1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2014 IBM Corp.
4  */
5 
6 #include <linux/spinlock.h>
7 #include <linux/sched.h>
8 #include <linux/sched/clock.h>
9 #include <linux/slab.h>
10 #include <linux/mutex.h>
11 #include <linux/mm.h>
12 #include <linux/uaccess.h>
13 #include <linux/delay.h>
14 #include <linux/irqdomain.h>
15 #include <asm/synch.h>
16 #include <asm/switch_to.h>
17 #include <misc/cxl-base.h>
18 
19 #include "cxl.h"
20 #include "trace.h"
21 
afu_control(struct cxl_afu * afu,u64 command,u64 clear,u64 result,u64 mask,bool enabled)22 static int afu_control(struct cxl_afu *afu, u64 command, u64 clear,
23 		       u64 result, u64 mask, bool enabled)
24 {
25 	u64 AFU_Cntl;
26 	unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
27 	int rc = 0;
28 
29 	spin_lock(&afu->afu_cntl_lock);
30 	pr_devel("AFU command starting: %llx\n", command);
31 
32 	trace_cxl_afu_ctrl(afu, command);
33 
34 	AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
35 	cxl_p2n_write(afu, CXL_AFU_Cntl_An, (AFU_Cntl & ~clear) | command);
36 
37 	AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
38 	while ((AFU_Cntl & mask) != result) {
39 		if (time_after_eq(jiffies, timeout)) {
40 			dev_warn(&afu->dev, "WARNING: AFU control timed out!\n");
41 			rc = -EBUSY;
42 			goto out;
43 		}
44 
45 		if (!cxl_ops->link_ok(afu->adapter, afu)) {
46 			afu->enabled = enabled;
47 			rc = -EIO;
48 			goto out;
49 		}
50 
51 		pr_devel_ratelimited("AFU control... (0x%016llx)\n",
52 				     AFU_Cntl | command);
53 		cpu_relax();
54 		AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
55 	}
56 
57 	if (AFU_Cntl & CXL_AFU_Cntl_An_RA) {
58 		/*
59 		 * Workaround for a bug in the XSL used in the Mellanox CX4
60 		 * that fails to clear the RA bit after an AFU reset,
61 		 * preventing subsequent AFU resets from working.
62 		 */
63 		cxl_p2n_write(afu, CXL_AFU_Cntl_An, AFU_Cntl & ~CXL_AFU_Cntl_An_RA);
64 	}
65 
66 	pr_devel("AFU command complete: %llx\n", command);
67 	afu->enabled = enabled;
68 out:
69 	trace_cxl_afu_ctrl_done(afu, command, rc);
70 	spin_unlock(&afu->afu_cntl_lock);
71 
72 	return rc;
73 }
74 
afu_enable(struct cxl_afu * afu)75 static int afu_enable(struct cxl_afu *afu)
76 {
77 	pr_devel("AFU enable request\n");
78 
79 	return afu_control(afu, CXL_AFU_Cntl_An_E, 0,
80 			   CXL_AFU_Cntl_An_ES_Enabled,
81 			   CXL_AFU_Cntl_An_ES_MASK, true);
82 }
83 
cxl_afu_disable(struct cxl_afu * afu)84 int cxl_afu_disable(struct cxl_afu *afu)
85 {
86 	pr_devel("AFU disable request\n");
87 
88 	return afu_control(afu, 0, CXL_AFU_Cntl_An_E,
89 			   CXL_AFU_Cntl_An_ES_Disabled,
90 			   CXL_AFU_Cntl_An_ES_MASK, false);
91 }
92 
93 /* This will disable as well as reset */
native_afu_reset(struct cxl_afu * afu)94 static int native_afu_reset(struct cxl_afu *afu)
95 {
96 	int rc;
97 	u64 serr;
98 
99 	pr_devel("AFU reset request\n");
100 
101 	rc = afu_control(afu, CXL_AFU_Cntl_An_RA, 0,
102 			   CXL_AFU_Cntl_An_RS_Complete | CXL_AFU_Cntl_An_ES_Disabled,
103 			   CXL_AFU_Cntl_An_RS_MASK | CXL_AFU_Cntl_An_ES_MASK,
104 			   false);
105 
106 	/*
107 	 * Re-enable any masked interrupts when the AFU is not
108 	 * activated to avoid side effects after attaching a process
109 	 * in dedicated mode.
110 	 */
111 	if (afu->current_mode == 0) {
112 		serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
113 		serr &= ~CXL_PSL_SERR_An_IRQ_MASKS;
114 		cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
115 	}
116 
117 	return rc;
118 }
119 
native_afu_check_and_enable(struct cxl_afu * afu)120 static int native_afu_check_and_enable(struct cxl_afu *afu)
121 {
122 	if (!cxl_ops->link_ok(afu->adapter, afu)) {
123 		WARN(1, "Refusing to enable afu while link down!\n");
124 		return -EIO;
125 	}
126 	if (afu->enabled)
127 		return 0;
128 	return afu_enable(afu);
129 }
130 
cxl_psl_purge(struct cxl_afu * afu)131 int cxl_psl_purge(struct cxl_afu *afu)
132 {
133 	u64 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
134 	u64 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
135 	u64 dsisr, dar;
136 	u64 start, end;
137 	u64 trans_fault = 0x0ULL;
138 	unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
139 	int rc = 0;
140 
141 	trace_cxl_psl_ctrl(afu, CXL_PSL_SCNTL_An_Pc);
142 
143 	pr_devel("PSL purge request\n");
144 
145 	if (cxl_is_power8())
146 		trans_fault = CXL_PSL_DSISR_TRANS;
147 	if (cxl_is_power9())
148 		trans_fault = CXL_PSL9_DSISR_An_TF;
149 
150 	if (!cxl_ops->link_ok(afu->adapter, afu)) {
151 		dev_warn(&afu->dev, "PSL Purge called with link down, ignoring\n");
152 		rc = -EIO;
153 		goto out;
154 	}
155 
156 	if ((AFU_Cntl & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) {
157 		WARN(1, "psl_purge request while AFU not disabled!\n");
158 		cxl_afu_disable(afu);
159 	}
160 
161 	cxl_p1n_write(afu, CXL_PSL_SCNTL_An,
162 		       PSL_CNTL | CXL_PSL_SCNTL_An_Pc);
163 	start = local_clock();
164 	PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
165 	while ((PSL_CNTL &  CXL_PSL_SCNTL_An_Ps_MASK)
166 			== CXL_PSL_SCNTL_An_Ps_Pending) {
167 		if (time_after_eq(jiffies, timeout)) {
168 			dev_warn(&afu->dev, "WARNING: PSL Purge timed out!\n");
169 			rc = -EBUSY;
170 			goto out;
171 		}
172 		if (!cxl_ops->link_ok(afu->adapter, afu)) {
173 			rc = -EIO;
174 			goto out;
175 		}
176 
177 		dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
178 		pr_devel_ratelimited("PSL purging... PSL_CNTL: 0x%016llx  PSL_DSISR: 0x%016llx\n",
179 				     PSL_CNTL, dsisr);
180 
181 		if (dsisr & trans_fault) {
182 			dar = cxl_p2n_read(afu, CXL_PSL_DAR_An);
183 			dev_notice(&afu->dev, "PSL purge terminating pending translation, DSISR: 0x%016llx, DAR: 0x%016llx\n",
184 				   dsisr, dar);
185 			cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE);
186 		} else if (dsisr) {
187 			dev_notice(&afu->dev, "PSL purge acknowledging pending non-translation fault, DSISR: 0x%016llx\n",
188 				   dsisr);
189 			cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A);
190 		} else {
191 			cpu_relax();
192 		}
193 		PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
194 	}
195 	end = local_clock();
196 	pr_devel("PSL purged in %lld ns\n", end - start);
197 
198 	cxl_p1n_write(afu, CXL_PSL_SCNTL_An,
199 		       PSL_CNTL & ~CXL_PSL_SCNTL_An_Pc);
200 out:
201 	trace_cxl_psl_ctrl_done(afu, CXL_PSL_SCNTL_An_Pc, rc);
202 	return rc;
203 }
204 
spa_max_procs(int spa_size)205 static int spa_max_procs(int spa_size)
206 {
207 	/*
208 	 * From the CAIA:
209 	 *    end_of_SPA_area = SPA_Base + ((n+4) * 128) + (( ((n*8) + 127) >> 7) * 128) + 255
210 	 * Most of that junk is really just an overly-complicated way of saying
211 	 * the last 256 bytes are __aligned(128), so it's really:
212 	 *    end_of_SPA_area = end_of_PSL_queue_area + __aligned(128) 255
213 	 * and
214 	 *    end_of_PSL_queue_area = SPA_Base + ((n+4) * 128) + (n*8) - 1
215 	 * so
216 	 *    sizeof(SPA) = ((n+4) * 128) + (n*8) + __aligned(128) 256
217 	 * Ignore the alignment (which is safe in this case as long as we are
218 	 * careful with our rounding) and solve for n:
219 	 */
220 	return ((spa_size / 8) - 96) / 17;
221 }
222 
cxl_alloc_spa(struct cxl_afu * afu,int mode)223 static int cxl_alloc_spa(struct cxl_afu *afu, int mode)
224 {
225 	unsigned spa_size;
226 
227 	/* Work out how many pages to allocate */
228 	afu->native->spa_order = -1;
229 	do {
230 		afu->native->spa_order++;
231 		spa_size = (1 << afu->native->spa_order) * PAGE_SIZE;
232 
233 		if (spa_size > 0x100000) {
234 			dev_warn(&afu->dev, "num_of_processes too large for the SPA, limiting to %i (0x%x)\n",
235 					afu->native->spa_max_procs, afu->native->spa_size);
236 			if (mode != CXL_MODE_DEDICATED)
237 				afu->num_procs = afu->native->spa_max_procs;
238 			break;
239 		}
240 
241 		afu->native->spa_size = spa_size;
242 		afu->native->spa_max_procs = spa_max_procs(afu->native->spa_size);
243 	} while (afu->native->spa_max_procs < afu->num_procs);
244 
245 	if (!(afu->native->spa = (struct cxl_process_element *)
246 	      __get_free_pages(GFP_KERNEL | __GFP_ZERO, afu->native->spa_order))) {
247 		pr_err("cxl_alloc_spa: Unable to allocate scheduled process area\n");
248 		return -ENOMEM;
249 	}
250 	pr_devel("spa pages: %i afu->spa_max_procs: %i   afu->num_procs: %i\n",
251 		 1<<afu->native->spa_order, afu->native->spa_max_procs, afu->num_procs);
252 
253 	return 0;
254 }
255 
attach_spa(struct cxl_afu * afu)256 static void attach_spa(struct cxl_afu *afu)
257 {
258 	u64 spap;
259 
260 	afu->native->sw_command_status = (__be64 *)((char *)afu->native->spa +
261 					    ((afu->native->spa_max_procs + 3) * 128));
262 
263 	spap = virt_to_phys(afu->native->spa) & CXL_PSL_SPAP_Addr;
264 	spap |= ((afu->native->spa_size >> (12 - CXL_PSL_SPAP_Size_Shift)) - 1) & CXL_PSL_SPAP_Size;
265 	spap |= CXL_PSL_SPAP_V;
266 	pr_devel("cxl: SPA allocated at 0x%p. Max processes: %i, sw_command_status: 0x%p CXL_PSL_SPAP_An=0x%016llx\n",
267 		afu->native->spa, afu->native->spa_max_procs,
268 		afu->native->sw_command_status, spap);
269 	cxl_p1n_write(afu, CXL_PSL_SPAP_An, spap);
270 }
271 
cxl_release_spa(struct cxl_afu * afu)272 void cxl_release_spa(struct cxl_afu *afu)
273 {
274 	if (afu->native->spa) {
275 		free_pages((unsigned long) afu->native->spa,
276 			afu->native->spa_order);
277 		afu->native->spa = NULL;
278 	}
279 }
280 
281 /*
282  * Invalidation of all ERAT entries is no longer required by CAIA2. Use
283  * only for debug.
284  */
cxl_invalidate_all_psl9(struct cxl * adapter)285 int cxl_invalidate_all_psl9(struct cxl *adapter)
286 {
287 	unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
288 	u64 ierat;
289 
290 	pr_devel("CXL adapter - invalidation of all ERAT entries\n");
291 
292 	/* Invalidates all ERAT entries for Radix or HPT */
293 	ierat = CXL_XSL9_IERAT_IALL;
294 	if (radix_enabled())
295 		ierat |= CXL_XSL9_IERAT_INVR;
296 	cxl_p1_write(adapter, CXL_XSL9_IERAT, ierat);
297 
298 	while (cxl_p1_read(adapter, CXL_XSL9_IERAT) & CXL_XSL9_IERAT_IINPROG) {
299 		if (time_after_eq(jiffies, timeout)) {
300 			dev_warn(&adapter->dev,
301 			"WARNING: CXL adapter invalidation of all ERAT entries timed out!\n");
302 			return -EBUSY;
303 		}
304 		if (!cxl_ops->link_ok(adapter, NULL))
305 			return -EIO;
306 		cpu_relax();
307 	}
308 	return 0;
309 }
310 
cxl_invalidate_all_psl8(struct cxl * adapter)311 int cxl_invalidate_all_psl8(struct cxl *adapter)
312 {
313 	unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
314 
315 	pr_devel("CXL adapter wide TLBIA & SLBIA\n");
316 
317 	cxl_p1_write(adapter, CXL_PSL_AFUSEL, CXL_PSL_AFUSEL_A);
318 
319 	cxl_p1_write(adapter, CXL_PSL_TLBIA, CXL_TLB_SLB_IQ_ALL);
320 	while (cxl_p1_read(adapter, CXL_PSL_TLBIA) & CXL_TLB_SLB_P) {
321 		if (time_after_eq(jiffies, timeout)) {
322 			dev_warn(&adapter->dev, "WARNING: CXL adapter wide TLBIA timed out!\n");
323 			return -EBUSY;
324 		}
325 		if (!cxl_ops->link_ok(adapter, NULL))
326 			return -EIO;
327 		cpu_relax();
328 	}
329 
330 	cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_ALL);
331 	while (cxl_p1_read(adapter, CXL_PSL_SLBIA) & CXL_TLB_SLB_P) {
332 		if (time_after_eq(jiffies, timeout)) {
333 			dev_warn(&adapter->dev, "WARNING: CXL adapter wide SLBIA timed out!\n");
334 			return -EBUSY;
335 		}
336 		if (!cxl_ops->link_ok(adapter, NULL))
337 			return -EIO;
338 		cpu_relax();
339 	}
340 	return 0;
341 }
342 
cxl_data_cache_flush(struct cxl * adapter)343 int cxl_data_cache_flush(struct cxl *adapter)
344 {
345 	u64 reg;
346 	unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
347 
348 	/*
349 	 * Do a datacache flush only if datacache is available.
350 	 * In case of PSL9D datacache absent hence flush operation.
351 	 * would timeout.
352 	 */
353 	if (adapter->native->no_data_cache) {
354 		pr_devel("No PSL data cache. Ignoring cache flush req.\n");
355 		return 0;
356 	}
357 
358 	pr_devel("Flushing data cache\n");
359 	reg = cxl_p1_read(adapter, CXL_PSL_Control);
360 	reg |= CXL_PSL_Control_Fr;
361 	cxl_p1_write(adapter, CXL_PSL_Control, reg);
362 
363 	reg = cxl_p1_read(adapter, CXL_PSL_Control);
364 	while ((reg & CXL_PSL_Control_Fs_MASK) != CXL_PSL_Control_Fs_Complete) {
365 		if (time_after_eq(jiffies, timeout)) {
366 			dev_warn(&adapter->dev, "WARNING: cache flush timed out!\n");
367 			return -EBUSY;
368 		}
369 
370 		if (!cxl_ops->link_ok(adapter, NULL)) {
371 			dev_warn(&adapter->dev, "WARNING: link down when flushing cache\n");
372 			return -EIO;
373 		}
374 		cpu_relax();
375 		reg = cxl_p1_read(adapter, CXL_PSL_Control);
376 	}
377 
378 	reg &= ~CXL_PSL_Control_Fr;
379 	cxl_p1_write(adapter, CXL_PSL_Control, reg);
380 	return 0;
381 }
382 
cxl_write_sstp(struct cxl_afu * afu,u64 sstp0,u64 sstp1)383 static int cxl_write_sstp(struct cxl_afu *afu, u64 sstp0, u64 sstp1)
384 {
385 	int rc;
386 
387 	/* 1. Disable SSTP by writing 0 to SSTP1[V] */
388 	cxl_p2n_write(afu, CXL_SSTP1_An, 0);
389 
390 	/* 2. Invalidate all SLB entries */
391 	if ((rc = cxl_afu_slbia(afu)))
392 		return rc;
393 
394 	/* 3. Set SSTP0_An */
395 	cxl_p2n_write(afu, CXL_SSTP0_An, sstp0);
396 
397 	/* 4. Set SSTP1_An */
398 	cxl_p2n_write(afu, CXL_SSTP1_An, sstp1);
399 
400 	return 0;
401 }
402 
403 /* Using per slice version may improve performance here. (ie. SLBIA_An) */
slb_invalid(struct cxl_context * ctx)404 static void slb_invalid(struct cxl_context *ctx)
405 {
406 	struct cxl *adapter = ctx->afu->adapter;
407 	u64 slbia;
408 
409 	WARN_ON(!mutex_is_locked(&ctx->afu->native->spa_mutex));
410 
411 	cxl_p1_write(adapter, CXL_PSL_LBISEL,
412 			((u64)be32_to_cpu(ctx->elem->common.pid) << 32) |
413 			be32_to_cpu(ctx->elem->lpid));
414 	cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_LPIDPID);
415 
416 	while (1) {
417 		if (!cxl_ops->link_ok(adapter, NULL))
418 			break;
419 		slbia = cxl_p1_read(adapter, CXL_PSL_SLBIA);
420 		if (!(slbia & CXL_TLB_SLB_P))
421 			break;
422 		cpu_relax();
423 	}
424 }
425 
do_process_element_cmd(struct cxl_context * ctx,u64 cmd,u64 pe_state)426 static int do_process_element_cmd(struct cxl_context *ctx,
427 				  u64 cmd, u64 pe_state)
428 {
429 	u64 state;
430 	unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
431 	int rc = 0;
432 
433 	trace_cxl_llcmd(ctx, cmd);
434 
435 	WARN_ON(!ctx->afu->enabled);
436 
437 	ctx->elem->software_state = cpu_to_be32(pe_state);
438 	smp_wmb();
439 	*(ctx->afu->native->sw_command_status) = cpu_to_be64(cmd | 0 | ctx->pe);
440 	smp_mb();
441 	cxl_p1n_write(ctx->afu, CXL_PSL_LLCMD_An, cmd | ctx->pe);
442 	while (1) {
443 		if (time_after_eq(jiffies, timeout)) {
444 			dev_warn(&ctx->afu->dev, "WARNING: Process Element Command timed out!\n");
445 			rc = -EBUSY;
446 			goto out;
447 		}
448 		if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) {
449 			dev_warn(&ctx->afu->dev, "WARNING: Device link down, aborting Process Element Command!\n");
450 			rc = -EIO;
451 			goto out;
452 		}
453 		state = be64_to_cpup(ctx->afu->native->sw_command_status);
454 		if (state == ~0ULL) {
455 			pr_err("cxl: Error adding process element to AFU\n");
456 			rc = -1;
457 			goto out;
458 		}
459 		if ((state & (CXL_SPA_SW_CMD_MASK | CXL_SPA_SW_STATE_MASK  | CXL_SPA_SW_LINK_MASK)) ==
460 		    (cmd | (cmd >> 16) | ctx->pe))
461 			break;
462 		/*
463 		 * The command won't finish in the PSL if there are
464 		 * outstanding DSIs.  Hence we need to yield here in
465 		 * case there are outstanding DSIs that we need to
466 		 * service.  Tuning possiblity: we could wait for a
467 		 * while before sched
468 		 */
469 		schedule();
470 
471 	}
472 out:
473 	trace_cxl_llcmd_done(ctx, cmd, rc);
474 	return rc;
475 }
476 
add_process_element(struct cxl_context * ctx)477 static int add_process_element(struct cxl_context *ctx)
478 {
479 	int rc = 0;
480 
481 	mutex_lock(&ctx->afu->native->spa_mutex);
482 	pr_devel("%s Adding pe: %i started\n", __func__, ctx->pe);
483 	if (!(rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_ADD, CXL_PE_SOFTWARE_STATE_V)))
484 		ctx->pe_inserted = true;
485 	pr_devel("%s Adding pe: %i finished\n", __func__, ctx->pe);
486 	mutex_unlock(&ctx->afu->native->spa_mutex);
487 	return rc;
488 }
489 
terminate_process_element(struct cxl_context * ctx)490 static int terminate_process_element(struct cxl_context *ctx)
491 {
492 	int rc = 0;
493 
494 	/* fast path terminate if it's already invalid */
495 	if (!(ctx->elem->software_state & cpu_to_be32(CXL_PE_SOFTWARE_STATE_V)))
496 		return rc;
497 
498 	mutex_lock(&ctx->afu->native->spa_mutex);
499 	pr_devel("%s Terminate pe: %i started\n", __func__, ctx->pe);
500 	/* We could be asked to terminate when the hw is down. That
501 	 * should always succeed: it's not running if the hw has gone
502 	 * away and is being reset.
503 	 */
504 	if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu))
505 		rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_TERMINATE,
506 					    CXL_PE_SOFTWARE_STATE_V | CXL_PE_SOFTWARE_STATE_T);
507 	ctx->elem->software_state = 0;	/* Remove Valid bit */
508 	pr_devel("%s Terminate pe: %i finished\n", __func__, ctx->pe);
509 	mutex_unlock(&ctx->afu->native->spa_mutex);
510 	return rc;
511 }
512 
remove_process_element(struct cxl_context * ctx)513 static int remove_process_element(struct cxl_context *ctx)
514 {
515 	int rc = 0;
516 
517 	mutex_lock(&ctx->afu->native->spa_mutex);
518 	pr_devel("%s Remove pe: %i started\n", __func__, ctx->pe);
519 
520 	/* We could be asked to remove when the hw is down. Again, if
521 	 * the hw is down, the PE is gone, so we succeed.
522 	 */
523 	if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu))
524 		rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_REMOVE, 0);
525 
526 	if (!rc)
527 		ctx->pe_inserted = false;
528 	if (cxl_is_power8())
529 		slb_invalid(ctx);
530 	pr_devel("%s Remove pe: %i finished\n", __func__, ctx->pe);
531 	mutex_unlock(&ctx->afu->native->spa_mutex);
532 
533 	return rc;
534 }
535 
cxl_assign_psn_space(struct cxl_context * ctx)536 void cxl_assign_psn_space(struct cxl_context *ctx)
537 {
538 	if (!ctx->afu->pp_size || ctx->master) {
539 		ctx->psn_phys = ctx->afu->psn_phys;
540 		ctx->psn_size = ctx->afu->adapter->ps_size;
541 	} else {
542 		ctx->psn_phys = ctx->afu->psn_phys +
543 			(ctx->afu->native->pp_offset + ctx->afu->pp_size * ctx->pe);
544 		ctx->psn_size = ctx->afu->pp_size;
545 	}
546 }
547 
activate_afu_directed(struct cxl_afu * afu)548 static int activate_afu_directed(struct cxl_afu *afu)
549 {
550 	int rc;
551 
552 	dev_info(&afu->dev, "Activating AFU directed mode\n");
553 
554 	afu->num_procs = afu->max_procs_virtualised;
555 	if (afu->native->spa == NULL) {
556 		if (cxl_alloc_spa(afu, CXL_MODE_DIRECTED))
557 			return -ENOMEM;
558 	}
559 	attach_spa(afu);
560 
561 	cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_AFU);
562 	if (cxl_is_power8())
563 		cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL);
564 	cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L);
565 
566 	afu->current_mode = CXL_MODE_DIRECTED;
567 
568 	if ((rc = cxl_chardev_m_afu_add(afu)))
569 		return rc;
570 
571 	if ((rc = cxl_sysfs_afu_m_add(afu)))
572 		goto err;
573 
574 	if ((rc = cxl_chardev_s_afu_add(afu)))
575 		goto err1;
576 
577 	return 0;
578 err1:
579 	cxl_sysfs_afu_m_remove(afu);
580 err:
581 	cxl_chardev_afu_remove(afu);
582 	return rc;
583 }
584 
585 #ifdef CONFIG_CPU_LITTLE_ENDIAN
586 #define set_endian(sr) ((sr) |= CXL_PSL_SR_An_LE)
587 #else
588 #define set_endian(sr) ((sr) &= ~(CXL_PSL_SR_An_LE))
589 #endif
590 
cxl_calculate_sr(bool master,bool kernel,bool real_mode,bool p9)591 u64 cxl_calculate_sr(bool master, bool kernel, bool real_mode, bool p9)
592 {
593 	u64 sr = 0;
594 
595 	set_endian(sr);
596 	if (master)
597 		sr |= CXL_PSL_SR_An_MP;
598 	if (mfspr(SPRN_LPCR) & LPCR_TC)
599 		sr |= CXL_PSL_SR_An_TC;
600 
601 	if (kernel) {
602 		if (!real_mode)
603 			sr |= CXL_PSL_SR_An_R;
604 		sr |= (mfmsr() & MSR_SF) | CXL_PSL_SR_An_HV;
605 	} else {
606 		sr |= CXL_PSL_SR_An_PR | CXL_PSL_SR_An_R;
607 		if (radix_enabled())
608 			sr |= CXL_PSL_SR_An_HV;
609 		else
610 			sr &= ~(CXL_PSL_SR_An_HV);
611 		if (!test_tsk_thread_flag(current, TIF_32BIT))
612 			sr |= CXL_PSL_SR_An_SF;
613 	}
614 	if (p9) {
615 		if (radix_enabled())
616 			sr |= CXL_PSL_SR_An_XLAT_ror;
617 		else
618 			sr |= CXL_PSL_SR_An_XLAT_hpt;
619 	}
620 	return sr;
621 }
622 
calculate_sr(struct cxl_context * ctx)623 static u64 calculate_sr(struct cxl_context *ctx)
624 {
625 	return cxl_calculate_sr(ctx->master, ctx->kernel, false,
626 				cxl_is_power9());
627 }
628 
update_ivtes_directed(struct cxl_context * ctx)629 static void update_ivtes_directed(struct cxl_context *ctx)
630 {
631 	bool need_update = (ctx->status == STARTED);
632 	int r;
633 
634 	if (need_update) {
635 		WARN_ON(terminate_process_element(ctx));
636 		WARN_ON(remove_process_element(ctx));
637 	}
638 
639 	for (r = 0; r < CXL_IRQ_RANGES; r++) {
640 		ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]);
641 		ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]);
642 	}
643 
644 	/*
645 	 * Theoretically we could use the update llcmd, instead of a
646 	 * terminate/remove/add (or if an atomic update was required we could
647 	 * do a suspend/update/resume), however it seems there might be issues
648 	 * with the update llcmd on some cards (including those using an XSL on
649 	 * an ASIC) so for now it's safest to go with the commands that are
650 	 * known to work. In the future if we come across a situation where the
651 	 * card may be performing transactions using the same PE while we are
652 	 * doing this update we might need to revisit this.
653 	 */
654 	if (need_update)
655 		WARN_ON(add_process_element(ctx));
656 }
657 
process_element_entry_psl9(struct cxl_context * ctx,u64 wed,u64 amr)658 static int process_element_entry_psl9(struct cxl_context *ctx, u64 wed, u64 amr)
659 {
660 	u32 pid;
661 	int rc;
662 
663 	cxl_assign_psn_space(ctx);
664 
665 	ctx->elem->ctxtime = 0; /* disable */
666 	ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID));
667 	ctx->elem->haurp = 0; /* disable */
668 
669 	if (ctx->kernel)
670 		pid = 0;
671 	else {
672 		if (ctx->mm == NULL) {
673 			pr_devel("%s: unable to get mm for pe=%d pid=%i\n",
674 				__func__, ctx->pe, pid_nr(ctx->pid));
675 			return -EINVAL;
676 		}
677 		pid = ctx->mm->context.id;
678 	}
679 
680 	/* Assign a unique TIDR (thread id) for the current thread */
681 	if (!(ctx->tidr) && (ctx->assign_tidr)) {
682 		rc = set_thread_tidr(current);
683 		if (rc)
684 			return -ENODEV;
685 		ctx->tidr = current->thread.tidr;
686 		pr_devel("%s: current tidr: %d\n", __func__, ctx->tidr);
687 	}
688 
689 	ctx->elem->common.tid = cpu_to_be32(ctx->tidr);
690 	ctx->elem->common.pid = cpu_to_be32(pid);
691 
692 	ctx->elem->sr = cpu_to_be64(calculate_sr(ctx));
693 
694 	ctx->elem->common.csrp = 0; /* disable */
695 
696 	cxl_prefault(ctx, wed);
697 
698 	/*
699 	 * Ensure we have the multiplexed PSL interrupt set up to take faults
700 	 * for kernel contexts that may not have allocated any AFU IRQs at all:
701 	 */
702 	if (ctx->irqs.range[0] == 0) {
703 		ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq;
704 		ctx->irqs.range[0] = 1;
705 	}
706 
707 	ctx->elem->common.amr = cpu_to_be64(amr);
708 	ctx->elem->common.wed = cpu_to_be64(wed);
709 
710 	return 0;
711 }
712 
cxl_attach_afu_directed_psl9(struct cxl_context * ctx,u64 wed,u64 amr)713 int cxl_attach_afu_directed_psl9(struct cxl_context *ctx, u64 wed, u64 amr)
714 {
715 	int result;
716 
717 	/* fill the process element entry */
718 	result = process_element_entry_psl9(ctx, wed, amr);
719 	if (result)
720 		return result;
721 
722 	update_ivtes_directed(ctx);
723 
724 	/* first guy needs to enable */
725 	result = cxl_ops->afu_check_and_enable(ctx->afu);
726 	if (result)
727 		return result;
728 
729 	return add_process_element(ctx);
730 }
731 
cxl_attach_afu_directed_psl8(struct cxl_context * ctx,u64 wed,u64 amr)732 int cxl_attach_afu_directed_psl8(struct cxl_context *ctx, u64 wed, u64 amr)
733 {
734 	u32 pid;
735 	int result;
736 
737 	cxl_assign_psn_space(ctx);
738 
739 	ctx->elem->ctxtime = 0; /* disable */
740 	ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID));
741 	ctx->elem->haurp = 0; /* disable */
742 	ctx->elem->u.sdr = cpu_to_be64(mfspr(SPRN_SDR1));
743 
744 	pid = current->pid;
745 	if (ctx->kernel)
746 		pid = 0;
747 	ctx->elem->common.tid = 0;
748 	ctx->elem->common.pid = cpu_to_be32(pid);
749 
750 	ctx->elem->sr = cpu_to_be64(calculate_sr(ctx));
751 
752 	ctx->elem->common.csrp = 0; /* disable */
753 	ctx->elem->common.u.psl8.aurp0 = 0; /* disable */
754 	ctx->elem->common.u.psl8.aurp1 = 0; /* disable */
755 
756 	cxl_prefault(ctx, wed);
757 
758 	ctx->elem->common.u.psl8.sstp0 = cpu_to_be64(ctx->sstp0);
759 	ctx->elem->common.u.psl8.sstp1 = cpu_to_be64(ctx->sstp1);
760 
761 	/*
762 	 * Ensure we have the multiplexed PSL interrupt set up to take faults
763 	 * for kernel contexts that may not have allocated any AFU IRQs at all:
764 	 */
765 	if (ctx->irqs.range[0] == 0) {
766 		ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq;
767 		ctx->irqs.range[0] = 1;
768 	}
769 
770 	update_ivtes_directed(ctx);
771 
772 	ctx->elem->common.amr = cpu_to_be64(amr);
773 	ctx->elem->common.wed = cpu_to_be64(wed);
774 
775 	/* first guy needs to enable */
776 	if ((result = cxl_ops->afu_check_and_enable(ctx->afu)))
777 		return result;
778 
779 	return add_process_element(ctx);
780 }
781 
deactivate_afu_directed(struct cxl_afu * afu)782 static int deactivate_afu_directed(struct cxl_afu *afu)
783 {
784 	dev_info(&afu->dev, "Deactivating AFU directed mode\n");
785 
786 	afu->current_mode = 0;
787 	afu->num_procs = 0;
788 
789 	cxl_sysfs_afu_m_remove(afu);
790 	cxl_chardev_afu_remove(afu);
791 
792 	/*
793 	 * The CAIA section 2.2.1 indicates that the procedure for starting and
794 	 * stopping an AFU in AFU directed mode is AFU specific, which is not
795 	 * ideal since this code is generic and with one exception has no
796 	 * knowledge of the AFU. This is in contrast to the procedure for
797 	 * disabling a dedicated process AFU, which is documented to just
798 	 * require a reset. The architecture does indicate that both an AFU
799 	 * reset and an AFU disable should result in the AFU being disabled and
800 	 * we do both followed by a PSL purge for safety.
801 	 *
802 	 * Notably we used to have some issues with the disable sequence on PSL
803 	 * cards, which is why we ended up using this heavy weight procedure in
804 	 * the first place, however a bug was discovered that had rendered the
805 	 * disable operation ineffective, so it is conceivable that was the
806 	 * sole explanation for those difficulties. Careful regression testing
807 	 * is recommended if anyone attempts to remove or reorder these
808 	 * operations.
809 	 *
810 	 * The XSL on the Mellanox CX4 behaves a little differently from the
811 	 * PSL based cards and will time out an AFU reset if the AFU is still
812 	 * enabled. That card is special in that we do have a means to identify
813 	 * it from this code, so in that case we skip the reset and just use a
814 	 * disable/purge to avoid the timeout and corresponding noise in the
815 	 * kernel log.
816 	 */
817 	if (afu->adapter->native->sl_ops->needs_reset_before_disable)
818 		cxl_ops->afu_reset(afu);
819 	cxl_afu_disable(afu);
820 	cxl_psl_purge(afu);
821 
822 	return 0;
823 }
824 
cxl_activate_dedicated_process_psl9(struct cxl_afu * afu)825 int cxl_activate_dedicated_process_psl9(struct cxl_afu *afu)
826 {
827 	dev_info(&afu->dev, "Activating dedicated process mode\n");
828 
829 	/*
830 	 * If XSL is set to dedicated mode (Set in PSL_SCNTL reg), the
831 	 * XSL and AFU are programmed to work with a single context.
832 	 * The context information should be configured in the SPA area
833 	 * index 0 (so PSL_SPAP must be configured before enabling the
834 	 * AFU).
835 	 */
836 	afu->num_procs = 1;
837 	if (afu->native->spa == NULL) {
838 		if (cxl_alloc_spa(afu, CXL_MODE_DEDICATED))
839 			return -ENOMEM;
840 	}
841 	attach_spa(afu);
842 
843 	cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process);
844 	cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L);
845 
846 	afu->current_mode = CXL_MODE_DEDICATED;
847 
848 	return cxl_chardev_d_afu_add(afu);
849 }
850 
cxl_activate_dedicated_process_psl8(struct cxl_afu * afu)851 int cxl_activate_dedicated_process_psl8(struct cxl_afu *afu)
852 {
853 	dev_info(&afu->dev, "Activating dedicated process mode\n");
854 
855 	cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process);
856 
857 	cxl_p1n_write(afu, CXL_PSL_CtxTime_An, 0); /* disable */
858 	cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0);    /* disable */
859 	cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL);
860 	cxl_p1n_write(afu, CXL_PSL_LPID_An, mfspr(SPRN_LPID));
861 	cxl_p1n_write(afu, CXL_HAURP_An, 0);       /* disable */
862 	cxl_p1n_write(afu, CXL_PSL_SDR_An, mfspr(SPRN_SDR1));
863 
864 	cxl_p2n_write(afu, CXL_CSRP_An, 0);        /* disable */
865 	cxl_p2n_write(afu, CXL_AURP0_An, 0);       /* disable */
866 	cxl_p2n_write(afu, CXL_AURP1_An, 0);       /* disable */
867 
868 	afu->current_mode = CXL_MODE_DEDICATED;
869 	afu->num_procs = 1;
870 
871 	return cxl_chardev_d_afu_add(afu);
872 }
873 
cxl_update_dedicated_ivtes_psl9(struct cxl_context * ctx)874 void cxl_update_dedicated_ivtes_psl9(struct cxl_context *ctx)
875 {
876 	int r;
877 
878 	for (r = 0; r < CXL_IRQ_RANGES; r++) {
879 		ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]);
880 		ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]);
881 	}
882 }
883 
cxl_update_dedicated_ivtes_psl8(struct cxl_context * ctx)884 void cxl_update_dedicated_ivtes_psl8(struct cxl_context *ctx)
885 {
886 	struct cxl_afu *afu = ctx->afu;
887 
888 	cxl_p1n_write(afu, CXL_PSL_IVTE_Offset_An,
889 		       (((u64)ctx->irqs.offset[0] & 0xffff) << 48) |
890 		       (((u64)ctx->irqs.offset[1] & 0xffff) << 32) |
891 		       (((u64)ctx->irqs.offset[2] & 0xffff) << 16) |
892 			((u64)ctx->irqs.offset[3] & 0xffff));
893 	cxl_p1n_write(afu, CXL_PSL_IVTE_Limit_An, (u64)
894 		       (((u64)ctx->irqs.range[0] & 0xffff) << 48) |
895 		       (((u64)ctx->irqs.range[1] & 0xffff) << 32) |
896 		       (((u64)ctx->irqs.range[2] & 0xffff) << 16) |
897 			((u64)ctx->irqs.range[3] & 0xffff));
898 }
899 
cxl_attach_dedicated_process_psl9(struct cxl_context * ctx,u64 wed,u64 amr)900 int cxl_attach_dedicated_process_psl9(struct cxl_context *ctx, u64 wed, u64 amr)
901 {
902 	struct cxl_afu *afu = ctx->afu;
903 	int result;
904 
905 	/* fill the process element entry */
906 	result = process_element_entry_psl9(ctx, wed, amr);
907 	if (result)
908 		return result;
909 
910 	if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes)
911 		afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx);
912 
913 	ctx->elem->software_state = cpu_to_be32(CXL_PE_SOFTWARE_STATE_V);
914 	/*
915 	 * Ideally we should do a wmb() here to make sure the changes to the
916 	 * PE are visible to the card before we call afu_enable.
917 	 * On ppc64 though all mmios are preceded by a 'sync' instruction hence
918 	 * we dont dont need one here.
919 	 */
920 
921 	result = cxl_ops->afu_reset(afu);
922 	if (result)
923 		return result;
924 
925 	return afu_enable(afu);
926 }
927 
cxl_attach_dedicated_process_psl8(struct cxl_context * ctx,u64 wed,u64 amr)928 int cxl_attach_dedicated_process_psl8(struct cxl_context *ctx, u64 wed, u64 amr)
929 {
930 	struct cxl_afu *afu = ctx->afu;
931 	u64 pid;
932 	int rc;
933 
934 	pid = (u64)current->pid << 32;
935 	if (ctx->kernel)
936 		pid = 0;
937 	cxl_p2n_write(afu, CXL_PSL_PID_TID_An, pid);
938 
939 	cxl_p1n_write(afu, CXL_PSL_SR_An, calculate_sr(ctx));
940 
941 	if ((rc = cxl_write_sstp(afu, ctx->sstp0, ctx->sstp1)))
942 		return rc;
943 
944 	cxl_prefault(ctx, wed);
945 
946 	if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes)
947 		afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx);
948 
949 	cxl_p2n_write(afu, CXL_PSL_AMR_An, amr);
950 
951 	/* master only context for dedicated */
952 	cxl_assign_psn_space(ctx);
953 
954 	if ((rc = cxl_ops->afu_reset(afu)))
955 		return rc;
956 
957 	cxl_p2n_write(afu, CXL_PSL_WED_An, wed);
958 
959 	return afu_enable(afu);
960 }
961 
deactivate_dedicated_process(struct cxl_afu * afu)962 static int deactivate_dedicated_process(struct cxl_afu *afu)
963 {
964 	dev_info(&afu->dev, "Deactivating dedicated process mode\n");
965 
966 	afu->current_mode = 0;
967 	afu->num_procs = 0;
968 
969 	cxl_chardev_afu_remove(afu);
970 
971 	return 0;
972 }
973 
native_afu_deactivate_mode(struct cxl_afu * afu,int mode)974 static int native_afu_deactivate_mode(struct cxl_afu *afu, int mode)
975 {
976 	if (mode == CXL_MODE_DIRECTED)
977 		return deactivate_afu_directed(afu);
978 	if (mode == CXL_MODE_DEDICATED)
979 		return deactivate_dedicated_process(afu);
980 	return 0;
981 }
982 
native_afu_activate_mode(struct cxl_afu * afu,int mode)983 static int native_afu_activate_mode(struct cxl_afu *afu, int mode)
984 {
985 	if (!mode)
986 		return 0;
987 	if (!(mode & afu->modes_supported))
988 		return -EINVAL;
989 
990 	if (!cxl_ops->link_ok(afu->adapter, afu)) {
991 		WARN(1, "Device link is down, refusing to activate!\n");
992 		return -EIO;
993 	}
994 
995 	if (mode == CXL_MODE_DIRECTED)
996 		return activate_afu_directed(afu);
997 	if ((mode == CXL_MODE_DEDICATED) &&
998 	    (afu->adapter->native->sl_ops->activate_dedicated_process))
999 		return afu->adapter->native->sl_ops->activate_dedicated_process(afu);
1000 
1001 	return -EINVAL;
1002 }
1003 
native_attach_process(struct cxl_context * ctx,bool kernel,u64 wed,u64 amr)1004 static int native_attach_process(struct cxl_context *ctx, bool kernel,
1005 				u64 wed, u64 amr)
1006 {
1007 	if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) {
1008 		WARN(1, "Device link is down, refusing to attach process!\n");
1009 		return -EIO;
1010 	}
1011 
1012 	ctx->kernel = kernel;
1013 	if ((ctx->afu->current_mode == CXL_MODE_DIRECTED) &&
1014 	    (ctx->afu->adapter->native->sl_ops->attach_afu_directed))
1015 		return ctx->afu->adapter->native->sl_ops->attach_afu_directed(ctx, wed, amr);
1016 
1017 	if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) &&
1018 	    (ctx->afu->adapter->native->sl_ops->attach_dedicated_process))
1019 		return ctx->afu->adapter->native->sl_ops->attach_dedicated_process(ctx, wed, amr);
1020 
1021 	return -EINVAL;
1022 }
1023 
detach_process_native_dedicated(struct cxl_context * ctx)1024 static inline int detach_process_native_dedicated(struct cxl_context *ctx)
1025 {
1026 	/*
1027 	 * The CAIA section 2.1.1 indicates that we need to do an AFU reset to
1028 	 * stop the AFU in dedicated mode (we therefore do not make that
1029 	 * optional like we do in the afu directed path). It does not indicate
1030 	 * that we need to do an explicit disable (which should occur
1031 	 * implicitly as part of the reset) or purge, but we do these as well
1032 	 * to be on the safe side.
1033 	 *
1034 	 * Notably we used to have some issues with the disable sequence
1035 	 * (before the sequence was spelled out in the architecture) which is
1036 	 * why we were so heavy weight in the first place, however a bug was
1037 	 * discovered that had rendered the disable operation ineffective, so
1038 	 * it is conceivable that was the sole explanation for those
1039 	 * difficulties. Point is, we should be careful and do some regression
1040 	 * testing if we ever attempt to remove any part of this procedure.
1041 	 */
1042 	cxl_ops->afu_reset(ctx->afu);
1043 	cxl_afu_disable(ctx->afu);
1044 	cxl_psl_purge(ctx->afu);
1045 	return 0;
1046 }
1047 
native_update_ivtes(struct cxl_context * ctx)1048 static void native_update_ivtes(struct cxl_context *ctx)
1049 {
1050 	if (ctx->afu->current_mode == CXL_MODE_DIRECTED)
1051 		return update_ivtes_directed(ctx);
1052 	if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) &&
1053 	    (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes))
1054 		return ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx);
1055 	WARN(1, "native_update_ivtes: Bad mode\n");
1056 }
1057 
detach_process_native_afu_directed(struct cxl_context * ctx)1058 static inline int detach_process_native_afu_directed(struct cxl_context *ctx)
1059 {
1060 	if (!ctx->pe_inserted)
1061 		return 0;
1062 	if (terminate_process_element(ctx))
1063 		return -1;
1064 	if (remove_process_element(ctx))
1065 		return -1;
1066 
1067 	return 0;
1068 }
1069 
native_detach_process(struct cxl_context * ctx)1070 static int native_detach_process(struct cxl_context *ctx)
1071 {
1072 	trace_cxl_detach(ctx);
1073 
1074 	if (ctx->afu->current_mode == CXL_MODE_DEDICATED)
1075 		return detach_process_native_dedicated(ctx);
1076 
1077 	return detach_process_native_afu_directed(ctx);
1078 }
1079 
native_get_irq_info(struct cxl_afu * afu,struct cxl_irq_info * info)1080 static int native_get_irq_info(struct cxl_afu *afu, struct cxl_irq_info *info)
1081 {
1082 	/* If the adapter has gone away, we can't get any meaningful
1083 	 * information.
1084 	 */
1085 	if (!cxl_ops->link_ok(afu->adapter, afu))
1086 		return -EIO;
1087 
1088 	info->dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
1089 	info->dar = cxl_p2n_read(afu, CXL_PSL_DAR_An);
1090 	if (cxl_is_power8())
1091 		info->dsr = cxl_p2n_read(afu, CXL_PSL_DSR_An);
1092 	info->afu_err = cxl_p2n_read(afu, CXL_AFU_ERR_An);
1093 	info->errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An);
1094 	info->proc_handle = 0;
1095 
1096 	return 0;
1097 }
1098 
cxl_native_irq_dump_regs_psl9(struct cxl_context * ctx)1099 void cxl_native_irq_dump_regs_psl9(struct cxl_context *ctx)
1100 {
1101 	u64 fir1, serr;
1102 
1103 	fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL9_FIR1);
1104 
1105 	dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1);
1106 	if (ctx->afu->adapter->native->sl_ops->register_serr_irq) {
1107 		serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An);
1108 		cxl_afu_decode_psl_serr(ctx->afu, serr);
1109 	}
1110 }
1111 
cxl_native_irq_dump_regs_psl8(struct cxl_context * ctx)1112 void cxl_native_irq_dump_regs_psl8(struct cxl_context *ctx)
1113 {
1114 	u64 fir1, fir2, fir_slice, serr, afu_debug;
1115 
1116 	fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR1);
1117 	fir2 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR2);
1118 	fir_slice = cxl_p1n_read(ctx->afu, CXL_PSL_FIR_SLICE_An);
1119 	afu_debug = cxl_p1n_read(ctx->afu, CXL_AFU_DEBUG_An);
1120 
1121 	dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1);
1122 	dev_crit(&ctx->afu->dev, "PSL_FIR2: 0x%016llx\n", fir2);
1123 	if (ctx->afu->adapter->native->sl_ops->register_serr_irq) {
1124 		serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An);
1125 		cxl_afu_decode_psl_serr(ctx->afu, serr);
1126 	}
1127 	dev_crit(&ctx->afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice);
1128 	dev_crit(&ctx->afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug);
1129 }
1130 
native_handle_psl_slice_error(struct cxl_context * ctx,u64 dsisr,u64 errstat)1131 static irqreturn_t native_handle_psl_slice_error(struct cxl_context *ctx,
1132 						u64 dsisr, u64 errstat)
1133 {
1134 
1135 	dev_crit(&ctx->afu->dev, "PSL ERROR STATUS: 0x%016llx\n", errstat);
1136 
1137 	if (ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers)
1138 		ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers(ctx);
1139 
1140 	if (ctx->afu->adapter->native->sl_ops->debugfs_stop_trace) {
1141 		dev_crit(&ctx->afu->dev, "STOPPING CXL TRACE\n");
1142 		ctx->afu->adapter->native->sl_ops->debugfs_stop_trace(ctx->afu->adapter);
1143 	}
1144 
1145 	return cxl_ops->ack_irq(ctx, 0, errstat);
1146 }
1147 
cxl_is_translation_fault(struct cxl_afu * afu,u64 dsisr)1148 static bool cxl_is_translation_fault(struct cxl_afu *afu, u64 dsisr)
1149 {
1150 	if ((cxl_is_power8()) && (dsisr & CXL_PSL_DSISR_TRANS))
1151 		return true;
1152 
1153 	if ((cxl_is_power9()) && (dsisr & CXL_PSL9_DSISR_An_TF))
1154 		return true;
1155 
1156 	return false;
1157 }
1158 
cxl_fail_irq_psl(struct cxl_afu * afu,struct cxl_irq_info * irq_info)1159 irqreturn_t cxl_fail_irq_psl(struct cxl_afu *afu, struct cxl_irq_info *irq_info)
1160 {
1161 	if (cxl_is_translation_fault(afu, irq_info->dsisr))
1162 		cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE);
1163 	else
1164 		cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A);
1165 
1166 	return IRQ_HANDLED;
1167 }
1168 
native_irq_multiplexed(int irq,void * data)1169 static irqreturn_t native_irq_multiplexed(int irq, void *data)
1170 {
1171 	struct cxl_afu *afu = data;
1172 	struct cxl_context *ctx;
1173 	struct cxl_irq_info irq_info;
1174 	u64 phreg = cxl_p2n_read(afu, CXL_PSL_PEHandle_An);
1175 	int ph, ret = IRQ_HANDLED, res;
1176 
1177 	/* check if eeh kicked in while the interrupt was in flight */
1178 	if (unlikely(phreg == ~0ULL)) {
1179 		dev_warn(&afu->dev,
1180 			 "Ignoring slice interrupt(%d) due to fenced card",
1181 			 irq);
1182 		return IRQ_HANDLED;
1183 	}
1184 	/* Mask the pe-handle from register value */
1185 	ph = phreg & 0xffff;
1186 	if ((res = native_get_irq_info(afu, &irq_info))) {
1187 		WARN(1, "Unable to get CXL IRQ Info: %i\n", res);
1188 		if (afu->adapter->native->sl_ops->fail_irq)
1189 			return afu->adapter->native->sl_ops->fail_irq(afu, &irq_info);
1190 		return ret;
1191 	}
1192 
1193 	rcu_read_lock();
1194 	ctx = idr_find(&afu->contexts_idr, ph);
1195 	if (ctx) {
1196 		if (afu->adapter->native->sl_ops->handle_interrupt)
1197 			ret = afu->adapter->native->sl_ops->handle_interrupt(irq, ctx, &irq_info);
1198 		rcu_read_unlock();
1199 		return ret;
1200 	}
1201 	rcu_read_unlock();
1202 
1203 	WARN(1, "Unable to demultiplex CXL PSL IRQ for PE %i DSISR %016llx DAR"
1204 		" %016llx\n(Possible AFU HW issue - was a term/remove acked"
1205 		" with outstanding transactions?)\n", ph, irq_info.dsisr,
1206 		irq_info.dar);
1207 	if (afu->adapter->native->sl_ops->fail_irq)
1208 		ret = afu->adapter->native->sl_ops->fail_irq(afu, &irq_info);
1209 	return ret;
1210 }
1211 
native_irq_wait(struct cxl_context * ctx)1212 static void native_irq_wait(struct cxl_context *ctx)
1213 {
1214 	u64 dsisr;
1215 	int timeout = 1000;
1216 	int ph;
1217 
1218 	/*
1219 	 * Wait until no further interrupts are presented by the PSL
1220 	 * for this context.
1221 	 */
1222 	while (timeout--) {
1223 		ph = cxl_p2n_read(ctx->afu, CXL_PSL_PEHandle_An) & 0xffff;
1224 		if (ph != ctx->pe)
1225 			return;
1226 		dsisr = cxl_p2n_read(ctx->afu, CXL_PSL_DSISR_An);
1227 		if (cxl_is_power8() &&
1228 		   ((dsisr & CXL_PSL_DSISR_PENDING) == 0))
1229 			return;
1230 		if (cxl_is_power9() &&
1231 		   ((dsisr & CXL_PSL9_DSISR_PENDING) == 0))
1232 			return;
1233 		/*
1234 		 * We are waiting for the workqueue to process our
1235 		 * irq, so need to let that run here.
1236 		 */
1237 		msleep(1);
1238 	}
1239 
1240 	dev_warn(&ctx->afu->dev, "WARNING: waiting on DSI for PE %i"
1241 		 " DSISR %016llx!\n", ph, dsisr);
1242 	return;
1243 }
1244 
native_slice_irq_err(int irq,void * data)1245 static irqreturn_t native_slice_irq_err(int irq, void *data)
1246 {
1247 	struct cxl_afu *afu = data;
1248 	u64 errstat, serr, afu_error, dsisr;
1249 	u64 fir_slice, afu_debug, irq_mask;
1250 
1251 	/*
1252 	 * slice err interrupt is only used with full PSL (no XSL)
1253 	 */
1254 	serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
1255 	errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An);
1256 	afu_error = cxl_p2n_read(afu, CXL_AFU_ERR_An);
1257 	dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
1258 	cxl_afu_decode_psl_serr(afu, serr);
1259 
1260 	if (cxl_is_power8()) {
1261 		fir_slice = cxl_p1n_read(afu, CXL_PSL_FIR_SLICE_An);
1262 		afu_debug = cxl_p1n_read(afu, CXL_AFU_DEBUG_An);
1263 		dev_crit(&afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice);
1264 		dev_crit(&afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug);
1265 	}
1266 	dev_crit(&afu->dev, "CXL_PSL_ErrStat_An: 0x%016llx\n", errstat);
1267 	dev_crit(&afu->dev, "AFU_ERR_An: 0x%.16llx\n", afu_error);
1268 	dev_crit(&afu->dev, "PSL_DSISR_An: 0x%.16llx\n", dsisr);
1269 
1270 	/* mask off the IRQ so it won't retrigger until the AFU is reset */
1271 	irq_mask = (serr & CXL_PSL_SERR_An_IRQS) >> 32;
1272 	serr |= irq_mask;
1273 	cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
1274 	dev_info(&afu->dev, "Further such interrupts will be masked until the AFU is reset\n");
1275 
1276 	return IRQ_HANDLED;
1277 }
1278 
cxl_native_err_irq_dump_regs_psl9(struct cxl * adapter)1279 void cxl_native_err_irq_dump_regs_psl9(struct cxl *adapter)
1280 {
1281 	u64 fir1;
1282 
1283 	fir1 = cxl_p1_read(adapter, CXL_PSL9_FIR1);
1284 	dev_crit(&adapter->dev, "PSL_FIR: 0x%016llx\n", fir1);
1285 }
1286 
cxl_native_err_irq_dump_regs_psl8(struct cxl * adapter)1287 void cxl_native_err_irq_dump_regs_psl8(struct cxl *adapter)
1288 {
1289 	u64 fir1, fir2;
1290 
1291 	fir1 = cxl_p1_read(adapter, CXL_PSL_FIR1);
1292 	fir2 = cxl_p1_read(adapter, CXL_PSL_FIR2);
1293 	dev_crit(&adapter->dev,
1294 		 "PSL_FIR1: 0x%016llx\nPSL_FIR2: 0x%016llx\n",
1295 		 fir1, fir2);
1296 }
1297 
native_irq_err(int irq,void * data)1298 static irqreturn_t native_irq_err(int irq, void *data)
1299 {
1300 	struct cxl *adapter = data;
1301 	u64 err_ivte;
1302 
1303 	WARN(1, "CXL ERROR interrupt %i\n", irq);
1304 
1305 	err_ivte = cxl_p1_read(adapter, CXL_PSL_ErrIVTE);
1306 	dev_crit(&adapter->dev, "PSL_ErrIVTE: 0x%016llx\n", err_ivte);
1307 
1308 	if (adapter->native->sl_ops->debugfs_stop_trace) {
1309 		dev_crit(&adapter->dev, "STOPPING CXL TRACE\n");
1310 		adapter->native->sl_ops->debugfs_stop_trace(adapter);
1311 	}
1312 
1313 	if (adapter->native->sl_ops->err_irq_dump_registers)
1314 		adapter->native->sl_ops->err_irq_dump_registers(adapter);
1315 
1316 	return IRQ_HANDLED;
1317 }
1318 
cxl_native_register_psl_err_irq(struct cxl * adapter)1319 int cxl_native_register_psl_err_irq(struct cxl *adapter)
1320 {
1321 	int rc;
1322 
1323 	adapter->irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err",
1324 				      dev_name(&adapter->dev));
1325 	if (!adapter->irq_name)
1326 		return -ENOMEM;
1327 
1328 	if ((rc = cxl_register_one_irq(adapter, native_irq_err, adapter,
1329 				       &adapter->native->err_hwirq,
1330 				       &adapter->native->err_virq,
1331 				       adapter->irq_name))) {
1332 		kfree(adapter->irq_name);
1333 		adapter->irq_name = NULL;
1334 		return rc;
1335 	}
1336 
1337 	cxl_p1_write(adapter, CXL_PSL_ErrIVTE, adapter->native->err_hwirq & 0xffff);
1338 
1339 	return 0;
1340 }
1341 
cxl_native_release_psl_err_irq(struct cxl * adapter)1342 void cxl_native_release_psl_err_irq(struct cxl *adapter)
1343 {
1344 	if (adapter->native->err_virq == 0 ||
1345 	    adapter->native->err_virq !=
1346 	    irq_find_mapping(NULL, adapter->native->err_hwirq))
1347 		return;
1348 
1349 	cxl_p1_write(adapter, CXL_PSL_ErrIVTE, 0x0000000000000000);
1350 	cxl_unmap_irq(adapter->native->err_virq, adapter);
1351 	cxl_ops->release_one_irq(adapter, adapter->native->err_hwirq);
1352 	kfree(adapter->irq_name);
1353 	adapter->native->err_virq = 0;
1354 }
1355 
cxl_native_register_serr_irq(struct cxl_afu * afu)1356 int cxl_native_register_serr_irq(struct cxl_afu *afu)
1357 {
1358 	u64 serr;
1359 	int rc;
1360 
1361 	afu->err_irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err",
1362 				      dev_name(&afu->dev));
1363 	if (!afu->err_irq_name)
1364 		return -ENOMEM;
1365 
1366 	if ((rc = cxl_register_one_irq(afu->adapter, native_slice_irq_err, afu,
1367 				       &afu->serr_hwirq,
1368 				       &afu->serr_virq, afu->err_irq_name))) {
1369 		kfree(afu->err_irq_name);
1370 		afu->err_irq_name = NULL;
1371 		return rc;
1372 	}
1373 
1374 	serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
1375 	if (cxl_is_power8())
1376 		serr = (serr & 0x00ffffffffff0000ULL) | (afu->serr_hwirq & 0xffff);
1377 	if (cxl_is_power9()) {
1378 		/*
1379 		 * By default, all errors are masked. So don't set all masks.
1380 		 * Slice errors will be transfered.
1381 		 */
1382 		serr = (serr & ~0xff0000007fffffffULL) | (afu->serr_hwirq & 0xffff);
1383 	}
1384 	cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
1385 
1386 	return 0;
1387 }
1388 
cxl_native_release_serr_irq(struct cxl_afu * afu)1389 void cxl_native_release_serr_irq(struct cxl_afu *afu)
1390 {
1391 	if (afu->serr_virq == 0 ||
1392 	    afu->serr_virq != irq_find_mapping(NULL, afu->serr_hwirq))
1393 		return;
1394 
1395 	cxl_p1n_write(afu, CXL_PSL_SERR_An, 0x0000000000000000);
1396 	cxl_unmap_irq(afu->serr_virq, afu);
1397 	cxl_ops->release_one_irq(afu->adapter, afu->serr_hwirq);
1398 	kfree(afu->err_irq_name);
1399 	afu->serr_virq = 0;
1400 }
1401 
cxl_native_register_psl_irq(struct cxl_afu * afu)1402 int cxl_native_register_psl_irq(struct cxl_afu *afu)
1403 {
1404 	int rc;
1405 
1406 	afu->psl_irq_name = kasprintf(GFP_KERNEL, "cxl-%s",
1407 				      dev_name(&afu->dev));
1408 	if (!afu->psl_irq_name)
1409 		return -ENOMEM;
1410 
1411 	if ((rc = cxl_register_one_irq(afu->adapter, native_irq_multiplexed,
1412 				    afu, &afu->native->psl_hwirq, &afu->native->psl_virq,
1413 				    afu->psl_irq_name))) {
1414 		kfree(afu->psl_irq_name);
1415 		afu->psl_irq_name = NULL;
1416 	}
1417 	return rc;
1418 }
1419 
cxl_native_release_psl_irq(struct cxl_afu * afu)1420 void cxl_native_release_psl_irq(struct cxl_afu *afu)
1421 {
1422 	if (afu->native->psl_virq == 0 ||
1423 	    afu->native->psl_virq !=
1424 	    irq_find_mapping(NULL, afu->native->psl_hwirq))
1425 		return;
1426 
1427 	cxl_unmap_irq(afu->native->psl_virq, afu);
1428 	cxl_ops->release_one_irq(afu->adapter, afu->native->psl_hwirq);
1429 	kfree(afu->psl_irq_name);
1430 	afu->native->psl_virq = 0;
1431 }
1432 
recover_psl_err(struct cxl_afu * afu,u64 errstat)1433 static void recover_psl_err(struct cxl_afu *afu, u64 errstat)
1434 {
1435 	u64 dsisr;
1436 
1437 	pr_devel("RECOVERING FROM PSL ERROR... (0x%016llx)\n", errstat);
1438 
1439 	/* Clear PSL_DSISR[PE] */
1440 	dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
1441 	cxl_p2n_write(afu, CXL_PSL_DSISR_An, dsisr & ~CXL_PSL_DSISR_An_PE);
1442 
1443 	/* Write 1s to clear error status bits */
1444 	cxl_p2n_write(afu, CXL_PSL_ErrStat_An, errstat);
1445 }
1446 
native_ack_irq(struct cxl_context * ctx,u64 tfc,u64 psl_reset_mask)1447 static int native_ack_irq(struct cxl_context *ctx, u64 tfc, u64 psl_reset_mask)
1448 {
1449 	trace_cxl_psl_irq_ack(ctx, tfc);
1450 	if (tfc)
1451 		cxl_p2n_write(ctx->afu, CXL_PSL_TFC_An, tfc);
1452 	if (psl_reset_mask)
1453 		recover_psl_err(ctx->afu, psl_reset_mask);
1454 
1455 	return 0;
1456 }
1457 
cxl_check_error(struct cxl_afu * afu)1458 int cxl_check_error(struct cxl_afu *afu)
1459 {
1460 	return (cxl_p1n_read(afu, CXL_PSL_SCNTL_An) == ~0ULL);
1461 }
1462 
native_support_attributes(const char * attr_name,enum cxl_attrs type)1463 static bool native_support_attributes(const char *attr_name,
1464 				      enum cxl_attrs type)
1465 {
1466 	return true;
1467 }
1468 
native_afu_cr_read64(struct cxl_afu * afu,int cr,u64 off,u64 * out)1469 static int native_afu_cr_read64(struct cxl_afu *afu, int cr, u64 off, u64 *out)
1470 {
1471 	if (unlikely(!cxl_ops->link_ok(afu->adapter, afu)))
1472 		return -EIO;
1473 	if (unlikely(off >= afu->crs_len))
1474 		return -ERANGE;
1475 	*out = in_le64(afu->native->afu_desc_mmio + afu->crs_offset +
1476 		(cr * afu->crs_len) + off);
1477 	return 0;
1478 }
1479 
native_afu_cr_read32(struct cxl_afu * afu,int cr,u64 off,u32 * out)1480 static int native_afu_cr_read32(struct cxl_afu *afu, int cr, u64 off, u32 *out)
1481 {
1482 	if (unlikely(!cxl_ops->link_ok(afu->adapter, afu)))
1483 		return -EIO;
1484 	if (unlikely(off >= afu->crs_len))
1485 		return -ERANGE;
1486 	*out = in_le32(afu->native->afu_desc_mmio + afu->crs_offset +
1487 		(cr * afu->crs_len) + off);
1488 	return 0;
1489 }
1490 
native_afu_cr_read16(struct cxl_afu * afu,int cr,u64 off,u16 * out)1491 static int native_afu_cr_read16(struct cxl_afu *afu, int cr, u64 off, u16 *out)
1492 {
1493 	u64 aligned_off = off & ~0x3L;
1494 	u32 val;
1495 	int rc;
1496 
1497 	rc = native_afu_cr_read32(afu, cr, aligned_off, &val);
1498 	if (!rc)
1499 		*out = (val >> ((off & 0x3) * 8)) & 0xffff;
1500 	return rc;
1501 }
1502 
native_afu_cr_read8(struct cxl_afu * afu,int cr,u64 off,u8 * out)1503 static int native_afu_cr_read8(struct cxl_afu *afu, int cr, u64 off, u8 *out)
1504 {
1505 	u64 aligned_off = off & ~0x3L;
1506 	u32 val;
1507 	int rc;
1508 
1509 	rc = native_afu_cr_read32(afu, cr, aligned_off, &val);
1510 	if (!rc)
1511 		*out = (val >> ((off & 0x3) * 8)) & 0xff;
1512 	return rc;
1513 }
1514 
native_afu_cr_write32(struct cxl_afu * afu,int cr,u64 off,u32 in)1515 static int native_afu_cr_write32(struct cxl_afu *afu, int cr, u64 off, u32 in)
1516 {
1517 	if (unlikely(!cxl_ops->link_ok(afu->adapter, afu)))
1518 		return -EIO;
1519 	if (unlikely(off >= afu->crs_len))
1520 		return -ERANGE;
1521 	out_le32(afu->native->afu_desc_mmio + afu->crs_offset +
1522 		(cr * afu->crs_len) + off, in);
1523 	return 0;
1524 }
1525 
native_afu_cr_write16(struct cxl_afu * afu,int cr,u64 off,u16 in)1526 static int native_afu_cr_write16(struct cxl_afu *afu, int cr, u64 off, u16 in)
1527 {
1528 	u64 aligned_off = off & ~0x3L;
1529 	u32 val32, mask, shift;
1530 	int rc;
1531 
1532 	rc = native_afu_cr_read32(afu, cr, aligned_off, &val32);
1533 	if (rc)
1534 		return rc;
1535 	shift = (off & 0x3) * 8;
1536 	WARN_ON(shift == 24);
1537 	mask = 0xffff << shift;
1538 	val32 = (val32 & ~mask) | (in << shift);
1539 
1540 	rc = native_afu_cr_write32(afu, cr, aligned_off, val32);
1541 	return rc;
1542 }
1543 
native_afu_cr_write8(struct cxl_afu * afu,int cr,u64 off,u8 in)1544 static int native_afu_cr_write8(struct cxl_afu *afu, int cr, u64 off, u8 in)
1545 {
1546 	u64 aligned_off = off & ~0x3L;
1547 	u32 val32, mask, shift;
1548 	int rc;
1549 
1550 	rc = native_afu_cr_read32(afu, cr, aligned_off, &val32);
1551 	if (rc)
1552 		return rc;
1553 	shift = (off & 0x3) * 8;
1554 	mask = 0xff << shift;
1555 	val32 = (val32 & ~mask) | (in << shift);
1556 
1557 	rc = native_afu_cr_write32(afu, cr, aligned_off, val32);
1558 	return rc;
1559 }
1560 
1561 const struct cxl_backend_ops cxl_native_ops = {
1562 	.module = THIS_MODULE,
1563 	.adapter_reset = cxl_pci_reset,
1564 	.alloc_one_irq = cxl_pci_alloc_one_irq,
1565 	.release_one_irq = cxl_pci_release_one_irq,
1566 	.alloc_irq_ranges = cxl_pci_alloc_irq_ranges,
1567 	.release_irq_ranges = cxl_pci_release_irq_ranges,
1568 	.setup_irq = cxl_pci_setup_irq,
1569 	.handle_psl_slice_error = native_handle_psl_slice_error,
1570 	.psl_interrupt = NULL,
1571 	.ack_irq = native_ack_irq,
1572 	.irq_wait = native_irq_wait,
1573 	.attach_process = native_attach_process,
1574 	.detach_process = native_detach_process,
1575 	.update_ivtes = native_update_ivtes,
1576 	.support_attributes = native_support_attributes,
1577 	.link_ok = cxl_adapter_link_ok,
1578 	.release_afu = cxl_pci_release_afu,
1579 	.afu_read_err_buffer = cxl_pci_afu_read_err_buffer,
1580 	.afu_check_and_enable = native_afu_check_and_enable,
1581 	.afu_activate_mode = native_afu_activate_mode,
1582 	.afu_deactivate_mode = native_afu_deactivate_mode,
1583 	.afu_reset = native_afu_reset,
1584 	.afu_cr_read8 = native_afu_cr_read8,
1585 	.afu_cr_read16 = native_afu_cr_read16,
1586 	.afu_cr_read32 = native_afu_cr_read32,
1587 	.afu_cr_read64 = native_afu_cr_read64,
1588 	.afu_cr_write8 = native_afu_cr_write8,
1589 	.afu_cr_write16 = native_afu_cr_write16,
1590 	.afu_cr_write32 = native_afu_cr_write32,
1591 	.read_adapter_vpd = cxl_pci_read_adapter_vpd,
1592 };
1593