1 /***********************license start***************
2 * Author: Cavium Networks
3 *
4 * Contact: support@caviumnetworks.com
5 * This file is part of the OCTEON SDK
6 *
7 * Copyright (c) 2003-2008 Cavium Networks
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
17 * details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this file; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 * or visit http://www.gnu.org/licenses/.
23 *
24 * This file may also be available under a different license from Cavium.
25 * Contact Cavium Networks for more information
26 ***********************license end**************************************/
27
28 /*
29 *
30 * Support library for the SPI
31 */
32 #include <asm/octeon/octeon.h>
33
34 #include <asm/octeon/cvmx-config.h>
35
36 #include <asm/octeon/cvmx-pko.h>
37 #include <asm/octeon/cvmx-spi.h>
38
39 #include <asm/octeon/cvmx-spxx-defs.h>
40 #include <asm/octeon/cvmx-stxx-defs.h>
41 #include <asm/octeon/cvmx-srxx-defs.h>
42
43 #define INVOKE_CB(function_p, args...) \
44 do { \
45 if (function_p) { \
46 res = function_p(args); \
47 if (res) \
48 return res; \
49 } \
50 } while (0)
51
52 #if CVMX_ENABLE_DEBUG_PRINTS
53 static const char *modes[] =
54 { "UNKNOWN", "TX Halfplex", "Rx Halfplex", "Duplex" };
55 #endif
56
57 /* Default callbacks, can be overridden
58 * using cvmx_spi_get_callbacks/cvmx_spi_set_callbacks
59 */
60 static cvmx_spi_callbacks_t cvmx_spi_callbacks = {
61 .reset_cb = cvmx_spi_reset_cb,
62 .calendar_setup_cb = cvmx_spi_calendar_setup_cb,
63 .clock_detect_cb = cvmx_spi_clock_detect_cb,
64 .training_cb = cvmx_spi_training_cb,
65 .calendar_sync_cb = cvmx_spi_calendar_sync_cb,
66 .interface_up_cb = cvmx_spi_interface_up_cb
67 };
68
69 /**
70 * Get current SPI4 initialization callbacks
71 *
72 * @callbacks: Pointer to the callbacks structure.to fill
73 *
74 * Returns Pointer to cvmx_spi_callbacks_t structure.
75 */
cvmx_spi_get_callbacks(cvmx_spi_callbacks_t * callbacks)76 void cvmx_spi_get_callbacks(cvmx_spi_callbacks_t *callbacks)
77 {
78 memcpy(callbacks, &cvmx_spi_callbacks, sizeof(cvmx_spi_callbacks));
79 }
80
81 /**
82 * Set new SPI4 initialization callbacks
83 *
84 * @new_callbacks: Pointer to an updated callbacks structure.
85 */
cvmx_spi_set_callbacks(cvmx_spi_callbacks_t * new_callbacks)86 void cvmx_spi_set_callbacks(cvmx_spi_callbacks_t *new_callbacks)
87 {
88 memcpy(&cvmx_spi_callbacks, new_callbacks, sizeof(cvmx_spi_callbacks));
89 }
90
91 /**
92 * Initialize and start the SPI interface.
93 *
94 * @interface: The identifier of the packet interface to configure and
95 * use as a SPI interface.
96 * @mode: The operating mode for the SPI interface. The interface
97 * can operate as a full duplex (both Tx and Rx data paths
98 * active) or as a halfplex (either the Tx data path is
99 * active or the Rx data path is active, but not both).
100 * @timeout: Timeout to wait for clock synchronization in seconds
101 * @num_ports: Number of SPI ports to configure
102 *
103 * Returns Zero on success, negative of failure.
104 */
cvmx_spi_start_interface(int interface,cvmx_spi_mode_t mode,int timeout,int num_ports)105 int cvmx_spi_start_interface(int interface, cvmx_spi_mode_t mode, int timeout,
106 int num_ports)
107 {
108 int res = -1;
109
110 if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
111 return res;
112
113 /* Callback to perform SPI4 reset */
114 INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface, mode);
115
116 /* Callback to perform calendar setup */
117 INVOKE_CB(cvmx_spi_callbacks.calendar_setup_cb, interface, mode,
118 num_ports);
119
120 /* Callback to perform clock detection */
121 INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout);
122
123 /* Callback to perform SPI4 link training */
124 INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout);
125
126 /* Callback to perform calendar sync */
127 INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode,
128 timeout);
129
130 /* Callback to handle interface coming up */
131 INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode);
132
133 return res;
134 }
135
136 /**
137 * This routine restarts the SPI interface after it has lost synchronization
138 * with its correspondent system.
139 *
140 * @interface: The identifier of the packet interface to configure and
141 * use as a SPI interface.
142 * @mode: The operating mode for the SPI interface. The interface
143 * can operate as a full duplex (both Tx and Rx data paths
144 * active) or as a halfplex (either the Tx data path is
145 * active or the Rx data path is active, but not both).
146 * @timeout: Timeout to wait for clock synchronization in seconds
147 *
148 * Returns Zero on success, negative of failure.
149 */
cvmx_spi_restart_interface(int interface,cvmx_spi_mode_t mode,int timeout)150 int cvmx_spi_restart_interface(int interface, cvmx_spi_mode_t mode, int timeout)
151 {
152 int res = -1;
153
154 if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
155 return res;
156
157 cvmx_dprintf("SPI%d: Restart %s\n", interface, modes[mode]);
158
159 /* Callback to perform SPI4 reset */
160 INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface, mode);
161
162 /* NOTE: Calendar setup is not performed during restart */
163 /* Refer to cvmx_spi_start_interface() for the full sequence */
164
165 /* Callback to perform clock detection */
166 INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout);
167
168 /* Callback to perform SPI4 link training */
169 INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout);
170
171 /* Callback to perform calendar sync */
172 INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode,
173 timeout);
174
175 /* Callback to handle interface coming up */
176 INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode);
177
178 return res;
179 }
180
181 /**
182 * Callback to perform SPI4 reset
183 *
184 * @interface: The identifier of the packet interface to configure and
185 * use as a SPI interface.
186 * @mode: The operating mode for the SPI interface. The interface
187 * can operate as a full duplex (both Tx and Rx data paths
188 * active) or as a halfplex (either the Tx data path is
189 * active or the Rx data path is active, but not both).
190 *
191 * Returns Zero on success, non-zero error code on failure (will cause
192 * SPI initialization to abort)
193 */
cvmx_spi_reset_cb(int interface,cvmx_spi_mode_t mode)194 int cvmx_spi_reset_cb(int interface, cvmx_spi_mode_t mode)
195 {
196 union cvmx_spxx_dbg_deskew_ctl spxx_dbg_deskew_ctl;
197 union cvmx_spxx_clk_ctl spxx_clk_ctl;
198 union cvmx_spxx_bist_stat spxx_bist_stat;
199 union cvmx_spxx_int_msk spxx_int_msk;
200 union cvmx_stxx_int_msk stxx_int_msk;
201 union cvmx_spxx_trn4_ctl spxx_trn4_ctl;
202 int index;
203 uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
204
205 /* Disable SPI error events while we run BIST */
206 spxx_int_msk.u64 = cvmx_read_csr(CVMX_SPXX_INT_MSK(interface));
207 cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), 0);
208 stxx_int_msk.u64 = cvmx_read_csr(CVMX_STXX_INT_MSK(interface));
209 cvmx_write_csr(CVMX_STXX_INT_MSK(interface), 0);
210
211 /* Run BIST in the SPI interface */
212 cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), 0);
213 cvmx_write_csr(CVMX_STXX_COM_CTL(interface), 0);
214 spxx_clk_ctl.u64 = 0;
215 spxx_clk_ctl.s.runbist = 1;
216 cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
217 cvmx_wait(10 * MS);
218 spxx_bist_stat.u64 = cvmx_read_csr(CVMX_SPXX_BIST_STAT(interface));
219 if (spxx_bist_stat.s.stat0)
220 cvmx_dprintf
221 ("ERROR SPI%d: BIST failed on receive datapath FIFO\n",
222 interface);
223 if (spxx_bist_stat.s.stat1)
224 cvmx_dprintf("ERROR SPI%d: BIST failed on RX calendar table\n",
225 interface);
226 if (spxx_bist_stat.s.stat2)
227 cvmx_dprintf("ERROR SPI%d: BIST failed on TX calendar table\n",
228 interface);
229
230 /* Clear the calendar table after BIST to fix parity errors */
231 for (index = 0; index < 32; index++) {
232 union cvmx_srxx_spi4_calx srxx_spi4_calx;
233 union cvmx_stxx_spi4_calx stxx_spi4_calx;
234
235 srxx_spi4_calx.u64 = 0;
236 srxx_spi4_calx.s.oddpar = 1;
237 cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface),
238 srxx_spi4_calx.u64);
239
240 stxx_spi4_calx.u64 = 0;
241 stxx_spi4_calx.s.oddpar = 1;
242 cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface),
243 stxx_spi4_calx.u64);
244 }
245
246 /* Re enable reporting of error interrupts */
247 cvmx_write_csr(CVMX_SPXX_INT_REG(interface),
248 cvmx_read_csr(CVMX_SPXX_INT_REG(interface)));
249 cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), spxx_int_msk.u64);
250 cvmx_write_csr(CVMX_STXX_INT_REG(interface),
251 cvmx_read_csr(CVMX_STXX_INT_REG(interface)));
252 cvmx_write_csr(CVMX_STXX_INT_MSK(interface), stxx_int_msk.u64);
253
254 /* Setup the CLKDLY right in the middle */
255 spxx_clk_ctl.u64 = 0;
256 spxx_clk_ctl.s.seetrn = 0;
257 spxx_clk_ctl.s.clkdly = 0x10;
258 spxx_clk_ctl.s.runbist = 0;
259 spxx_clk_ctl.s.statdrv = 0;
260 /* This should always be on the opposite edge as statdrv */
261 spxx_clk_ctl.s.statrcv = 1;
262 spxx_clk_ctl.s.sndtrn = 0;
263 spxx_clk_ctl.s.drptrn = 0;
264 spxx_clk_ctl.s.rcvtrn = 0;
265 spxx_clk_ctl.s.srxdlck = 0;
266 cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
267 cvmx_wait(100 * MS);
268
269 /* Reset SRX0 DLL */
270 spxx_clk_ctl.s.srxdlck = 1;
271 cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
272
273 /* Waiting for Inf0 Spi4 RX DLL to lock */
274 cvmx_wait(100 * MS);
275
276 /* Enable dynamic alignment */
277 spxx_trn4_ctl.s.trntest = 0;
278 spxx_trn4_ctl.s.jitter = 1;
279 spxx_trn4_ctl.s.clr_boot = 1;
280 spxx_trn4_ctl.s.set_boot = 0;
281 if (OCTEON_IS_MODEL(OCTEON_CN58XX))
282 spxx_trn4_ctl.s.maxdist = 3;
283 else
284 spxx_trn4_ctl.s.maxdist = 8;
285 spxx_trn4_ctl.s.macro_en = 1;
286 spxx_trn4_ctl.s.mux_en = 1;
287 cvmx_write_csr(CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64);
288
289 spxx_dbg_deskew_ctl.u64 = 0;
290 cvmx_write_csr(CVMX_SPXX_DBG_DESKEW_CTL(interface),
291 spxx_dbg_deskew_ctl.u64);
292
293 return 0;
294 }
295
296 /**
297 * Callback to setup calendar and miscellaneous settings before clock detection
298 *
299 * @interface: The identifier of the packet interface to configure and
300 * use as a SPI interface.
301 * @mode: The operating mode for the SPI interface. The interface
302 * can operate as a full duplex (both Tx and Rx data paths
303 * active) or as a halfplex (either the Tx data path is
304 * active or the Rx data path is active, but not both).
305 * @num_ports: Number of ports to configure on SPI
306 *
307 * Returns Zero on success, non-zero error code on failure (will cause
308 * SPI initialization to abort)
309 */
cvmx_spi_calendar_setup_cb(int interface,cvmx_spi_mode_t mode,int num_ports)310 int cvmx_spi_calendar_setup_cb(int interface, cvmx_spi_mode_t mode,
311 int num_ports)
312 {
313 int port;
314 int index;
315 if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
316 union cvmx_srxx_com_ctl srxx_com_ctl;
317 union cvmx_srxx_spi4_stat srxx_spi4_stat;
318
319 /* SRX0 number of Ports */
320 srxx_com_ctl.u64 = 0;
321 srxx_com_ctl.s.prts = num_ports - 1;
322 srxx_com_ctl.s.st_en = 0;
323 srxx_com_ctl.s.inf_en = 0;
324 cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
325
326 /* SRX0 Calendar Table. This round robbins through all ports */
327 port = 0;
328 index = 0;
329 while (port < num_ports) {
330 union cvmx_srxx_spi4_calx srxx_spi4_calx;
331 srxx_spi4_calx.u64 = 0;
332 srxx_spi4_calx.s.prt0 = port++;
333 srxx_spi4_calx.s.prt1 = port++;
334 srxx_spi4_calx.s.prt2 = port++;
335 srxx_spi4_calx.s.prt3 = port++;
336 srxx_spi4_calx.s.oddpar =
337 ~(cvmx_dpop(srxx_spi4_calx.u64) & 1);
338 cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface),
339 srxx_spi4_calx.u64);
340 index++;
341 }
342 srxx_spi4_stat.u64 = 0;
343 srxx_spi4_stat.s.len = num_ports;
344 srxx_spi4_stat.s.m = 1;
345 cvmx_write_csr(CVMX_SRXX_SPI4_STAT(interface),
346 srxx_spi4_stat.u64);
347 }
348
349 if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
350 union cvmx_stxx_arb_ctl stxx_arb_ctl;
351 union cvmx_gmxx_tx_spi_max gmxx_tx_spi_max;
352 union cvmx_gmxx_tx_spi_thresh gmxx_tx_spi_thresh;
353 union cvmx_gmxx_tx_spi_ctl gmxx_tx_spi_ctl;
354 union cvmx_stxx_spi4_stat stxx_spi4_stat;
355 union cvmx_stxx_spi4_dat stxx_spi4_dat;
356
357 /* STX0 Config */
358 stxx_arb_ctl.u64 = 0;
359 stxx_arb_ctl.s.igntpa = 0;
360 stxx_arb_ctl.s.mintrn = 0;
361 cvmx_write_csr(CVMX_STXX_ARB_CTL(interface), stxx_arb_ctl.u64);
362
363 gmxx_tx_spi_max.u64 = 0;
364 gmxx_tx_spi_max.s.max1 = 8;
365 gmxx_tx_spi_max.s.max2 = 4;
366 gmxx_tx_spi_max.s.slice = 0;
367 cvmx_write_csr(CVMX_GMXX_TX_SPI_MAX(interface),
368 gmxx_tx_spi_max.u64);
369
370 gmxx_tx_spi_thresh.u64 = 0;
371 gmxx_tx_spi_thresh.s.thresh = 4;
372 cvmx_write_csr(CVMX_GMXX_TX_SPI_THRESH(interface),
373 gmxx_tx_spi_thresh.u64);
374
375 gmxx_tx_spi_ctl.u64 = 0;
376 gmxx_tx_spi_ctl.s.tpa_clr = 0;
377 gmxx_tx_spi_ctl.s.cont_pkt = 0;
378 cvmx_write_csr(CVMX_GMXX_TX_SPI_CTL(interface),
379 gmxx_tx_spi_ctl.u64);
380
381 /* STX0 Training Control */
382 stxx_spi4_dat.u64 = 0;
383 /*Minimum needed by dynamic alignment */
384 stxx_spi4_dat.s.alpha = 32;
385 stxx_spi4_dat.s.max_t = 0xFFFF; /*Minimum interval is 0x20 */
386 cvmx_write_csr(CVMX_STXX_SPI4_DAT(interface),
387 stxx_spi4_dat.u64);
388
389 /* STX0 Calendar Table. This round robbins through all ports */
390 port = 0;
391 index = 0;
392 while (port < num_ports) {
393 union cvmx_stxx_spi4_calx stxx_spi4_calx;
394 stxx_spi4_calx.u64 = 0;
395 stxx_spi4_calx.s.prt0 = port++;
396 stxx_spi4_calx.s.prt1 = port++;
397 stxx_spi4_calx.s.prt2 = port++;
398 stxx_spi4_calx.s.prt3 = port++;
399 stxx_spi4_calx.s.oddpar =
400 ~(cvmx_dpop(stxx_spi4_calx.u64) & 1);
401 cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface),
402 stxx_spi4_calx.u64);
403 index++;
404 }
405 stxx_spi4_stat.u64 = 0;
406 stxx_spi4_stat.s.len = num_ports;
407 stxx_spi4_stat.s.m = 1;
408 cvmx_write_csr(CVMX_STXX_SPI4_STAT(interface),
409 stxx_spi4_stat.u64);
410 }
411
412 return 0;
413 }
414
415 /**
416 * Callback to perform clock detection
417 *
418 * @interface: The identifier of the packet interface to configure and
419 * use as a SPI interface.
420 * @mode: The operating mode for the SPI interface. The interface
421 * can operate as a full duplex (both Tx and Rx data paths
422 * active) or as a halfplex (either the Tx data path is
423 * active or the Rx data path is active, but not both).
424 * @timeout: Timeout to wait for clock synchronization in seconds
425 *
426 * Returns Zero on success, non-zero error code on failure (will cause
427 * SPI initialization to abort)
428 */
cvmx_spi_clock_detect_cb(int interface,cvmx_spi_mode_t mode,int timeout)429 int cvmx_spi_clock_detect_cb(int interface, cvmx_spi_mode_t mode, int timeout)
430 {
431 int clock_transitions;
432 union cvmx_spxx_clk_stat stat;
433 uint64_t timeout_time;
434 uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
435
436 /*
437 * Regardless of operating mode, both Tx and Rx clocks must be
438 * present for the SPI interface to operate.
439 */
440 cvmx_dprintf("SPI%d: Waiting to see TsClk...\n", interface);
441 timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
442 /*
443 * Require 100 clock transitions in order to avoid any noise
444 * in the beginning.
445 */
446 clock_transitions = 100;
447 do {
448 stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
449 if (stat.s.s4clk0 && stat.s.s4clk1 && clock_transitions) {
450 /*
451 * We've seen a clock transition, so decrement
452 * the number we still need.
453 */
454 clock_transitions--;
455 cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
456 stat.s.s4clk0 = 0;
457 stat.s.s4clk1 = 0;
458 }
459 if (cvmx_get_cycle() > timeout_time) {
460 cvmx_dprintf("SPI%d: Timeout\n", interface);
461 return -1;
462 }
463 } while (stat.s.s4clk0 == 0 || stat.s.s4clk1 == 0);
464
465 cvmx_dprintf("SPI%d: Waiting to see RsClk...\n", interface);
466 timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
467 /*
468 * Require 100 clock transitions in order to avoid any noise in the
469 * beginning.
470 */
471 clock_transitions = 100;
472 do {
473 stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
474 if (stat.s.d4clk0 && stat.s.d4clk1 && clock_transitions) {
475 /*
476 * We've seen a clock transition, so decrement
477 * the number we still need
478 */
479 clock_transitions--;
480 cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
481 stat.s.d4clk0 = 0;
482 stat.s.d4clk1 = 0;
483 }
484 if (cvmx_get_cycle() > timeout_time) {
485 cvmx_dprintf("SPI%d: Timeout\n", interface);
486 return -1;
487 }
488 } while (stat.s.d4clk0 == 0 || stat.s.d4clk1 == 0);
489
490 return 0;
491 }
492
493 /**
494 * Callback to perform link training
495 *
496 * @interface: The identifier of the packet interface to configure and
497 * use as a SPI interface.
498 * @mode: The operating mode for the SPI interface. The interface
499 * can operate as a full duplex (both Tx and Rx data paths
500 * active) or as a halfplex (either the Tx data path is
501 * active or the Rx data path is active, but not both).
502 * @timeout: Timeout to wait for link to be trained (in seconds)
503 *
504 * Returns Zero on success, non-zero error code on failure (will cause
505 * SPI initialization to abort)
506 */
cvmx_spi_training_cb(int interface,cvmx_spi_mode_t mode,int timeout)507 int cvmx_spi_training_cb(int interface, cvmx_spi_mode_t mode, int timeout)
508 {
509 union cvmx_spxx_trn4_ctl spxx_trn4_ctl;
510 union cvmx_spxx_clk_stat stat;
511 uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
512 uint64_t timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
513 int rx_training_needed;
514
515 /* SRX0 & STX0 Inf0 Links are configured - begin training */
516 union cvmx_spxx_clk_ctl spxx_clk_ctl;
517 spxx_clk_ctl.u64 = 0;
518 spxx_clk_ctl.s.seetrn = 0;
519 spxx_clk_ctl.s.clkdly = 0x10;
520 spxx_clk_ctl.s.runbist = 0;
521 spxx_clk_ctl.s.statdrv = 0;
522 /* This should always be on the opposite edge as statdrv */
523 spxx_clk_ctl.s.statrcv = 1;
524 spxx_clk_ctl.s.sndtrn = 1;
525 spxx_clk_ctl.s.drptrn = 1;
526 spxx_clk_ctl.s.rcvtrn = 1;
527 spxx_clk_ctl.s.srxdlck = 1;
528 cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
529 cvmx_wait(1000 * MS);
530
531 /* SRX0 clear the boot bit */
532 spxx_trn4_ctl.u64 = cvmx_read_csr(CVMX_SPXX_TRN4_CTL(interface));
533 spxx_trn4_ctl.s.clr_boot = 1;
534 cvmx_write_csr(CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64);
535
536 /* Wait for the training sequence to complete */
537 cvmx_dprintf("SPI%d: Waiting for training\n", interface);
538 cvmx_wait(1000 * MS);
539 /* Wait a really long time here */
540 timeout_time = cvmx_get_cycle() + 1000ull * MS * 600;
541 /*
542 * The HRM says we must wait for 34 + 16 * MAXDIST training sequences.
543 * We'll be pessimistic and wait for a lot more.
544 */
545 rx_training_needed = 500;
546 do {
547 stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
548 if (stat.s.srxtrn && rx_training_needed) {
549 rx_training_needed--;
550 cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
551 stat.s.srxtrn = 0;
552 }
553 if (cvmx_get_cycle() > timeout_time) {
554 cvmx_dprintf("SPI%d: Timeout\n", interface);
555 return -1;
556 }
557 } while (stat.s.srxtrn == 0);
558
559 return 0;
560 }
561
562 /**
563 * Callback to perform calendar data synchronization
564 *
565 * @interface: The identifier of the packet interface to configure and
566 * use as a SPI interface.
567 * @mode: The operating mode for the SPI interface. The interface
568 * can operate as a full duplex (both Tx and Rx data paths
569 * active) or as a halfplex (either the Tx data path is
570 * active or the Rx data path is active, but not both).
571 * @timeout: Timeout to wait for calendar data in seconds
572 *
573 * Returns Zero on success, non-zero error code on failure (will cause
574 * SPI initialization to abort)
575 */
cvmx_spi_calendar_sync_cb(int interface,cvmx_spi_mode_t mode,int timeout)576 int cvmx_spi_calendar_sync_cb(int interface, cvmx_spi_mode_t mode, int timeout)
577 {
578 uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
579 if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
580 /* SRX0 interface should be good, send calendar data */
581 union cvmx_srxx_com_ctl srxx_com_ctl;
582 cvmx_dprintf
583 ("SPI%d: Rx is synchronized, start sending calendar data\n",
584 interface);
585 srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface));
586 srxx_com_ctl.s.inf_en = 1;
587 srxx_com_ctl.s.st_en = 1;
588 cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
589 }
590
591 if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
592 /* STX0 has achieved sync */
593 /* The corespondant board should be sending calendar data */
594 /* Enable the STX0 STAT receiver. */
595 union cvmx_spxx_clk_stat stat;
596 uint64_t timeout_time;
597 union cvmx_stxx_com_ctl stxx_com_ctl;
598 stxx_com_ctl.u64 = 0;
599 stxx_com_ctl.s.st_en = 1;
600 cvmx_write_csr(CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64);
601
602 /* Waiting for calendar sync on STX0 STAT */
603 cvmx_dprintf("SPI%d: Waiting to sync on STX[%d] STAT\n",
604 interface, interface);
605 timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
606 /* SPX0_CLK_STAT - SPX0_CLK_STAT[STXCAL] should be 1 (bit10) */
607 do {
608 stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
609 if (cvmx_get_cycle() > timeout_time) {
610 cvmx_dprintf("SPI%d: Timeout\n", interface);
611 return -1;
612 }
613 } while (stat.s.stxcal == 0);
614 }
615
616 return 0;
617 }
618
619 /**
620 * Callback to handle interface up
621 *
622 * @interface: The identifier of the packet interface to configure and
623 * use as a SPI interface.
624 * @mode: The operating mode for the SPI interface. The interface
625 * can operate as a full duplex (both Tx and Rx data paths
626 * active) or as a halfplex (either the Tx data path is
627 * active or the Rx data path is active, but not both).
628 *
629 * Returns Zero on success, non-zero error code on failure (will cause
630 * SPI initialization to abort)
631 */
cvmx_spi_interface_up_cb(int interface,cvmx_spi_mode_t mode)632 int cvmx_spi_interface_up_cb(int interface, cvmx_spi_mode_t mode)
633 {
634 union cvmx_gmxx_rxx_frm_min gmxx_rxx_frm_min;
635 union cvmx_gmxx_rxx_frm_max gmxx_rxx_frm_max;
636 union cvmx_gmxx_rxx_jabber gmxx_rxx_jabber;
637
638 if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
639 union cvmx_srxx_com_ctl srxx_com_ctl;
640 srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface));
641 srxx_com_ctl.s.inf_en = 1;
642 cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
643 cvmx_dprintf("SPI%d: Rx is now up\n", interface);
644 }
645
646 if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
647 union cvmx_stxx_com_ctl stxx_com_ctl;
648 stxx_com_ctl.u64 = cvmx_read_csr(CVMX_STXX_COM_CTL(interface));
649 stxx_com_ctl.s.inf_en = 1;
650 cvmx_write_csr(CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64);
651 cvmx_dprintf("SPI%d: Tx is now up\n", interface);
652 }
653
654 gmxx_rxx_frm_min.u64 = 0;
655 gmxx_rxx_frm_min.s.len = 64;
656 cvmx_write_csr(CVMX_GMXX_RXX_FRM_MIN(0, interface),
657 gmxx_rxx_frm_min.u64);
658 gmxx_rxx_frm_max.u64 = 0;
659 gmxx_rxx_frm_max.s.len = 64 * 1024 - 4;
660 cvmx_write_csr(CVMX_GMXX_RXX_FRM_MAX(0, interface),
661 gmxx_rxx_frm_max.u64);
662 gmxx_rxx_jabber.u64 = 0;
663 gmxx_rxx_jabber.s.cnt = 64 * 1024 - 4;
664 cvmx_write_csr(CVMX_GMXX_RXX_JABBER(0, interface), gmxx_rxx_jabber.u64);
665
666 return 0;
667 }
668