1 /*
2 * linux/drivers/video/cyber2000fb.c
3 *
4 * Copyright (C) 1998-2002 Russell King
5 *
6 * MIPS and 50xx clock support
7 * Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com>
8 *
9 * 32 bit support, text color and panning fixes for modes != 8 bit
10 * Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device
17 *
18 * Based on cyberfb.c.
19 *
20 * Note that we now use the new fbcon fix, var and cmap scheme. We do
21 * still have to check which console is the currently displayed one
22 * however, especially for the colourmap stuff.
23 *
24 * We also use the new hotplug PCI subsystem. I'm not sure if there
25 * are any such cards, but I'm erring on the side of caution. We don't
26 * want to go pop just because someone does have one.
27 *
28 * Note that this doesn't work fully in the case of multiple CyberPro
29 * cards with grabbers. We currently can only attach to the first
30 * CyberPro card found.
31 *
32 * When we're in truecolour mode, we power down the LUT RAM as a power
33 * saving feature. Also, when we enter any of the powersaving modes
34 * (except soft blanking) we power down the RAMDACs. This saves about
35 * 1W, which is roughly 8% of the power consumption of a NetWinder
36 * (which, incidentally, is about the same saving as a 2.5in hard disk
37 * entering standby mode.)
38 */
39 #include <linux/module.h>
40 #include <linux/kernel.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/mm.h>
44 #include <linux/slab.h>
45 #include <linux/delay.h>
46 #include <linux/fb.h>
47 #include <linux/pci.h>
48 #include <linux/init.h>
49 #include <linux/io.h>
50 #include <linux/i2c.h>
51 #include <linux/i2c-algo-bit.h>
52
53 #include <asm/pgtable.h>
54 #include <asm/system.h>
55
56 #ifdef __arm__
57 #include <asm/mach-types.h>
58 #endif
59
60 #include "cyber2000fb.h"
61
62 struct cfb_info {
63 struct fb_info fb;
64 struct display_switch *dispsw;
65 struct display *display;
66 unsigned char __iomem *region;
67 unsigned char __iomem *regs;
68 u_int id;
69 u_int irq;
70 int func_use_count;
71 u_long ref_ps;
72
73 /*
74 * Clock divisors
75 */
76 u_int divisors[4];
77
78 struct {
79 u8 red, green, blue;
80 } palette[NR_PALETTE];
81
82 u_char mem_ctl1;
83 u_char mem_ctl2;
84 u_char mclk_mult;
85 u_char mclk_div;
86 /*
87 * RAMDAC control register is both of these or'ed together
88 */
89 u_char ramdac_ctrl;
90 u_char ramdac_powerdown;
91
92 u32 pseudo_palette[16];
93
94 spinlock_t reg_b0_lock;
95
96 #ifdef CONFIG_FB_CYBER2000_DDC
97 bool ddc_registered;
98 struct i2c_adapter ddc_adapter;
99 struct i2c_algo_bit_data ddc_algo;
100 #endif
101
102 #ifdef CONFIG_FB_CYBER2000_I2C
103 struct i2c_adapter i2c_adapter;
104 struct i2c_algo_bit_data i2c_algo;
105 #endif
106 };
107
108 static char *default_font = "Acorn8x8";
109 module_param(default_font, charp, 0);
110 MODULE_PARM_DESC(default_font, "Default font name");
111
112 /*
113 * Our access methods.
114 */
115 #define cyber2000fb_writel(val, reg, cfb) writel(val, (cfb)->regs + (reg))
116 #define cyber2000fb_writew(val, reg, cfb) writew(val, (cfb)->regs + (reg))
117 #define cyber2000fb_writeb(val, reg, cfb) writeb(val, (cfb)->regs + (reg))
118
119 #define cyber2000fb_readb(reg, cfb) readb((cfb)->regs + (reg))
120
121 static inline void
cyber2000_crtcw(unsigned int reg,unsigned int val,struct cfb_info * cfb)122 cyber2000_crtcw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
123 {
124 cyber2000fb_writew((reg & 255) | val << 8, 0x3d4, cfb);
125 }
126
127 static inline void
cyber2000_grphw(unsigned int reg,unsigned int val,struct cfb_info * cfb)128 cyber2000_grphw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
129 {
130 cyber2000fb_writew((reg & 255) | val << 8, 0x3ce, cfb);
131 }
132
133 static inline unsigned int
cyber2000_grphr(unsigned int reg,struct cfb_info * cfb)134 cyber2000_grphr(unsigned int reg, struct cfb_info *cfb)
135 {
136 cyber2000fb_writeb(reg, 0x3ce, cfb);
137 return cyber2000fb_readb(0x3cf, cfb);
138 }
139
140 static inline void
cyber2000_attrw(unsigned int reg,unsigned int val,struct cfb_info * cfb)141 cyber2000_attrw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
142 {
143 cyber2000fb_readb(0x3da, cfb);
144 cyber2000fb_writeb(reg, 0x3c0, cfb);
145 cyber2000fb_readb(0x3c1, cfb);
146 cyber2000fb_writeb(val, 0x3c0, cfb);
147 }
148
149 static inline void
cyber2000_seqw(unsigned int reg,unsigned int val,struct cfb_info * cfb)150 cyber2000_seqw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
151 {
152 cyber2000fb_writew((reg & 255) | val << 8, 0x3c4, cfb);
153 }
154
155 /* -------------------- Hardware specific routines ------------------------- */
156
157 /*
158 * Hardware Cyber2000 Acceleration
159 */
160 static void
cyber2000fb_fillrect(struct fb_info * info,const struct fb_fillrect * rect)161 cyber2000fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
162 {
163 struct cfb_info *cfb = (struct cfb_info *)info;
164 unsigned long dst, col;
165
166 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
167 cfb_fillrect(info, rect);
168 return;
169 }
170
171 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
172 cyber2000fb_writew(rect->width - 1, CO_REG_PIXWIDTH, cfb);
173 cyber2000fb_writew(rect->height - 1, CO_REG_PIXHEIGHT, cfb);
174
175 col = rect->color;
176 if (cfb->fb.var.bits_per_pixel > 8)
177 col = ((u32 *)cfb->fb.pseudo_palette)[col];
178 cyber2000fb_writel(col, CO_REG_FGCOLOUR, cfb);
179
180 dst = rect->dx + rect->dy * cfb->fb.var.xres_virtual;
181 if (cfb->fb.var.bits_per_pixel == 24) {
182 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
183 dst *= 3;
184 }
185
186 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
187 cyber2000fb_writeb(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
188 cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL, CO_REG_CMD_L, cfb);
189 cyber2000fb_writew(CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb);
190 }
191
192 static void
cyber2000fb_copyarea(struct fb_info * info,const struct fb_copyarea * region)193 cyber2000fb_copyarea(struct fb_info *info, const struct fb_copyarea *region)
194 {
195 struct cfb_info *cfb = (struct cfb_info *)info;
196 unsigned int cmd = CO_CMD_L_PATTERN_FGCOL;
197 unsigned long src, dst;
198
199 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
200 cfb_copyarea(info, region);
201 return;
202 }
203
204 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
205 cyber2000fb_writew(region->width - 1, CO_REG_PIXWIDTH, cfb);
206 cyber2000fb_writew(region->height - 1, CO_REG_PIXHEIGHT, cfb);
207
208 src = region->sx + region->sy * cfb->fb.var.xres_virtual;
209 dst = region->dx + region->dy * cfb->fb.var.xres_virtual;
210
211 if (region->sx < region->dx) {
212 src += region->width - 1;
213 dst += region->width - 1;
214 cmd |= CO_CMD_L_INC_LEFT;
215 }
216
217 if (region->sy < region->dy) {
218 src += (region->height - 1) * cfb->fb.var.xres_virtual;
219 dst += (region->height - 1) * cfb->fb.var.xres_virtual;
220 cmd |= CO_CMD_L_INC_UP;
221 }
222
223 if (cfb->fb.var.bits_per_pixel == 24) {
224 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
225 src *= 3;
226 dst *= 3;
227 }
228 cyber2000fb_writel(src, CO_REG_SRC1_PTR, cfb);
229 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
230 cyber2000fb_writew(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
231 cyber2000fb_writew(cmd, CO_REG_CMD_L, cfb);
232 cyber2000fb_writew(CO_CMD_H_FGSRCMAP | CO_CMD_H_BLITTER,
233 CO_REG_CMD_H, cfb);
234 }
235
236 static void
cyber2000fb_imageblit(struct fb_info * info,const struct fb_image * image)237 cyber2000fb_imageblit(struct fb_info *info, const struct fb_image *image)
238 {
239 cfb_imageblit(info, image);
240 return;
241 }
242
cyber2000fb_sync(struct fb_info * info)243 static int cyber2000fb_sync(struct fb_info *info)
244 {
245 struct cfb_info *cfb = (struct cfb_info *)info;
246 int count = 100000;
247
248 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT))
249 return 0;
250
251 while (cyber2000fb_readb(CO_REG_CONTROL, cfb) & CO_CTRL_BUSY) {
252 if (!count--) {
253 debug_printf("accel_wait timed out\n");
254 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
255 break;
256 }
257 udelay(1);
258 }
259 return 0;
260 }
261
262 /*
263 * ===========================================================================
264 */
265
convert_bitfield(u_int val,struct fb_bitfield * bf)266 static inline u32 convert_bitfield(u_int val, struct fb_bitfield *bf)
267 {
268 u_int mask = (1 << bf->length) - 1;
269
270 return (val >> (16 - bf->length) & mask) << bf->offset;
271 }
272
273 /*
274 * Set a single color register. Return != 0 for invalid regno.
275 */
276 static int
cyber2000fb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int transp,struct fb_info * info)277 cyber2000fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
278 u_int transp, struct fb_info *info)
279 {
280 struct cfb_info *cfb = (struct cfb_info *)info;
281 struct fb_var_screeninfo *var = &cfb->fb.var;
282 u32 pseudo_val;
283 int ret = 1;
284
285 switch (cfb->fb.fix.visual) {
286 default:
287 return 1;
288
289 /*
290 * Pseudocolour:
291 * 8 8
292 * pixel --/--+--/--> red lut --> red dac
293 * | 8
294 * +--/--> green lut --> green dac
295 * | 8
296 * +--/--> blue lut --> blue dac
297 */
298 case FB_VISUAL_PSEUDOCOLOR:
299 if (regno >= NR_PALETTE)
300 return 1;
301
302 red >>= 8;
303 green >>= 8;
304 blue >>= 8;
305
306 cfb->palette[regno].red = red;
307 cfb->palette[regno].green = green;
308 cfb->palette[regno].blue = blue;
309
310 cyber2000fb_writeb(regno, 0x3c8, cfb);
311 cyber2000fb_writeb(red, 0x3c9, cfb);
312 cyber2000fb_writeb(green, 0x3c9, cfb);
313 cyber2000fb_writeb(blue, 0x3c9, cfb);
314 return 0;
315
316 /*
317 * Direct colour:
318 * n rl
319 * pixel --/--+--/--> red lut --> red dac
320 * | gl
321 * +--/--> green lut --> green dac
322 * | bl
323 * +--/--> blue lut --> blue dac
324 * n = bpp, rl = red length, gl = green length, bl = blue length
325 */
326 case FB_VISUAL_DIRECTCOLOR:
327 red >>= 8;
328 green >>= 8;
329 blue >>= 8;
330
331 if (var->green.length == 6 && regno < 64) {
332 cfb->palette[regno << 2].green = green;
333
334 /*
335 * The 6 bits of the green component are applied
336 * to the high 6 bits of the LUT.
337 */
338 cyber2000fb_writeb(regno << 2, 0x3c8, cfb);
339 cyber2000fb_writeb(cfb->palette[regno >> 1].red,
340 0x3c9, cfb);
341 cyber2000fb_writeb(green, 0x3c9, cfb);
342 cyber2000fb_writeb(cfb->palette[regno >> 1].blue,
343 0x3c9, cfb);
344
345 green = cfb->palette[regno << 3].green;
346
347 ret = 0;
348 }
349
350 if (var->green.length >= 5 && regno < 32) {
351 cfb->palette[regno << 3].red = red;
352 cfb->palette[regno << 3].green = green;
353 cfb->palette[regno << 3].blue = blue;
354
355 /*
356 * The 5 bits of each colour component are
357 * applied to the high 5 bits of the LUT.
358 */
359 cyber2000fb_writeb(regno << 3, 0x3c8, cfb);
360 cyber2000fb_writeb(red, 0x3c9, cfb);
361 cyber2000fb_writeb(green, 0x3c9, cfb);
362 cyber2000fb_writeb(blue, 0x3c9, cfb);
363 ret = 0;
364 }
365
366 if (var->green.length == 4 && regno < 16) {
367 cfb->palette[regno << 4].red = red;
368 cfb->palette[regno << 4].green = green;
369 cfb->palette[regno << 4].blue = blue;
370
371 /*
372 * The 5 bits of each colour component are
373 * applied to the high 5 bits of the LUT.
374 */
375 cyber2000fb_writeb(regno << 4, 0x3c8, cfb);
376 cyber2000fb_writeb(red, 0x3c9, cfb);
377 cyber2000fb_writeb(green, 0x3c9, cfb);
378 cyber2000fb_writeb(blue, 0x3c9, cfb);
379 ret = 0;
380 }
381
382 /*
383 * Since this is only used for the first 16 colours, we
384 * don't have to care about overflowing for regno >= 32
385 */
386 pseudo_val = regno << var->red.offset |
387 regno << var->green.offset |
388 regno << var->blue.offset;
389 break;
390
391 /*
392 * True colour:
393 * n rl
394 * pixel --/--+--/--> red dac
395 * | gl
396 * +--/--> green dac
397 * | bl
398 * +--/--> blue dac
399 * n = bpp, rl = red length, gl = green length, bl = blue length
400 */
401 case FB_VISUAL_TRUECOLOR:
402 pseudo_val = convert_bitfield(transp ^ 0xffff, &var->transp);
403 pseudo_val |= convert_bitfield(red, &var->red);
404 pseudo_val |= convert_bitfield(green, &var->green);
405 pseudo_val |= convert_bitfield(blue, &var->blue);
406 ret = 0;
407 break;
408 }
409
410 /*
411 * Now set our pseudo palette for the CFB16/24/32 drivers.
412 */
413 if (regno < 16)
414 ((u32 *)cfb->fb.pseudo_palette)[regno] = pseudo_val;
415
416 return ret;
417 }
418
419 struct par_info {
420 /*
421 * Hardware
422 */
423 u_char clock_mult;
424 u_char clock_div;
425 u_char extseqmisc;
426 u_char co_pixfmt;
427 u_char crtc_ofl;
428 u_char crtc[19];
429 u_int width;
430 u_int pitch;
431 u_int fetch;
432
433 /*
434 * Other
435 */
436 u_char ramdac;
437 };
438
439 static const u_char crtc_idx[] = {
440 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
441 0x08, 0x09,
442 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18
443 };
444
cyber2000fb_write_ramdac_ctrl(struct cfb_info * cfb)445 static void cyber2000fb_write_ramdac_ctrl(struct cfb_info *cfb)
446 {
447 unsigned int i;
448 unsigned int val = cfb->ramdac_ctrl | cfb->ramdac_powerdown;
449
450 cyber2000fb_writeb(0x56, 0x3ce, cfb);
451 i = cyber2000fb_readb(0x3cf, cfb);
452 cyber2000fb_writeb(i | 4, 0x3cf, cfb);
453 cyber2000fb_writeb(val, 0x3c6, cfb);
454 cyber2000fb_writeb(i, 0x3cf, cfb);
455 /* prevent card lock-up observed on x86 with CyberPro 2000 */
456 cyber2000fb_readb(0x3cf, cfb);
457 }
458
cyber2000fb_set_timing(struct cfb_info * cfb,struct par_info * hw)459 static void cyber2000fb_set_timing(struct cfb_info *cfb, struct par_info *hw)
460 {
461 u_int i;
462
463 /*
464 * Blank palette
465 */
466 for (i = 0; i < NR_PALETTE; i++) {
467 cyber2000fb_writeb(i, 0x3c8, cfb);
468 cyber2000fb_writeb(0, 0x3c9, cfb);
469 cyber2000fb_writeb(0, 0x3c9, cfb);
470 cyber2000fb_writeb(0, 0x3c9, cfb);
471 }
472
473 cyber2000fb_writeb(0xef, 0x3c2, cfb);
474 cyber2000_crtcw(0x11, 0x0b, cfb);
475 cyber2000_attrw(0x11, 0x00, cfb);
476
477 cyber2000_seqw(0x00, 0x01, cfb);
478 cyber2000_seqw(0x01, 0x01, cfb);
479 cyber2000_seqw(0x02, 0x0f, cfb);
480 cyber2000_seqw(0x03, 0x00, cfb);
481 cyber2000_seqw(0x04, 0x0e, cfb);
482 cyber2000_seqw(0x00, 0x03, cfb);
483
484 for (i = 0; i < sizeof(crtc_idx); i++)
485 cyber2000_crtcw(crtc_idx[i], hw->crtc[i], cfb);
486
487 for (i = 0x0a; i < 0x10; i++)
488 cyber2000_crtcw(i, 0, cfb);
489
490 cyber2000_grphw(EXT_CRT_VRTOFL, hw->crtc_ofl, cfb);
491 cyber2000_grphw(0x00, 0x00, cfb);
492 cyber2000_grphw(0x01, 0x00, cfb);
493 cyber2000_grphw(0x02, 0x00, cfb);
494 cyber2000_grphw(0x03, 0x00, cfb);
495 cyber2000_grphw(0x04, 0x00, cfb);
496 cyber2000_grphw(0x05, 0x60, cfb);
497 cyber2000_grphw(0x06, 0x05, cfb);
498 cyber2000_grphw(0x07, 0x0f, cfb);
499 cyber2000_grphw(0x08, 0xff, cfb);
500
501 /* Attribute controller registers */
502 for (i = 0; i < 16; i++)
503 cyber2000_attrw(i, i, cfb);
504
505 cyber2000_attrw(0x10, 0x01, cfb);
506 cyber2000_attrw(0x11, 0x00, cfb);
507 cyber2000_attrw(0x12, 0x0f, cfb);
508 cyber2000_attrw(0x13, 0x00, cfb);
509 cyber2000_attrw(0x14, 0x00, cfb);
510
511 /* PLL registers */
512 spin_lock(&cfb->reg_b0_lock);
513 cyber2000_grphw(EXT_DCLK_MULT, hw->clock_mult, cfb);
514 cyber2000_grphw(EXT_DCLK_DIV, hw->clock_div, cfb);
515 cyber2000_grphw(EXT_MCLK_MULT, cfb->mclk_mult, cfb);
516 cyber2000_grphw(EXT_MCLK_DIV, cfb->mclk_div, cfb);
517 cyber2000_grphw(0x90, 0x01, cfb);
518 cyber2000_grphw(0xb9, 0x80, cfb);
519 cyber2000_grphw(0xb9, 0x00, cfb);
520 spin_unlock(&cfb->reg_b0_lock);
521
522 cfb->ramdac_ctrl = hw->ramdac;
523 cyber2000fb_write_ramdac_ctrl(cfb);
524
525 cyber2000fb_writeb(0x20, 0x3c0, cfb);
526 cyber2000fb_writeb(0xff, 0x3c6, cfb);
527
528 cyber2000_grphw(0x14, hw->fetch, cfb);
529 cyber2000_grphw(0x15, ((hw->fetch >> 8) & 0x03) |
530 ((hw->pitch >> 4) & 0x30), cfb);
531 cyber2000_grphw(EXT_SEQ_MISC, hw->extseqmisc, cfb);
532
533 /*
534 * Set up accelerator registers
535 */
536 cyber2000fb_writew(hw->width, CO_REG_SRC_WIDTH, cfb);
537 cyber2000fb_writew(hw->width, CO_REG_DEST_WIDTH, cfb);
538 cyber2000fb_writeb(hw->co_pixfmt, CO_REG_PIXFMT, cfb);
539 }
540
541 static inline int
cyber2000fb_update_start(struct cfb_info * cfb,struct fb_var_screeninfo * var)542 cyber2000fb_update_start(struct cfb_info *cfb, struct fb_var_screeninfo *var)
543 {
544 u_int base = var->yoffset * var->xres_virtual + var->xoffset;
545
546 base *= var->bits_per_pixel;
547
548 /*
549 * Convert to bytes and shift two extra bits because DAC
550 * can only start on 4 byte aligned data.
551 */
552 base >>= 5;
553
554 if (base >= 1 << 20)
555 return -EINVAL;
556
557 cyber2000_grphw(0x10, base >> 16 | 0x10, cfb);
558 cyber2000_crtcw(0x0c, base >> 8, cfb);
559 cyber2000_crtcw(0x0d, base, cfb);
560
561 return 0;
562 }
563
564 static int
cyber2000fb_decode_crtc(struct par_info * hw,struct cfb_info * cfb,struct fb_var_screeninfo * var)565 cyber2000fb_decode_crtc(struct par_info *hw, struct cfb_info *cfb,
566 struct fb_var_screeninfo *var)
567 {
568 u_int Htotal, Hblankend, Hsyncend;
569 u_int Vtotal, Vdispend, Vblankstart, Vblankend, Vsyncstart, Vsyncend;
570 #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2))
571
572 hw->crtc[13] = hw->pitch;
573 hw->crtc[17] = 0xe3;
574 hw->crtc[14] = 0;
575 hw->crtc[8] = 0;
576
577 Htotal = var->xres + var->right_margin +
578 var->hsync_len + var->left_margin;
579
580 if (Htotal > 2080)
581 return -EINVAL;
582
583 hw->crtc[0] = (Htotal >> 3) - 5;
584 hw->crtc[1] = (var->xres >> 3) - 1;
585 hw->crtc[2] = var->xres >> 3;
586 hw->crtc[4] = (var->xres + var->right_margin) >> 3;
587
588 Hblankend = (Htotal - 4 * 8) >> 3;
589
590 hw->crtc[3] = ENCODE_BIT(Hblankend, 0, 0x1f, 0) |
591 ENCODE_BIT(1, 0, 0x01, 7);
592
593 Hsyncend = (var->xres + var->right_margin + var->hsync_len) >> 3;
594
595 hw->crtc[5] = ENCODE_BIT(Hsyncend, 0, 0x1f, 0) |
596 ENCODE_BIT(Hblankend, 5, 0x01, 7);
597
598 Vdispend = var->yres - 1;
599 Vsyncstart = var->yres + var->lower_margin;
600 Vsyncend = var->yres + var->lower_margin + var->vsync_len;
601 Vtotal = var->yres + var->lower_margin + var->vsync_len +
602 var->upper_margin - 2;
603
604 if (Vtotal > 2047)
605 return -EINVAL;
606
607 Vblankstart = var->yres + 6;
608 Vblankend = Vtotal - 10;
609
610 hw->crtc[6] = Vtotal;
611 hw->crtc[7] = ENCODE_BIT(Vtotal, 8, 0x01, 0) |
612 ENCODE_BIT(Vdispend, 8, 0x01, 1) |
613 ENCODE_BIT(Vsyncstart, 8, 0x01, 2) |
614 ENCODE_BIT(Vblankstart, 8, 0x01, 3) |
615 ENCODE_BIT(1, 0, 0x01, 4) |
616 ENCODE_BIT(Vtotal, 9, 0x01, 5) |
617 ENCODE_BIT(Vdispend, 9, 0x01, 6) |
618 ENCODE_BIT(Vsyncstart, 9, 0x01, 7);
619 hw->crtc[9] = ENCODE_BIT(0, 0, 0x1f, 0) |
620 ENCODE_BIT(Vblankstart, 9, 0x01, 5) |
621 ENCODE_BIT(1, 0, 0x01, 6);
622 hw->crtc[10] = Vsyncstart;
623 hw->crtc[11] = ENCODE_BIT(Vsyncend, 0, 0x0f, 0) |
624 ENCODE_BIT(1, 0, 0x01, 7);
625 hw->crtc[12] = Vdispend;
626 hw->crtc[15] = Vblankstart;
627 hw->crtc[16] = Vblankend;
628 hw->crtc[18] = 0xff;
629
630 /*
631 * overflow - graphics reg 0x11
632 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10
633 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT
634 */
635 hw->crtc_ofl =
636 ENCODE_BIT(Vtotal, 10, 0x01, 0) |
637 ENCODE_BIT(Vdispend, 10, 0x01, 1) |
638 ENCODE_BIT(Vsyncstart, 10, 0x01, 2) |
639 ENCODE_BIT(Vblankstart, 10, 0x01, 3) |
640 EXT_CRT_VRTOFL_LINECOMP10;
641
642 /* woody: set the interlaced bit... */
643 /* FIXME: what about doublescan? */
644 if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED)
645 hw->crtc_ofl |= EXT_CRT_VRTOFL_INTERLACE;
646
647 return 0;
648 }
649
650 /*
651 * The following was discovered by a good monitor, bit twiddling, theorising
652 * and but mostly luck. Strangely, it looks like everyone elses' PLL!
653 *
654 * Clock registers:
655 * fclock = fpll / div2
656 * fpll = fref * mult / div1
657 * where:
658 * fref = 14.318MHz (69842ps)
659 * mult = reg0xb0.7:0
660 * div1 = (reg0xb1.5:0 + 1)
661 * div2 = 2^(reg0xb1.7:6)
662 * fpll should be between 115 and 260 MHz
663 * (8696ps and 3846ps)
664 */
665 static int
cyber2000fb_decode_clock(struct par_info * hw,struct cfb_info * cfb,struct fb_var_screeninfo * var)666 cyber2000fb_decode_clock(struct par_info *hw, struct cfb_info *cfb,
667 struct fb_var_screeninfo *var)
668 {
669 u_long pll_ps = var->pixclock;
670 const u_long ref_ps = cfb->ref_ps;
671 u_int div2, t_div1, best_div1, best_mult;
672 int best_diff;
673 int vco;
674
675 /*
676 * Step 1:
677 * find div2 such that 115MHz < fpll < 260MHz
678 * and 0 <= div2 < 4
679 */
680 for (div2 = 0; div2 < 4; div2++) {
681 u_long new_pll;
682
683 new_pll = pll_ps / cfb->divisors[div2];
684 if (8696 > new_pll && new_pll > 3846) {
685 pll_ps = new_pll;
686 break;
687 }
688 }
689
690 if (div2 == 4)
691 return -EINVAL;
692
693 /*
694 * Step 2:
695 * Given pll_ps and ref_ps, find:
696 * pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005
697 * where { 1 < best_div1 < 32, 1 < best_mult < 256 }
698 * pll_ps_calc = best_div1 / (ref_ps * best_mult)
699 */
700 best_diff = 0x7fffffff;
701 best_mult = 2;
702 best_div1 = 32;
703 for (t_div1 = 2; t_div1 < 32; t_div1 += 1) {
704 u_int rr, t_mult, t_pll_ps;
705 int diff;
706
707 /*
708 * Find the multiplier for this divisor
709 */
710 rr = ref_ps * t_div1;
711 t_mult = (rr + pll_ps / 2) / pll_ps;
712
713 /*
714 * Is the multiplier within the correct range?
715 */
716 if (t_mult > 256 || t_mult < 2)
717 continue;
718
719 /*
720 * Calculate the actual clock period from this multiplier
721 * and divisor, and estimate the error.
722 */
723 t_pll_ps = (rr + t_mult / 2) / t_mult;
724 diff = pll_ps - t_pll_ps;
725 if (diff < 0)
726 diff = -diff;
727
728 if (diff < best_diff) {
729 best_diff = diff;
730 best_mult = t_mult;
731 best_div1 = t_div1;
732 }
733
734 /*
735 * If we hit an exact value, there is no point in continuing.
736 */
737 if (diff == 0)
738 break;
739 }
740
741 /*
742 * Step 3:
743 * combine values
744 */
745 hw->clock_mult = best_mult - 1;
746 hw->clock_div = div2 << 6 | (best_div1 - 1);
747
748 vco = ref_ps * best_div1 / best_mult;
749 if ((ref_ps == 40690) && (vco < 5556))
750 /* Set VFSEL when VCO > 180MHz (5.556 ps). */
751 hw->clock_div |= EXT_DCLK_DIV_VFSEL;
752
753 return 0;
754 }
755
756 /*
757 * Set the User Defined Part of the Display
758 */
759 static int
cyber2000fb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)760 cyber2000fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
761 {
762 struct cfb_info *cfb = (struct cfb_info *)info;
763 struct par_info hw;
764 unsigned int mem;
765 int err;
766
767 var->transp.msb_right = 0;
768 var->red.msb_right = 0;
769 var->green.msb_right = 0;
770 var->blue.msb_right = 0;
771 var->transp.offset = 0;
772 var->transp.length = 0;
773
774 switch (var->bits_per_pixel) {
775 case 8: /* PSEUDOCOLOUR, 256 */
776 var->red.offset = 0;
777 var->red.length = 8;
778 var->green.offset = 0;
779 var->green.length = 8;
780 var->blue.offset = 0;
781 var->blue.length = 8;
782 break;
783
784 case 16:/* DIRECTCOLOUR, 64k or 32k */
785 switch (var->green.length) {
786 case 6: /* RGB565, 64k */
787 var->red.offset = 11;
788 var->red.length = 5;
789 var->green.offset = 5;
790 var->green.length = 6;
791 var->blue.offset = 0;
792 var->blue.length = 5;
793 break;
794
795 default:
796 case 5: /* RGB555, 32k */
797 var->red.offset = 10;
798 var->red.length = 5;
799 var->green.offset = 5;
800 var->green.length = 5;
801 var->blue.offset = 0;
802 var->blue.length = 5;
803 break;
804
805 case 4: /* RGB444, 4k + transparency? */
806 var->transp.offset = 12;
807 var->transp.length = 4;
808 var->red.offset = 8;
809 var->red.length = 4;
810 var->green.offset = 4;
811 var->green.length = 4;
812 var->blue.offset = 0;
813 var->blue.length = 4;
814 break;
815 }
816 break;
817
818 case 24:/* TRUECOLOUR, 16m */
819 var->red.offset = 16;
820 var->red.length = 8;
821 var->green.offset = 8;
822 var->green.length = 8;
823 var->blue.offset = 0;
824 var->blue.length = 8;
825 break;
826
827 case 32:/* TRUECOLOUR, 16m */
828 var->transp.offset = 24;
829 var->transp.length = 8;
830 var->red.offset = 16;
831 var->red.length = 8;
832 var->green.offset = 8;
833 var->green.length = 8;
834 var->blue.offset = 0;
835 var->blue.length = 8;
836 break;
837
838 default:
839 return -EINVAL;
840 }
841
842 mem = var->xres_virtual * var->yres_virtual * (var->bits_per_pixel / 8);
843 if (mem > cfb->fb.fix.smem_len)
844 var->yres_virtual = cfb->fb.fix.smem_len * 8 /
845 (var->bits_per_pixel * var->xres_virtual);
846
847 if (var->yres > var->yres_virtual)
848 var->yres = var->yres_virtual;
849 if (var->xres > var->xres_virtual)
850 var->xres = var->xres_virtual;
851
852 err = cyber2000fb_decode_clock(&hw, cfb, var);
853 if (err)
854 return err;
855
856 err = cyber2000fb_decode_crtc(&hw, cfb, var);
857 if (err)
858 return err;
859
860 return 0;
861 }
862
cyber2000fb_set_par(struct fb_info * info)863 static int cyber2000fb_set_par(struct fb_info *info)
864 {
865 struct cfb_info *cfb = (struct cfb_info *)info;
866 struct fb_var_screeninfo *var = &cfb->fb.var;
867 struct par_info hw;
868 unsigned int mem;
869
870 hw.width = var->xres_virtual;
871 hw.ramdac = RAMDAC_VREFEN | RAMDAC_DAC8BIT;
872
873 switch (var->bits_per_pixel) {
874 case 8:
875 hw.co_pixfmt = CO_PIXFMT_8BPP;
876 hw.pitch = hw.width >> 3;
877 hw.extseqmisc = EXT_SEQ_MISC_8;
878 break;
879
880 case 16:
881 hw.co_pixfmt = CO_PIXFMT_16BPP;
882 hw.pitch = hw.width >> 2;
883
884 switch (var->green.length) {
885 case 6: /* RGB565, 64k */
886 hw.extseqmisc = EXT_SEQ_MISC_16_RGB565;
887 break;
888 case 5: /* RGB555, 32k */
889 hw.extseqmisc = EXT_SEQ_MISC_16_RGB555;
890 break;
891 case 4: /* RGB444, 4k + transparency? */
892 hw.extseqmisc = EXT_SEQ_MISC_16_RGB444;
893 break;
894 default:
895 BUG();
896 }
897 break;
898
899 case 24:/* TRUECOLOUR, 16m */
900 hw.co_pixfmt = CO_PIXFMT_24BPP;
901 hw.width *= 3;
902 hw.pitch = hw.width >> 3;
903 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
904 hw.extseqmisc = EXT_SEQ_MISC_24_RGB888;
905 break;
906
907 case 32:/* TRUECOLOUR, 16m */
908 hw.co_pixfmt = CO_PIXFMT_32BPP;
909 hw.pitch = hw.width >> 1;
910 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
911 hw.extseqmisc = EXT_SEQ_MISC_32;
912 break;
913
914 default:
915 BUG();
916 }
917
918 /*
919 * Sigh, this is absolutely disgusting, but caused by
920 * the way the fbcon developers want to separate out
921 * the "checking" and the "setting" of the video mode.
922 *
923 * If the mode is not suitable for the hardware here,
924 * we can't prevent it being set by returning an error.
925 *
926 * In theory, since NetWinders contain just one VGA card,
927 * we should never end up hitting this problem.
928 */
929 BUG_ON(cyber2000fb_decode_clock(&hw, cfb, var) != 0);
930 BUG_ON(cyber2000fb_decode_crtc(&hw, cfb, var) != 0);
931
932 hw.width -= 1;
933 hw.fetch = hw.pitch;
934 if (!(cfb->mem_ctl2 & MEM_CTL2_64BIT))
935 hw.fetch <<= 1;
936 hw.fetch += 1;
937
938 cfb->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8;
939
940 /*
941 * Same here - if the size of the video mode exceeds the
942 * available RAM, we can't prevent this mode being set.
943 *
944 * In theory, since NetWinders contain just one VGA card,
945 * we should never end up hitting this problem.
946 */
947 mem = cfb->fb.fix.line_length * var->yres_virtual;
948 BUG_ON(mem > cfb->fb.fix.smem_len);
949
950 /*
951 * 8bpp displays are always pseudo colour. 16bpp and above
952 * are direct colour or true colour, depending on whether
953 * the RAMDAC palettes are bypassed. (Direct colour has
954 * palettes, true colour does not.)
955 */
956 if (var->bits_per_pixel == 8)
957 cfb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
958 else if (hw.ramdac & RAMDAC_BYPASS)
959 cfb->fb.fix.visual = FB_VISUAL_TRUECOLOR;
960 else
961 cfb->fb.fix.visual = FB_VISUAL_DIRECTCOLOR;
962
963 cyber2000fb_set_timing(cfb, &hw);
964 cyber2000fb_update_start(cfb, var);
965
966 return 0;
967 }
968
969 /*
970 * Pan or Wrap the Display
971 */
972 static int
cyber2000fb_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)973 cyber2000fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
974 {
975 struct cfb_info *cfb = (struct cfb_info *)info;
976
977 if (cyber2000fb_update_start(cfb, var))
978 return -EINVAL;
979
980 cfb->fb.var.xoffset = var->xoffset;
981 cfb->fb.var.yoffset = var->yoffset;
982
983 if (var->vmode & FB_VMODE_YWRAP) {
984 cfb->fb.var.vmode |= FB_VMODE_YWRAP;
985 } else {
986 cfb->fb.var.vmode &= ~FB_VMODE_YWRAP;
987 }
988
989 return 0;
990 }
991
992 /*
993 * (Un)Blank the display.
994 *
995 * Blank the screen if blank_mode != 0, else unblank. If
996 * blank == NULL then the caller blanks by setting the CLUT
997 * (Color Look Up Table) to all black. Return 0 if blanking
998 * succeeded, != 0 if un-/blanking failed due to e.g. a
999 * video mode which doesn't support it. Implements VESA
1000 * suspend and powerdown modes on hardware that supports
1001 * disabling hsync/vsync:
1002 * blank_mode == 2: suspend vsync
1003 * blank_mode == 3: suspend hsync
1004 * blank_mode == 4: powerdown
1005 *
1006 * wms...Enable VESA DMPS compatible powerdown mode
1007 * run "setterm -powersave powerdown" to take advantage
1008 */
cyber2000fb_blank(int blank,struct fb_info * info)1009 static int cyber2000fb_blank(int blank, struct fb_info *info)
1010 {
1011 struct cfb_info *cfb = (struct cfb_info *)info;
1012 unsigned int sync = 0;
1013 int i;
1014
1015 switch (blank) {
1016 case FB_BLANK_POWERDOWN: /* powerdown - both sync lines down */
1017 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_0;
1018 break;
1019 case FB_BLANK_HSYNC_SUSPEND: /* hsync off */
1020 sync = EXT_SYNC_CTL_VS_NORMAL | EXT_SYNC_CTL_HS_0;
1021 break;
1022 case FB_BLANK_VSYNC_SUSPEND: /* vsync off */
1023 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_NORMAL;
1024 break;
1025 case FB_BLANK_NORMAL: /* soft blank */
1026 default: /* unblank */
1027 break;
1028 }
1029
1030 cyber2000_grphw(EXT_SYNC_CTL, sync, cfb);
1031
1032 if (blank <= 1) {
1033 /* turn on ramdacs */
1034 cfb->ramdac_powerdown &= ~(RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1035 RAMDAC_RAMPWRDN);
1036 cyber2000fb_write_ramdac_ctrl(cfb);
1037 }
1038
1039 /*
1040 * Soft blank/unblank the display.
1041 */
1042 if (blank) { /* soft blank */
1043 for (i = 0; i < NR_PALETTE; i++) {
1044 cyber2000fb_writeb(i, 0x3c8, cfb);
1045 cyber2000fb_writeb(0, 0x3c9, cfb);
1046 cyber2000fb_writeb(0, 0x3c9, cfb);
1047 cyber2000fb_writeb(0, 0x3c9, cfb);
1048 }
1049 } else { /* unblank */
1050 for (i = 0; i < NR_PALETTE; i++) {
1051 cyber2000fb_writeb(i, 0x3c8, cfb);
1052 cyber2000fb_writeb(cfb->palette[i].red, 0x3c9, cfb);
1053 cyber2000fb_writeb(cfb->palette[i].green, 0x3c9, cfb);
1054 cyber2000fb_writeb(cfb->palette[i].blue, 0x3c9, cfb);
1055 }
1056 }
1057
1058 if (blank >= 2) {
1059 /* turn off ramdacs */
1060 cfb->ramdac_powerdown |= RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1061 RAMDAC_RAMPWRDN;
1062 cyber2000fb_write_ramdac_ctrl(cfb);
1063 }
1064
1065 return 0;
1066 }
1067
1068 static struct fb_ops cyber2000fb_ops = {
1069 .owner = THIS_MODULE,
1070 .fb_check_var = cyber2000fb_check_var,
1071 .fb_set_par = cyber2000fb_set_par,
1072 .fb_setcolreg = cyber2000fb_setcolreg,
1073 .fb_blank = cyber2000fb_blank,
1074 .fb_pan_display = cyber2000fb_pan_display,
1075 .fb_fillrect = cyber2000fb_fillrect,
1076 .fb_copyarea = cyber2000fb_copyarea,
1077 .fb_imageblit = cyber2000fb_imageblit,
1078 .fb_sync = cyber2000fb_sync,
1079 };
1080
1081 /*
1082 * This is the only "static" reference to the internal data structures
1083 * of this driver. It is here solely at the moment to support the other
1084 * CyberPro modules external to this driver.
1085 */
1086 static struct cfb_info *int_cfb_info;
1087
1088 /*
1089 * Enable access to the extended registers
1090 */
cyber2000fb_enable_extregs(struct cfb_info * cfb)1091 void cyber2000fb_enable_extregs(struct cfb_info *cfb)
1092 {
1093 cfb->func_use_count += 1;
1094
1095 if (cfb->func_use_count == 1) {
1096 int old;
1097
1098 old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1099 old |= EXT_FUNC_CTL_EXTREGENBL;
1100 cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1101 }
1102 }
1103 EXPORT_SYMBOL(cyber2000fb_enable_extregs);
1104
1105 /*
1106 * Disable access to the extended registers
1107 */
cyber2000fb_disable_extregs(struct cfb_info * cfb)1108 void cyber2000fb_disable_extregs(struct cfb_info *cfb)
1109 {
1110 if (cfb->func_use_count == 1) {
1111 int old;
1112
1113 old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1114 old &= ~EXT_FUNC_CTL_EXTREGENBL;
1115 cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1116 }
1117
1118 if (cfb->func_use_count == 0)
1119 printk(KERN_ERR "disable_extregs: count = 0\n");
1120 else
1121 cfb->func_use_count -= 1;
1122 }
1123 EXPORT_SYMBOL(cyber2000fb_disable_extregs);
1124
1125 /*
1126 * Attach a capture/tv driver to the core CyberX0X0 driver.
1127 */
cyber2000fb_attach(struct cyberpro_info * info,int idx)1128 int cyber2000fb_attach(struct cyberpro_info *info, int idx)
1129 {
1130 if (int_cfb_info != NULL) {
1131 info->dev = int_cfb_info->fb.device;
1132 #ifdef CONFIG_FB_CYBER2000_I2C
1133 info->i2c = &int_cfb_info->i2c_adapter;
1134 #else
1135 info->i2c = NULL;
1136 #endif
1137 info->regs = int_cfb_info->regs;
1138 info->irq = int_cfb_info->irq;
1139 info->fb = int_cfb_info->fb.screen_base;
1140 info->fb_size = int_cfb_info->fb.fix.smem_len;
1141 info->info = int_cfb_info;
1142
1143 strlcpy(info->dev_name, int_cfb_info->fb.fix.id,
1144 sizeof(info->dev_name));
1145 }
1146
1147 return int_cfb_info != NULL;
1148 }
1149 EXPORT_SYMBOL(cyber2000fb_attach);
1150
1151 /*
1152 * Detach a capture/tv driver from the core CyberX0X0 driver.
1153 */
cyber2000fb_detach(int idx)1154 void cyber2000fb_detach(int idx)
1155 {
1156 }
1157 EXPORT_SYMBOL(cyber2000fb_detach);
1158
1159 #ifdef CONFIG_FB_CYBER2000_DDC
1160
1161 #define DDC_REG 0xb0
1162 #define DDC_SCL_OUT (1 << 0)
1163 #define DDC_SDA_OUT (1 << 4)
1164 #define DDC_SCL_IN (1 << 2)
1165 #define DDC_SDA_IN (1 << 6)
1166
cyber2000fb_enable_ddc(struct cfb_info * cfb)1167 static void cyber2000fb_enable_ddc(struct cfb_info *cfb)
1168 {
1169 spin_lock(&cfb->reg_b0_lock);
1170 cyber2000fb_writew(0x1bf, 0x3ce, cfb);
1171 }
1172
cyber2000fb_disable_ddc(struct cfb_info * cfb)1173 static void cyber2000fb_disable_ddc(struct cfb_info *cfb)
1174 {
1175 cyber2000fb_writew(0x0bf, 0x3ce, cfb);
1176 spin_unlock(&cfb->reg_b0_lock);
1177 }
1178
1179
cyber2000fb_ddc_setscl(void * data,int val)1180 static void cyber2000fb_ddc_setscl(void *data, int val)
1181 {
1182 struct cfb_info *cfb = data;
1183 unsigned char reg;
1184
1185 cyber2000fb_enable_ddc(cfb);
1186 reg = cyber2000_grphr(DDC_REG, cfb);
1187 if (!val) /* bit is inverted */
1188 reg |= DDC_SCL_OUT;
1189 else
1190 reg &= ~DDC_SCL_OUT;
1191 cyber2000_grphw(DDC_REG, reg, cfb);
1192 cyber2000fb_disable_ddc(cfb);
1193 }
1194
cyber2000fb_ddc_setsda(void * data,int val)1195 static void cyber2000fb_ddc_setsda(void *data, int val)
1196 {
1197 struct cfb_info *cfb = data;
1198 unsigned char reg;
1199
1200 cyber2000fb_enable_ddc(cfb);
1201 reg = cyber2000_grphr(DDC_REG, cfb);
1202 if (!val) /* bit is inverted */
1203 reg |= DDC_SDA_OUT;
1204 else
1205 reg &= ~DDC_SDA_OUT;
1206 cyber2000_grphw(DDC_REG, reg, cfb);
1207 cyber2000fb_disable_ddc(cfb);
1208 }
1209
cyber2000fb_ddc_getscl(void * data)1210 static int cyber2000fb_ddc_getscl(void *data)
1211 {
1212 struct cfb_info *cfb = data;
1213 int retval;
1214
1215 cyber2000fb_enable_ddc(cfb);
1216 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SCL_IN);
1217 cyber2000fb_disable_ddc(cfb);
1218
1219 return retval;
1220 }
1221
cyber2000fb_ddc_getsda(void * data)1222 static int cyber2000fb_ddc_getsda(void *data)
1223 {
1224 struct cfb_info *cfb = data;
1225 int retval;
1226
1227 cyber2000fb_enable_ddc(cfb);
1228 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SDA_IN);
1229 cyber2000fb_disable_ddc(cfb);
1230
1231 return retval;
1232 }
1233
cyber2000fb_setup_ddc_bus(struct cfb_info * cfb)1234 static int __devinit cyber2000fb_setup_ddc_bus(struct cfb_info *cfb)
1235 {
1236 strlcpy(cfb->ddc_adapter.name, cfb->fb.fix.id,
1237 sizeof(cfb->ddc_adapter.name));
1238 cfb->ddc_adapter.owner = THIS_MODULE;
1239 cfb->ddc_adapter.class = I2C_CLASS_DDC;
1240 cfb->ddc_adapter.algo_data = &cfb->ddc_algo;
1241 cfb->ddc_adapter.dev.parent = cfb->fb.device;
1242 cfb->ddc_algo.setsda = cyber2000fb_ddc_setsda;
1243 cfb->ddc_algo.setscl = cyber2000fb_ddc_setscl;
1244 cfb->ddc_algo.getsda = cyber2000fb_ddc_getsda;
1245 cfb->ddc_algo.getscl = cyber2000fb_ddc_getscl;
1246 cfb->ddc_algo.udelay = 10;
1247 cfb->ddc_algo.timeout = 20;
1248 cfb->ddc_algo.data = cfb;
1249
1250 i2c_set_adapdata(&cfb->ddc_adapter, cfb);
1251
1252 return i2c_bit_add_bus(&cfb->ddc_adapter);
1253 }
1254 #endif /* CONFIG_FB_CYBER2000_DDC */
1255
1256 #ifdef CONFIG_FB_CYBER2000_I2C
cyber2000fb_i2c_setsda(void * data,int state)1257 static void cyber2000fb_i2c_setsda(void *data, int state)
1258 {
1259 struct cfb_info *cfb = data;
1260 unsigned int latch2;
1261
1262 spin_lock(&cfb->reg_b0_lock);
1263 latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1264 latch2 &= EXT_LATCH2_I2C_CLKEN;
1265 if (state)
1266 latch2 |= EXT_LATCH2_I2C_DATEN;
1267 cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1268 spin_unlock(&cfb->reg_b0_lock);
1269 }
1270
cyber2000fb_i2c_setscl(void * data,int state)1271 static void cyber2000fb_i2c_setscl(void *data, int state)
1272 {
1273 struct cfb_info *cfb = data;
1274 unsigned int latch2;
1275
1276 spin_lock(&cfb->reg_b0_lock);
1277 latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1278 latch2 &= EXT_LATCH2_I2C_DATEN;
1279 if (state)
1280 latch2 |= EXT_LATCH2_I2C_CLKEN;
1281 cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1282 spin_unlock(&cfb->reg_b0_lock);
1283 }
1284
cyber2000fb_i2c_getsda(void * data)1285 static int cyber2000fb_i2c_getsda(void *data)
1286 {
1287 struct cfb_info *cfb = data;
1288 int ret;
1289
1290 spin_lock(&cfb->reg_b0_lock);
1291 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_DAT);
1292 spin_unlock(&cfb->reg_b0_lock);
1293
1294 return ret;
1295 }
1296
cyber2000fb_i2c_getscl(void * data)1297 static int cyber2000fb_i2c_getscl(void *data)
1298 {
1299 struct cfb_info *cfb = data;
1300 int ret;
1301
1302 spin_lock(&cfb->reg_b0_lock);
1303 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_CLK);
1304 spin_unlock(&cfb->reg_b0_lock);
1305
1306 return ret;
1307 }
1308
cyber2000fb_i2c_register(struct cfb_info * cfb)1309 static int __devinit cyber2000fb_i2c_register(struct cfb_info *cfb)
1310 {
1311 strlcpy(cfb->i2c_adapter.name, cfb->fb.fix.id,
1312 sizeof(cfb->i2c_adapter.name));
1313 cfb->i2c_adapter.owner = THIS_MODULE;
1314 cfb->i2c_adapter.algo_data = &cfb->i2c_algo;
1315 cfb->i2c_adapter.dev.parent = cfb->fb.device;
1316 cfb->i2c_algo.setsda = cyber2000fb_i2c_setsda;
1317 cfb->i2c_algo.setscl = cyber2000fb_i2c_setscl;
1318 cfb->i2c_algo.getsda = cyber2000fb_i2c_getsda;
1319 cfb->i2c_algo.getscl = cyber2000fb_i2c_getscl;
1320 cfb->i2c_algo.udelay = 5;
1321 cfb->i2c_algo.timeout = msecs_to_jiffies(100);
1322 cfb->i2c_algo.data = cfb;
1323
1324 return i2c_bit_add_bus(&cfb->i2c_adapter);
1325 }
1326
cyber2000fb_i2c_unregister(struct cfb_info * cfb)1327 static void cyber2000fb_i2c_unregister(struct cfb_info *cfb)
1328 {
1329 i2c_del_adapter(&cfb->i2c_adapter);
1330 }
1331 #else
1332 #define cyber2000fb_i2c_register(cfb) (0)
1333 #define cyber2000fb_i2c_unregister(cfb) do { } while (0)
1334 #endif
1335
1336 /*
1337 * These parameters give
1338 * 640x480, hsync 31.5kHz, vsync 60Hz
1339 */
1340 static struct fb_videomode __devinitdata cyber2000fb_default_mode = {
1341 .refresh = 60,
1342 .xres = 640,
1343 .yres = 480,
1344 .pixclock = 39722,
1345 .left_margin = 56,
1346 .right_margin = 16,
1347 .upper_margin = 34,
1348 .lower_margin = 9,
1349 .hsync_len = 88,
1350 .vsync_len = 2,
1351 .sync = FB_SYNC_COMP_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
1352 .vmode = FB_VMODE_NONINTERLACED
1353 };
1354
1355 static char igs_regs[] = {
1356 EXT_CRT_IRQ, 0,
1357 EXT_CRT_TEST, 0,
1358 EXT_SYNC_CTL, 0,
1359 EXT_SEG_WRITE_PTR, 0,
1360 EXT_SEG_READ_PTR, 0,
1361 EXT_BIU_MISC, EXT_BIU_MISC_LIN_ENABLE |
1362 EXT_BIU_MISC_COP_ENABLE |
1363 EXT_BIU_MISC_COP_BFC,
1364 EXT_FUNC_CTL, 0,
1365 CURS_H_START, 0,
1366 CURS_H_START + 1, 0,
1367 CURS_H_PRESET, 0,
1368 CURS_V_START, 0,
1369 CURS_V_START + 1, 0,
1370 CURS_V_PRESET, 0,
1371 CURS_CTL, 0,
1372 EXT_ATTRIB_CTL, EXT_ATTRIB_CTL_EXT,
1373 EXT_OVERSCAN_RED, 0,
1374 EXT_OVERSCAN_GREEN, 0,
1375 EXT_OVERSCAN_BLUE, 0,
1376
1377 /* some of these are questionable when we have a BIOS */
1378 EXT_MEM_CTL0, EXT_MEM_CTL0_7CLK |
1379 EXT_MEM_CTL0_RAS_1 |
1380 EXT_MEM_CTL0_MULTCAS,
1381 EXT_HIDDEN_CTL1, 0x30,
1382 EXT_FIFO_CTL, 0x0b,
1383 EXT_FIFO_CTL + 1, 0x17,
1384 0x76, 0x00,
1385 EXT_HIDDEN_CTL4, 0xc8
1386 };
1387
1388 /*
1389 * Initialise the CyberPro hardware. On the CyberPro5XXXX,
1390 * ensure that we're using the correct PLL (5XXX's may be
1391 * programmed to use an additional set of PLLs.)
1392 */
cyberpro_init_hw(struct cfb_info * cfb)1393 static void cyberpro_init_hw(struct cfb_info *cfb)
1394 {
1395 int i;
1396
1397 for (i = 0; i < sizeof(igs_regs); i += 2)
1398 cyber2000_grphw(igs_regs[i], igs_regs[i + 1], cfb);
1399
1400 if (cfb->id == ID_CYBERPRO_5000) {
1401 unsigned char val;
1402 cyber2000fb_writeb(0xba, 0x3ce, cfb);
1403 val = cyber2000fb_readb(0x3cf, cfb) & 0x80;
1404 cyber2000fb_writeb(val, 0x3cf, cfb);
1405 }
1406 }
1407
cyberpro_alloc_fb_info(unsigned int id,char * name)1408 static struct cfb_info __devinit *cyberpro_alloc_fb_info(unsigned int id,
1409 char *name)
1410 {
1411 struct cfb_info *cfb;
1412
1413 cfb = kzalloc(sizeof(struct cfb_info), GFP_KERNEL);
1414 if (!cfb)
1415 return NULL;
1416
1417
1418 cfb->id = id;
1419
1420 if (id == ID_CYBERPRO_5000)
1421 cfb->ref_ps = 40690; /* 24.576 MHz */
1422 else
1423 cfb->ref_ps = 69842; /* 14.31818 MHz (69841?) */
1424
1425 cfb->divisors[0] = 1;
1426 cfb->divisors[1] = 2;
1427 cfb->divisors[2] = 4;
1428
1429 if (id == ID_CYBERPRO_2000)
1430 cfb->divisors[3] = 8;
1431 else
1432 cfb->divisors[3] = 6;
1433
1434 strcpy(cfb->fb.fix.id, name);
1435
1436 cfb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1437 cfb->fb.fix.type_aux = 0;
1438 cfb->fb.fix.xpanstep = 0;
1439 cfb->fb.fix.ypanstep = 1;
1440 cfb->fb.fix.ywrapstep = 0;
1441
1442 switch (id) {
1443 case ID_IGA_1682:
1444 cfb->fb.fix.accel = 0;
1445 break;
1446
1447 case ID_CYBERPRO_2000:
1448 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2000;
1449 break;
1450
1451 case ID_CYBERPRO_2010:
1452 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2010;
1453 break;
1454
1455 case ID_CYBERPRO_5000:
1456 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER5000;
1457 break;
1458 }
1459
1460 cfb->fb.var.nonstd = 0;
1461 cfb->fb.var.activate = FB_ACTIVATE_NOW;
1462 cfb->fb.var.height = -1;
1463 cfb->fb.var.width = -1;
1464 cfb->fb.var.accel_flags = FB_ACCELF_TEXT;
1465
1466 cfb->fb.fbops = &cyber2000fb_ops;
1467 cfb->fb.flags = FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN;
1468 cfb->fb.pseudo_palette = cfb->pseudo_palette;
1469
1470 spin_lock_init(&cfb->reg_b0_lock);
1471
1472 fb_alloc_cmap(&cfb->fb.cmap, NR_PALETTE, 0);
1473
1474 return cfb;
1475 }
1476
cyberpro_free_fb_info(struct cfb_info * cfb)1477 static void cyberpro_free_fb_info(struct cfb_info *cfb)
1478 {
1479 if (cfb) {
1480 /*
1481 * Free the colourmap
1482 */
1483 fb_alloc_cmap(&cfb->fb.cmap, 0, 0);
1484
1485 kfree(cfb);
1486 }
1487 }
1488
1489 /*
1490 * Parse Cyber2000fb options. Usage:
1491 * video=cyber2000:font:fontname
1492 */
1493 #ifndef MODULE
cyber2000fb_setup(char * options)1494 static int cyber2000fb_setup(char *options)
1495 {
1496 char *opt;
1497
1498 if (!options || !*options)
1499 return 0;
1500
1501 while ((opt = strsep(&options, ",")) != NULL) {
1502 if (!*opt)
1503 continue;
1504
1505 if (strncmp(opt, "font:", 5) == 0) {
1506 static char default_font_storage[40];
1507
1508 strlcpy(default_font_storage, opt + 5,
1509 sizeof(default_font_storage));
1510 default_font = default_font_storage;
1511 continue;
1512 }
1513
1514 printk(KERN_ERR "CyberPro20x0: unknown parameter: %s\n", opt);
1515 }
1516 return 0;
1517 }
1518 #endif /* MODULE */
1519
1520 /*
1521 * The CyberPro chips can be placed on many different bus types.
1522 * This probe function is common to all bus types. The bus-specific
1523 * probe function is expected to have:
1524 * - enabled access to the linear memory region
1525 * - memory mapped access to the registers
1526 * - initialised mem_ctl1 and mem_ctl2 appropriately.
1527 */
cyberpro_common_probe(struct cfb_info * cfb)1528 static int __devinit cyberpro_common_probe(struct cfb_info *cfb)
1529 {
1530 u_long smem_size;
1531 u_int h_sync, v_sync;
1532 int err;
1533
1534 cyberpro_init_hw(cfb);
1535
1536 /*
1537 * Get the video RAM size and width from the VGA register.
1538 * This should have been already initialised by the BIOS,
1539 * but if it's garbage, claim default 1MB VRAM (woody)
1540 */
1541 cfb->mem_ctl1 = cyber2000_grphr(EXT_MEM_CTL1, cfb);
1542 cfb->mem_ctl2 = cyber2000_grphr(EXT_MEM_CTL2, cfb);
1543
1544 /*
1545 * Determine the size of the memory.
1546 */
1547 switch (cfb->mem_ctl2 & MEM_CTL2_SIZE_MASK) {
1548 case MEM_CTL2_SIZE_4MB:
1549 smem_size = 0x00400000;
1550 break;
1551 case MEM_CTL2_SIZE_2MB:
1552 smem_size = 0x00200000;
1553 break;
1554 case MEM_CTL2_SIZE_1MB:
1555 smem_size = 0x00100000;
1556 break;
1557 default:
1558 smem_size = 0x00100000;
1559 break;
1560 }
1561
1562 cfb->fb.fix.smem_len = smem_size;
1563 cfb->fb.fix.mmio_len = MMIO_SIZE;
1564 cfb->fb.screen_base = cfb->region;
1565
1566 #ifdef CONFIG_FB_CYBER2000_DDC
1567 if (cyber2000fb_setup_ddc_bus(cfb) == 0)
1568 cfb->ddc_registered = true;
1569 #endif
1570
1571 err = -EINVAL;
1572 if (!fb_find_mode(&cfb->fb.var, &cfb->fb, NULL, NULL, 0,
1573 &cyber2000fb_default_mode, 8)) {
1574 printk(KERN_ERR "%s: no valid mode found\n", cfb->fb.fix.id);
1575 goto failed;
1576 }
1577
1578 cfb->fb.var.yres_virtual = cfb->fb.fix.smem_len * 8 /
1579 (cfb->fb.var.bits_per_pixel * cfb->fb.var.xres_virtual);
1580
1581 if (cfb->fb.var.yres_virtual < cfb->fb.var.yres)
1582 cfb->fb.var.yres_virtual = cfb->fb.var.yres;
1583
1584 /* fb_set_var(&cfb->fb.var, -1, &cfb->fb); */
1585
1586 /*
1587 * Calculate the hsync and vsync frequencies. Note that
1588 * we split the 1e12 constant up so that we can preserve
1589 * the precision and fit the results into 32-bit registers.
1590 * (1953125000 * 512 = 1e12)
1591 */
1592 h_sync = 1953125000 / cfb->fb.var.pixclock;
1593 h_sync = h_sync * 512 / (cfb->fb.var.xres + cfb->fb.var.left_margin +
1594 cfb->fb.var.right_margin + cfb->fb.var.hsync_len);
1595 v_sync = h_sync / (cfb->fb.var.yres + cfb->fb.var.upper_margin +
1596 cfb->fb.var.lower_margin + cfb->fb.var.vsync_len);
1597
1598 printk(KERN_INFO "%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n",
1599 cfb->fb.fix.id, cfb->fb.fix.smem_len >> 10,
1600 cfb->fb.var.xres, cfb->fb.var.yres,
1601 h_sync / 1000, h_sync % 1000, v_sync);
1602
1603 err = cyber2000fb_i2c_register(cfb);
1604 if (err)
1605 goto failed;
1606
1607 err = register_framebuffer(&cfb->fb);
1608 if (err)
1609 cyber2000fb_i2c_unregister(cfb);
1610
1611 failed:
1612 #ifdef CONFIG_FB_CYBER2000_DDC
1613 if (err && cfb->ddc_registered)
1614 i2c_del_adapter(&cfb->ddc_adapter);
1615 #endif
1616 return err;
1617 }
1618
cyberpro_common_remove(struct cfb_info * cfb)1619 static void __devexit cyberpro_common_remove(struct cfb_info *cfb)
1620 {
1621 unregister_framebuffer(&cfb->fb);
1622 #ifdef CONFIG_FB_CYBER2000_DDC
1623 if (cfb->ddc_registered)
1624 i2c_del_adapter(&cfb->ddc_adapter);
1625 #endif
1626 cyber2000fb_i2c_unregister(cfb);
1627 }
1628
cyberpro_common_resume(struct cfb_info * cfb)1629 static void cyberpro_common_resume(struct cfb_info *cfb)
1630 {
1631 cyberpro_init_hw(cfb);
1632
1633 /*
1634 * Reprogram the MEM_CTL1 and MEM_CTL2 registers
1635 */
1636 cyber2000_grphw(EXT_MEM_CTL1, cfb->mem_ctl1, cfb);
1637 cyber2000_grphw(EXT_MEM_CTL2, cfb->mem_ctl2, cfb);
1638
1639 /*
1640 * Restore the old video mode and the palette.
1641 * We also need to tell fbcon to redraw the console.
1642 */
1643 cyber2000fb_set_par(&cfb->fb);
1644 }
1645
1646 #ifdef CONFIG_ARCH_SHARK
1647
1648 #include <mach/framebuffer.h>
1649
cyberpro_vl_probe(void)1650 static int __devinit cyberpro_vl_probe(void)
1651 {
1652 struct cfb_info *cfb;
1653 int err = -ENOMEM;
1654
1655 if (!request_mem_region(FB_START, FB_SIZE, "CyberPro2010"))
1656 return err;
1657
1658 cfb = cyberpro_alloc_fb_info(ID_CYBERPRO_2010, "CyberPro2010");
1659 if (!cfb)
1660 goto failed_release;
1661
1662 cfb->irq = -1;
1663 cfb->region = ioremap(FB_START, FB_SIZE);
1664 if (!cfb->region)
1665 goto failed_ioremap;
1666
1667 cfb->regs = cfb->region + MMIO_OFFSET;
1668 cfb->fb.device = NULL;
1669 cfb->fb.fix.mmio_start = FB_START + MMIO_OFFSET;
1670 cfb->fb.fix.smem_start = FB_START;
1671
1672 /*
1673 * Bring up the hardware. This is expected to enable access
1674 * to the linear memory region, and allow access to the memory
1675 * mapped registers. Also, mem_ctl1 and mem_ctl2 must be
1676 * initialised.
1677 */
1678 cyber2000fb_writeb(0x18, 0x46e8, cfb);
1679 cyber2000fb_writeb(0x01, 0x102, cfb);
1680 cyber2000fb_writeb(0x08, 0x46e8, cfb);
1681 cyber2000fb_writeb(EXT_BIU_MISC, 0x3ce, cfb);
1682 cyber2000fb_writeb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf, cfb);
1683
1684 cfb->mclk_mult = 0xdb;
1685 cfb->mclk_div = 0x54;
1686
1687 err = cyberpro_common_probe(cfb);
1688 if (err)
1689 goto failed;
1690
1691 if (int_cfb_info == NULL)
1692 int_cfb_info = cfb;
1693
1694 return 0;
1695
1696 failed:
1697 iounmap(cfb->region);
1698 failed_ioremap:
1699 cyberpro_free_fb_info(cfb);
1700 failed_release:
1701 release_mem_region(FB_START, FB_SIZE);
1702
1703 return err;
1704 }
1705 #endif /* CONFIG_ARCH_SHARK */
1706
1707 /*
1708 * PCI specific support.
1709 */
1710 #ifdef CONFIG_PCI
1711 /*
1712 * We need to wake up the CyberPro, and make sure its in linear memory
1713 * mode. Unfortunately, this is specific to the platform and card that
1714 * we are running on.
1715 *
1716 * On x86 and ARM, should we be initialising the CyberPro first via the
1717 * IO registers, and then the MMIO registers to catch all cases? Can we
1718 * end up in the situation where the chip is in MMIO mode, but not awake
1719 * on an x86 system?
1720 */
cyberpro_pci_enable_mmio(struct cfb_info * cfb)1721 static int cyberpro_pci_enable_mmio(struct cfb_info *cfb)
1722 {
1723 unsigned char val;
1724
1725 #if defined(__sparc_v9__)
1726 #error "You lose, consult DaveM."
1727 #elif defined(__sparc__)
1728 /*
1729 * SPARC does not have an "outb" instruction, so we generate
1730 * I/O cycles storing into a reserved memory space at
1731 * physical address 0x3000000
1732 */
1733 unsigned char __iomem *iop;
1734
1735 iop = ioremap(0x3000000, 0x5000);
1736 if (iop == NULL) {
1737 printk(KERN_ERR "iga5000: cannot map I/O\n");
1738 return -ENOMEM;
1739 }
1740
1741 writeb(0x18, iop + 0x46e8);
1742 writeb(0x01, iop + 0x102);
1743 writeb(0x08, iop + 0x46e8);
1744 writeb(EXT_BIU_MISC, iop + 0x3ce);
1745 writeb(EXT_BIU_MISC_LIN_ENABLE, iop + 0x3cf);
1746
1747 iounmap(iop);
1748 #else
1749 /*
1750 * Most other machine types are "normal", so
1751 * we use the standard IO-based wakeup.
1752 */
1753 outb(0x18, 0x46e8);
1754 outb(0x01, 0x102);
1755 outb(0x08, 0x46e8);
1756 outb(EXT_BIU_MISC, 0x3ce);
1757 outb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf);
1758 #endif
1759
1760 /*
1761 * Allow the CyberPro to accept PCI burst accesses
1762 */
1763 if (cfb->id == ID_CYBERPRO_2010) {
1764 printk(KERN_INFO "%s: NOT enabling PCI bursts\n",
1765 cfb->fb.fix.id);
1766 } else {
1767 val = cyber2000_grphr(EXT_BUS_CTL, cfb);
1768 if (!(val & EXT_BUS_CTL_PCIBURST_WRITE)) {
1769 printk(KERN_INFO "%s: enabling PCI bursts\n",
1770 cfb->fb.fix.id);
1771
1772 val |= EXT_BUS_CTL_PCIBURST_WRITE;
1773
1774 if (cfb->id == ID_CYBERPRO_5000)
1775 val |= EXT_BUS_CTL_PCIBURST_READ;
1776
1777 cyber2000_grphw(EXT_BUS_CTL, val, cfb);
1778 }
1779 }
1780
1781 return 0;
1782 }
1783
1784 static int __devinit
cyberpro_pci_probe(struct pci_dev * dev,const struct pci_device_id * id)1785 cyberpro_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
1786 {
1787 struct cfb_info *cfb;
1788 char name[16];
1789 int err;
1790
1791 sprintf(name, "CyberPro%4X", id->device);
1792
1793 err = pci_enable_device(dev);
1794 if (err)
1795 return err;
1796
1797 err = -ENOMEM;
1798 cfb = cyberpro_alloc_fb_info(id->driver_data, name);
1799 if (!cfb)
1800 goto failed_release;
1801
1802 err = pci_request_regions(dev, cfb->fb.fix.id);
1803 if (err)
1804 goto failed_regions;
1805
1806 cfb->irq = dev->irq;
1807 cfb->region = pci_ioremap_bar(dev, 0);
1808 if (!cfb->region)
1809 goto failed_ioremap;
1810
1811 cfb->regs = cfb->region + MMIO_OFFSET;
1812 cfb->fb.device = &dev->dev;
1813 cfb->fb.fix.mmio_start = pci_resource_start(dev, 0) + MMIO_OFFSET;
1814 cfb->fb.fix.smem_start = pci_resource_start(dev, 0);
1815
1816 /*
1817 * Bring up the hardware. This is expected to enable access
1818 * to the linear memory region, and allow access to the memory
1819 * mapped registers. Also, mem_ctl1 and mem_ctl2 must be
1820 * initialised.
1821 */
1822 err = cyberpro_pci_enable_mmio(cfb);
1823 if (err)
1824 goto failed;
1825
1826 /*
1827 * Use MCLK from BIOS. FIXME: what about hotplug?
1828 */
1829 cfb->mclk_mult = cyber2000_grphr(EXT_MCLK_MULT, cfb);
1830 cfb->mclk_div = cyber2000_grphr(EXT_MCLK_DIV, cfb);
1831
1832 #ifdef __arm__
1833 /*
1834 * MCLK on the NetWinder and the Shark is fixed at 75MHz
1835 */
1836 if (machine_is_netwinder()) {
1837 cfb->mclk_mult = 0xdb;
1838 cfb->mclk_div = 0x54;
1839 }
1840 #endif
1841
1842 err = cyberpro_common_probe(cfb);
1843 if (err)
1844 goto failed;
1845
1846 /*
1847 * Our driver data
1848 */
1849 pci_set_drvdata(dev, cfb);
1850 if (int_cfb_info == NULL)
1851 int_cfb_info = cfb;
1852
1853 return 0;
1854
1855 failed:
1856 iounmap(cfb->region);
1857 failed_ioremap:
1858 pci_release_regions(dev);
1859 failed_regions:
1860 cyberpro_free_fb_info(cfb);
1861 failed_release:
1862 return err;
1863 }
1864
cyberpro_pci_remove(struct pci_dev * dev)1865 static void __devexit cyberpro_pci_remove(struct pci_dev *dev)
1866 {
1867 struct cfb_info *cfb = pci_get_drvdata(dev);
1868
1869 if (cfb) {
1870 cyberpro_common_remove(cfb);
1871 iounmap(cfb->region);
1872 cyberpro_free_fb_info(cfb);
1873
1874 /*
1875 * Ensure that the driver data is no longer
1876 * valid.
1877 */
1878 pci_set_drvdata(dev, NULL);
1879 if (cfb == int_cfb_info)
1880 int_cfb_info = NULL;
1881
1882 pci_release_regions(dev);
1883 }
1884 }
1885
cyberpro_pci_suspend(struct pci_dev * dev,pm_message_t state)1886 static int cyberpro_pci_suspend(struct pci_dev *dev, pm_message_t state)
1887 {
1888 return 0;
1889 }
1890
1891 /*
1892 * Re-initialise the CyberPro hardware
1893 */
cyberpro_pci_resume(struct pci_dev * dev)1894 static int cyberpro_pci_resume(struct pci_dev *dev)
1895 {
1896 struct cfb_info *cfb = pci_get_drvdata(dev);
1897
1898 if (cfb) {
1899 cyberpro_pci_enable_mmio(cfb);
1900 cyberpro_common_resume(cfb);
1901 }
1902
1903 return 0;
1904 }
1905
1906 static struct pci_device_id cyberpro_pci_table[] = {
1907 /* Not yet
1908 * { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682,
1909 * PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 },
1910 */
1911 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2000,
1912 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2000 },
1913 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2010,
1914 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2010 },
1915 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_5000,
1916 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_5000 },
1917 { 0, }
1918 };
1919
1920 MODULE_DEVICE_TABLE(pci, cyberpro_pci_table);
1921
1922 static struct pci_driver cyberpro_driver = {
1923 .name = "CyberPro",
1924 .probe = cyberpro_pci_probe,
1925 .remove = __devexit_p(cyberpro_pci_remove),
1926 .suspend = cyberpro_pci_suspend,
1927 .resume = cyberpro_pci_resume,
1928 .id_table = cyberpro_pci_table
1929 };
1930 #endif
1931
1932 /*
1933 * I don't think we can use the "module_init" stuff here because
1934 * the fbcon stuff may not be initialised yet. Hence the #ifdef
1935 * around module_init.
1936 *
1937 * Tony: "module_init" is now required
1938 */
cyber2000fb_init(void)1939 static int __init cyber2000fb_init(void)
1940 {
1941 int ret = -1, err;
1942
1943 #ifndef MODULE
1944 char *option = NULL;
1945
1946 if (fb_get_options("cyber2000fb", &option))
1947 return -ENODEV;
1948 cyber2000fb_setup(option);
1949 #endif
1950
1951 #ifdef CONFIG_ARCH_SHARK
1952 err = cyberpro_vl_probe();
1953 if (!err)
1954 ret = 0;
1955 #endif
1956 #ifdef CONFIG_PCI
1957 err = pci_register_driver(&cyberpro_driver);
1958 if (!err)
1959 ret = 0;
1960 #endif
1961
1962 return ret ? err : 0;
1963 }
1964 module_init(cyber2000fb_init);
1965
1966 #ifndef CONFIG_ARCH_SHARK
cyberpro_exit(void)1967 static void __exit cyberpro_exit(void)
1968 {
1969 pci_unregister_driver(&cyberpro_driver);
1970 }
1971 module_exit(cyberpro_exit);
1972 #endif
1973
1974 MODULE_AUTHOR("Russell King");
1975 MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver");
1976 MODULE_LICENSE("GPL");
1977