1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/jhash.h>
40 #include <linux/module.h>
41 #include <linux/debugfs.h>
42 #include <linux/seq_file.h>
43 #include <net/neighbour.h>
44 #include "cxgb4.h"
45 #include "l2t.h"
46 #include "t4_msg.h"
47 #include "t4fw_api.h"
48
49 #define VLAN_NONE 0xfff
50
51 /* identifies sync vs async L2T_WRITE_REQs */
52 #define F_SYNC_WR (1 << 12)
53
54 enum {
55 L2T_STATE_VALID, /* entry is up to date */
56 L2T_STATE_STALE, /* entry may be used but needs revalidation */
57 L2T_STATE_RESOLVING, /* entry needs address resolution */
58 L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */
59
60 /* when state is one of the below the entry is not hashed */
61 L2T_STATE_SWITCHING, /* entry is being used by a switching filter */
62 L2T_STATE_UNUSED /* entry not in use */
63 };
64
65 struct l2t_data {
66 rwlock_t lock;
67 atomic_t nfree; /* number of free entries */
68 struct l2t_entry *rover; /* starting point for next allocation */
69 struct l2t_entry l2tab[L2T_SIZE];
70 };
71
vlan_prio(const struct l2t_entry * e)72 static inline unsigned int vlan_prio(const struct l2t_entry *e)
73 {
74 return e->vlan >> 13;
75 }
76
l2t_hold(struct l2t_data * d,struct l2t_entry * e)77 static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
78 {
79 if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */
80 atomic_dec(&d->nfree);
81 }
82
83 /*
84 * To avoid having to check address families we do not allow v4 and v6
85 * neighbors to be on the same hash chain. We keep v4 entries in the first
86 * half of available hash buckets and v6 in the second.
87 */
88 enum {
89 L2T_SZ_HALF = L2T_SIZE / 2,
90 L2T_HASH_MASK = L2T_SZ_HALF - 1
91 };
92
arp_hash(const u32 * key,int ifindex)93 static inline unsigned int arp_hash(const u32 *key, int ifindex)
94 {
95 return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK;
96 }
97
ipv6_hash(const u32 * key,int ifindex)98 static inline unsigned int ipv6_hash(const u32 *key, int ifindex)
99 {
100 u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];
101
102 return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK);
103 }
104
addr_hash(const u32 * addr,int addr_len,int ifindex)105 static unsigned int addr_hash(const u32 *addr, int addr_len, int ifindex)
106 {
107 return addr_len == 4 ? arp_hash(addr, ifindex) :
108 ipv6_hash(addr, ifindex);
109 }
110
111 /*
112 * Checks if an L2T entry is for the given IP/IPv6 address. It does not check
113 * whether the L2T entry and the address are of the same address family.
114 * Callers ensure an address is only checked against L2T entries of the same
115 * family, something made trivial by the separation of IP and IPv6 hash chains
116 * mentioned above. Returns 0 if there's a match,
117 */
addreq(const struct l2t_entry * e,const u32 * addr)118 static int addreq(const struct l2t_entry *e, const u32 *addr)
119 {
120 if (e->v6)
121 return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
122 (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
123 return e->addr[0] ^ addr[0];
124 }
125
neigh_replace(struct l2t_entry * e,struct neighbour * n)126 static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
127 {
128 neigh_hold(n);
129 if (e->neigh)
130 neigh_release(e->neigh);
131 e->neigh = n;
132 }
133
134 /*
135 * Write an L2T entry. Must be called with the entry locked.
136 * The write may be synchronous or asynchronous.
137 */
write_l2e(struct adapter * adap,struct l2t_entry * e,int sync)138 static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
139 {
140 struct sk_buff *skb;
141 struct cpl_l2t_write_req *req;
142
143 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
144 if (!skb)
145 return -ENOMEM;
146
147 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
148 INIT_TP_WR(req, 0);
149
150 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
151 e->idx | (sync ? F_SYNC_WR : 0) |
152 TID_QID(adap->sge.fw_evtq.abs_id)));
153 req->params = htons(L2T_W_PORT(e->lport) | L2T_W_NOREPLY(!sync));
154 req->l2t_idx = htons(e->idx);
155 req->vlan = htons(e->vlan);
156 if (e->neigh)
157 memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
158 memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
159
160 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
161 t4_ofld_send(adap, skb);
162
163 if (sync && e->state != L2T_STATE_SWITCHING)
164 e->state = L2T_STATE_SYNC_WRITE;
165 return 0;
166 }
167
168 /*
169 * Send packets waiting in an L2T entry's ARP queue. Must be called with the
170 * entry locked.
171 */
send_pending(struct adapter * adap,struct l2t_entry * e)172 static void send_pending(struct adapter *adap, struct l2t_entry *e)
173 {
174 while (e->arpq_head) {
175 struct sk_buff *skb = e->arpq_head;
176
177 e->arpq_head = skb->next;
178 skb->next = NULL;
179 t4_ofld_send(adap, skb);
180 }
181 e->arpq_tail = NULL;
182 }
183
184 /*
185 * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a
186 * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T
187 * index it refers to.
188 */
do_l2t_write_rpl(struct adapter * adap,const struct cpl_l2t_write_rpl * rpl)189 void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
190 {
191 unsigned int tid = GET_TID(rpl);
192 unsigned int idx = tid & (L2T_SIZE - 1);
193
194 if (unlikely(rpl->status != CPL_ERR_NONE)) {
195 dev_err(adap->pdev_dev,
196 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
197 rpl->status, idx);
198 return;
199 }
200
201 if (tid & F_SYNC_WR) {
202 struct l2t_entry *e = &adap->l2t->l2tab[idx];
203
204 spin_lock(&e->lock);
205 if (e->state != L2T_STATE_SWITCHING) {
206 send_pending(adap, e);
207 e->state = (e->neigh->nud_state & NUD_STALE) ?
208 L2T_STATE_STALE : L2T_STATE_VALID;
209 }
210 spin_unlock(&e->lock);
211 }
212 }
213
214 /*
215 * Add a packet to an L2T entry's queue of packets awaiting resolution.
216 * Must be called with the entry's lock held.
217 */
arpq_enqueue(struct l2t_entry * e,struct sk_buff * skb)218 static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
219 {
220 skb->next = NULL;
221 if (e->arpq_head)
222 e->arpq_tail->next = skb;
223 else
224 e->arpq_head = skb;
225 e->arpq_tail = skb;
226 }
227
cxgb4_l2t_send(struct net_device * dev,struct sk_buff * skb,struct l2t_entry * e)228 int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
229 struct l2t_entry *e)
230 {
231 struct adapter *adap = netdev2adap(dev);
232
233 again:
234 switch (e->state) {
235 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
236 neigh_event_send(e->neigh, NULL);
237 spin_lock_bh(&e->lock);
238 if (e->state == L2T_STATE_STALE)
239 e->state = L2T_STATE_VALID;
240 spin_unlock_bh(&e->lock);
241 case L2T_STATE_VALID: /* fast-path, send the packet on */
242 return t4_ofld_send(adap, skb);
243 case L2T_STATE_RESOLVING:
244 case L2T_STATE_SYNC_WRITE:
245 spin_lock_bh(&e->lock);
246 if (e->state != L2T_STATE_SYNC_WRITE &&
247 e->state != L2T_STATE_RESOLVING) {
248 spin_unlock_bh(&e->lock);
249 goto again;
250 }
251 arpq_enqueue(e, skb);
252 spin_unlock_bh(&e->lock);
253
254 if (e->state == L2T_STATE_RESOLVING &&
255 !neigh_event_send(e->neigh, NULL)) {
256 spin_lock_bh(&e->lock);
257 if (e->state == L2T_STATE_RESOLVING && e->arpq_head)
258 write_l2e(adap, e, 1);
259 spin_unlock_bh(&e->lock);
260 }
261 }
262 return 0;
263 }
264 EXPORT_SYMBOL(cxgb4_l2t_send);
265
266 /*
267 * Allocate a free L2T entry. Must be called with l2t_data.lock held.
268 */
alloc_l2e(struct l2t_data * d)269 static struct l2t_entry *alloc_l2e(struct l2t_data *d)
270 {
271 struct l2t_entry *end, *e, **p;
272
273 if (!atomic_read(&d->nfree))
274 return NULL;
275
276 /* there's definitely a free entry */
277 for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e)
278 if (atomic_read(&e->refcnt) == 0)
279 goto found;
280
281 for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
282 ;
283 found:
284 d->rover = e + 1;
285 atomic_dec(&d->nfree);
286
287 /*
288 * The entry we found may be an inactive entry that is
289 * presently in the hash table. We need to remove it.
290 */
291 if (e->state < L2T_STATE_SWITCHING)
292 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
293 if (*p == e) {
294 *p = e->next;
295 e->next = NULL;
296 break;
297 }
298
299 e->state = L2T_STATE_UNUSED;
300 return e;
301 }
302
303 /*
304 * Called when an L2T entry has no more users.
305 */
t4_l2e_free(struct l2t_entry * e)306 static void t4_l2e_free(struct l2t_entry *e)
307 {
308 struct l2t_data *d;
309
310 spin_lock_bh(&e->lock);
311 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
312 if (e->neigh) {
313 neigh_release(e->neigh);
314 e->neigh = NULL;
315 }
316 while (e->arpq_head) {
317 struct sk_buff *skb = e->arpq_head;
318
319 e->arpq_head = skb->next;
320 kfree_skb(skb);
321 }
322 e->arpq_tail = NULL;
323 }
324 spin_unlock_bh(&e->lock);
325
326 d = container_of(e, struct l2t_data, l2tab[e->idx]);
327 atomic_inc(&d->nfree);
328 }
329
cxgb4_l2t_release(struct l2t_entry * e)330 void cxgb4_l2t_release(struct l2t_entry *e)
331 {
332 if (atomic_dec_and_test(&e->refcnt))
333 t4_l2e_free(e);
334 }
335 EXPORT_SYMBOL(cxgb4_l2t_release);
336
337 /*
338 * Update an L2T entry that was previously used for the same next hop as neigh.
339 * Must be called with softirqs disabled.
340 */
reuse_entry(struct l2t_entry * e,struct neighbour * neigh)341 static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
342 {
343 unsigned int nud_state;
344
345 spin_lock(&e->lock); /* avoid race with t4_l2t_free */
346 if (neigh != e->neigh)
347 neigh_replace(e, neigh);
348 nud_state = neigh->nud_state;
349 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
350 !(nud_state & NUD_VALID))
351 e->state = L2T_STATE_RESOLVING;
352 else if (nud_state & NUD_CONNECTED)
353 e->state = L2T_STATE_VALID;
354 else
355 e->state = L2T_STATE_STALE;
356 spin_unlock(&e->lock);
357 }
358
cxgb4_l2t_get(struct l2t_data * d,struct neighbour * neigh,const struct net_device * physdev,unsigned int priority)359 struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
360 const struct net_device *physdev,
361 unsigned int priority)
362 {
363 u8 lport;
364 u16 vlan;
365 struct l2t_entry *e;
366 int addr_len = neigh->tbl->key_len;
367 u32 *addr = (u32 *)neigh->primary_key;
368 int ifidx = neigh->dev->ifindex;
369 int hash = addr_hash(addr, addr_len, ifidx);
370
371 if (neigh->dev->flags & IFF_LOOPBACK)
372 lport = netdev2pinfo(physdev)->tx_chan + 4;
373 else
374 lport = netdev2pinfo(physdev)->lport;
375
376 if (neigh->dev->priv_flags & IFF_802_1Q_VLAN)
377 vlan = vlan_dev_vlan_id(neigh->dev);
378 else
379 vlan = VLAN_NONE;
380
381 write_lock_bh(&d->lock);
382 for (e = d->l2tab[hash].first; e; e = e->next)
383 if (!addreq(e, addr) && e->ifindex == ifidx &&
384 e->vlan == vlan && e->lport == lport) {
385 l2t_hold(d, e);
386 if (atomic_read(&e->refcnt) == 1)
387 reuse_entry(e, neigh);
388 goto done;
389 }
390
391 /* Need to allocate a new entry */
392 e = alloc_l2e(d);
393 if (e) {
394 spin_lock(&e->lock); /* avoid race with t4_l2t_free */
395 e->state = L2T_STATE_RESOLVING;
396 memcpy(e->addr, addr, addr_len);
397 e->ifindex = ifidx;
398 e->hash = hash;
399 e->lport = lport;
400 e->v6 = addr_len == 16;
401 atomic_set(&e->refcnt, 1);
402 neigh_replace(e, neigh);
403 e->vlan = vlan;
404 e->next = d->l2tab[hash].first;
405 d->l2tab[hash].first = e;
406 spin_unlock(&e->lock);
407 }
408 done:
409 write_unlock_bh(&d->lock);
410 return e;
411 }
412 EXPORT_SYMBOL(cxgb4_l2t_get);
413
414 /*
415 * Called when address resolution fails for an L2T entry to handle packets
416 * on the arpq head. If a packet specifies a failure handler it is invoked,
417 * otherwise the packet is sent to the device.
418 */
handle_failed_resolution(struct adapter * adap,struct sk_buff * arpq)419 static void handle_failed_resolution(struct adapter *adap, struct sk_buff *arpq)
420 {
421 while (arpq) {
422 struct sk_buff *skb = arpq;
423 const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
424
425 arpq = skb->next;
426 skb->next = NULL;
427 if (cb->arp_err_handler)
428 cb->arp_err_handler(cb->handle, skb);
429 else
430 t4_ofld_send(adap, skb);
431 }
432 }
433
434 /*
435 * Called when the host's neighbor layer makes a change to some entry that is
436 * loaded into the HW L2 table.
437 */
t4_l2t_update(struct adapter * adap,struct neighbour * neigh)438 void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
439 {
440 struct l2t_entry *e;
441 struct sk_buff *arpq = NULL;
442 struct l2t_data *d = adap->l2t;
443 int addr_len = neigh->tbl->key_len;
444 u32 *addr = (u32 *) neigh->primary_key;
445 int ifidx = neigh->dev->ifindex;
446 int hash = addr_hash(addr, addr_len, ifidx);
447
448 read_lock_bh(&d->lock);
449 for (e = d->l2tab[hash].first; e; e = e->next)
450 if (!addreq(e, addr) && e->ifindex == ifidx) {
451 spin_lock(&e->lock);
452 if (atomic_read(&e->refcnt))
453 goto found;
454 spin_unlock(&e->lock);
455 break;
456 }
457 read_unlock_bh(&d->lock);
458 return;
459
460 found:
461 read_unlock(&d->lock);
462
463 if (neigh != e->neigh)
464 neigh_replace(e, neigh);
465
466 if (e->state == L2T_STATE_RESOLVING) {
467 if (neigh->nud_state & NUD_FAILED) {
468 arpq = e->arpq_head;
469 e->arpq_head = e->arpq_tail = NULL;
470 } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
471 e->arpq_head) {
472 write_l2e(adap, e, 1);
473 }
474 } else {
475 e->state = neigh->nud_state & NUD_CONNECTED ?
476 L2T_STATE_VALID : L2T_STATE_STALE;
477 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
478 write_l2e(adap, e, 0);
479 }
480
481 spin_unlock_bh(&e->lock);
482
483 if (arpq)
484 handle_failed_resolution(adap, arpq);
485 }
486
t4_init_l2t(void)487 struct l2t_data *t4_init_l2t(void)
488 {
489 int i;
490 struct l2t_data *d;
491
492 d = t4_alloc_mem(sizeof(*d));
493 if (!d)
494 return NULL;
495
496 d->rover = d->l2tab;
497 atomic_set(&d->nfree, L2T_SIZE);
498 rwlock_init(&d->lock);
499
500 for (i = 0; i < L2T_SIZE; ++i) {
501 d->l2tab[i].idx = i;
502 d->l2tab[i].state = L2T_STATE_UNUSED;
503 spin_lock_init(&d->l2tab[i].lock);
504 atomic_set(&d->l2tab[i].refcnt, 0);
505 }
506 return d;
507 }
508
l2t_get_idx(struct seq_file * seq,loff_t pos)509 static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
510 {
511 struct l2t_entry *l2tab = seq->private;
512
513 return pos >= L2T_SIZE ? NULL : &l2tab[pos];
514 }
515
l2t_seq_start(struct seq_file * seq,loff_t * pos)516 static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
517 {
518 return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
519 }
520
l2t_seq_next(struct seq_file * seq,void * v,loff_t * pos)521 static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
522 {
523 v = l2t_get_idx(seq, *pos);
524 if (v)
525 ++*pos;
526 return v;
527 }
528
l2t_seq_stop(struct seq_file * seq,void * v)529 static void l2t_seq_stop(struct seq_file *seq, void *v)
530 {
531 }
532
l2e_state(const struct l2t_entry * e)533 static char l2e_state(const struct l2t_entry *e)
534 {
535 switch (e->state) {
536 case L2T_STATE_VALID: return 'V';
537 case L2T_STATE_STALE: return 'S';
538 case L2T_STATE_SYNC_WRITE: return 'W';
539 case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R';
540 case L2T_STATE_SWITCHING: return 'X';
541 default:
542 return 'U';
543 }
544 }
545
l2t_seq_show(struct seq_file * seq,void * v)546 static int l2t_seq_show(struct seq_file *seq, void *v)
547 {
548 if (v == SEQ_START_TOKEN)
549 seq_puts(seq, " Idx IP address "
550 "Ethernet address VLAN/P LP State Users Port\n");
551 else {
552 char ip[60];
553 struct l2t_entry *e = v;
554
555 spin_lock_bh(&e->lock);
556 if (e->state == L2T_STATE_SWITCHING)
557 ip[0] = '\0';
558 else
559 sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
560 seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n",
561 e->idx, ip, e->dmac,
562 e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
563 l2e_state(e), atomic_read(&e->refcnt),
564 e->neigh ? e->neigh->dev->name : "");
565 spin_unlock_bh(&e->lock);
566 }
567 return 0;
568 }
569
570 static const struct seq_operations l2t_seq_ops = {
571 .start = l2t_seq_start,
572 .next = l2t_seq_next,
573 .stop = l2t_seq_stop,
574 .show = l2t_seq_show
575 };
576
l2t_seq_open(struct inode * inode,struct file * file)577 static int l2t_seq_open(struct inode *inode, struct file *file)
578 {
579 int rc = seq_open(file, &l2t_seq_ops);
580
581 if (!rc) {
582 struct adapter *adap = inode->i_private;
583 struct seq_file *seq = file->private_data;
584
585 seq->private = adap->l2t->l2tab;
586 }
587 return rc;
588 }
589
590 const struct file_operations t4_l2t_fops = {
591 .owner = THIS_MODULE,
592 .open = l2t_seq_open,
593 .read = seq_read,
594 .llseek = seq_lseek,
595 .release = seq_release,
596 };
597