1 /*
2 *
3 * device driver for Conexant 2388x based TV cards
4 * driver core
5 *
6 * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
7 *
8 * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
9 * - Multituner support
10 * - video_ioctl2 conversion
11 * - PAL/M fixes
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/kmod.h>
34 #include <linux/sound.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/delay.h>
38 #include <linux/videodev2.h>
39 #include <linux/mutex.h>
40
41 #include "cx88.h"
42 #include <media/v4l2-common.h>
43 #include <media/v4l2-ioctl.h>
44
45 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
46 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
47 MODULE_LICENSE("GPL");
48
49 /* ------------------------------------------------------------------ */
50
51 static unsigned int core_debug;
52 module_param(core_debug,int,0644);
53 MODULE_PARM_DESC(core_debug,"enable debug messages [core]");
54
55 static unsigned int nicam;
56 module_param(nicam,int,0644);
57 MODULE_PARM_DESC(nicam,"tv audio is nicam");
58
59 static unsigned int nocomb;
60 module_param(nocomb,int,0644);
61 MODULE_PARM_DESC(nocomb,"disable comb filter");
62
63 #define dprintk(level,fmt, arg...) if (core_debug >= level) \
64 printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
65
66 static unsigned int cx88_devcount;
67 static LIST_HEAD(cx88_devlist);
68 static DEFINE_MUTEX(devlist);
69
70 #define NO_SYNC_LINE (-1U)
71
72 /* @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
73 generated _after_ lpi lines are transferred. */
cx88_risc_field(__le32 * rp,struct scatterlist * sglist,unsigned int offset,u32 sync_line,unsigned int bpl,unsigned int padding,unsigned int lines,unsigned int lpi)74 static __le32* cx88_risc_field(__le32 *rp, struct scatterlist *sglist,
75 unsigned int offset, u32 sync_line,
76 unsigned int bpl, unsigned int padding,
77 unsigned int lines, unsigned int lpi)
78 {
79 struct scatterlist *sg;
80 unsigned int line,todo,sol;
81
82 /* sync instruction */
83 if (sync_line != NO_SYNC_LINE)
84 *(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
85
86 /* scan lines */
87 sg = sglist;
88 for (line = 0; line < lines; line++) {
89 while (offset && offset >= sg_dma_len(sg)) {
90 offset -= sg_dma_len(sg);
91 sg++;
92 }
93 if (lpi && line>0 && !(line % lpi))
94 sol = RISC_SOL | RISC_IRQ1 | RISC_CNT_INC;
95 else
96 sol = RISC_SOL;
97 if (bpl <= sg_dma_len(sg)-offset) {
98 /* fits into current chunk */
99 *(rp++)=cpu_to_le32(RISC_WRITE|sol|RISC_EOL|bpl);
100 *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
101 offset+=bpl;
102 } else {
103 /* scanline needs to be split */
104 todo = bpl;
105 *(rp++)=cpu_to_le32(RISC_WRITE|sol|
106 (sg_dma_len(sg)-offset));
107 *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
108 todo -= (sg_dma_len(sg)-offset);
109 offset = 0;
110 sg++;
111 while (todo > sg_dma_len(sg)) {
112 *(rp++)=cpu_to_le32(RISC_WRITE|
113 sg_dma_len(sg));
114 *(rp++)=cpu_to_le32(sg_dma_address(sg));
115 todo -= sg_dma_len(sg);
116 sg++;
117 }
118 *(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo);
119 *(rp++)=cpu_to_le32(sg_dma_address(sg));
120 offset += todo;
121 }
122 offset += padding;
123 }
124
125 return rp;
126 }
127
cx88_risc_buffer(struct pci_dev * pci,struct btcx_riscmem * risc,struct scatterlist * sglist,unsigned int top_offset,unsigned int bottom_offset,unsigned int bpl,unsigned int padding,unsigned int lines)128 int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc,
129 struct scatterlist *sglist,
130 unsigned int top_offset, unsigned int bottom_offset,
131 unsigned int bpl, unsigned int padding, unsigned int lines)
132 {
133 u32 instructions,fields;
134 __le32 *rp;
135 int rc;
136
137 fields = 0;
138 if (UNSET != top_offset)
139 fields++;
140 if (UNSET != bottom_offset)
141 fields++;
142
143 /* estimate risc mem: worst case is one write per page border +
144 one write per scan line + syncs + jump (all 2 dwords). Padding
145 can cause next bpl to start close to a page border. First DMA
146 region may be smaller than PAGE_SIZE */
147 instructions = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines);
148 instructions += 2;
149 if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
150 return rc;
151
152 /* write risc instructions */
153 rp = risc->cpu;
154 if (UNSET != top_offset)
155 rp = cx88_risc_field(rp, sglist, top_offset, 0,
156 bpl, padding, lines, 0);
157 if (UNSET != bottom_offset)
158 rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200,
159 bpl, padding, lines, 0);
160
161 /* save pointer to jmp instruction address */
162 risc->jmp = rp;
163 BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
164 return 0;
165 }
166
cx88_risc_databuffer(struct pci_dev * pci,struct btcx_riscmem * risc,struct scatterlist * sglist,unsigned int bpl,unsigned int lines,unsigned int lpi)167 int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc,
168 struct scatterlist *sglist, unsigned int bpl,
169 unsigned int lines, unsigned int lpi)
170 {
171 u32 instructions;
172 __le32 *rp;
173 int rc;
174
175 /* estimate risc mem: worst case is one write per page border +
176 one write per scan line + syncs + jump (all 2 dwords). Here
177 there is no padding and no sync. First DMA region may be smaller
178 than PAGE_SIZE */
179 instructions = 1 + (bpl * lines) / PAGE_SIZE + lines;
180 instructions += 1;
181 if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
182 return rc;
183
184 /* write risc instructions */
185 rp = risc->cpu;
186 rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines, lpi);
187
188 /* save pointer to jmp instruction address */
189 risc->jmp = rp;
190 BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
191 return 0;
192 }
193
cx88_risc_stopper(struct pci_dev * pci,struct btcx_riscmem * risc,u32 reg,u32 mask,u32 value)194 int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
195 u32 reg, u32 mask, u32 value)
196 {
197 __le32 *rp;
198 int rc;
199
200 if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0)
201 return rc;
202
203 /* write risc instructions */
204 rp = risc->cpu;
205 *(rp++) = cpu_to_le32(RISC_WRITECR | RISC_IRQ2 | RISC_IMM);
206 *(rp++) = cpu_to_le32(reg);
207 *(rp++) = cpu_to_le32(value);
208 *(rp++) = cpu_to_le32(mask);
209 *(rp++) = cpu_to_le32(RISC_JUMP);
210 *(rp++) = cpu_to_le32(risc->dma);
211 return 0;
212 }
213
214 void
cx88_free_buffer(struct videobuf_queue * q,struct cx88_buffer * buf)215 cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
216 {
217 struct videobuf_dmabuf *dma=videobuf_to_dma(&buf->vb);
218
219 BUG_ON(in_interrupt());
220 videobuf_waiton(q, &buf->vb, 0, 0);
221 videobuf_dma_unmap(q->dev, dma);
222 videobuf_dma_free(dma);
223 btcx_riscmem_free(to_pci_dev(q->dev), &buf->risc);
224 buf->vb.state = VIDEOBUF_NEEDS_INIT;
225 }
226
227 /* ------------------------------------------------------------------ */
228 /* our SRAM memory layout */
229
230 /* we are going to put all thr risc programs into host memory, so we
231 * can use the whole SDRAM for the DMA fifos. To simplify things, we
232 * use a static memory layout. That surely will waste memory in case
233 * we don't use all DMA channels at the same time (which will be the
234 * case most of the time). But that still gives us enough FIFO space
235 * to be able to deal with insane long pci latencies ...
236 *
237 * FIFO space allocations:
238 * channel 21 (y video) - 10.0k
239 * channel 22 (u video) - 2.0k
240 * channel 23 (v video) - 2.0k
241 * channel 24 (vbi) - 4.0k
242 * channels 25+26 (audio) - 4.0k
243 * channel 28 (mpeg) - 4.0k
244 * channel 27 (audio rds)- 3.0k
245 * TOTAL = 29.0k
246 *
247 * Every channel has 160 bytes control data (64 bytes instruction
248 * queue and 6 CDT entries), which is close to 2k total.
249 *
250 * Address layout:
251 * 0x0000 - 0x03ff CMDs / reserved
252 * 0x0400 - 0x0bff instruction queues + CDs
253 * 0x0c00 - FIFOs
254 */
255
256 const struct sram_channel const cx88_sram_channels[] = {
257 [SRAM_CH21] = {
258 .name = "video y / packed",
259 .cmds_start = 0x180040,
260 .ctrl_start = 0x180400,
261 .cdt = 0x180400 + 64,
262 .fifo_start = 0x180c00,
263 .fifo_size = 0x002800,
264 .ptr1_reg = MO_DMA21_PTR1,
265 .ptr2_reg = MO_DMA21_PTR2,
266 .cnt1_reg = MO_DMA21_CNT1,
267 .cnt2_reg = MO_DMA21_CNT2,
268 },
269 [SRAM_CH22] = {
270 .name = "video u",
271 .cmds_start = 0x180080,
272 .ctrl_start = 0x1804a0,
273 .cdt = 0x1804a0 + 64,
274 .fifo_start = 0x183400,
275 .fifo_size = 0x000800,
276 .ptr1_reg = MO_DMA22_PTR1,
277 .ptr2_reg = MO_DMA22_PTR2,
278 .cnt1_reg = MO_DMA22_CNT1,
279 .cnt2_reg = MO_DMA22_CNT2,
280 },
281 [SRAM_CH23] = {
282 .name = "video v",
283 .cmds_start = 0x1800c0,
284 .ctrl_start = 0x180540,
285 .cdt = 0x180540 + 64,
286 .fifo_start = 0x183c00,
287 .fifo_size = 0x000800,
288 .ptr1_reg = MO_DMA23_PTR1,
289 .ptr2_reg = MO_DMA23_PTR2,
290 .cnt1_reg = MO_DMA23_CNT1,
291 .cnt2_reg = MO_DMA23_CNT2,
292 },
293 [SRAM_CH24] = {
294 .name = "vbi",
295 .cmds_start = 0x180100,
296 .ctrl_start = 0x1805e0,
297 .cdt = 0x1805e0 + 64,
298 .fifo_start = 0x184400,
299 .fifo_size = 0x001000,
300 .ptr1_reg = MO_DMA24_PTR1,
301 .ptr2_reg = MO_DMA24_PTR2,
302 .cnt1_reg = MO_DMA24_CNT1,
303 .cnt2_reg = MO_DMA24_CNT2,
304 },
305 [SRAM_CH25] = {
306 .name = "audio from",
307 .cmds_start = 0x180140,
308 .ctrl_start = 0x180680,
309 .cdt = 0x180680 + 64,
310 .fifo_start = 0x185400,
311 .fifo_size = 0x001000,
312 .ptr1_reg = MO_DMA25_PTR1,
313 .ptr2_reg = MO_DMA25_PTR2,
314 .cnt1_reg = MO_DMA25_CNT1,
315 .cnt2_reg = MO_DMA25_CNT2,
316 },
317 [SRAM_CH26] = {
318 .name = "audio to",
319 .cmds_start = 0x180180,
320 .ctrl_start = 0x180720,
321 .cdt = 0x180680 + 64, /* same as audio IN */
322 .fifo_start = 0x185400, /* same as audio IN */
323 .fifo_size = 0x001000, /* same as audio IN */
324 .ptr1_reg = MO_DMA26_PTR1,
325 .ptr2_reg = MO_DMA26_PTR2,
326 .cnt1_reg = MO_DMA26_CNT1,
327 .cnt2_reg = MO_DMA26_CNT2,
328 },
329 [SRAM_CH28] = {
330 .name = "mpeg",
331 .cmds_start = 0x180200,
332 .ctrl_start = 0x1807C0,
333 .cdt = 0x1807C0 + 64,
334 .fifo_start = 0x186400,
335 .fifo_size = 0x001000,
336 .ptr1_reg = MO_DMA28_PTR1,
337 .ptr2_reg = MO_DMA28_PTR2,
338 .cnt1_reg = MO_DMA28_CNT1,
339 .cnt2_reg = MO_DMA28_CNT2,
340 },
341 [SRAM_CH27] = {
342 .name = "audio rds",
343 .cmds_start = 0x1801C0,
344 .ctrl_start = 0x180860,
345 .cdt = 0x180860 + 64,
346 .fifo_start = 0x187400,
347 .fifo_size = 0x000C00,
348 .ptr1_reg = MO_DMA27_PTR1,
349 .ptr2_reg = MO_DMA27_PTR2,
350 .cnt1_reg = MO_DMA27_CNT1,
351 .cnt2_reg = MO_DMA27_CNT2,
352 },
353 };
354
cx88_sram_channel_setup(struct cx88_core * core,const struct sram_channel * ch,unsigned int bpl,u32 risc)355 int cx88_sram_channel_setup(struct cx88_core *core,
356 const struct sram_channel *ch,
357 unsigned int bpl, u32 risc)
358 {
359 unsigned int i,lines;
360 u32 cdt;
361
362 bpl = (bpl + 7) & ~7; /* alignment */
363 cdt = ch->cdt;
364 lines = ch->fifo_size / bpl;
365 if (lines > 6)
366 lines = 6;
367 BUG_ON(lines < 2);
368
369 /* write CDT */
370 for (i = 0; i < lines; i++)
371 cx_write(cdt + 16*i, ch->fifo_start + bpl*i);
372
373 /* write CMDS */
374 cx_write(ch->cmds_start + 0, risc);
375 cx_write(ch->cmds_start + 4, cdt);
376 cx_write(ch->cmds_start + 8, (lines*16) >> 3);
377 cx_write(ch->cmds_start + 12, ch->ctrl_start);
378 cx_write(ch->cmds_start + 16, 64 >> 2);
379 for (i = 20; i < 64; i += 4)
380 cx_write(ch->cmds_start + i, 0);
381
382 /* fill registers */
383 cx_write(ch->ptr1_reg, ch->fifo_start);
384 cx_write(ch->ptr2_reg, cdt);
385 cx_write(ch->cnt1_reg, (bpl >> 3) -1);
386 cx_write(ch->cnt2_reg, (lines*16) >> 3);
387
388 dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines);
389 return 0;
390 }
391
392 /* ------------------------------------------------------------------ */
393 /* debug helper code */
394
cx88_risc_decode(u32 risc)395 static int cx88_risc_decode(u32 risc)
396 {
397 static const char * const instr[16] = {
398 [ RISC_SYNC >> 28 ] = "sync",
399 [ RISC_WRITE >> 28 ] = "write",
400 [ RISC_WRITEC >> 28 ] = "writec",
401 [ RISC_READ >> 28 ] = "read",
402 [ RISC_READC >> 28 ] = "readc",
403 [ RISC_JUMP >> 28 ] = "jump",
404 [ RISC_SKIP >> 28 ] = "skip",
405 [ RISC_WRITERM >> 28 ] = "writerm",
406 [ RISC_WRITECM >> 28 ] = "writecm",
407 [ RISC_WRITECR >> 28 ] = "writecr",
408 };
409 static int const incr[16] = {
410 [ RISC_WRITE >> 28 ] = 2,
411 [ RISC_JUMP >> 28 ] = 2,
412 [ RISC_WRITERM >> 28 ] = 3,
413 [ RISC_WRITECM >> 28 ] = 3,
414 [ RISC_WRITECR >> 28 ] = 4,
415 };
416 static const char * const bits[] = {
417 "12", "13", "14", "resync",
418 "cnt0", "cnt1", "18", "19",
419 "20", "21", "22", "23",
420 "irq1", "irq2", "eol", "sol",
421 };
422 int i;
423
424 printk("0x%08x [ %s", risc,
425 instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
426 for (i = ARRAY_SIZE(bits)-1; i >= 0; i--)
427 if (risc & (1 << (i + 12)))
428 printk(" %s",bits[i]);
429 printk(" count=%d ]\n", risc & 0xfff);
430 return incr[risc >> 28] ? incr[risc >> 28] : 1;
431 }
432
433
cx88_sram_channel_dump(struct cx88_core * core,const struct sram_channel * ch)434 void cx88_sram_channel_dump(struct cx88_core *core,
435 const struct sram_channel *ch)
436 {
437 static const char * const name[] = {
438 "initial risc",
439 "cdt base",
440 "cdt size",
441 "iq base",
442 "iq size",
443 "risc pc",
444 "iq wr ptr",
445 "iq rd ptr",
446 "cdt current",
447 "pci target",
448 "line / byte",
449 };
450 u32 risc;
451 unsigned int i,j,n;
452
453 printk("%s: %s - dma channel status dump\n",
454 core->name,ch->name);
455 for (i = 0; i < ARRAY_SIZE(name); i++)
456 printk("%s: cmds: %-12s: 0x%08x\n",
457 core->name,name[i],
458 cx_read(ch->cmds_start + 4*i));
459 for (n = 1, i = 0; i < 4; i++) {
460 risc = cx_read(ch->cmds_start + 4 * (i+11));
461 printk("%s: risc%d: ", core->name, i);
462 if (--n)
463 printk("0x%08x [ arg #%d ]\n", risc, n);
464 else
465 n = cx88_risc_decode(risc);
466 }
467 for (i = 0; i < 16; i += n) {
468 risc = cx_read(ch->ctrl_start + 4 * i);
469 printk("%s: iq %x: ", core->name, i);
470 n = cx88_risc_decode(risc);
471 for (j = 1; j < n; j++) {
472 risc = cx_read(ch->ctrl_start + 4 * (i+j));
473 printk("%s: iq %x: 0x%08x [ arg #%d ]\n",
474 core->name, i+j, risc, j);
475 }
476 }
477
478 printk("%s: fifo: 0x%08x -> 0x%x\n",
479 core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size);
480 printk("%s: ctrl: 0x%08x -> 0x%x\n",
481 core->name, ch->ctrl_start, ch->ctrl_start+6*16);
482 printk("%s: ptr1_reg: 0x%08x\n",
483 core->name,cx_read(ch->ptr1_reg));
484 printk("%s: ptr2_reg: 0x%08x\n",
485 core->name,cx_read(ch->ptr2_reg));
486 printk("%s: cnt1_reg: 0x%08x\n",
487 core->name,cx_read(ch->cnt1_reg));
488 printk("%s: cnt2_reg: 0x%08x\n",
489 core->name,cx_read(ch->cnt2_reg));
490 }
491
492 static const char *cx88_pci_irqs[32] = {
493 "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
494 "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
495 "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
496 "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
497 };
498
cx88_print_irqbits(const char * name,const char * tag,const char * strings[],int len,u32 bits,u32 mask)499 void cx88_print_irqbits(const char *name, const char *tag, const char *strings[],
500 int len, u32 bits, u32 mask)
501 {
502 unsigned int i;
503
504 printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits);
505 for (i = 0; i < len; i++) {
506 if (!(bits & (1 << i)))
507 continue;
508 if (strings[i])
509 printk(" %s", strings[i]);
510 else
511 printk(" %d", i);
512 if (!(mask & (1 << i)))
513 continue;
514 printk("*");
515 }
516 printk("\n");
517 }
518
519 /* ------------------------------------------------------------------ */
520
cx88_core_irq(struct cx88_core * core,u32 status)521 int cx88_core_irq(struct cx88_core *core, u32 status)
522 {
523 int handled = 0;
524
525 if (status & PCI_INT_IR_SMPINT) {
526 cx88_ir_irq(core);
527 handled++;
528 }
529 if (!handled)
530 cx88_print_irqbits(core->name, "irq pci",
531 cx88_pci_irqs, ARRAY_SIZE(cx88_pci_irqs),
532 status, core->pci_irqmask);
533 return handled;
534 }
535
cx88_wakeup(struct cx88_core * core,struct cx88_dmaqueue * q,u32 count)536 void cx88_wakeup(struct cx88_core *core,
537 struct cx88_dmaqueue *q, u32 count)
538 {
539 struct cx88_buffer *buf;
540 int bc;
541
542 for (bc = 0;; bc++) {
543 if (list_empty(&q->active))
544 break;
545 buf = list_entry(q->active.next,
546 struct cx88_buffer, vb.queue);
547 /* count comes from the hw and is is 16bit wide --
548 * this trick handles wrap-arounds correctly for
549 * up to 32767 buffers in flight... */
550 if ((s16) (count - buf->count) < 0)
551 break;
552 do_gettimeofday(&buf->vb.ts);
553 dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i,
554 count, buf->count);
555 buf->vb.state = VIDEOBUF_DONE;
556 list_del(&buf->vb.queue);
557 wake_up(&buf->vb.done);
558 }
559 if (list_empty(&q->active)) {
560 del_timer(&q->timeout);
561 } else {
562 mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
563 }
564 if (bc != 1)
565 dprintk(2, "%s: %d buffers handled (should be 1)\n",
566 __func__, bc);
567 }
568
cx88_shutdown(struct cx88_core * core)569 void cx88_shutdown(struct cx88_core *core)
570 {
571 /* disable RISC controller + IRQs */
572 cx_write(MO_DEV_CNTRL2, 0);
573
574 /* stop dma transfers */
575 cx_write(MO_VID_DMACNTRL, 0x0);
576 cx_write(MO_AUD_DMACNTRL, 0x0);
577 cx_write(MO_TS_DMACNTRL, 0x0);
578 cx_write(MO_VIP_DMACNTRL, 0x0);
579 cx_write(MO_GPHST_DMACNTRL, 0x0);
580
581 /* stop interrupts */
582 cx_write(MO_PCI_INTMSK, 0x0);
583 cx_write(MO_VID_INTMSK, 0x0);
584 cx_write(MO_AUD_INTMSK, 0x0);
585 cx_write(MO_TS_INTMSK, 0x0);
586 cx_write(MO_VIP_INTMSK, 0x0);
587 cx_write(MO_GPHST_INTMSK, 0x0);
588
589 /* stop capturing */
590 cx_write(VID_CAPTURE_CONTROL, 0);
591 }
592
cx88_reset(struct cx88_core * core)593 int cx88_reset(struct cx88_core *core)
594 {
595 dprintk(1,"%s\n",__func__);
596 cx88_shutdown(core);
597
598 /* clear irq status */
599 cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
600 cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
601 cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
602
603 /* wait a bit */
604 msleep(100);
605
606 /* init sram */
607 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0);
608 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0);
609 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0);
610 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0);
611 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
612 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
613 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0);
614 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27], 128, 0);
615
616 /* misc init ... */
617 cx_write(MO_INPUT_FORMAT, ((1 << 13) | // agc enable
618 (1 << 12) | // agc gain
619 (1 << 11) | // adaptibe agc
620 (0 << 10) | // chroma agc
621 (0 << 9) | // ckillen
622 (7)));
623
624 /* setup image format */
625 cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
626
627 /* setup FIFO Thresholds */
628 cx_write(MO_PDMA_STHRSH, 0x0807);
629 cx_write(MO_PDMA_DTHRSH, 0x0807);
630
631 /* fixes flashing of image */
632 cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
633 cx_write(MO_AGC_BACK_VBI, 0x00E00555);
634
635 cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
636 cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
637 cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
638
639 /* Reset on-board parts */
640 cx_write(MO_SRST_IO, 0);
641 msleep(10);
642 cx_write(MO_SRST_IO, 1);
643
644 return 0;
645 }
646
647 /* ------------------------------------------------------------------ */
648
norm_swidth(v4l2_std_id norm)649 static unsigned int inline norm_swidth(v4l2_std_id norm)
650 {
651 return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 754 : 922;
652 }
653
norm_hdelay(v4l2_std_id norm)654 static unsigned int inline norm_hdelay(v4l2_std_id norm)
655 {
656 return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 135 : 186;
657 }
658
norm_vdelay(v4l2_std_id norm)659 static unsigned int inline norm_vdelay(v4l2_std_id norm)
660 {
661 return (norm & V4L2_STD_625_50) ? 0x24 : 0x18;
662 }
663
norm_fsc8(v4l2_std_id norm)664 static unsigned int inline norm_fsc8(v4l2_std_id norm)
665 {
666 if (norm & V4L2_STD_PAL_M)
667 return 28604892; // 3.575611 MHz
668
669 if (norm & (V4L2_STD_PAL_Nc))
670 return 28656448; // 3.582056 MHz
671
672 if (norm & V4L2_STD_NTSC) // All NTSC/M and variants
673 return 28636360; // 3.57954545 MHz +/- 10 Hz
674
675 /* SECAM have also different sub carrier for chroma,
676 but step_db and step_dr, at cx88_set_tvnorm already handles that.
677
678 The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
679 */
680
681 return 35468950; // 4.43361875 MHz +/- 5 Hz
682 }
683
norm_htotal(v4l2_std_id norm)684 static unsigned int inline norm_htotal(v4l2_std_id norm)
685 {
686
687 unsigned int fsc4=norm_fsc8(norm)/2;
688
689 /* returns 4*FSC / vtotal / frames per seconds */
690 return (norm & V4L2_STD_625_50) ?
691 ((fsc4+312)/625+12)/25 :
692 ((fsc4+262)/525*1001+15000)/30000;
693 }
694
norm_vbipack(v4l2_std_id norm)695 static unsigned int inline norm_vbipack(v4l2_std_id norm)
696 {
697 return (norm & V4L2_STD_625_50) ? 511 : 400;
698 }
699
cx88_set_scale(struct cx88_core * core,unsigned int width,unsigned int height,enum v4l2_field field)700 int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height,
701 enum v4l2_field field)
702 {
703 unsigned int swidth = norm_swidth(core->tvnorm);
704 unsigned int sheight = norm_maxh(core->tvnorm);
705 u32 value;
706
707 dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height,
708 V4L2_FIELD_HAS_TOP(field) ? "T" : "",
709 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
710 v4l2_norm_to_name(core->tvnorm));
711 if (!V4L2_FIELD_HAS_BOTH(field))
712 height *= 2;
713
714 // recalc H delay and scale registers
715 value = (width * norm_hdelay(core->tvnorm)) / swidth;
716 value &= 0x3fe;
717 cx_write(MO_HDELAY_EVEN, value);
718 cx_write(MO_HDELAY_ODD, value);
719 dprintk(1,"set_scale: hdelay 0x%04x (width %d)\n", value,swidth);
720
721 value = (swidth * 4096 / width) - 4096;
722 cx_write(MO_HSCALE_EVEN, value);
723 cx_write(MO_HSCALE_ODD, value);
724 dprintk(1,"set_scale: hscale 0x%04x\n", value);
725
726 cx_write(MO_HACTIVE_EVEN, width);
727 cx_write(MO_HACTIVE_ODD, width);
728 dprintk(1,"set_scale: hactive 0x%04x\n", width);
729
730 // recalc V scale Register (delay is constant)
731 cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm));
732 cx_write(MO_VDELAY_ODD, norm_vdelay(core->tvnorm));
733 dprintk(1,"set_scale: vdelay 0x%04x\n", norm_vdelay(core->tvnorm));
734
735 value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
736 cx_write(MO_VSCALE_EVEN, value);
737 cx_write(MO_VSCALE_ODD, value);
738 dprintk(1,"set_scale: vscale 0x%04x\n", value);
739
740 cx_write(MO_VACTIVE_EVEN, sheight);
741 cx_write(MO_VACTIVE_ODD, sheight);
742 dprintk(1,"set_scale: vactive 0x%04x\n", sheight);
743
744 // setup filters
745 value = 0;
746 value |= (1 << 19); // CFILT (default)
747 if (core->tvnorm & V4L2_STD_SECAM) {
748 value |= (1 << 15);
749 value |= (1 << 16);
750 }
751 if (INPUT(core->input).type == CX88_VMUX_SVIDEO)
752 value |= (1 << 13) | (1 << 5);
753 if (V4L2_FIELD_INTERLACED == field)
754 value |= (1 << 3); // VINT (interlaced vertical scaling)
755 if (width < 385)
756 value |= (1 << 0); // 3-tap interpolation
757 if (width < 193)
758 value |= (1 << 1); // 5-tap interpolation
759 if (nocomb)
760 value |= (3 << 5); // disable comb filter
761
762 cx_andor(MO_FILTER_EVEN, 0x7ffc7f, value); /* preserve PEAKEN, PSEL */
763 cx_andor(MO_FILTER_ODD, 0x7ffc7f, value);
764 dprintk(1,"set_scale: filter 0x%04x\n", value);
765
766 return 0;
767 }
768
769 static const u32 xtal = 28636363;
770
set_pll(struct cx88_core * core,int prescale,u32 ofreq)771 static int set_pll(struct cx88_core *core, int prescale, u32 ofreq)
772 {
773 static const u32 pre[] = { 0, 0, 0, 3, 2, 1 };
774 u64 pll;
775 u32 reg;
776 int i;
777
778 if (prescale < 2)
779 prescale = 2;
780 if (prescale > 5)
781 prescale = 5;
782
783 pll = ofreq * 8 * prescale * (u64)(1 << 20);
784 do_div(pll,xtal);
785 reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
786 if (((reg >> 20) & 0x3f) < 14) {
787 printk("%s/0: pll out of range\n",core->name);
788 return -1;
789 }
790
791 dprintk(1,"set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
792 reg, cx_read(MO_PLL_REG), ofreq);
793 cx_write(MO_PLL_REG, reg);
794 for (i = 0; i < 100; i++) {
795 reg = cx_read(MO_DEVICE_STATUS);
796 if (reg & (1<<2)) {
797 dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
798 prescale,ofreq);
799 return 0;
800 }
801 dprintk(1,"pll not locked yet, waiting ...\n");
802 msleep(10);
803 }
804 dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq);
805 return -1;
806 }
807
cx88_start_audio_dma(struct cx88_core * core)808 int cx88_start_audio_dma(struct cx88_core *core)
809 {
810 /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
811 int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4;
812
813 int rds_bpl = cx88_sram_channels[SRAM_CH27].fifo_size/AUD_RDS_LINES;
814
815 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
816 if (cx_read(MO_AUD_DMACNTRL) & 0x10)
817 return 0;
818
819 /* setup fifo + format */
820 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
821 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
822 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27],
823 rds_bpl, 0);
824
825 cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
826 cx_write(MO_AUDR_LNGTH, rds_bpl); /* fifo bpl size */
827
828 /* enable Up, Down and Audio RDS fifo */
829 cx_write(MO_AUD_DMACNTRL, 0x0007);
830
831 return 0;
832 }
833
cx88_stop_audio_dma(struct cx88_core * core)834 int cx88_stop_audio_dma(struct cx88_core *core)
835 {
836 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
837 if (cx_read(MO_AUD_DMACNTRL) & 0x10)
838 return 0;
839
840 /* stop dma */
841 cx_write(MO_AUD_DMACNTRL, 0x0000);
842
843 return 0;
844 }
845
set_tvaudio(struct cx88_core * core)846 static int set_tvaudio(struct cx88_core *core)
847 {
848 v4l2_std_id norm = core->tvnorm;
849
850 if (CX88_VMUX_TELEVISION != INPUT(core->input).type &&
851 CX88_VMUX_CABLE != INPUT(core->input).type)
852 return 0;
853
854 if (V4L2_STD_PAL_BG & norm) {
855 core->tvaudio = WW_BG;
856
857 } else if (V4L2_STD_PAL_DK & norm) {
858 core->tvaudio = WW_DK;
859
860 } else if (V4L2_STD_PAL_I & norm) {
861 core->tvaudio = WW_I;
862
863 } else if (V4L2_STD_SECAM_L & norm) {
864 core->tvaudio = WW_L;
865
866 } else if ((V4L2_STD_SECAM_B | V4L2_STD_SECAM_G | V4L2_STD_SECAM_H) & norm) {
867 core->tvaudio = WW_BG;
868
869 } else if (V4L2_STD_SECAM_DK & norm) {
870 core->tvaudio = WW_DK;
871
872 } else if ((V4L2_STD_NTSC_M & norm) ||
873 (V4L2_STD_PAL_M & norm)) {
874 core->tvaudio = WW_BTSC;
875
876 } else if (V4L2_STD_NTSC_M_JP & norm) {
877 core->tvaudio = WW_EIAJ;
878
879 } else {
880 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
881 core->name, v4l2_norm_to_name(core->tvnorm));
882 core->tvaudio = WW_NONE;
883 return 0;
884 }
885
886 cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
887 cx88_set_tvaudio(core);
888 /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
889
890 /*
891 This should be needed only on cx88-alsa. It seems that some cx88 chips have
892 bugs and does require DMA enabled for it to work.
893 */
894 cx88_start_audio_dma(core);
895 return 0;
896 }
897
898
899
cx88_set_tvnorm(struct cx88_core * core,v4l2_std_id norm)900 int cx88_set_tvnorm(struct cx88_core *core, v4l2_std_id norm)
901 {
902 u32 fsc8;
903 u32 adc_clock;
904 u32 vdec_clock;
905 u32 step_db,step_dr;
906 u64 tmp64;
907 u32 bdelay,agcdelay,htotal;
908 u32 cxiformat, cxoformat;
909
910 core->tvnorm = norm;
911 fsc8 = norm_fsc8(norm);
912 adc_clock = xtal;
913 vdec_clock = fsc8;
914 step_db = fsc8;
915 step_dr = fsc8;
916
917 if (norm & V4L2_STD_NTSC_M_JP) {
918 cxiformat = VideoFormatNTSCJapan;
919 cxoformat = 0x181f0008;
920 } else if (norm & V4L2_STD_NTSC_443) {
921 cxiformat = VideoFormatNTSC443;
922 cxoformat = 0x181f0008;
923 } else if (norm & V4L2_STD_PAL_M) {
924 cxiformat = VideoFormatPALM;
925 cxoformat = 0x1c1f0008;
926 } else if (norm & V4L2_STD_PAL_N) {
927 cxiformat = VideoFormatPALN;
928 cxoformat = 0x1c1f0008;
929 } else if (norm & V4L2_STD_PAL_Nc) {
930 cxiformat = VideoFormatPALNC;
931 cxoformat = 0x1c1f0008;
932 } else if (norm & V4L2_STD_PAL_60) {
933 cxiformat = VideoFormatPAL60;
934 cxoformat = 0x181f0008;
935 } else if (norm & V4L2_STD_NTSC) {
936 cxiformat = VideoFormatNTSC;
937 cxoformat = 0x181f0008;
938 } else if (norm & V4L2_STD_SECAM) {
939 step_db = 4250000 * 8;
940 step_dr = 4406250 * 8;
941
942 cxiformat = VideoFormatSECAM;
943 cxoformat = 0x181f0008;
944 } else { /* PAL */
945 cxiformat = VideoFormatPAL;
946 cxoformat = 0x181f0008;
947 }
948
949 dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
950 v4l2_norm_to_name(core->tvnorm), fsc8, adc_clock, vdec_clock,
951 step_db, step_dr);
952 set_pll(core,2,vdec_clock);
953
954 dprintk(1,"set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
955 cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
956 /* Chroma AGC must be disabled if SECAM is used, we enable it
957 by default on PAL and NTSC */
958 cx_andor(MO_INPUT_FORMAT, 0x40f,
959 norm & V4L2_STD_SECAM ? cxiformat : cxiformat | 0x400);
960
961 // FIXME: as-is from DScaler
962 dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
963 cxoformat, cx_read(MO_OUTPUT_FORMAT));
964 cx_write(MO_OUTPUT_FORMAT, cxoformat);
965
966 // MO_SCONV_REG = adc clock / video dec clock * 2^17
967 tmp64 = adc_clock * (u64)(1 << 17);
968 do_div(tmp64, vdec_clock);
969 dprintk(1,"set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
970 (u32)tmp64, cx_read(MO_SCONV_REG));
971 cx_write(MO_SCONV_REG, (u32)tmp64);
972
973 // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
974 tmp64 = step_db * (u64)(1 << 22);
975 do_div(tmp64, vdec_clock);
976 dprintk(1,"set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
977 (u32)tmp64, cx_read(MO_SUB_STEP));
978 cx_write(MO_SUB_STEP, (u32)tmp64);
979
980 // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
981 tmp64 = step_dr * (u64)(1 << 22);
982 do_div(tmp64, vdec_clock);
983 dprintk(1,"set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
984 (u32)tmp64, cx_read(MO_SUB_STEP_DR));
985 cx_write(MO_SUB_STEP_DR, (u32)tmp64);
986
987 // bdelay + agcdelay
988 bdelay = vdec_clock * 65 / 20000000 + 21;
989 agcdelay = vdec_clock * 68 / 20000000 + 15;
990 dprintk(1,"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
991 (bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay);
992 cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
993
994 // htotal
995 tmp64 = norm_htotal(norm) * (u64)vdec_clock;
996 do_div(tmp64, fsc8);
997 htotal = (u32)tmp64;
998 dprintk(1,"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
999 htotal, cx_read(MO_HTOTAL), (u32)tmp64);
1000 cx_andor(MO_HTOTAL, 0x07ff, htotal);
1001
1002 // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
1003 // the effective vbi offset ~244 samples, the same as the Bt8x8
1004 cx_write(MO_VBI_PACKET, (10<<11) | norm_vbipack(norm));
1005
1006 // this is needed as well to set all tvnorm parameter
1007 cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED);
1008
1009 // audio
1010 set_tvaudio(core);
1011
1012 // tell i2c chips
1013 call_all(core, core, s_std, norm);
1014
1015 // done
1016 return 0;
1017 }
1018
1019 /* ------------------------------------------------------------------ */
1020
cx88_vdev_init(struct cx88_core * core,struct pci_dev * pci,const struct video_device * template_,const char * type)1021 struct video_device *cx88_vdev_init(struct cx88_core *core,
1022 struct pci_dev *pci,
1023 const struct video_device *template_,
1024 const char *type)
1025 {
1026 struct video_device *vfd;
1027
1028 vfd = video_device_alloc();
1029 if (NULL == vfd)
1030 return NULL;
1031 *vfd = *template_;
1032 vfd->v4l2_dev = &core->v4l2_dev;
1033 vfd->parent = &pci->dev;
1034 vfd->release = video_device_release;
1035 snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
1036 core->name, type, core->board.name);
1037 return vfd;
1038 }
1039
cx88_core_get(struct pci_dev * pci)1040 struct cx88_core* cx88_core_get(struct pci_dev *pci)
1041 {
1042 struct cx88_core *core;
1043
1044 mutex_lock(&devlist);
1045 list_for_each_entry(core, &cx88_devlist, devlist) {
1046 if (pci->bus->number != core->pci_bus)
1047 continue;
1048 if (PCI_SLOT(pci->devfn) != core->pci_slot)
1049 continue;
1050
1051 if (0 != cx88_get_resources(core, pci)) {
1052 mutex_unlock(&devlist);
1053 return NULL;
1054 }
1055 atomic_inc(&core->refcount);
1056 mutex_unlock(&devlist);
1057 return core;
1058 }
1059
1060 core = cx88_core_create(pci, cx88_devcount);
1061 if (NULL != core) {
1062 cx88_devcount++;
1063 list_add_tail(&core->devlist, &cx88_devlist);
1064 }
1065
1066 mutex_unlock(&devlist);
1067 return core;
1068 }
1069
cx88_core_put(struct cx88_core * core,struct pci_dev * pci)1070 void cx88_core_put(struct cx88_core *core, struct pci_dev *pci)
1071 {
1072 release_mem_region(pci_resource_start(pci,0),
1073 pci_resource_len(pci,0));
1074
1075 if (!atomic_dec_and_test(&core->refcount))
1076 return;
1077
1078 mutex_lock(&devlist);
1079 cx88_ir_fini(core);
1080 if (0 == core->i2c_rc) {
1081 if (core->i2c_rtc)
1082 i2c_unregister_device(core->i2c_rtc);
1083 i2c_del_adapter(&core->i2c_adap);
1084 }
1085 list_del(&core->devlist);
1086 iounmap(core->lmmio);
1087 cx88_devcount--;
1088 mutex_unlock(&devlist);
1089 v4l2_device_unregister(&core->v4l2_dev);
1090 kfree(core);
1091 }
1092
1093 /* ------------------------------------------------------------------ */
1094
1095 EXPORT_SYMBOL(cx88_print_irqbits);
1096
1097 EXPORT_SYMBOL(cx88_core_irq);
1098 EXPORT_SYMBOL(cx88_wakeup);
1099 EXPORT_SYMBOL(cx88_reset);
1100 EXPORT_SYMBOL(cx88_shutdown);
1101
1102 EXPORT_SYMBOL(cx88_risc_buffer);
1103 EXPORT_SYMBOL(cx88_risc_databuffer);
1104 EXPORT_SYMBOL(cx88_risc_stopper);
1105 EXPORT_SYMBOL(cx88_free_buffer);
1106
1107 EXPORT_SYMBOL(cx88_sram_channels);
1108 EXPORT_SYMBOL(cx88_sram_channel_setup);
1109 EXPORT_SYMBOL(cx88_sram_channel_dump);
1110
1111 EXPORT_SYMBOL(cx88_set_tvnorm);
1112 EXPORT_SYMBOL(cx88_set_scale);
1113
1114 EXPORT_SYMBOL(cx88_vdev_init);
1115 EXPORT_SYMBOL(cx88_core_get);
1116 EXPORT_SYMBOL(cx88_core_put);
1117
1118 EXPORT_SYMBOL(cx88_ir_start);
1119 EXPORT_SYMBOL(cx88_ir_stop);
1120
1121 /*
1122 * Local variables:
1123 * c-basic-offset: 8
1124 * End:
1125 * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off
1126 */
1127