1 /***********************license start***************
2  * Author: Cavium Networks
3  *
4  * Contact: support@caviumnetworks.com
5  * This file is part of the OCTEON SDK
6  *
7  * Copyright (c) 2003-2008 Cavium Networks
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more
17  * details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this file; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22  * or visit http://www.gnu.org/licenses/.
23  *
24  * This file may also be available under a different license from Cavium.
25  * Contact Cavium Networks for more information
26  ***********************license end**************************************/
27 
28 #ifndef __CVMX_H__
29 #define __CVMX_H__
30 
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 
34 enum cvmx_mips_space {
35 	CVMX_MIPS_SPACE_XKSEG = 3LL,
36 	CVMX_MIPS_SPACE_XKPHYS = 2LL,
37 	CVMX_MIPS_SPACE_XSSEG = 1LL,
38 	CVMX_MIPS_SPACE_XUSEG = 0LL
39 };
40 
41 /* These macros for use when using 32 bit pointers. */
42 #define CVMX_MIPS32_SPACE_KSEG0 1l
43 #define CVMX_ADD_SEG32(segment, add) \
44 	(((int32_t)segment << 31) | (int32_t)(add))
45 
46 #define CVMX_IO_SEG CVMX_MIPS_SPACE_XKPHYS
47 
48 /* These macros simplify the process of creating common IO addresses */
49 #define CVMX_ADD_SEG(segment, add) \
50 	((((uint64_t)segment) << 62) | (add))
51 #ifndef CVMX_ADD_IO_SEG
52 #define CVMX_ADD_IO_SEG(add) CVMX_ADD_SEG(CVMX_IO_SEG, (add))
53 #endif
54 
55 #include "cvmx-asm.h"
56 #include "cvmx-packet.h"
57 #include "cvmx-sysinfo.h"
58 
59 #include "cvmx-ciu-defs.h"
60 #include "cvmx-gpio-defs.h"
61 #include "cvmx-iob-defs.h"
62 #include "cvmx-ipd-defs.h"
63 #include "cvmx-l2c-defs.h"
64 #include "cvmx-l2d-defs.h"
65 #include "cvmx-l2t-defs.h"
66 #include "cvmx-led-defs.h"
67 #include "cvmx-mio-defs.h"
68 #include "cvmx-pow-defs.h"
69 
70 #include "cvmx-bootinfo.h"
71 #include "cvmx-bootmem.h"
72 #include "cvmx-l2c.h"
73 
74 #ifndef CVMX_ENABLE_DEBUG_PRINTS
75 #define CVMX_ENABLE_DEBUG_PRINTS 1
76 #endif
77 
78 #if CVMX_ENABLE_DEBUG_PRINTS
79 #define cvmx_dprintf        printk
80 #else
81 #define cvmx_dprintf(...)   {}
82 #endif
83 
84 #define CVMX_MAX_CORES          (16)
85 #define CVMX_CACHE_LINE_SIZE    (128)	/* In bytes */
86 #define CVMX_CACHE_LINE_MASK    (CVMX_CACHE_LINE_SIZE - 1)	/* In bytes */
87 #define CVMX_CACHE_LINE_ALIGNED __attribute__ ((aligned(CVMX_CACHE_LINE_SIZE)))
88 #define CAST64(v) ((long long)(long)(v))
89 #define CASTPTR(type, v) ((type *)(long)(v))
90 
91 /*
92  * Returns processor ID, different Linux and simple exec versions
93  * provided in the cvmx-app-init*.c files.
94  */
95 static inline uint32_t cvmx_get_proc_id(void) __attribute__ ((pure));
cvmx_get_proc_id(void)96 static inline uint32_t cvmx_get_proc_id(void)
97 {
98 	uint32_t id;
99 	asm("mfc0 %0, $15,0" : "=r"(id));
100 	return id;
101 }
102 
103 /* turn the variable name into a string */
104 #define CVMX_TMP_STR(x) CVMX_TMP_STR2(x)
105 #define CVMX_TMP_STR2(x) #x
106 
107 /**
108  * Builds a bit mask given the required size in bits.
109  *
110  * @bits:   Number of bits in the mask
111  * Returns The mask
cvmx_build_mask(uint64_t bits)112  */ static inline uint64_t cvmx_build_mask(uint64_t bits)
113 {
114 	return ~((~0x0ull) << bits);
115 }
116 
117 /**
118  * Builds a memory address for I/O based on the Major and Sub DID.
119  *
120  * @major_did: 5 bit major did
121  * @sub_did:   3 bit sub did
122  * Returns I/O base address
123  */
cvmx_build_io_address(uint64_t major_did,uint64_t sub_did)124 static inline uint64_t cvmx_build_io_address(uint64_t major_did,
125 					     uint64_t sub_did)
126 {
127 	return (0x1ull << 48) | (major_did << 43) | (sub_did << 40);
128 }
129 
130 /**
131  * Perform mask and shift to place the supplied value into
132  * the supplied bit rage.
133  *
134  * Example: cvmx_build_bits(39,24,value)
135  * <pre>
136  * 6       5       4       3       3       2       1
137  * 3       5       7       9       1       3       5       7      0
138  * +-------+-------+-------+-------+-------+-------+-------+------+
139  * 000000000000000000000000___________value000000000000000000000000
140  * </pre>
141  *
142  * @high_bit: Highest bit value can occupy (inclusive) 0-63
143  * @low_bit:  Lowest bit value can occupy inclusive 0-high_bit
144  * @value:    Value to use
145  * Returns Value masked and shifted
146  */
cvmx_build_bits(uint64_t high_bit,uint64_t low_bit,uint64_t value)147 static inline uint64_t cvmx_build_bits(uint64_t high_bit,
148 				       uint64_t low_bit, uint64_t value)
149 {
150 	return (value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit;
151 }
152 
153 /**
154  * Convert a memory pointer (void*) into a hardware compatible
155  * memory address (uint64_t). Octeon hardware widgets don't
156  * understand logical addresses.
157  *
158  * @ptr:    C style memory pointer
159  * Returns Hardware physical address
160  */
cvmx_ptr_to_phys(void * ptr)161 static inline uint64_t cvmx_ptr_to_phys(void *ptr)
162 {
163 	if (sizeof(void *) == 8) {
164 		/*
165 		 * We're running in 64 bit mode. Normally this means
166 		 * that we can use 40 bits of address space (the
167 		 * hardware limit). Unfortunately there is one case
168 		 * were we need to limit this to 30 bits, sign
169 		 * extended 32 bit. Although these are 64 bits wide,
170 		 * only 30 bits can be used.
171 		 */
172 		if ((CAST64(ptr) >> 62) == 3)
173 			return CAST64(ptr) & cvmx_build_mask(30);
174 		else
175 			return CAST64(ptr) & cvmx_build_mask(40);
176 	} else {
177 		return (long)(ptr) & 0x1fffffff;
178 	}
179 }
180 
181 /**
182  * Convert a hardware physical address (uint64_t) into a
183  * memory pointer (void *).
184  *
185  * @physical_address:
186  *               Hardware physical address to memory
187  * Returns Pointer to memory
188  */
cvmx_phys_to_ptr(uint64_t physical_address)189 static inline void *cvmx_phys_to_ptr(uint64_t physical_address)
190 {
191 	if (sizeof(void *) == 8) {
192 		/* Just set the top bit, avoiding any TLB uglyness */
193 		return CASTPTR(void,
194 			       CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS,
195 					    physical_address));
196 	} else {
197 		return CASTPTR(void,
198 			       CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,
199 					      physical_address));
200 	}
201 }
202 
203 /* The following #if controls the definition of the macro
204     CVMX_BUILD_WRITE64. This macro is used to build a store operation to
205     a full 64bit address. With a 64bit ABI, this can be done with a simple
206     pointer access. 32bit ABIs require more complicated assembly */
207 
208 /* We have a full 64bit ABI. Writing to a 64bit address can be done with
209     a simple volatile pointer */
210 #define CVMX_BUILD_WRITE64(TYPE, ST)                                    \
211 static inline void cvmx_write64_##TYPE(uint64_t addr, TYPE##_t val)     \
212 {                                                                       \
213     *CASTPTR(volatile TYPE##_t, addr) = val;                            \
214 }
215 
216 
217 /* The following #if controls the definition of the macro
218     CVMX_BUILD_READ64. This macro is used to build a load operation from
219     a full 64bit address. With a 64bit ABI, this can be done with a simple
220     pointer access. 32bit ABIs require more complicated assembly */
221 
222 /* We have a full 64bit ABI. Writing to a 64bit address can be done with
223     a simple volatile pointer */
224 #define CVMX_BUILD_READ64(TYPE, LT)                                     \
225 static inline TYPE##_t cvmx_read64_##TYPE(uint64_t addr)                \
226 {                                                                       \
227 	return *CASTPTR(volatile TYPE##_t, addr);			\
228 }
229 
230 
231 /* The following defines 8 functions for writing to a 64bit address. Each
232     takes two arguments, the address and the value to write.
233     cvmx_write64_int64      cvmx_write64_uint64
234     cvmx_write64_int32      cvmx_write64_uint32
235     cvmx_write64_int16      cvmx_write64_uint16
236     cvmx_write64_int8       cvmx_write64_uint8 */
237 CVMX_BUILD_WRITE64(int64, "sd");
238 CVMX_BUILD_WRITE64(int32, "sw");
239 CVMX_BUILD_WRITE64(int16, "sh");
240 CVMX_BUILD_WRITE64(int8, "sb");
241 CVMX_BUILD_WRITE64(uint64, "sd");
242 CVMX_BUILD_WRITE64(uint32, "sw");
243 CVMX_BUILD_WRITE64(uint16, "sh");
244 CVMX_BUILD_WRITE64(uint8, "sb");
245 #define cvmx_write64 cvmx_write64_uint64
246 
247 /* The following defines 8 functions for reading from a 64bit address. Each
248     takes the address as the only argument
249     cvmx_read64_int64       cvmx_read64_uint64
250     cvmx_read64_int32       cvmx_read64_uint32
251     cvmx_read64_int16       cvmx_read64_uint16
252     cvmx_read64_int8        cvmx_read64_uint8 */
253 CVMX_BUILD_READ64(int64, "ld");
254 CVMX_BUILD_READ64(int32, "lw");
255 CVMX_BUILD_READ64(int16, "lh");
256 CVMX_BUILD_READ64(int8, "lb");
257 CVMX_BUILD_READ64(uint64, "ld");
258 CVMX_BUILD_READ64(uint32, "lw");
259 CVMX_BUILD_READ64(uint16, "lhu");
260 CVMX_BUILD_READ64(uint8, "lbu");
261 #define cvmx_read64 cvmx_read64_uint64
262 
263 
cvmx_write_csr(uint64_t csr_addr,uint64_t val)264 static inline void cvmx_write_csr(uint64_t csr_addr, uint64_t val)
265 {
266 	cvmx_write64(csr_addr, val);
267 
268 	/*
269 	 * Perform an immediate read after every write to an RSL
270 	 * register to force the write to complete. It doesn't matter
271 	 * what RSL read we do, so we choose CVMX_MIO_BOOT_BIST_STAT
272 	 * because it is fast and harmless.
273 	 */
274 	if (((csr_addr >> 40) & 0x7ffff) == (0x118))
275 		cvmx_read64(CVMX_MIO_BOOT_BIST_STAT);
276 }
277 
cvmx_write_io(uint64_t io_addr,uint64_t val)278 static inline void cvmx_write_io(uint64_t io_addr, uint64_t val)
279 {
280 	cvmx_write64(io_addr, val);
281 
282 }
283 
cvmx_read_csr(uint64_t csr_addr)284 static inline uint64_t cvmx_read_csr(uint64_t csr_addr)
285 {
286 	uint64_t val = cvmx_read64(csr_addr);
287 	return val;
288 }
289 
290 
cvmx_send_single(uint64_t data)291 static inline void cvmx_send_single(uint64_t data)
292 {
293 	const uint64_t CVMX_IOBDMA_SENDSINGLE = 0xffffffffffffa200ull;
294 	cvmx_write64(CVMX_IOBDMA_SENDSINGLE, data);
295 }
296 
cvmx_read_csr_async(uint64_t scraddr,uint64_t csr_addr)297 static inline void cvmx_read_csr_async(uint64_t scraddr, uint64_t csr_addr)
298 {
299 	union {
300 		uint64_t u64;
301 		struct {
302 			uint64_t scraddr:8;
303 			uint64_t len:8;
304 			uint64_t addr:48;
305 		} s;
306 	} addr;
307 	addr.u64 = csr_addr;
308 	addr.s.scraddr = scraddr >> 3;
309 	addr.s.len = 1;
310 	cvmx_send_single(addr.u64);
311 }
312 
313 /* Return true if Octeon is CN38XX pass 1 */
cvmx_octeon_is_pass1(void)314 static inline int cvmx_octeon_is_pass1(void)
315 {
316 #if OCTEON_IS_COMMON_BINARY()
317 	return 0;	/* Pass 1 isn't supported for common binaries */
318 #else
319 /* Now that we know we're built for a specific model, only check CN38XX */
320 #if OCTEON_IS_MODEL(OCTEON_CN38XX)
321 	return cvmx_get_proc_id() == OCTEON_CN38XX_PASS1;
322 #else
323 	return 0;	/* Built for non CN38XX chip, we're not CN38XX pass1 */
324 #endif
325 #endif
326 }
327 
cvmx_get_core_num(void)328 static inline unsigned int cvmx_get_core_num(void)
329 {
330 	unsigned int core_num;
331 	CVMX_RDHWRNV(core_num, 0);
332 	return core_num;
333 }
334 
335 /**
336  * Returns the number of bits set in the provided value.
337  * Simple wrapper for POP instruction.
338  *
339  * @val:    32 bit value to count set bits in
340  *
341  * Returns Number of bits set
342  */
cvmx_pop(uint32_t val)343 static inline uint32_t cvmx_pop(uint32_t val)
344 {
345 	uint32_t pop;
346 	CVMX_POP(pop, val);
347 	return pop;
348 }
349 
350 /**
351  * Returns the number of bits set in the provided value.
352  * Simple wrapper for DPOP instruction.
353  *
354  * @val:    64 bit value to count set bits in
355  *
356  * Returns Number of bits set
357  */
cvmx_dpop(uint64_t val)358 static inline int cvmx_dpop(uint64_t val)
359 {
360 	int pop;
361 	CVMX_DPOP(pop, val);
362 	return pop;
363 }
364 
365 /**
366  * Provide current cycle counter as a return value
367  *
368  * Returns current cycle counter
369  */
370 
cvmx_get_cycle(void)371 static inline uint64_t cvmx_get_cycle(void)
372 {
373 	uint64_t cycle;
374 	CVMX_RDHWR(cycle, 31);
375 	return cycle;
376 }
377 
378 /**
379  * Wait for the specified number of cycle
380  *
381  */
cvmx_wait(uint64_t cycles)382 static inline void cvmx_wait(uint64_t cycles)
383 {
384 	uint64_t done = cvmx_get_cycle() + cycles;
385 
386 	while (cvmx_get_cycle() < done)
387 		; /* Spin */
388 }
389 
390 /**
391  * Reads a chip global cycle counter.  This counts CPU cycles since
392  * chip reset.  The counter is 64 bit.
393  * This register does not exist on CN38XX pass 1 silicion
394  *
395  * Returns Global chip cycle count since chip reset.
396  */
cvmx_get_cycle_global(void)397 static inline uint64_t cvmx_get_cycle_global(void)
398 {
399 	if (cvmx_octeon_is_pass1())
400 		return 0;
401 	else
402 		return cvmx_read64(CVMX_IPD_CLK_COUNT);
403 }
404 
405 /**
406  * This macro spins on a field waiting for it to reach a value. It
407  * is common in code to need to wait for a specific field in a CSR
408  * to match a specific value. Conceptually this macro expands to:
409  *
410  * 1) read csr at "address" with a csr typedef of "type"
411  * 2) Check if ("type".s."field" "op" "value")
412  * 3) If #2 isn't true loop to #1 unless too much time has passed.
413  */
414 #define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, timeout_usec)\
415     (									\
416 {									\
417 	int result;							\
418 	do {								\
419 		uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
420 			cvmx_sysinfo_get()->cpu_clock_hz / 1000000;	\
421 		type c;							\
422 		while (1) {						\
423 			c.u64 = cvmx_read_csr(address);			\
424 			if ((c.s.field) op(value)) {			\
425 				result = 0;				\
426 				break;					\
427 			} else if (cvmx_get_cycle() > done) {		\
428 				result = -1;				\
429 				break;					\
430 			} else						\
431 				cvmx_wait(100);				\
432 		}							\
433 	} while (0);							\
434 	result;								\
435 })
436 
437 /***************************************************************************/
438 
cvmx_reset_octeon(void)439 static inline void cvmx_reset_octeon(void)
440 {
441 	union cvmx_ciu_soft_rst ciu_soft_rst;
442 	ciu_soft_rst.u64 = 0;
443 	ciu_soft_rst.s.soft_rst = 1;
444 	cvmx_write_csr(CVMX_CIU_SOFT_RST, ciu_soft_rst.u64);
445 }
446 
447 /* Return the number of cores available in the chip */
cvmx_octeon_num_cores(void)448 static inline uint32_t cvmx_octeon_num_cores(void)
449 {
450 	uint32_t ciu_fuse = (uint32_t) cvmx_read_csr(CVMX_CIU_FUSE) & 0xffff;
451 	return cvmx_pop(ciu_fuse);
452 }
453 
454 /**
455  * Read a byte of fuse data
456  * @byte_addr:   address to read
457  *
458  * Returns fuse value: 0 or 1
459  */
cvmx_fuse_read_byte(int byte_addr)460 static uint8_t cvmx_fuse_read_byte(int byte_addr)
461 {
462 	union cvmx_mio_fus_rcmd read_cmd;
463 
464 	read_cmd.u64 = 0;
465 	read_cmd.s.addr = byte_addr;
466 	read_cmd.s.pend = 1;
467 	cvmx_write_csr(CVMX_MIO_FUS_RCMD, read_cmd.u64);
468 	while ((read_cmd.u64 = cvmx_read_csr(CVMX_MIO_FUS_RCMD))
469 	       && read_cmd.s.pend)
470 		;
471 	return read_cmd.s.dat;
472 }
473 
474 /**
475  * Read a single fuse bit
476  *
477  * @fuse:   Fuse number (0-1024)
478  *
479  * Returns fuse value: 0 or 1
480  */
cvmx_fuse_read(int fuse)481 static inline int cvmx_fuse_read(int fuse)
482 {
483 	return (cvmx_fuse_read_byte(fuse >> 3) >> (fuse & 0x7)) & 1;
484 }
485 
cvmx_octeon_model_CN36XX(void)486 static inline int cvmx_octeon_model_CN36XX(void)
487 {
488 	return OCTEON_IS_MODEL(OCTEON_CN38XX)
489 		&& !cvmx_octeon_is_pass1()
490 		&& cvmx_fuse_read(264);
491 }
492 
cvmx_octeon_zip_present(void)493 static inline int cvmx_octeon_zip_present(void)
494 {
495 	return octeon_has_feature(OCTEON_FEATURE_ZIP);
496 }
497 
cvmx_octeon_dfa_present(void)498 static inline int cvmx_octeon_dfa_present(void)
499 {
500 	if (!OCTEON_IS_MODEL(OCTEON_CN38XX)
501 	    && !OCTEON_IS_MODEL(OCTEON_CN31XX)
502 	    && !OCTEON_IS_MODEL(OCTEON_CN58XX))
503 		return 0;
504 	else if (OCTEON_IS_MODEL(OCTEON_CN3020))
505 		return 0;
506 	else if (cvmx_octeon_is_pass1())
507 		return 1;
508 	else
509 		return !cvmx_fuse_read(120);
510 }
511 
cvmx_octeon_crypto_present(void)512 static inline int cvmx_octeon_crypto_present(void)
513 {
514 	return octeon_has_feature(OCTEON_FEATURE_CRYPTO);
515 }
516 
517 #endif /*  __CVMX_H__  */
518