARK_OFFSET 0x570
81 #define SRC_RBUF_5_FREE_MARK_OFFSET 0x588
82 #define SRC_RBUF_6_FREE_MARK_OFFSET 0x5a0
83
84 /* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_RDADDR_REG_BASE */
85 #define DST_RBUF_0_RDADDR_OFFSET 0x5c0
86 #define DST_RBUF_1_RDADDR_OFFSET 0x5d8
87 #define DST_RBUF_2_RDADDR_OFFSET 0x5f0
88 #define DST_RBUF_3_RDADDR_OFFSET 0x608
89 #define DST_RBUF_4_RDADDR_OFFSET 0x620
90 #define DST_RBUF_5_RDADDR_OFFSET 0x638
91
92 /* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_WRADDR_REG_BASE */
93 #define DST_RBUF_0_WRADDR_OFFSET 0x5c4
94 #define DST_RBUF_1_WRADDR_OFFSET 0x5dc
95 #define DST_RBUF_2_WRADDR_OFFSET 0x5f4
96 #define DST_RBUF_3_WRADDR_OFFSET 0x60c
97 #define DST_RBUF_4_WRADDR_OFFSET 0x624
98 #define DST_RBUF_5_WRADDR_OFFSET 0x63c
99
100 /* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_BASEADDR_REG_BASE */
101 #define DST_RBUF_0_BASEADDR_OFFSET 0x5c8
102 #define DST_RBUF_1_BASEADDR_OFFSET 0x5e0
103 #define DST_RBUF_2_BASEADDR_OFFSET 0x5f8
104 #define DST_RBUF_3_BASEADDR_OFFSET 0x610
105 #define DST_RBUF_4_BASEADDR_OFFSET 0x628
106 #define DST_RBUF_5_BASEADDR_OFFSET 0x640
107
108 /* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_ENDADDR_REG_BASE */
109 #define DST_RBUF_0_ENDADDR_OFFSET 0x5cc
110 #define DST_RBUF_1_ENDADDR_OFFSET 0x5e4
111 #define DST_RBUF_2_ENDADDR_OFFSET 0x5fc
112 #define DST_RBUF_3_ENDADDR_OFFSET 0x614
113 #define DST_RBUF_4_ENDADDR_OFFSET 0x62c
114 #define DST_RBUF_5_ENDADDR_OFFSET 0x644
115
116 /* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_FULL_MARK_REG_BASE */
117 #define DST_RBUF_0_FULL_MARK_OFFSET 0x5d0
118 #define DST_RBUF_1_FULL_MARK_OFFSET 0x5e8
119 #define DST_RBUF_2_FULL_MARK_OFFSET 0x600
120 #define DST_RBUF_3_FULL_MARK_OFFSET 0x618
121 #define DST_RBUF_4_FULL_MARK_OFFSET 0x630
122 #define DST_RBUF_5_FULL_MARK_OFFSET 0x648
123 /* Ring Buffer Ctrl Regs --- End */
124
125 /* Error Status Regs --- Start */
126 /* AUD_FMM_BF_ESR_ESRX_STATUS_REG_BASE */
127 #define ESR0_STATUS_OFFSET 0x900
128 #define ESR1_STATUS_OFFSET 0x918
129 #define ESR2_STATUS_OFFSET 0x930
130 #define ESR3_STATUS_OFFSET 0x948
131 #define ESR4_STATUS_OFFSET 0x960
132
133 /* AUD_FMM_BF_ESR_ESRX_STATUS_CLEAR_REG_BASE */
134 #define ESR0_STATUS_CLR_OFFSET 0x908
135 #define ESR1_STATUS_CLR_OFFSET 0x920
136 #define ESR2_STATUS_CLR_OFFSET 0x938
137 #define ESR3_STATUS_CLR_OFFSET 0x950
138 #define ESR4_STATUS_CLR_OFFSET 0x968
139
140 /* AUD_FMM_BF_ESR_ESRX_MASK_REG_BASE */
141 #define ESR0_MASK_STATUS_OFFSET 0x90c
142 #define ESR1_MASK_STATUS_OFFSET 0x924
143 #define ESR2_MASK_STATUS_OFFSET 0x93c
144 #define ESR3_MASK_STATUS_OFFSET 0x954
145 #define ESR4_MASK_STATUS_OFFSET 0x96c
146
147 /* AUD_FMM_BF_ESR_ESRX_MASK_SET_REG_BASE */
148 #define ESR0_MASK_SET_OFFSET 0x910
149 #define ESR1_MASK_SET_OFFSET 0x928
150 #define ESR2_MASK_SET_OFFSET 0x940
151 #define ESR3_MASK_SET_OFFSET 0x958
152 #define ESR4_MASK_SET_OFFSET 0x970
153
154 /* AUD_FMM_BF_ESR_ESRX_MASK_CLEAR_REG_BASE */
155 #define ESR0_MASK_CLR_OFFSET 0x914
156 #define ESR1_MASK_CLR_OFFSET 0x92c
157 #define ESR2_MASK_CLR_OFFSET 0x944
158 #define ESR3_MASK_CLR_OFFSET 0x95c
159 #define ESR4_MASK_CLR_OFFSET 0x974
160 /* Error Status Regs --- End */
161
162 #define R5F_ESR0_SHIFT 0 /* esr0 = fifo underflow */
163 #define R5F_ESR1_SHIFT 1 /* esr1 = ringbuf underflow */
164 #define R5F_ESR2_SHIFT 2 /* esr2 = ringbuf overflow */
165 #define R5F_ESR3_SHIFT 3 /* esr3 = freemark */
166 #define R5F_ESR4_SHIFT 4 /* esr4 = fullmark */
167
168
169 /* Mask for R5F register. Set all relevant interrupt for playback handler */
170 #define ANY_PLAYBACK_IRQ (BIT(R5F_ESR0_SHIFT) | \
171 BIT(R5F_ESR1_SHIFT) | \
172 BIT(R5F_ESR3_SHIFT))
173
174 /* Mask for R5F register. Set all relevant interrupt for capture handler */
175 #define ANY_CAPTURE_IRQ (BIT(R5F_ESR2_SHIFT) | BIT(R5F_ESR4_SHIFT))
176
177 /*
178 * PERIOD_BYTES_MIN is the number of bytes to at which the interrupt will tick.
179 * This number should be a multiple of 256. Minimum value is 256
180 */
181 #define PERIOD_BYTES_MIN 0x100
182
183 static const struct snd_pcm_hardware cygnus_pcm_hw = {
184 .info = SNDRV_PCM_INFO_MMAP |
185 SNDRV_PCM_INFO_MMAP_VALID |
186 SNDRV_PCM_INFO_INTERLEAVED,
187 .formats = SNDRV_PCM_FMTBIT_S16_LE |
188 SNDRV_PCM_FMTBIT_S32_LE,
189
190 /* A period is basically an interrupt */
191 .period_bytes_min = PERIOD_BYTES_MIN,
192 .period_bytes_max = 0x10000,
193
194 /* period_min/max gives range of approx interrupts per buffer */
195 .periods_min = 2,
196 .periods_max = 8,
197
198 /*
199 * maximum buffer size in bytes = period_bytes_max * periods_max
200 * We allocate this amount of data for each enabled channel
201 */
202 .buffer_bytes_max = 4 * 0x8000,
203 };
204
205 static u64 cygnus_dma_dmamask = DMA_BIT_MASK(32);
206
cygnus_dai_get_dma_data(struct snd_pcm_substream * substream)207 static struct cygnus_aio_port *cygnus_dai_get_dma_data(
208 struct snd_pcm_substream *substream)
209 {
210 struct snd_soc_pcm_runtime *soc_runtime = asoc_substream_to_rtd(substream);
211
212 return snd_soc_dai_get_dma_data(asoc_rtd_to_cpu(soc_runtime, 0), substream);
213 }
214
ringbuf_set_initial(void __iomem * audio_io,struct ringbuf_regs * p_rbuf,bool is_playback,u32 start,u32 periodsize,u32 bufsize)215 static void ringbuf_set_initial(void __iomem *audio_io,
216 struct ringbuf_regs *p_rbuf,
217 bool is_playback,
218 u32 start,
219 u32 periodsize,
220 u32 bufsize)
221 {
222 u32 initial_rd;
223 u32 initial_wr;
224 u32 end;
225 u32 fmark_val; /* free or full mark */
226
227 p_rbuf->period_bytes = periodsize;
228 p_rbuf->buf_size = bufsize;
229
230 if (is_playback) {
231 /* Set the pointers to indicate full (flip uppermost bit) */
232 initial_rd = start;
233 initial_wr = initial_rd ^ BIT(31);
234 } else {
235 /* Set the pointers to indicate empty */
236 initial_wr = start;
237 initial_rd = initial_wr;
238 }
239
240 end = start + bufsize - 1;
241
242 /*
243 * The interrupt will fire when free/full mark is *exceeded*
244 * The fmark value must be multiple of PERIOD_BYTES_MIN so set fmark
245 * to be PERIOD_BYTES_MIN less than the period size.
246 */
247 fmark_val = periodsize - PERIOD_BYTES_MIN;
248
249 writel(start, audio_io + p_rbuf->baseaddr);
250 writel(end, audio_io + p_rbuf->endaddr);
251 writel(fmark_val, audio_io + p_rbuf->fmark);
252 writel(initial_rd, audio_io + p_rbuf->rdaddr);
253 writel(initial_wr, audio_io + p_rbuf->wraddr);
254 }
255
configure_ringbuf_regs(struct snd_pcm_substream * substream)256 static int configure_ringbuf_regs(struct snd_pcm_substream *substream)
257 {
258 struct cygnus_aio_port *aio;
259 struct ringbuf_regs *p_rbuf;
260 int status = 0;
261
262 aio = cygnus_dai_get_dma_data(substream);
263
264 /* Map the ssp portnum to a set of ring buffers. */
265 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
266 p_rbuf = &aio->play_rb_regs;
267
268 switch (aio->portnum) {
269 case 0:
270 *p_rbuf = RINGBUF_REG_PLAYBACK(0);
271 break;
272 case 1:
273 *p_rbuf = RINGBUF_REG_PLAYBACK(2);
274 break;
275 case 2:
276 *p_rbuf = RINGBUF_REG_PLAYBACK(4);
277 break;
278 case 3: /* SPDIF */
279 *p_rbuf = RINGBUF_REG_PLAYBACK(6);
280 break;
281 default:
282 status = -EINVAL;
283 }
284 } else {
285 p_rbuf = &aio->capture_rb_regs;
286
287 switch (aio->portnum) {
288 case 0:
289 *p_rbuf = RINGBUF_REG_CAPTURE(0);
290 break;
291 case 1:
292 *p_rbuf = RINGBUF_REG_CAPTURE(2);
293 break;
294 case 2:
295 *p_rbuf = RINGBUF_REG_CAPTURE(4);
296 break;
297 default:
298 status = -EINVAL;
299 }
300 }
301
302 return status;
303 }
304
get_ringbuf(struct snd_pcm_substream * substream)305 static struct ringbuf_regs *get_ringbuf(struct snd_pcm_substream *substream)
306 {
307 struct cygnus_aio_port *aio;
308 struct ringbuf_regs *p_rbuf = NULL;
309
310 aio = cygnus_dai_get_dma_data(substream);
311
312 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
313 p_rbuf = &aio->play_rb_regs;
314 else
315 p_rbuf = &aio->capture_rb_regs;
316
317 return p_rbuf;
318 }
319
enable_intr(struct snd_pcm_substream * substream)320 static void enable_intr(struct snd_pcm_substream *substream)
321 {
322 struct cygnus_aio_port *aio;
323 u32 clear_mask;
324
325 aio = cygnus_dai_get_dma_data(substream);
326
327 /* The port number maps to the bit position to be cleared */
328 clear_mask = BIT(aio->portnum);
329
330 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
331 /* Clear interrupt status before enabling them */
332 writel(clear_mask, aio->cygaud->audio + ESR0_STATUS_CLR_OFFSET);
333 writel(clear_mask, aio->cygaud->audio + ESR1_STATUS_CLR_OFFSET);
334 writel(clear_mask, aio->cygaud->audio + ESR3_STATUS_CLR_OFFSET);
335 /* Unmask the interrupts of the given port*/
336 writel(clear_mask, aio->cygaud->audio + ESR0_MASK_CLR_OFFSET);
337 writel(clear_mask, aio->cygaud->audio + ESR1_MASK_CLR_OFFSET);
338 writel(clear_mask, aio->cygaud->audio + ESR3_MASK_CLR_OFFSET);
339
340 writel(ANY_PLAYBACK_IRQ,
341 aio->cygaud->audio + INTH_R5F_MASK_CLEAR_OFFSET);
342 } else {
343 writel(clear_mask, aio->cygaud->audio + ESR2_STATUS_CLR_OFFSET);
344 writel(clear_mask, aio->cygaud->audio + ESR4_STATUS_CLR_OFFSET);
345 writel(clear_mask, aio->cygaud->audio + ESR2_MASK_CLR_OFFSET);
346 writel(clear_mask, aio->cygaud->audio + ESR4_MASK_CLR_OFFSET);
347
348 writel(ANY_CAPTURE_IRQ,
349 aio->cygaud->audio + INTH_R5F_MASK_CLEAR_OFFSET);
350 }
351
352 }
353
disable_intr(struct snd_pcm_substream * substream)354 static void disable_intr(struct snd_pcm_substream *substream)
355 {
356 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
357 struct cygnus_aio_port *aio;
358 u32 set_mask;
359
360 aio = cygnus_dai_get_dma_data(substream);
361
362 dev_dbg(asoc_rtd_to_cpu(rtd, 0)->dev, "%s on port %d\n", __func__, aio->portnum);
363
364 /* The port number maps to the bit position to be set */
365 set_mask = BIT(aio->portnum);
366
367 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
368 /* Mask the interrupts of the given port*/
369 writel(set_mask, aio->cygaud->audio + ESR0_MASK_SET_OFFSET);
370 writel(set_mask, aio->cygaud->audio + ESR1_MASK_SET_OFFSET);
371 writel(set_mask, aio->cygaud->audio + ESR3_MASK_SET_OFFSET);
372 } else {
373 writel(set_mask, aio->cygaud->audio + ESR2_MASK_SET_OFFSET);
374 writel(set_mask, aio->cygaud->audio + ESR4_MASK_SET_OFFSET);
375 }
376
377 }
378
cygnus_pcm_trigger(struct snd_soc_component * component,struct snd_pcm_substream * substream,int cmd)379 static int cygnus_pcm_trigger(struct snd_soc_component *component,
380 struct snd_pcm_substream *substream, int cmd)
381 {
382 int ret = 0;
383
384 switch (cmd) {
385 case SNDRV_PCM_TRIGGER_START:
386 case SNDRV_PCM_TRIGGER_RESUME:
387 enable_intr(substream);
388 break;
389
390 case SNDRV_PCM_TRIGGER_STOP:
391 case SNDRV_PCM_TRIGGER_SUSPEND:
392 disable_intr(substream);
393 break;
394 default:
395 ret = -EINVAL;
396 }
397
398 return ret;
399 }
400
cygnus_pcm_period_elapsed(struct snd_pcm_substream * substream)401 static void cygnus_pcm_period_elapsed(struct snd_pcm_substream *substream)
402 {
403 struct cygnus_aio_port *aio;
404 struct ringbuf_regs *p_rbuf = NULL;
405 u32 regval;
406
407 aio = cygnus_dai_get_dma_data(substream);
408
409 p_rbuf = get_ringbuf(substream);
410
411 /*
412 * If free/full mark interrupt occurs, provide timestamp
413 * to ALSA and update appropriate idx by period_bytes
414 */
415 snd_pcm_period_elapsed(substream);
416
417 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
418 /* Set the ring buffer to full */
419 regval = readl(aio->cygaud->audio + p_rbuf->rdaddr);
420 regval = regval ^ BIT(31);
421 writel(regval, aio->cygaud->audio + p_rbuf->wraddr);
422 } else {
423 /* Set the ring buffer to empty */
424 regval = readl(aio->cygaud->audio + p_rbuf->wraddr);
425 writel(regval, aio->cygaud->audio + p_rbuf->rdaddr);
426 }
427 }
428
429 /*
430 * ESR0/1/3 status Description
431 * 0x1 I2S0_out port caused interrupt
432 * 0x2 I2S1_out port caused interrupt
433 * 0x4 I2S2_out port caused interrupt
434 * 0x8 SPDIF_out port caused interrupt
435 */
handle_playback_irq(struct cygnus_audio * cygaud)436 static void handle_playback_irq(struct cygnus_audio *cygaud)
437 {
438 void __iomem *audio_io;
439 u32 port;
440 u32 esr_status0, esr_status1, esr_status3;
441
442 audio_io = cygaud->audio;
443
444 /*
445 * ESR status gets updates with/without interrupts enabled.
446 * So, check the ESR mask, which provides interrupt enable/
447 * disable status and use it to determine which ESR status
448 * should be serviced.
449 */
450 esr_status0 = readl(audio_io + ESR0_STATUS_OFFSET);
451 esr_status0 &= ~readl(audio_io + ESR0_MASK_STATUS_OFFSET);
452 esr_status1 = readl(audio_io + ESR1_STATUS_OFFSET);
453 esr_status1 &= ~readl(audio_io + ESR1_MASK_STATUS_OFFSET);
454 esr_status3 = readl(audio_io + ESR3_STATUS_OFFSET);
455 esr_status3 &= ~readl(audio_io + ESR3_MASK_STATUS_OFFSET);
456
457 for (port = 0; port < CYGNUS_MAX_PLAYBACK_PORTS; port++) {
458 u32 esrmask = BIT(port);
459
460 /*
461 * Ringbuffer or FIFO underflow
462 * If we get this interrupt then, it is also true that we have
463 * not yet responded to the freemark interrupt.
464 * Log a debug message. The freemark handler below will
465 * handle getting everything going again.
466 */
467 if ((esrmask & esr_status1) || (esrmask & esr_status0)) {
468 dev_dbg(cygaud->dev,
469 "Underrun: esr0=0x%x, esr1=0x%x esr3=0x%x\n",
470 esr_status0, esr_status1, esr_status3);
471 }
472
473 /*
474 * Freemark is hit. This is the normal interrupt.
475 * In typical operation the read and write regs will be equal
476 */
477 if (esrmask & esr_status3) {
478 struct snd_pcm_substream *playstr;
479
480 playstr = cygaud->portinfo[port].play_stream;
481 cygnus_pcm_period_elapsed(playstr);
482 }
483 }
484
485 /* Clear ESR interrupt */
486 writel(esr_status0, audio_io + ESR0_STATUS_CLR_OFFSET);
487 writel(esr_status1, audio_io + ESR1_STATUS_CLR_OFFSET);
488 writel(esr_status3, audio_io + ESR3_STATUS_CLR_OFFSET);
489 /* Rearm freemark logic by writing 1 to the correct bit */
490 writel(esr_status3, audio_io + BF_REARM_FREE_MARK_OFFSET);
491 }
492
493 /*
494 * ESR2/4 status Description
495 * 0x1 I2S0_in port caused interrupt
496 * 0x2 I2S1_in port caused interrupt
497 * 0x4 I2S2_in port caused interrupt
498 */
handle_capture_irq(struct cygnus_audio * cygaud)499 static void handle_capture_irq(struct cygnus_audio *cygaud)
500 {
501 void __iomem *audio_io;
502 u32 port;
503 u32 esr_status2, esr_status4;
504
505 audio_io = cygaud->audio;
506
507 /*
508 * ESR status gets updates with/without interrupts enabled.
509 * So, check the ESR mask, which provides interrupt enable/
510 * disable status and use it to determine which ESR status
511 * should be serviced.
512 */
513 esr_status2 = readl(audio_io + ESR2_STATUS_OFFSET);
514 esr_status2 &= ~readl(audio_io + ESR2_MASK_STATUS_OFFSET);
515 esr_status4 = readl(audio_io + ESR4_STATUS_OFFSET);
516 esr_status4 &= ~readl(audio_io + ESR4_MASK_STATUS_OFFSET);
517
518 for (port = 0; port < CYGNUS_MAX_CAPTURE_PORTS; port++) {
519 u32 esrmask = BIT(port);
520
521 /*
522 * Ringbuffer or FIFO overflow
523 * If we get this interrupt then, it is also true that we have
524 * not yet responded to the fullmark interrupt.
525 * Log a debug message. The fullmark handler below will
526 * handle getting everything going again.
527 */
528 if (esrmask & esr_status2)
529 dev_dbg(cygaud->dev,
530 "Overflow: esr2=0x%x\n", esr_status2);
531
532 if (esrmask & esr_status4) {
533 struct snd_pcm_substream *capstr;
534
535 capstr = cygaud->portinfo[port].capture_stream;
536 cygnus_pcm_period_elapsed(capstr);
537 }
538 }
539
540 writel(esr_status2, audio_io + ESR2_STATUS_CLR_OFFSET);
541 writel(esr_status4, audio_io + ESR4_STATUS_CLR_OFFSET);
542 /* Rearm fullmark logic by writing 1 to the correct bit */
543 writel(esr_status4, audio_io + BF_REARM_FULL_MARK_OFFSET);
544 }
545
cygnus_dma_irq(int irq,void * data)546 static irqreturn_t cygnus_dma_irq(int irq, void *data)
547 {
548 u32 r5_status;
549 struct cygnus_audio *cygaud = data;
550
551 /*
552 * R5 status bits Description
553 * 0 ESR0 (playback FIFO interrupt)
554 * 1 ESR1 (playback rbuf interrupt)
555 * 2 ESR2 (capture rbuf interrupt)
556 * 3 ESR3 (Freemark play. interrupt)
557 * 4 ESR4 (Fullmark capt. interrupt)
558 */
559 r5_status = readl(cygaud->audio + INTH_R5F_STATUS_OFFSET);
560
561 if (!(r5_status & (ANY_PLAYBACK_IRQ | ANY_CAPTURE_IRQ)))
562 return IRQ_NONE;
563
564 /* If playback interrupt happened */
565 if (ANY_PLAYBACK_IRQ & r5_status) {
566 handle_playback_irq(cygaud);
567 writel(ANY_PLAYBACK_IRQ & r5_status,
568 cygaud->audio + INTH_R5F_CLEAR_OFFSET);
569 }
570
571 /* If capture interrupt happened */
572 if (ANY_CAPTURE_IRQ & r5_status) {
573 handle_capture_irq(cygaud);
574 writel(ANY_CAPTURE_IRQ & r5_status,
575 cygaud->audio + INTH_R5F_CLEAR_OFFSET);
576 }
577
578 return IRQ_HANDLED;
579 }
580
cygnus_pcm_open(struct snd_soc_component * component,struct snd_pcm_substream * substream)581 static int cygnus_pcm_open(struct snd_soc_component *component,
582 struct snd_pcm_substream *substream)
583 {
584 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
585 struct snd_pcm_runtime *runtime = substream->runtime;
586 struct cygnus_aio_port *aio;
587 int ret;
588
589 aio = cygnus_dai_get_dma_data(substream);
590 if (!aio)
591 return -ENODEV;
592
593 dev_dbg(asoc_rtd_to_cpu(rtd, 0)->dev, "%s port %d\n", __func__, aio->portnum);
594
595 snd_soc_set_runtime_hwparams(substream, &cygnus_pcm_hw);
596
597 ret = snd_pcm_hw_constraint_step(runtime, 0,
598 SNDRV_PCM_HW_PARAM_PERIOD_BYTES, PERIOD_BYTES_MIN);
599 if (ret < 0)
600 return ret;
601
602 ret = snd_pcm_hw_constraint_step(runtime, 0,
603 SNDRV_PCM_HW_PARAM_BUFFER_BYTES, PERIOD_BYTES_MIN);
604 if (ret < 0)
605 return ret;
606 /*
607 * Keep track of which substream belongs to which port.
608 * This info is needed by snd_pcm_period_elapsed() in irq_handler
609 */
610 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
611 aio->play_stream = substream;
612 else
613 aio->capture_stream = substream;
614
615 return 0;
616 }
617
cygnus_pcm_close(struct snd_soc_component * component,struct snd_pcm_substream * substream)618 static int cygnus_pcm_close(struct snd_soc_component *component,
619 struct snd_pcm_substream *substream)
620 {
621 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
622 struct cygnus_aio_port *aio;
623
624 aio = cygnus_dai_get_dma_data(substream);
625
626 dev_dbg(asoc_rtd_to_cpu(rtd, 0)->dev, "%s port %d\n", __func__, aio->portnum);
627
628 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
629 aio->play_stream = NULL;
630 else
631 aio->capture_stream = NULL;
632
633 if (!aio->play_stream && !aio->capture_stream)
634 dev_dbg(asoc_rtd_to_cpu(rtd, 0)->dev, "freed port %d\n", aio->portnum);
635
636 return 0;
637 }
638
cygnus_pcm_prepare(struct snd_soc_component * component,struct snd_pcm_substream * substream)639 static int cygnus_pcm_prepare(struct snd_soc_component *component,
640 struct snd_pcm_substream *substream)
641 {
642 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
643 struct snd_pcm_runtime *runtime = substream->runtime;
644 struct cygnus_aio_port *aio;
645 unsigned long bufsize, periodsize;
646 bool is_play;
647 u32 start;
648 struct ringbuf_regs *p_rbuf = NULL;
649
650 aio = cygnus_dai_get_dma_data(substream);
651 dev_dbg(asoc_rtd_to_cpu(rtd, 0)->dev, "%s port %d\n", __func__, aio->portnum);
652
653 bufsize = snd_pcm_lib_buffer_bytes(substream);
654 periodsize = snd_pcm_lib_period_bytes(substream);
655
656 dev_dbg(asoc_rtd_to_cpu(rtd, 0)->dev, "%s (buf_size %lu) (period_size %lu)\n",
657 __func__, bufsize, periodsize);
658
659 configure_ringbuf_regs(substream);
660
661 p_rbuf = get_ringbuf(substream);
662
663 start = runtime->dma_addr;
664
665 is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? 1 : 0;
666
667 ringbuf_set_initial(aio->cygaud->audio, p_rbuf, is_play, start,
668 periodsize, bufsize);
669
670 return 0;
671 }
672
cygnus_pcm_pointer(struct snd_soc_component * component,struct snd_pcm_substream * substream)673 static snd_pcm_uframes_t cygnus_pcm_pointer(struct snd_soc_component *component,
674 struct snd_pcm_substream *substream)
675 {
676 struct cygnus_aio_port *aio;
677 unsigned int res = 0, cur = 0, base = 0;
678 struct ringbuf_regs *p_rbuf = NULL;
679
680 aio = cygnus_dai_get_dma_data(substream);
681
682 /*
683 * Get the offset of the current read (for playack) or write
684 * index (for capture). Report this value back to the asoc framework.
685 */
686 p_rbuf = get_ringbuf(substream);
687 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
688 cur = readl(aio->cygaud->audio + p_rbuf->rdaddr);
689 else
690 cur = readl(aio->cygaud->audio + p_rbuf->wraddr);
691
692 base = readl(aio->cygaud->audio + p_rbuf->baseaddr);
693
694 /*
695 * Mask off the MSB of the rdaddr,wraddr and baseaddr
696 * since MSB is not part of the address
697 */
698 res = (cur & 0x7fffffff) - (base & 0x7fffffff);
699
700 return bytes_to_frames(substream->runtime, res);
701 }
702
cygnus_dma_new(struct snd_soc_component * component,struct snd_soc_pcm_runtime * rtd)703 static int cygnus_dma_new(struct snd_soc_component *component,
704 struct snd_soc_pcm_runtime *rtd)
705 {
706 size_t size = cygnus_pcm_hw.buffer_bytes_max;
707 struct snd_card *card = rtd->card->snd_card;
708
709 if (!card->dev->dma_mask)
710 card->dev->dma_mask = &cygnus_dma_dmamask;
711 if (!card->dev->coherent_dma_mask)
712 card->dev->coherent_dma_mask = DMA_BIT_MASK(32);
713
714 snd_pcm_set_managed_buffer_all(rtd->pcm, SNDRV_DMA_TYPE_DEV,
715 card->dev, size, size);
716
717 return 0;
718 }
719
720 static struct snd_soc_component_driver cygnus_soc_platform = {
721 .open = cygnus_pcm_open,
722 .close = cygnus_pcm_close,
723 .prepare = cygnus_pcm_prepare,
724 .trigger = cygnus_pcm_trigger,
725 .pointer = cygnus_pcm_pointer,
726 .pcm_construct = cygnus_dma_new,
727 };
728
cygnus_soc_platform_register(struct device * dev,struct cygnus_audio * cygaud)729 int cygnus_soc_platform_register(struct device *dev,
730 struct cygnus_audio *cygaud)
731 {
732 int rc;
733
734 dev_dbg(dev, "%s Enter\n", __func__);
735
736 rc = devm_request_irq(dev, cygaud->irq_num, cygnus_dma_irq,
737 IRQF_SHARED, "cygnus-audio", cygaud);
738 if (rc) {
739 dev_err(dev, "%s request_irq error %d\n", __func__, rc);
740 return rc;
741 }
742
743 rc = devm_snd_soc_register_component(dev, &cygnus_soc_platform,
744 NULL, 0);
745 if (rc) {
746 dev_err(dev, "%s failed\n", __func__);
747 return rc;
748 }
749
750 return 0;
751 }
752
cygnus_soc_platform_unregister(struct device * dev)753 int cygnus_soc_platform_unregister(struct device *dev)
754 {
755 return 0;
756 }
757
758 MODULE_LICENSE("GPL v2");
759 MODULE_AUTHOR("Broadcom");
760 MODULE_DESCRIPTION("Cygnus ASoC PCM module");
761