1 /***********************license start***************
2 * Author: Cavium Networks
3 *
4 * Contact: support@caviumnetworks.com
5 * This file is part of the OCTEON SDK
6 *
7 * Copyright (c) 2003-2008 Cavium Networks
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
17 * details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this file; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 * or visit http://www.gnu.org/licenses/.
23 *
24 * This file may also be available under a different license from Cavium.
25 * Contact Cavium Networks for more information
26 ***********************license end**************************************/
27
28 #ifndef __CVMX_H__
29 #define __CVMX_H__
30
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33
34 enum cvmx_mips_space {
35 CVMX_MIPS_SPACE_XKSEG = 3LL,
36 CVMX_MIPS_SPACE_XKPHYS = 2LL,
37 CVMX_MIPS_SPACE_XSSEG = 1LL,
38 CVMX_MIPS_SPACE_XUSEG = 0LL
39 };
40
41 /* These macros for use when using 32 bit pointers. */
42 #define CVMX_MIPS32_SPACE_KSEG0 1l
43 #define CVMX_ADD_SEG32(segment, add) \
44 (((int32_t)segment << 31) | (int32_t)(add))
45
46 #define CVMX_IO_SEG CVMX_MIPS_SPACE_XKPHYS
47
48 /* These macros simplify the process of creating common IO addresses */
49 #define CVMX_ADD_SEG(segment, add) \
50 ((((uint64_t)segment) << 62) | (add))
51 #ifndef CVMX_ADD_IO_SEG
52 #define CVMX_ADD_IO_SEG(add) CVMX_ADD_SEG(CVMX_IO_SEG, (add))
53 #endif
54
55 #include "cvmx-asm.h"
56 #include "cvmx-packet.h"
57 #include "cvmx-sysinfo.h"
58
59 #include "cvmx-ciu-defs.h"
60 #include "cvmx-gpio-defs.h"
61 #include "cvmx-iob-defs.h"
62 #include "cvmx-ipd-defs.h"
63 #include "cvmx-l2c-defs.h"
64 #include "cvmx-l2d-defs.h"
65 #include "cvmx-l2t-defs.h"
66 #include "cvmx-led-defs.h"
67 #include "cvmx-mio-defs.h"
68 #include "cvmx-pow-defs.h"
69
70 #include "cvmx-bootinfo.h"
71 #include "cvmx-bootmem.h"
72 #include "cvmx-l2c.h"
73
74 #ifndef CVMX_ENABLE_DEBUG_PRINTS
75 #define CVMX_ENABLE_DEBUG_PRINTS 1
76 #endif
77
78 #if CVMX_ENABLE_DEBUG_PRINTS
79 #define cvmx_dprintf printk
80 #else
81 #define cvmx_dprintf(...) {}
82 #endif
83
84 #define CVMX_MAX_CORES (16)
85 #define CVMX_CACHE_LINE_SIZE (128) /* In bytes */
86 #define CVMX_CACHE_LINE_MASK (CVMX_CACHE_LINE_SIZE - 1) /* In bytes */
87 #define CVMX_CACHE_LINE_ALIGNED __attribute__ ((aligned(CVMX_CACHE_LINE_SIZE)))
88 #define CAST64(v) ((long long)(long)(v))
89 #define CASTPTR(type, v) ((type *)(long)(v))
90
91 /*
92 * Returns processor ID, different Linux and simple exec versions
93 * provided in the cvmx-app-init*.c files.
94 */
95 static inline uint32_t cvmx_get_proc_id(void) __attribute__ ((pure));
cvmx_get_proc_id(void)96 static inline uint32_t cvmx_get_proc_id(void)
97 {
98 uint32_t id;
99 asm("mfc0 %0, $15,0" : "=r"(id));
100 return id;
101 }
102
103 /* turn the variable name into a string */
104 #define CVMX_TMP_STR(x) CVMX_TMP_STR2(x)
105 #define CVMX_TMP_STR2(x) #x
106
107 /**
108 * Builds a bit mask given the required size in bits.
109 *
110 * @bits: Number of bits in the mask
111 * Returns The mask
cvmx_build_mask(uint64_t bits)112 */ static inline uint64_t cvmx_build_mask(uint64_t bits)
113 {
114 return ~((~0x0ull) << bits);
115 }
116
117 /**
118 * Builds a memory address for I/O based on the Major and Sub DID.
119 *
120 * @major_did: 5 bit major did
121 * @sub_did: 3 bit sub did
122 * Returns I/O base address
123 */
cvmx_build_io_address(uint64_t major_did,uint64_t sub_did)124 static inline uint64_t cvmx_build_io_address(uint64_t major_did,
125 uint64_t sub_did)
126 {
127 return (0x1ull << 48) | (major_did << 43) | (sub_did << 40);
128 }
129
130 /**
131 * Perform mask and shift to place the supplied value into
132 * the supplied bit rage.
133 *
134 * Example: cvmx_build_bits(39,24,value)
135 * <pre>
136 * 6 5 4 3 3 2 1
137 * 3 5 7 9 1 3 5 7 0
138 * +-------+-------+-------+-------+-------+-------+-------+------+
139 * 000000000000000000000000___________value000000000000000000000000
140 * </pre>
141 *
142 * @high_bit: Highest bit value can occupy (inclusive) 0-63
143 * @low_bit: Lowest bit value can occupy inclusive 0-high_bit
144 * @value: Value to use
145 * Returns Value masked and shifted
146 */
cvmx_build_bits(uint64_t high_bit,uint64_t low_bit,uint64_t value)147 static inline uint64_t cvmx_build_bits(uint64_t high_bit,
148 uint64_t low_bit, uint64_t value)
149 {
150 return (value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit;
151 }
152
153 /**
154 * Convert a memory pointer (void*) into a hardware compatible
155 * memory address (uint64_t). Octeon hardware widgets don't
156 * understand logical addresses.
157 *
158 * @ptr: C style memory pointer
159 * Returns Hardware physical address
160 */
cvmx_ptr_to_phys(void * ptr)161 static inline uint64_t cvmx_ptr_to_phys(void *ptr)
162 {
163 if (sizeof(void *) == 8) {
164 /*
165 * We're running in 64 bit mode. Normally this means
166 * that we can use 40 bits of address space (the
167 * hardware limit). Unfortunately there is one case
168 * were we need to limit this to 30 bits, sign
169 * extended 32 bit. Although these are 64 bits wide,
170 * only 30 bits can be used.
171 */
172 if ((CAST64(ptr) >> 62) == 3)
173 return CAST64(ptr) & cvmx_build_mask(30);
174 else
175 return CAST64(ptr) & cvmx_build_mask(40);
176 } else {
177 return (long)(ptr) & 0x1fffffff;
178 }
179 }
180
181 /**
182 * Convert a hardware physical address (uint64_t) into a
183 * memory pointer (void *).
184 *
185 * @physical_address:
186 * Hardware physical address to memory
187 * Returns Pointer to memory
188 */
cvmx_phys_to_ptr(uint64_t physical_address)189 static inline void *cvmx_phys_to_ptr(uint64_t physical_address)
190 {
191 if (sizeof(void *) == 8) {
192 /* Just set the top bit, avoiding any TLB uglyness */
193 return CASTPTR(void,
194 CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS,
195 physical_address));
196 } else {
197 return CASTPTR(void,
198 CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,
199 physical_address));
200 }
201 }
202
203 /* The following #if controls the definition of the macro
204 CVMX_BUILD_WRITE64. This macro is used to build a store operation to
205 a full 64bit address. With a 64bit ABI, this can be done with a simple
206 pointer access. 32bit ABIs require more complicated assembly */
207
208 /* We have a full 64bit ABI. Writing to a 64bit address can be done with
209 a simple volatile pointer */
210 #define CVMX_BUILD_WRITE64(TYPE, ST) \
211 static inline void cvmx_write64_##TYPE(uint64_t addr, TYPE##_t val) \
212 { \
213 *CASTPTR(volatile TYPE##_t, addr) = val; \
214 }
215
216
217 /* The following #if controls the definition of the macro
218 CVMX_BUILD_READ64. This macro is used to build a load operation from
219 a full 64bit address. With a 64bit ABI, this can be done with a simple
220 pointer access. 32bit ABIs require more complicated assembly */
221
222 /* We have a full 64bit ABI. Writing to a 64bit address can be done with
223 a simple volatile pointer */
224 #define CVMX_BUILD_READ64(TYPE, LT) \
225 static inline TYPE##_t cvmx_read64_##TYPE(uint64_t addr) \
226 { \
227 return *CASTPTR(volatile TYPE##_t, addr); \
228 }
229
230
231 /* The following defines 8 functions for writing to a 64bit address. Each
232 takes two arguments, the address and the value to write.
233 cvmx_write64_int64 cvmx_write64_uint64
234 cvmx_write64_int32 cvmx_write64_uint32
235 cvmx_write64_int16 cvmx_write64_uint16
236 cvmx_write64_int8 cvmx_write64_uint8 */
237 CVMX_BUILD_WRITE64(int64, "sd");
238 CVMX_BUILD_WRITE64(int32, "sw");
239 CVMX_BUILD_WRITE64(int16, "sh");
240 CVMX_BUILD_WRITE64(int8, "sb");
241 CVMX_BUILD_WRITE64(uint64, "sd");
242 CVMX_BUILD_WRITE64(uint32, "sw");
243 CVMX_BUILD_WRITE64(uint16, "sh");
244 CVMX_BUILD_WRITE64(uint8, "sb");
245 #define cvmx_write64 cvmx_write64_uint64
246
247 /* The following defines 8 functions for reading from a 64bit address. Each
248 takes the address as the only argument
249 cvmx_read64_int64 cvmx_read64_uint64
250 cvmx_read64_int32 cvmx_read64_uint32
251 cvmx_read64_int16 cvmx_read64_uint16
252 cvmx_read64_int8 cvmx_read64_uint8 */
253 CVMX_BUILD_READ64(int64, "ld");
254 CVMX_BUILD_READ64(int32, "lw");
255 CVMX_BUILD_READ64(int16, "lh");
256 CVMX_BUILD_READ64(int8, "lb");
257 CVMX_BUILD_READ64(uint64, "ld");
258 CVMX_BUILD_READ64(uint32, "lw");
259 CVMX_BUILD_READ64(uint16, "lhu");
260 CVMX_BUILD_READ64(uint8, "lbu");
261 #define cvmx_read64 cvmx_read64_uint64
262
263
cvmx_write_csr(uint64_t csr_addr,uint64_t val)264 static inline void cvmx_write_csr(uint64_t csr_addr, uint64_t val)
265 {
266 cvmx_write64(csr_addr, val);
267
268 /*
269 * Perform an immediate read after every write to an RSL
270 * register to force the write to complete. It doesn't matter
271 * what RSL read we do, so we choose CVMX_MIO_BOOT_BIST_STAT
272 * because it is fast and harmless.
273 */
274 if (((csr_addr >> 40) & 0x7ffff) == (0x118))
275 cvmx_read64(CVMX_MIO_BOOT_BIST_STAT);
276 }
277
cvmx_write_io(uint64_t io_addr,uint64_t val)278 static inline void cvmx_write_io(uint64_t io_addr, uint64_t val)
279 {
280 cvmx_write64(io_addr, val);
281
282 }
283
cvmx_read_csr(uint64_t csr_addr)284 static inline uint64_t cvmx_read_csr(uint64_t csr_addr)
285 {
286 uint64_t val = cvmx_read64(csr_addr);
287 return val;
288 }
289
290
cvmx_send_single(uint64_t data)291 static inline void cvmx_send_single(uint64_t data)
292 {
293 const uint64_t CVMX_IOBDMA_SENDSINGLE = 0xffffffffffffa200ull;
294 cvmx_write64(CVMX_IOBDMA_SENDSINGLE, data);
295 }
296
cvmx_read_csr_async(uint64_t scraddr,uint64_t csr_addr)297 static inline void cvmx_read_csr_async(uint64_t scraddr, uint64_t csr_addr)
298 {
299 union {
300 uint64_t u64;
301 struct {
302 uint64_t scraddr:8;
303 uint64_t len:8;
304 uint64_t addr:48;
305 } s;
306 } addr;
307 addr.u64 = csr_addr;
308 addr.s.scraddr = scraddr >> 3;
309 addr.s.len = 1;
310 cvmx_send_single(addr.u64);
311 }
312
313 /* Return true if Octeon is CN38XX pass 1 */
cvmx_octeon_is_pass1(void)314 static inline int cvmx_octeon_is_pass1(void)
315 {
316 #if OCTEON_IS_COMMON_BINARY()
317 return 0; /* Pass 1 isn't supported for common binaries */
318 #else
319 /* Now that we know we're built for a specific model, only check CN38XX */
320 #if OCTEON_IS_MODEL(OCTEON_CN38XX)
321 return cvmx_get_proc_id() == OCTEON_CN38XX_PASS1;
322 #else
323 return 0; /* Built for non CN38XX chip, we're not CN38XX pass1 */
324 #endif
325 #endif
326 }
327
cvmx_get_core_num(void)328 static inline unsigned int cvmx_get_core_num(void)
329 {
330 unsigned int core_num;
331 CVMX_RDHWRNV(core_num, 0);
332 return core_num;
333 }
334
335 /**
336 * Returns the number of bits set in the provided value.
337 * Simple wrapper for POP instruction.
338 *
339 * @val: 32 bit value to count set bits in
340 *
341 * Returns Number of bits set
342 */
cvmx_pop(uint32_t val)343 static inline uint32_t cvmx_pop(uint32_t val)
344 {
345 uint32_t pop;
346 CVMX_POP(pop, val);
347 return pop;
348 }
349
350 /**
351 * Returns the number of bits set in the provided value.
352 * Simple wrapper for DPOP instruction.
353 *
354 * @val: 64 bit value to count set bits in
355 *
356 * Returns Number of bits set
357 */
cvmx_dpop(uint64_t val)358 static inline int cvmx_dpop(uint64_t val)
359 {
360 int pop;
361 CVMX_DPOP(pop, val);
362 return pop;
363 }
364
365 /**
366 * Provide current cycle counter as a return value
367 *
368 * Returns current cycle counter
369 */
370
cvmx_get_cycle(void)371 static inline uint64_t cvmx_get_cycle(void)
372 {
373 uint64_t cycle;
374 CVMX_RDHWR(cycle, 31);
375 return cycle;
376 }
377
378 /**
379 * Wait for the specified number of cycle
380 *
381 */
cvmx_wait(uint64_t cycles)382 static inline void cvmx_wait(uint64_t cycles)
383 {
384 uint64_t done = cvmx_get_cycle() + cycles;
385
386 while (cvmx_get_cycle() < done)
387 ; /* Spin */
388 }
389
390 /**
391 * Reads a chip global cycle counter. This counts CPU cycles since
392 * chip reset. The counter is 64 bit.
393 * This register does not exist on CN38XX pass 1 silicion
394 *
395 * Returns Global chip cycle count since chip reset.
396 */
cvmx_get_cycle_global(void)397 static inline uint64_t cvmx_get_cycle_global(void)
398 {
399 if (cvmx_octeon_is_pass1())
400 return 0;
401 else
402 return cvmx_read64(CVMX_IPD_CLK_COUNT);
403 }
404
405 /**
406 * This macro spins on a field waiting for it to reach a value. It
407 * is common in code to need to wait for a specific field in a CSR
408 * to match a specific value. Conceptually this macro expands to:
409 *
410 * 1) read csr at "address" with a csr typedef of "type"
411 * 2) Check if ("type".s."field" "op" "value")
412 * 3) If #2 isn't true loop to #1 unless too much time has passed.
413 */
414 #define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, timeout_usec)\
415 ( \
416 { \
417 int result; \
418 do { \
419 uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
420 cvmx_sysinfo_get()->cpu_clock_hz / 1000000; \
421 type c; \
422 while (1) { \
423 c.u64 = cvmx_read_csr(address); \
424 if ((c.s.field) op(value)) { \
425 result = 0; \
426 break; \
427 } else if (cvmx_get_cycle() > done) { \
428 result = -1; \
429 break; \
430 } else \
431 cvmx_wait(100); \
432 } \
433 } while (0); \
434 result; \
435 })
436
437 /***************************************************************************/
438
cvmx_reset_octeon(void)439 static inline void cvmx_reset_octeon(void)
440 {
441 union cvmx_ciu_soft_rst ciu_soft_rst;
442 ciu_soft_rst.u64 = 0;
443 ciu_soft_rst.s.soft_rst = 1;
444 cvmx_write_csr(CVMX_CIU_SOFT_RST, ciu_soft_rst.u64);
445 }
446
447 /* Return the number of cores available in the chip */
cvmx_octeon_num_cores(void)448 static inline uint32_t cvmx_octeon_num_cores(void)
449 {
450 uint32_t ciu_fuse = (uint32_t) cvmx_read_csr(CVMX_CIU_FUSE) & 0xffff;
451 return cvmx_pop(ciu_fuse);
452 }
453
454 /**
455 * Read a byte of fuse data
456 * @byte_addr: address to read
457 *
458 * Returns fuse value: 0 or 1
459 */
cvmx_fuse_read_byte(int byte_addr)460 static uint8_t cvmx_fuse_read_byte(int byte_addr)
461 {
462 union cvmx_mio_fus_rcmd read_cmd;
463
464 read_cmd.u64 = 0;
465 read_cmd.s.addr = byte_addr;
466 read_cmd.s.pend = 1;
467 cvmx_write_csr(CVMX_MIO_FUS_RCMD, read_cmd.u64);
468 while ((read_cmd.u64 = cvmx_read_csr(CVMX_MIO_FUS_RCMD))
469 && read_cmd.s.pend)
470 ;
471 return read_cmd.s.dat;
472 }
473
474 /**
475 * Read a single fuse bit
476 *
477 * @fuse: Fuse number (0-1024)
478 *
479 * Returns fuse value: 0 or 1
480 */
cvmx_fuse_read(int fuse)481 static inline int cvmx_fuse_read(int fuse)
482 {
483 return (cvmx_fuse_read_byte(fuse >> 3) >> (fuse & 0x7)) & 1;
484 }
485
cvmx_octeon_model_CN36XX(void)486 static inline int cvmx_octeon_model_CN36XX(void)
487 {
488 return OCTEON_IS_MODEL(OCTEON_CN38XX)
489 && !cvmx_octeon_is_pass1()
490 && cvmx_fuse_read(264);
491 }
492
cvmx_octeon_zip_present(void)493 static inline int cvmx_octeon_zip_present(void)
494 {
495 return octeon_has_feature(OCTEON_FEATURE_ZIP);
496 }
497
cvmx_octeon_dfa_present(void)498 static inline int cvmx_octeon_dfa_present(void)
499 {
500 if (!OCTEON_IS_MODEL(OCTEON_CN38XX)
501 && !OCTEON_IS_MODEL(OCTEON_CN31XX)
502 && !OCTEON_IS_MODEL(OCTEON_CN58XX))
503 return 0;
504 else if (OCTEON_IS_MODEL(OCTEON_CN3020))
505 return 0;
506 else if (cvmx_octeon_is_pass1())
507 return 1;
508 else
509 return !cvmx_fuse_read(120);
510 }
511
cvmx_octeon_crypto_present(void)512 static inline int cvmx_octeon_crypto_present(void)
513 {
514 return octeon_has_feature(OCTEON_FEATURE_CRYPTO);
515 }
516
517 #endif /* __CVMX_H__ */
518