1 /***********************license start***************
2  * Author: Cavium Networks
3  *
4  * Contact: support@caviumnetworks.com
5  * This file is part of the OCTEON SDK
6  *
7  * Copyright (c) 2003-2008 Cavium Networks
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more
17  * details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this file; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22  * or visit http://www.gnu.org/licenses/.
23  *
24  * This file may also be available under a different license from Cavium.
25  * Contact Cavium Networks for more information
26  ***********************license end**************************************/
27 
28 /*
29  * Simple allocate only memory allocator.  Used to allocate memory at
30  * application start time.
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 
36 #include <asm/octeon/cvmx.h>
37 #include <asm/octeon/cvmx-spinlock.h>
38 #include <asm/octeon/cvmx-bootmem.h>
39 
40 /*#define DEBUG */
41 
42 
43 static struct cvmx_bootmem_desc *cvmx_bootmem_desc;
44 
45 /* See header file for descriptions of functions */
46 
47 /*
48  * Wrapper functions are provided for reading/writing the size and
49  * next block values as these may not be directly addressible (in 32
50  * bit applications, for instance.)  Offsets of data elements in
51  * bootmem list, must match cvmx_bootmem_block_header_t.
52  */
53 #define NEXT_OFFSET 0
54 #define SIZE_OFFSET 8
55 
cvmx_bootmem_phy_set_size(uint64_t addr,uint64_t size)56 static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size)
57 {
58 	cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
59 }
60 
cvmx_bootmem_phy_set_next(uint64_t addr,uint64_t next)61 static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next)
62 {
63 	cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
64 }
65 
cvmx_bootmem_phy_get_size(uint64_t addr)66 static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr)
67 {
68 	return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
69 }
70 
cvmx_bootmem_phy_get_next(uint64_t addr)71 static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr)
72 {
73 	return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
74 }
75 
cvmx_bootmem_alloc_range(uint64_t size,uint64_t alignment,uint64_t min_addr,uint64_t max_addr)76 void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment,
77 			       uint64_t min_addr, uint64_t max_addr)
78 {
79 	int64_t address;
80 	address =
81 	    cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0);
82 
83 	if (address > 0)
84 		return cvmx_phys_to_ptr(address);
85 	else
86 		return NULL;
87 }
88 
cvmx_bootmem_alloc_address(uint64_t size,uint64_t address,uint64_t alignment)89 void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address,
90 				 uint64_t alignment)
91 {
92 	return cvmx_bootmem_alloc_range(size, alignment, address,
93 					address + size);
94 }
95 
cvmx_bootmem_alloc(uint64_t size,uint64_t alignment)96 void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment)
97 {
98 	return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
99 }
100 
cvmx_bootmem_alloc_named_range(uint64_t size,uint64_t min_addr,uint64_t max_addr,uint64_t align,char * name)101 void *cvmx_bootmem_alloc_named_range(uint64_t size, uint64_t min_addr,
102 				     uint64_t max_addr, uint64_t align,
103 				     char *name)
104 {
105 	int64_t addr;
106 
107 	addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
108 						  align, name, 0);
109 	if (addr >= 0)
110 		return cvmx_phys_to_ptr(addr);
111 	else
112 		return NULL;
113 }
114 
cvmx_bootmem_alloc_named_address(uint64_t size,uint64_t address,char * name)115 void *cvmx_bootmem_alloc_named_address(uint64_t size, uint64_t address,
116 				       char *name)
117 {
118     return cvmx_bootmem_alloc_named_range(size, address, address + size,
119 					  0, name);
120 }
121 
cvmx_bootmem_alloc_named(uint64_t size,uint64_t alignment,char * name)122 void *cvmx_bootmem_alloc_named(uint64_t size, uint64_t alignment, char *name)
123 {
124     return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name);
125 }
126 EXPORT_SYMBOL(cvmx_bootmem_alloc_named);
127 
cvmx_bootmem_free_named(char * name)128 int cvmx_bootmem_free_named(char *name)
129 {
130 	return cvmx_bootmem_phy_named_block_free(name, 0);
131 }
132 
cvmx_bootmem_find_named_block(char * name)133 struct cvmx_bootmem_named_block_desc *cvmx_bootmem_find_named_block(char *name)
134 {
135 	return cvmx_bootmem_phy_named_block_find(name, 0);
136 }
137 EXPORT_SYMBOL(cvmx_bootmem_find_named_block);
138 
cvmx_bootmem_lock(void)139 void cvmx_bootmem_lock(void)
140 {
141 	cvmx_spinlock_lock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
142 }
143 
cvmx_bootmem_unlock(void)144 void cvmx_bootmem_unlock(void)
145 {
146 	cvmx_spinlock_unlock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
147 }
148 
cvmx_bootmem_init(void * mem_desc_ptr)149 int cvmx_bootmem_init(void *mem_desc_ptr)
150 {
151 	/* Here we set the global pointer to the bootmem descriptor
152 	 * block.  This pointer will be used directly, so we will set
153 	 * it up to be directly usable by the application.  It is set
154 	 * up as follows for the various runtime/ABI combinations:
155 	 *
156 	 * Linux 64 bit: Set XKPHYS bit
157 	 * Linux 32 bit: use mmap to create mapping, use virtual address
158 	 * CVMX 64 bit:  use physical address directly
159 	 * CVMX 32 bit:  use physical address directly
160 	 *
161 	 * Note that the CVMX environment assumes the use of 1-1 TLB
162 	 * mappings so that the physical addresses can be used
163 	 * directly
164 	 */
165 	if (!cvmx_bootmem_desc) {
166 #if   defined(CVMX_ABI_64)
167 		/* Set XKPHYS bit */
168 		cvmx_bootmem_desc = cvmx_phys_to_ptr(CAST64(mem_desc_ptr));
169 #else
170 		cvmx_bootmem_desc = (struct cvmx_bootmem_desc *) mem_desc_ptr;
171 #endif
172 	}
173 
174 	return 0;
175 }
176 
177 /*
178  * The cvmx_bootmem_phy* functions below return 64 bit physical
179  * addresses, and expose more features that the cvmx_bootmem_functions
180  * above.  These are required for full memory space access in 32 bit
181  * applications, as well as for using some advance features.  Most
182  * applications should not need to use these.
183  */
184 
cvmx_bootmem_phy_alloc(uint64_t req_size,uint64_t address_min,uint64_t address_max,uint64_t alignment,uint32_t flags)185 int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min,
186 			       uint64_t address_max, uint64_t alignment,
187 			       uint32_t flags)
188 {
189 
190 	uint64_t head_addr;
191 	uint64_t ent_addr;
192 	/* points to previous list entry, NULL current entry is head of list */
193 	uint64_t prev_addr = 0;
194 	uint64_t new_ent_addr = 0;
195 	uint64_t desired_min_addr;
196 
197 #ifdef DEBUG
198 	cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, "
199 		     "min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
200 		     (unsigned long long)req_size,
201 		     (unsigned long long)address_min,
202 		     (unsigned long long)address_max,
203 		     (unsigned long long)alignment);
204 #endif
205 
206 	if (cvmx_bootmem_desc->major_version > 3) {
207 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
208 			     "version: %d.%d at addr: %p\n",
209 			     (int)cvmx_bootmem_desc->major_version,
210 			     (int)cvmx_bootmem_desc->minor_version,
211 			     cvmx_bootmem_desc);
212 		goto error_out;
213 	}
214 
215 	/*
216 	 * Do a variety of checks to validate the arguments.  The
217 	 * allocator code will later assume that these checks have
218 	 * been made.  We validate that the requested constraints are
219 	 * not self-contradictory before we look through the list of
220 	 * available memory.
221 	 */
222 
223 	/* 0 is not a valid req_size for this allocator */
224 	if (!req_size)
225 		goto error_out;
226 
227 	/* Round req_size up to mult of minimum alignment bytes */
228 	req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
229 		~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
230 
231 	/*
232 	 * Convert !0 address_min and 0 address_max to special case of
233 	 * range that specifies an exact memory block to allocate.  Do
234 	 * this before other checks and adjustments so that this
235 	 * tranformation will be validated.
236 	 */
237 	if (address_min && !address_max)
238 		address_max = address_min + req_size;
239 	else if (!address_min && !address_max)
240 		address_max = ~0ull;  /* If no limits given, use max limits */
241 
242 
243 	/*
244 	 * Enforce minimum alignment (this also keeps the minimum free block
245 	 * req_size the same as the alignment req_size.
246 	 */
247 	if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE)
248 		alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE;
249 
250 	/*
251 	 * Adjust address minimum based on requested alignment (round
252 	 * up to meet alignment).  Do this here so we can reject
253 	 * impossible requests up front. (NOP for address_min == 0)
254 	 */
255 	if (alignment)
256 		address_min = ALIGN(address_min, alignment);
257 
258 	/*
259 	 * Reject inconsistent args.  We have adjusted these, so this
260 	 * may fail due to our internal changes even if this check
261 	 * would pass for the values the user supplied.
262 	 */
263 	if (req_size > address_max - address_min)
264 		goto error_out;
265 
266 	/* Walk through the list entries - first fit found is returned */
267 
268 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
269 		cvmx_bootmem_lock();
270 	head_addr = cvmx_bootmem_desc->head_addr;
271 	ent_addr = head_addr;
272 	for (; ent_addr;
273 	     prev_addr = ent_addr,
274 	     ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
275 		uint64_t usable_base, usable_max;
276 		uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr);
277 
278 		if (cvmx_bootmem_phy_get_next(ent_addr)
279 		    && ent_addr > cvmx_bootmem_phy_get_next(ent_addr)) {
280 			cvmx_dprintf("Internal bootmem_alloc() error: ent: "
281 				"0x%llx, next: 0x%llx\n",
282 				(unsigned long long)ent_addr,
283 				(unsigned long long)
284 				cvmx_bootmem_phy_get_next(ent_addr));
285 			goto error_out;
286 		}
287 
288 		/*
289 		 * Determine if this is an entry that can satisify the
290 		 * request Check to make sure entry is large enough to
291 		 * satisfy request.
292 		 */
293 		usable_base =
294 		    ALIGN(max(address_min, ent_addr), alignment);
295 		usable_max = min(address_max, ent_addr + ent_size);
296 		/*
297 		 * We should be able to allocate block at address
298 		 * usable_base.
299 		 */
300 
301 		desired_min_addr = usable_base;
302 		/*
303 		 * Determine if request can be satisfied from the
304 		 * current entry.
305 		 */
306 		if (!((ent_addr + ent_size) > usable_base
307 				&& ent_addr < address_max
308 				&& req_size <= usable_max - usable_base))
309 			continue;
310 		/*
311 		 * We have found an entry that has room to satisfy the
312 		 * request, so allocate it from this entry.  If end
313 		 * CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from
314 		 * the end of this block rather than the beginning.
315 		 */
316 		if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC) {
317 			desired_min_addr = usable_max - req_size;
318 			/*
319 			 * Align desired address down to required
320 			 * alignment.
321 			 */
322 			desired_min_addr &= ~(alignment - 1);
323 		}
324 
325 		/* Match at start of entry */
326 		if (desired_min_addr == ent_addr) {
327 			if (req_size < ent_size) {
328 				/*
329 				 * big enough to create a new block
330 				 * from top portion of block.
331 				 */
332 				new_ent_addr = ent_addr + req_size;
333 				cvmx_bootmem_phy_set_next(new_ent_addr,
334 					cvmx_bootmem_phy_get_next(ent_addr));
335 				cvmx_bootmem_phy_set_size(new_ent_addr,
336 							ent_size -
337 							req_size);
338 
339 				/*
340 				 * Adjust next pointer as following
341 				 * code uses this.
342 				 */
343 				cvmx_bootmem_phy_set_next(ent_addr,
344 							new_ent_addr);
345 			}
346 
347 			/*
348 			 * adjust prev ptr or head to remove this
349 			 * entry from list.
350 			 */
351 			if (prev_addr)
352 				cvmx_bootmem_phy_set_next(prev_addr,
353 					cvmx_bootmem_phy_get_next(ent_addr));
354 			else
355 				/*
356 				 * head of list being returned, so
357 				 * update head ptr.
358 				 */
359 				cvmx_bootmem_desc->head_addr =
360 					cvmx_bootmem_phy_get_next(ent_addr);
361 
362 			if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
363 				cvmx_bootmem_unlock();
364 			return desired_min_addr;
365 		}
366 		/*
367 		 * block returned doesn't start at beginning of entry,
368 		 * so we know that we will be splitting a block off
369 		 * the front of this one.  Create a new block from the
370 		 * beginning, add to list, and go to top of loop
371 		 * again.
372 		 *
373 		 * create new block from high portion of
374 		 * block, so that top block starts at desired
375 		 * addr.
376 		 */
377 		new_ent_addr = desired_min_addr;
378 		cvmx_bootmem_phy_set_next(new_ent_addr,
379 					cvmx_bootmem_phy_get_next
380 					(ent_addr));
381 		cvmx_bootmem_phy_set_size(new_ent_addr,
382 					cvmx_bootmem_phy_get_size
383 					(ent_addr) -
384 					(desired_min_addr -
385 						ent_addr));
386 		cvmx_bootmem_phy_set_size(ent_addr,
387 					desired_min_addr - ent_addr);
388 		cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
389 		/* Loop again to handle actual alloc from new block */
390 	}
391 error_out:
392 	/* We didn't find anything, so return error */
393 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
394 		cvmx_bootmem_unlock();
395 	return -1;
396 }
397 
__cvmx_bootmem_phy_free(uint64_t phy_addr,uint64_t size,uint32_t flags)398 int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags)
399 {
400 	uint64_t cur_addr;
401 	uint64_t prev_addr = 0;	/* zero is invalid */
402 	int retval = 0;
403 
404 #ifdef DEBUG
405 	cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n",
406 		     (unsigned long long)phy_addr, (unsigned long long)size);
407 #endif
408 	if (cvmx_bootmem_desc->major_version > 3) {
409 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
410 			     "version: %d.%d at addr: %p\n",
411 			     (int)cvmx_bootmem_desc->major_version,
412 			     (int)cvmx_bootmem_desc->minor_version,
413 			     cvmx_bootmem_desc);
414 		return 0;
415 	}
416 
417 	/* 0 is not a valid size for this allocator */
418 	if (!size)
419 		return 0;
420 
421 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
422 		cvmx_bootmem_lock();
423 	cur_addr = cvmx_bootmem_desc->head_addr;
424 	if (cur_addr == 0 || phy_addr < cur_addr) {
425 		/* add at front of list - special case with changing head ptr */
426 		if (cur_addr && phy_addr + size > cur_addr)
427 			goto bootmem_free_done;	/* error, overlapping section */
428 		else if (phy_addr + size == cur_addr) {
429 			/* Add to front of existing first block */
430 			cvmx_bootmem_phy_set_next(phy_addr,
431 						  cvmx_bootmem_phy_get_next
432 						  (cur_addr));
433 			cvmx_bootmem_phy_set_size(phy_addr,
434 						  cvmx_bootmem_phy_get_size
435 						  (cur_addr) + size);
436 			cvmx_bootmem_desc->head_addr = phy_addr;
437 
438 		} else {
439 			/* New block before first block.  OK if cur_addr is 0 */
440 			cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
441 			cvmx_bootmem_phy_set_size(phy_addr, size);
442 			cvmx_bootmem_desc->head_addr = phy_addr;
443 		}
444 		retval = 1;
445 		goto bootmem_free_done;
446 	}
447 
448 	/* Find place in list to add block */
449 	while (cur_addr && phy_addr > cur_addr) {
450 		prev_addr = cur_addr;
451 		cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
452 	}
453 
454 	if (!cur_addr) {
455 		/*
456 		 * We have reached the end of the list, add on to end,
457 		 * checking to see if we need to combine with last
458 		 * block
459 		 */
460 		if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
461 		    phy_addr) {
462 			cvmx_bootmem_phy_set_size(prev_addr,
463 						  cvmx_bootmem_phy_get_size
464 						  (prev_addr) + size);
465 		} else {
466 			cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
467 			cvmx_bootmem_phy_set_size(phy_addr, size);
468 			cvmx_bootmem_phy_set_next(phy_addr, 0);
469 		}
470 		retval = 1;
471 		goto bootmem_free_done;
472 	} else {
473 		/*
474 		 * insert between prev and cur nodes, checking for
475 		 * merge with either/both.
476 		 */
477 		if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
478 		    phy_addr) {
479 			/* Merge with previous */
480 			cvmx_bootmem_phy_set_size(prev_addr,
481 						  cvmx_bootmem_phy_get_size
482 						  (prev_addr) + size);
483 			if (phy_addr + size == cur_addr) {
484 				/* Also merge with current */
485 				cvmx_bootmem_phy_set_size(prev_addr,
486 					cvmx_bootmem_phy_get_size(cur_addr) +
487 					cvmx_bootmem_phy_get_size(prev_addr));
488 				cvmx_bootmem_phy_set_next(prev_addr,
489 					cvmx_bootmem_phy_get_next(cur_addr));
490 			}
491 			retval = 1;
492 			goto bootmem_free_done;
493 		} else if (phy_addr + size == cur_addr) {
494 			/* Merge with current */
495 			cvmx_bootmem_phy_set_size(phy_addr,
496 						  cvmx_bootmem_phy_get_size
497 						  (cur_addr) + size);
498 			cvmx_bootmem_phy_set_next(phy_addr,
499 						  cvmx_bootmem_phy_get_next
500 						  (cur_addr));
501 			cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
502 			retval = 1;
503 			goto bootmem_free_done;
504 		}
505 
506 		/* It is a standalone block, add in between prev and cur */
507 		cvmx_bootmem_phy_set_size(phy_addr, size);
508 		cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
509 		cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
510 
511 	}
512 	retval = 1;
513 
514 bootmem_free_done:
515 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
516 		cvmx_bootmem_unlock();
517 	return retval;
518 
519 }
520 
521 struct cvmx_bootmem_named_block_desc *
cvmx_bootmem_phy_named_block_find(char * name,uint32_t flags)522 	cvmx_bootmem_phy_named_block_find(char *name, uint32_t flags)
523 {
524 	unsigned int i;
525 	struct cvmx_bootmem_named_block_desc *named_block_array_ptr;
526 
527 #ifdef DEBUG
528 	cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name);
529 #endif
530 	/*
531 	 * Lock the structure to make sure that it is not being
532 	 * changed while we are examining it.
533 	 */
534 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
535 		cvmx_bootmem_lock();
536 
537 	/* Use XKPHYS for 64 bit linux */
538 	named_block_array_ptr = (struct cvmx_bootmem_named_block_desc *)
539 	    cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr);
540 
541 #ifdef DEBUG
542 	cvmx_dprintf
543 	    ("cvmx_bootmem_phy_named_block_find: named_block_array_ptr: %p\n",
544 	     named_block_array_ptr);
545 #endif
546 	if (cvmx_bootmem_desc->major_version == 3) {
547 		for (i = 0;
548 		     i < cvmx_bootmem_desc->named_block_num_blocks; i++) {
549 			if ((name && named_block_array_ptr[i].size
550 			     && !strncmp(name, named_block_array_ptr[i].name,
551 					 cvmx_bootmem_desc->named_block_name_len
552 					 - 1))
553 			    || (!name && !named_block_array_ptr[i].size)) {
554 				if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
555 					cvmx_bootmem_unlock();
556 
557 				return &(named_block_array_ptr[i]);
558 			}
559 		}
560 	} else {
561 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
562 			     "version: %d.%d at addr: %p\n",
563 			     (int)cvmx_bootmem_desc->major_version,
564 			     (int)cvmx_bootmem_desc->minor_version,
565 			     cvmx_bootmem_desc);
566 	}
567 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
568 		cvmx_bootmem_unlock();
569 
570 	return NULL;
571 }
572 
cvmx_bootmem_phy_named_block_free(char * name,uint32_t flags)573 int cvmx_bootmem_phy_named_block_free(char *name, uint32_t flags)
574 {
575 	struct cvmx_bootmem_named_block_desc *named_block_ptr;
576 
577 	if (cvmx_bootmem_desc->major_version != 3) {
578 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
579 			     "%d.%d at addr: %p\n",
580 			     (int)cvmx_bootmem_desc->major_version,
581 			     (int)cvmx_bootmem_desc->minor_version,
582 			     cvmx_bootmem_desc);
583 		return 0;
584 	}
585 #ifdef DEBUG
586 	cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name);
587 #endif
588 
589 	/*
590 	 * Take lock here, as name lookup/block free/name free need to
591 	 * be atomic.
592 	 */
593 	cvmx_bootmem_lock();
594 
595 	named_block_ptr =
596 	    cvmx_bootmem_phy_named_block_find(name,
597 					      CVMX_BOOTMEM_FLAG_NO_LOCKING);
598 	if (named_block_ptr) {
599 #ifdef DEBUG
600 		cvmx_dprintf("cvmx_bootmem_phy_named_block_free: "
601 			     "%s, base: 0x%llx, size: 0x%llx\n",
602 			     name,
603 			     (unsigned long long)named_block_ptr->base_addr,
604 			     (unsigned long long)named_block_ptr->size);
605 #endif
606 		__cvmx_bootmem_phy_free(named_block_ptr->base_addr,
607 					named_block_ptr->size,
608 					CVMX_BOOTMEM_FLAG_NO_LOCKING);
609 		named_block_ptr->size = 0;
610 		/* Set size to zero to indicate block not used. */
611 	}
612 
613 	cvmx_bootmem_unlock();
614 	return named_block_ptr != NULL;	/* 0 on failure, 1 on success */
615 }
616 
cvmx_bootmem_phy_named_block_alloc(uint64_t size,uint64_t min_addr,uint64_t max_addr,uint64_t alignment,char * name,uint32_t flags)617 int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr,
618 					   uint64_t max_addr,
619 					   uint64_t alignment,
620 					   char *name,
621 					   uint32_t flags)
622 {
623 	int64_t addr_allocated;
624 	struct cvmx_bootmem_named_block_desc *named_block_desc_ptr;
625 
626 #ifdef DEBUG
627 	cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: "
628 		     "0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
629 		     (unsigned long long)size,
630 		     (unsigned long long)min_addr,
631 		     (unsigned long long)max_addr,
632 		     (unsigned long long)alignment,
633 		     name);
634 #endif
635 	if (cvmx_bootmem_desc->major_version != 3) {
636 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
637 			     "%d.%d at addr: %p\n",
638 			     (int)cvmx_bootmem_desc->major_version,
639 			     (int)cvmx_bootmem_desc->minor_version,
640 			     cvmx_bootmem_desc);
641 		return -1;
642 	}
643 
644 	/*
645 	 * Take lock here, as name lookup/block alloc/name add need to
646 	 * be atomic.
647 	 */
648 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
649 		cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
650 
651 	/* Get pointer to first available named block descriptor */
652 	named_block_desc_ptr =
653 		cvmx_bootmem_phy_named_block_find(NULL,
654 						  flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
655 
656 	/*
657 	 * Check to see if name already in use, return error if name
658 	 * not available or no more room for blocks.
659 	 */
660 	if (cvmx_bootmem_phy_named_block_find(name,
661 					      flags | CVMX_BOOTMEM_FLAG_NO_LOCKING) || !named_block_desc_ptr) {
662 		if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
663 			cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
664 		return -1;
665 	}
666 
667 
668 	/*
669 	 * Round size up to mult of minimum alignment bytes We need
670 	 * the actual size allocated to allow for blocks to be
671 	 * coallesced when they are freed.  The alloc routine does the
672 	 * same rounding up on all allocations.
673 	 */
674 	size = ALIGN(size, CVMX_BOOTMEM_ALIGNMENT_SIZE);
675 
676 	addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
677 						alignment,
678 						flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
679 	if (addr_allocated >= 0) {
680 		named_block_desc_ptr->base_addr = addr_allocated;
681 		named_block_desc_ptr->size = size;
682 		strncpy(named_block_desc_ptr->name, name,
683 			cvmx_bootmem_desc->named_block_name_len);
684 		named_block_desc_ptr->name[cvmx_bootmem_desc->named_block_name_len - 1] = 0;
685 	}
686 
687 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
688 		cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
689 	return addr_allocated;
690 }
691