1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 *
4 * CTU CAN FD IP Core
5 *
6 * Copyright (C) 2015-2018 Ondrej Ille <ondrej.ille@gmail.com> FEE CTU
7 * Copyright (C) 2018-2021 Ondrej Ille <ondrej.ille@gmail.com> self-funded
8 * Copyright (C) 2018-2019 Martin Jerabek <martin.jerabek01@gmail.com> FEE CTU
9 * Copyright (C) 2018-2022 Pavel Pisa <pisa@cmp.felk.cvut.cz> FEE CTU/self-funded
10 *
11 * Project advisors:
12 * Jiri Novak <jnovak@fel.cvut.cz>
13 * Pavel Pisa <pisa@cmp.felk.cvut.cz>
14 *
15 * Department of Measurement (http://meas.fel.cvut.cz/)
16 * Faculty of Electrical Engineering (http://www.fel.cvut.cz)
17 * Czech Technical University (http://www.cvut.cz/)
18 ******************************************************************************/
19
20 #include <linux/clk.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/bitfield.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/skbuff.h>
29 #include <linux/string.h>
30 #include <linux/types.h>
31 #include <linux/can/error.h>
32 #include <linux/pm_runtime.h>
33
34 #include "ctucanfd.h"
35 #include "ctucanfd_kregs.h"
36 #include "ctucanfd_kframe.h"
37
38 #ifdef DEBUG
39 #define ctucan_netdev_dbg(ndev, args...) \
40 netdev_dbg(ndev, args)
41 #else
42 #define ctucan_netdev_dbg(...) do { } while (0)
43 #endif
44
45 #define CTUCANFD_ID 0xCAFD
46
47 /* TX buffer rotation:
48 * - when a buffer transitions to empty state, rotate order and priorities
49 * - if more buffers seem to transition at the same time, rotate by the number of buffers
50 * - it may be assumed that buffers transition to empty state in FIFO order (because we manage
51 * priorities that way)
52 * - at frame filling, do not rotate anything, just increment buffer modulo counter
53 */
54
55 #define CTUCANFD_FLAG_RX_FFW_BUFFERED 1
56
57 #define CTUCAN_STATE_TO_TEXT_ENTRY(st) \
58 [st] = #st
59
60 enum ctucan_txtb_status {
61 TXT_NOT_EXIST = 0x0,
62 TXT_RDY = 0x1,
63 TXT_TRAN = 0x2,
64 TXT_ABTP = 0x3,
65 TXT_TOK = 0x4,
66 TXT_ERR = 0x6,
67 TXT_ABT = 0x7,
68 TXT_ETY = 0x8,
69 };
70
71 enum ctucan_txtb_command {
72 TXT_CMD_SET_EMPTY = 0x01,
73 TXT_CMD_SET_READY = 0x02,
74 TXT_CMD_SET_ABORT = 0x04
75 };
76
77 static const struct can_bittiming_const ctu_can_fd_bit_timing_max = {
78 .name = "ctu_can_fd",
79 .tseg1_min = 2,
80 .tseg1_max = 190,
81 .tseg2_min = 1,
82 .tseg2_max = 63,
83 .sjw_max = 31,
84 .brp_min = 1,
85 .brp_max = 8,
86 .brp_inc = 1,
87 };
88
89 static const struct can_bittiming_const ctu_can_fd_bit_timing_data_max = {
90 .name = "ctu_can_fd",
91 .tseg1_min = 2,
92 .tseg1_max = 94,
93 .tseg2_min = 1,
94 .tseg2_max = 31,
95 .sjw_max = 31,
96 .brp_min = 1,
97 .brp_max = 2,
98 .brp_inc = 1,
99 };
100
101 static const char * const ctucan_state_strings[CAN_STATE_MAX] = {
102 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_ACTIVE),
103 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_WARNING),
104 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_PASSIVE),
105 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_BUS_OFF),
106 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_STOPPED),
107 CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_SLEEPING)
108 };
109
ctucan_write32_le(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg,u32 val)110 static void ctucan_write32_le(struct ctucan_priv *priv,
111 enum ctu_can_fd_can_registers reg, u32 val)
112 {
113 iowrite32(val, priv->mem_base + reg);
114 }
115
ctucan_write32_be(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg,u32 val)116 static void ctucan_write32_be(struct ctucan_priv *priv,
117 enum ctu_can_fd_can_registers reg, u32 val)
118 {
119 iowrite32be(val, priv->mem_base + reg);
120 }
121
ctucan_read32_le(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg)122 static u32 ctucan_read32_le(struct ctucan_priv *priv,
123 enum ctu_can_fd_can_registers reg)
124 {
125 return ioread32(priv->mem_base + reg);
126 }
127
ctucan_read32_be(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg)128 static u32 ctucan_read32_be(struct ctucan_priv *priv,
129 enum ctu_can_fd_can_registers reg)
130 {
131 return ioread32be(priv->mem_base + reg);
132 }
133
ctucan_write32(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg,u32 val)134 static void ctucan_write32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg, u32 val)
135 {
136 priv->write_reg(priv, reg, val);
137 }
138
ctucan_read32(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg)139 static u32 ctucan_read32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg)
140 {
141 return priv->read_reg(priv, reg);
142 }
143
ctucan_write_txt_buf(struct ctucan_priv * priv,enum ctu_can_fd_can_registers buf_base,u32 offset,u32 val)144 static void ctucan_write_txt_buf(struct ctucan_priv *priv, enum ctu_can_fd_can_registers buf_base,
145 u32 offset, u32 val)
146 {
147 priv->write_reg(priv, buf_base + offset, val);
148 }
149
150 #define CTU_CAN_FD_TXTNF(priv) (!!FIELD_GET(REG_STATUS_TXNF, ctucan_read32(priv, CTUCANFD_STATUS)))
151 #define CTU_CAN_FD_ENABLED(priv) (!!FIELD_GET(REG_MODE_ENA, ctucan_read32(priv, CTUCANFD_MODE)))
152
153 /**
154 * ctucan_state_to_str() - Converts CAN controller state code to corresponding text
155 * @state: CAN controller state code
156 *
157 * Return: Pointer to string representation of the error state
158 */
ctucan_state_to_str(enum can_state state)159 static const char *ctucan_state_to_str(enum can_state state)
160 {
161 const char *txt = NULL;
162
163 if (state >= 0 && state < CAN_STATE_MAX)
164 txt = ctucan_state_strings[state];
165 return txt ? txt : "UNKNOWN";
166 }
167
168 /**
169 * ctucan_reset() - Issues software reset request to CTU CAN FD
170 * @ndev: Pointer to net_device structure
171 *
172 * Return: 0 for success, -%ETIMEDOUT if CAN controller does not leave reset
173 */
ctucan_reset(struct net_device * ndev)174 static int ctucan_reset(struct net_device *ndev)
175 {
176 struct ctucan_priv *priv = netdev_priv(ndev);
177 int i = 100;
178
179 ctucan_write32(priv, CTUCANFD_MODE, REG_MODE_RST);
180 clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
181
182 do {
183 u16 device_id = FIELD_GET(REG_DEVICE_ID_DEVICE_ID,
184 ctucan_read32(priv, CTUCANFD_DEVICE_ID));
185
186 if (device_id == 0xCAFD)
187 return 0;
188 if (!i--) {
189 netdev_warn(ndev, "device did not leave reset\n");
190 return -ETIMEDOUT;
191 }
192 usleep_range(100, 200);
193 } while (1);
194 }
195
196 /**
197 * ctucan_set_btr() - Sets CAN bus bit timing in CTU CAN FD
198 * @ndev: Pointer to net_device structure
199 * @bt: Pointer to Bit timing structure
200 * @nominal: True - Nominal bit timing, False - Data bit timing
201 *
202 * Return: 0 - OK, -%EPERM if controller is enabled
203 */
ctucan_set_btr(struct net_device * ndev,struct can_bittiming * bt,bool nominal)204 static int ctucan_set_btr(struct net_device *ndev, struct can_bittiming *bt, bool nominal)
205 {
206 struct ctucan_priv *priv = netdev_priv(ndev);
207 int max_ph1_len = 31;
208 u32 btr = 0;
209 u32 prop_seg = bt->prop_seg;
210 u32 phase_seg1 = bt->phase_seg1;
211
212 if (CTU_CAN_FD_ENABLED(priv)) {
213 netdev_err(ndev, "BUG! Cannot set bittiming - CAN is enabled\n");
214 return -EPERM;
215 }
216
217 if (nominal)
218 max_ph1_len = 63;
219
220 /* The timing calculation functions have only constraints on tseg1, which is prop_seg +
221 * phase1_seg combined. tseg1 is then split in half and stored into prog_seg and phase_seg1.
222 * In CTU CAN FD, PROP is 6/7 bits wide but PH1 only 6/5, so we must re-distribute the
223 * values here.
224 */
225 if (phase_seg1 > max_ph1_len) {
226 prop_seg += phase_seg1 - max_ph1_len;
227 phase_seg1 = max_ph1_len;
228 bt->prop_seg = prop_seg;
229 bt->phase_seg1 = phase_seg1;
230 }
231
232 if (nominal) {
233 btr = FIELD_PREP(REG_BTR_PROP, prop_seg);
234 btr |= FIELD_PREP(REG_BTR_PH1, phase_seg1);
235 btr |= FIELD_PREP(REG_BTR_PH2, bt->phase_seg2);
236 btr |= FIELD_PREP(REG_BTR_BRP, bt->brp);
237 btr |= FIELD_PREP(REG_BTR_SJW, bt->sjw);
238
239 ctucan_write32(priv, CTUCANFD_BTR, btr);
240 } else {
241 btr = FIELD_PREP(REG_BTR_FD_PROP_FD, prop_seg);
242 btr |= FIELD_PREP(REG_BTR_FD_PH1_FD, phase_seg1);
243 btr |= FIELD_PREP(REG_BTR_FD_PH2_FD, bt->phase_seg2);
244 btr |= FIELD_PREP(REG_BTR_FD_BRP_FD, bt->brp);
245 btr |= FIELD_PREP(REG_BTR_FD_SJW_FD, bt->sjw);
246
247 ctucan_write32(priv, CTUCANFD_BTR_FD, btr);
248 }
249
250 return 0;
251 }
252
253 /**
254 * ctucan_set_bittiming() - CAN set nominal bit timing routine
255 * @ndev: Pointer to net_device structure
256 *
257 * Return: 0 on success, -%EPERM on error
258 */
ctucan_set_bittiming(struct net_device * ndev)259 static int ctucan_set_bittiming(struct net_device *ndev)
260 {
261 struct ctucan_priv *priv = netdev_priv(ndev);
262 struct can_bittiming *bt = &priv->can.bittiming;
263
264 /* Note that bt may be modified here */
265 return ctucan_set_btr(ndev, bt, true);
266 }
267
268 /**
269 * ctucan_set_data_bittiming() - CAN set data bit timing routine
270 * @ndev: Pointer to net_device structure
271 *
272 * Return: 0 on success, -%EPERM on error
273 */
ctucan_set_data_bittiming(struct net_device * ndev)274 static int ctucan_set_data_bittiming(struct net_device *ndev)
275 {
276 struct ctucan_priv *priv = netdev_priv(ndev);
277 struct can_bittiming *dbt = &priv->can.data_bittiming;
278
279 /* Note that dbt may be modified here */
280 return ctucan_set_btr(ndev, dbt, false);
281 }
282
283 /**
284 * ctucan_set_secondary_sample_point() - Sets secondary sample point in CTU CAN FD
285 * @ndev: Pointer to net_device structure
286 *
287 * Return: 0 on success, -%EPERM if controller is enabled
288 */
ctucan_set_secondary_sample_point(struct net_device * ndev)289 static int ctucan_set_secondary_sample_point(struct net_device *ndev)
290 {
291 struct ctucan_priv *priv = netdev_priv(ndev);
292 struct can_bittiming *dbt = &priv->can.data_bittiming;
293 int ssp_offset = 0;
294 u32 ssp_cfg = 0; /* No SSP by default */
295
296 if (CTU_CAN_FD_ENABLED(priv)) {
297 netdev_err(ndev, "BUG! Cannot set SSP - CAN is enabled\n");
298 return -EPERM;
299 }
300
301 /* Use SSP for bit-rates above 1 Mbits/s */
302 if (dbt->bitrate > 1000000) {
303 /* Calculate SSP in minimal time quanta */
304 ssp_offset = (priv->can.clock.freq / 1000) * dbt->sample_point / dbt->bitrate;
305
306 if (ssp_offset > 127) {
307 netdev_warn(ndev, "SSP offset saturated to 127\n");
308 ssp_offset = 127;
309 }
310
311 ssp_cfg = FIELD_PREP(REG_TRV_DELAY_SSP_OFFSET, ssp_offset);
312 ssp_cfg |= FIELD_PREP(REG_TRV_DELAY_SSP_SRC, 0x1);
313 }
314
315 ctucan_write32(priv, CTUCANFD_TRV_DELAY, ssp_cfg);
316
317 return 0;
318 }
319
320 /**
321 * ctucan_set_mode() - Sets CTU CAN FDs mode
322 * @priv: Pointer to private data
323 * @mode: Pointer to controller modes to be set
324 */
ctucan_set_mode(struct ctucan_priv * priv,const struct can_ctrlmode * mode)325 static void ctucan_set_mode(struct ctucan_priv *priv, const struct can_ctrlmode *mode)
326 {
327 u32 mode_reg = ctucan_read32(priv, CTUCANFD_MODE);
328
329 mode_reg = (mode->flags & CAN_CTRLMODE_LOOPBACK) ?
330 (mode_reg | REG_MODE_ILBP) :
331 (mode_reg & ~REG_MODE_ILBP);
332
333 mode_reg = (mode->flags & CAN_CTRLMODE_LISTENONLY) ?
334 (mode_reg | REG_MODE_BMM) :
335 (mode_reg & ~REG_MODE_BMM);
336
337 mode_reg = (mode->flags & CAN_CTRLMODE_FD) ?
338 (mode_reg | REG_MODE_FDE) :
339 (mode_reg & ~REG_MODE_FDE);
340
341 mode_reg = (mode->flags & CAN_CTRLMODE_PRESUME_ACK) ?
342 (mode_reg | REG_MODE_ACF) :
343 (mode_reg & ~REG_MODE_ACF);
344
345 mode_reg = (mode->flags & CAN_CTRLMODE_FD_NON_ISO) ?
346 (mode_reg | REG_MODE_NISOFD) :
347 (mode_reg & ~REG_MODE_NISOFD);
348
349 /* One shot mode supported indirectly via Retransmit limit */
350 mode_reg &= ~FIELD_PREP(REG_MODE_RTRTH, 0xF);
351 mode_reg = (mode->flags & CAN_CTRLMODE_ONE_SHOT) ?
352 (mode_reg | REG_MODE_RTRLE) :
353 (mode_reg & ~REG_MODE_RTRLE);
354
355 /* Some bits fixed:
356 * TSTM - Off, User shall not be able to change REC/TEC by hand during operation
357 */
358 mode_reg &= ~REG_MODE_TSTM;
359
360 ctucan_write32(priv, CTUCANFD_MODE, mode_reg);
361 }
362
363 /**
364 * ctucan_chip_start() - This routine starts the driver
365 * @ndev: Pointer to net_device structure
366 *
367 * Routine expects that chip is in reset state. It setups initial
368 * Tx buffers for FIFO priorities, sets bittiming, enables interrupts,
369 * switches core to operational mode and changes controller
370 * state to %CAN_STATE_STOPPED.
371 *
372 * Return: 0 on success and failure value on error
373 */
ctucan_chip_start(struct net_device * ndev)374 static int ctucan_chip_start(struct net_device *ndev)
375 {
376 struct ctucan_priv *priv = netdev_priv(ndev);
377 u32 int_ena, int_msk;
378 u32 mode_reg;
379 int err;
380 struct can_ctrlmode mode;
381
382 priv->txb_prio = 0x01234567;
383 priv->txb_head = 0;
384 priv->txb_tail = 0;
385 ctucan_write32(priv, CTUCANFD_TX_PRIORITY, priv->txb_prio);
386
387 /* Configure bit-rates and ssp */
388 err = ctucan_set_bittiming(ndev);
389 if (err < 0)
390 return err;
391
392 err = ctucan_set_data_bittiming(ndev);
393 if (err < 0)
394 return err;
395
396 err = ctucan_set_secondary_sample_point(ndev);
397 if (err < 0)
398 return err;
399
400 /* Configure modes */
401 mode.flags = priv->can.ctrlmode;
402 mode.mask = 0xFFFFFFFF;
403 ctucan_set_mode(priv, &mode);
404
405 /* Configure interrupts */
406 int_ena = REG_INT_STAT_RBNEI |
407 REG_INT_STAT_TXBHCI |
408 REG_INT_STAT_EWLI |
409 REG_INT_STAT_FCSI;
410
411 /* Bus error reporting -> Allow Error/Arb.lost interrupts */
412 if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
413 int_ena |= REG_INT_STAT_ALI |
414 REG_INT_STAT_BEI;
415 }
416
417 int_msk = ~int_ena; /* Mask all disabled interrupts */
418
419 /* It's after reset, so there is no need to clear anything */
420 ctucan_write32(priv, CTUCANFD_INT_MASK_SET, int_msk);
421 ctucan_write32(priv, CTUCANFD_INT_ENA_SET, int_ena);
422
423 /* Controller enters ERROR_ACTIVE on initial FCSI */
424 priv->can.state = CAN_STATE_STOPPED;
425
426 /* Enable the controller */
427 mode_reg = ctucan_read32(priv, CTUCANFD_MODE);
428 mode_reg |= REG_MODE_ENA;
429 ctucan_write32(priv, CTUCANFD_MODE, mode_reg);
430
431 return 0;
432 }
433
434 /**
435 * ctucan_do_set_mode() - Sets mode of the driver
436 * @ndev: Pointer to net_device structure
437 * @mode: Tells the mode of the driver
438 *
439 * This check the drivers state and calls the corresponding modes to set.
440 *
441 * Return: 0 on success and failure value on error
442 */
ctucan_do_set_mode(struct net_device * ndev,enum can_mode mode)443 static int ctucan_do_set_mode(struct net_device *ndev, enum can_mode mode)
444 {
445 int ret;
446
447 switch (mode) {
448 case CAN_MODE_START:
449 ret = ctucan_reset(ndev);
450 if (ret < 0)
451 return ret;
452 ret = ctucan_chip_start(ndev);
453 if (ret < 0) {
454 netdev_err(ndev, "ctucan_chip_start failed!\n");
455 return ret;
456 }
457 netif_wake_queue(ndev);
458 break;
459 default:
460 ret = -EOPNOTSUPP;
461 break;
462 }
463
464 return ret;
465 }
466
467 /**
468 * ctucan_get_tx_status() - Gets status of TXT buffer
469 * @priv: Pointer to private data
470 * @buf: Buffer index (0-based)
471 *
472 * Return: Status of TXT buffer
473 */
ctucan_get_tx_status(struct ctucan_priv * priv,u8 buf)474 static enum ctucan_txtb_status ctucan_get_tx_status(struct ctucan_priv *priv, u8 buf)
475 {
476 u32 tx_status = ctucan_read32(priv, CTUCANFD_TX_STATUS);
477 enum ctucan_txtb_status status = (tx_status >> (buf * 4)) & 0x7;
478
479 return status;
480 }
481
482 /**
483 * ctucan_is_txt_buf_writable() - Checks if frame can be inserted to TXT Buffer
484 * @priv: Pointer to private data
485 * @buf: Buffer index (0-based)
486 *
487 * Return: True - Frame can be inserted to TXT Buffer, False - If attempted, frame will not be
488 * inserted to TXT Buffer
489 */
ctucan_is_txt_buf_writable(struct ctucan_priv * priv,u8 buf)490 static bool ctucan_is_txt_buf_writable(struct ctucan_priv *priv, u8 buf)
491 {
492 enum ctucan_txtb_status buf_status;
493
494 buf_status = ctucan_get_tx_status(priv, buf);
495 if (buf_status == TXT_RDY || buf_status == TXT_TRAN || buf_status == TXT_ABTP)
496 return false;
497
498 return true;
499 }
500
501 /**
502 * ctucan_insert_frame() - Inserts frame to TXT buffer
503 * @priv: Pointer to private data
504 * @cf: Pointer to CAN frame to be inserted
505 * @buf: TXT Buffer index to which frame is inserted (0-based)
506 * @isfdf: True - CAN FD Frame, False - CAN 2.0 Frame
507 *
508 * Return: True - Frame inserted successfully
509 * False - Frame was not inserted due to one of:
510 * 1. TXT Buffer is not writable (it is in wrong state)
511 * 2. Invalid TXT buffer index
512 * 3. Invalid frame length
513 */
ctucan_insert_frame(struct ctucan_priv * priv,const struct canfd_frame * cf,u8 buf,bool isfdf)514 static bool ctucan_insert_frame(struct ctucan_priv *priv, const struct canfd_frame *cf, u8 buf,
515 bool isfdf)
516 {
517 u32 buf_base;
518 u32 ffw = 0;
519 u32 idw = 0;
520 unsigned int i;
521
522 if (buf >= priv->ntxbufs)
523 return false;
524
525 if (!ctucan_is_txt_buf_writable(priv, buf))
526 return false;
527
528 if (cf->len > CANFD_MAX_DLEN)
529 return false;
530
531 /* Prepare Frame format */
532 if (cf->can_id & CAN_RTR_FLAG)
533 ffw |= REG_FRAME_FORMAT_W_RTR;
534
535 if (cf->can_id & CAN_EFF_FLAG)
536 ffw |= REG_FRAME_FORMAT_W_IDE;
537
538 if (isfdf) {
539 ffw |= REG_FRAME_FORMAT_W_FDF;
540 if (cf->flags & CANFD_BRS)
541 ffw |= REG_FRAME_FORMAT_W_BRS;
542 }
543
544 ffw |= FIELD_PREP(REG_FRAME_FORMAT_W_DLC, can_fd_len2dlc(cf->len));
545
546 /* Prepare identifier */
547 if (cf->can_id & CAN_EFF_FLAG)
548 idw = cf->can_id & CAN_EFF_MASK;
549 else
550 idw = FIELD_PREP(REG_IDENTIFIER_W_IDENTIFIER_BASE, cf->can_id & CAN_SFF_MASK);
551
552 /* Write ID, Frame format, Don't write timestamp -> Time triggered transmission disabled */
553 buf_base = (buf + 1) * 0x100;
554 ctucan_write_txt_buf(priv, buf_base, CTUCANFD_FRAME_FORMAT_W, ffw);
555 ctucan_write_txt_buf(priv, buf_base, CTUCANFD_IDENTIFIER_W, idw);
556
557 /* Write Data payload */
558 if (!(cf->can_id & CAN_RTR_FLAG)) {
559 for (i = 0; i < cf->len; i += 4) {
560 u32 data = le32_to_cpu(*(__le32 *)(cf->data + i));
561
562 ctucan_write_txt_buf(priv, buf_base, CTUCANFD_DATA_1_4_W + i, data);
563 }
564 }
565
566 return true;
567 }
568
569 /**
570 * ctucan_give_txtb_cmd() - Applies command on TXT buffer
571 * @priv: Pointer to private data
572 * @cmd: Command to give
573 * @buf: Buffer index (0-based)
574 */
ctucan_give_txtb_cmd(struct ctucan_priv * priv,enum ctucan_txtb_command cmd,u8 buf)575 static void ctucan_give_txtb_cmd(struct ctucan_priv *priv, enum ctucan_txtb_command cmd, u8 buf)
576 {
577 u32 tx_cmd = cmd;
578
579 tx_cmd |= 1 << (buf + 8);
580 ctucan_write32(priv, CTUCANFD_TX_COMMAND, tx_cmd);
581 }
582
583 /**
584 * ctucan_start_xmit() - Starts the transmission
585 * @skb: sk_buff pointer that contains data to be Txed
586 * @ndev: Pointer to net_device structure
587 *
588 * Invoked from upper layers to initiate transmission. Uses the next available free TXT Buffer and
589 * populates its fields to start the transmission.
590 *
591 * Return: %NETDEV_TX_OK on success, %NETDEV_TX_BUSY when no free TXT buffer is available,
592 * negative return values reserved for error cases
593 */
ctucan_start_xmit(struct sk_buff * skb,struct net_device * ndev)594 static netdev_tx_t ctucan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
595 {
596 struct ctucan_priv *priv = netdev_priv(ndev);
597 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
598 u32 txtb_id;
599 bool ok;
600 unsigned long flags;
601
602 if (can_dropped_invalid_skb(ndev, skb))
603 return NETDEV_TX_OK;
604
605 if (unlikely(!CTU_CAN_FD_TXTNF(priv))) {
606 netif_stop_queue(ndev);
607 netdev_err(ndev, "BUG!, no TXB free when queue awake!\n");
608 return NETDEV_TX_BUSY;
609 }
610
611 txtb_id = priv->txb_head % priv->ntxbufs;
612 ctucan_netdev_dbg(ndev, "%s: using TXB#%u\n", __func__, txtb_id);
613 ok = ctucan_insert_frame(priv, cf, txtb_id, can_is_canfd_skb(skb));
614
615 if (!ok) {
616 netdev_err(ndev, "BUG! TXNF set but cannot insert frame into TXTB! HW Bug?");
617 kfree_skb(skb);
618 ndev->stats.tx_dropped++;
619 return NETDEV_TX_OK;
620 }
621
622 can_put_echo_skb(skb, ndev, txtb_id, 0);
623
624 spin_lock_irqsave(&priv->tx_lock, flags);
625 ctucan_give_txtb_cmd(priv, TXT_CMD_SET_READY, txtb_id);
626 priv->txb_head++;
627
628 /* Check if all TX buffers are full */
629 if (!CTU_CAN_FD_TXTNF(priv))
630 netif_stop_queue(ndev);
631
632 spin_unlock_irqrestore(&priv->tx_lock, flags);
633
634 return NETDEV_TX_OK;
635 }
636
637 /**
638 * ctucan_read_rx_frame() - Reads frame from RX FIFO
639 * @priv: Pointer to CTU CAN FD's private data
640 * @cf: Pointer to CAN frame struct
641 * @ffw: Previously read frame format word
642 *
643 * Note: Frame format word must be read separately and provided in 'ffw'.
644 */
ctucan_read_rx_frame(struct ctucan_priv * priv,struct canfd_frame * cf,u32 ffw)645 static void ctucan_read_rx_frame(struct ctucan_priv *priv, struct canfd_frame *cf, u32 ffw)
646 {
647 u32 idw;
648 unsigned int i;
649 unsigned int wc;
650 unsigned int len;
651
652 idw = ctucan_read32(priv, CTUCANFD_RX_DATA);
653 if (FIELD_GET(REG_FRAME_FORMAT_W_IDE, ffw))
654 cf->can_id = (idw & CAN_EFF_MASK) | CAN_EFF_FLAG;
655 else
656 cf->can_id = (idw >> 18) & CAN_SFF_MASK;
657
658 /* BRS, ESI, RTR Flags */
659 cf->flags = 0;
660 if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw)) {
661 if (FIELD_GET(REG_FRAME_FORMAT_W_BRS, ffw))
662 cf->flags |= CANFD_BRS;
663 if (FIELD_GET(REG_FRAME_FORMAT_W_ESI_RSV, ffw))
664 cf->flags |= CANFD_ESI;
665 } else if (FIELD_GET(REG_FRAME_FORMAT_W_RTR, ffw)) {
666 cf->can_id |= CAN_RTR_FLAG;
667 }
668
669 wc = FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw) - 3;
670
671 /* DLC */
672 if (FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw) <= 8) {
673 len = FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw);
674 } else {
675 if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw))
676 len = wc << 2;
677 else
678 len = 8;
679 }
680 cf->len = len;
681 if (unlikely(len > wc * 4))
682 len = wc * 4;
683
684 /* Timestamp - Read and throw away */
685 ctucan_read32(priv, CTUCANFD_RX_DATA);
686 ctucan_read32(priv, CTUCANFD_RX_DATA);
687
688 /* Data */
689 for (i = 0; i < len; i += 4) {
690 u32 data = ctucan_read32(priv, CTUCANFD_RX_DATA);
691 *(__le32 *)(cf->data + i) = cpu_to_le32(data);
692 }
693 while (unlikely(i < wc * 4)) {
694 ctucan_read32(priv, CTUCANFD_RX_DATA);
695 i += 4;
696 }
697 }
698
699 /**
700 * ctucan_rx() - Called from CAN ISR to complete the received frame processing
701 * @ndev: Pointer to net_device structure
702 *
703 * This function is invoked from the CAN isr(poll) to process the Rx frames. It does minimal
704 * processing and invokes "netif_receive_skb" to complete further processing.
705 * Return: 1 when frame is passed to the network layer, 0 when the first frame word is read but
706 * system is out of free SKBs temporally and left code to resolve SKB allocation later,
707 * -%EAGAIN in a case of empty Rx FIFO.
708 */
ctucan_rx(struct net_device * ndev)709 static int ctucan_rx(struct net_device *ndev)
710 {
711 struct ctucan_priv *priv = netdev_priv(ndev);
712 struct net_device_stats *stats = &ndev->stats;
713 struct canfd_frame *cf;
714 struct sk_buff *skb;
715 u32 ffw;
716
717 if (test_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags)) {
718 ffw = priv->rxfrm_first_word;
719 clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
720 } else {
721 ffw = ctucan_read32(priv, CTUCANFD_RX_DATA);
722 }
723
724 if (!FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw))
725 return -EAGAIN;
726
727 if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw))
728 skb = alloc_canfd_skb(ndev, &cf);
729 else
730 skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
731
732 if (unlikely(!skb)) {
733 priv->rxfrm_first_word = ffw;
734 set_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
735 return 0;
736 }
737
738 ctucan_read_rx_frame(priv, cf, ffw);
739
740 stats->rx_bytes += cf->len;
741 stats->rx_packets++;
742 netif_receive_skb(skb);
743
744 return 1;
745 }
746
747 /**
748 * ctucan_read_fault_state() - Reads CTU CAN FDs fault confinement state.
749 * @priv: Pointer to private data
750 *
751 * Returns: Fault confinement state of controller
752 */
ctucan_read_fault_state(struct ctucan_priv * priv)753 static enum can_state ctucan_read_fault_state(struct ctucan_priv *priv)
754 {
755 u32 fs;
756 u32 rec_tec;
757 u32 ewl;
758
759 fs = ctucan_read32(priv, CTUCANFD_EWL);
760 rec_tec = ctucan_read32(priv, CTUCANFD_REC);
761 ewl = FIELD_GET(REG_EWL_EW_LIMIT, fs);
762
763 if (FIELD_GET(REG_EWL_ERA, fs)) {
764 if (ewl > FIELD_GET(REG_REC_REC_VAL, rec_tec) &&
765 ewl > FIELD_GET(REG_REC_TEC_VAL, rec_tec))
766 return CAN_STATE_ERROR_ACTIVE;
767 else
768 return CAN_STATE_ERROR_WARNING;
769 } else if (FIELD_GET(REG_EWL_ERP, fs)) {
770 return CAN_STATE_ERROR_PASSIVE;
771 } else if (FIELD_GET(REG_EWL_BOF, fs)) {
772 return CAN_STATE_BUS_OFF;
773 }
774
775 WARN(true, "Invalid error state");
776 return CAN_STATE_ERROR_PASSIVE;
777 }
778
779 /**
780 * ctucan_get_rec_tec() - Reads REC/TEC counter values from controller
781 * @priv: Pointer to private data
782 * @bec: Pointer to Error counter structure
783 */
ctucan_get_rec_tec(struct ctucan_priv * priv,struct can_berr_counter * bec)784 static void ctucan_get_rec_tec(struct ctucan_priv *priv, struct can_berr_counter *bec)
785 {
786 u32 err_ctrs = ctucan_read32(priv, CTUCANFD_REC);
787
788 bec->rxerr = FIELD_GET(REG_REC_REC_VAL, err_ctrs);
789 bec->txerr = FIELD_GET(REG_REC_TEC_VAL, err_ctrs);
790 }
791
792 /**
793 * ctucan_err_interrupt() - Error frame ISR
794 * @ndev: net_device pointer
795 * @isr: interrupt status register value
796 *
797 * This is the CAN error interrupt and it will check the type of error and forward the error
798 * frame to upper layers.
799 */
ctucan_err_interrupt(struct net_device * ndev,u32 isr)800 static void ctucan_err_interrupt(struct net_device *ndev, u32 isr)
801 {
802 struct ctucan_priv *priv = netdev_priv(ndev);
803 struct net_device_stats *stats = &ndev->stats;
804 struct can_frame *cf;
805 struct sk_buff *skb;
806 enum can_state state;
807 struct can_berr_counter bec;
808 u32 err_capt_alc;
809 int dologerr = net_ratelimit();
810
811 ctucan_get_rec_tec(priv, &bec);
812 state = ctucan_read_fault_state(priv);
813 err_capt_alc = ctucan_read32(priv, CTUCANFD_ERR_CAPT);
814
815 if (dologerr)
816 netdev_info(ndev, "%s: ISR = 0x%08x, rxerr %d, txerr %d, error type %lu, pos %lu, ALC id_field %lu, bit %lu\n",
817 __func__, isr, bec.rxerr, bec.txerr,
818 FIELD_GET(REG_ERR_CAPT_ERR_TYPE, err_capt_alc),
819 FIELD_GET(REG_ERR_CAPT_ERR_POS, err_capt_alc),
820 FIELD_GET(REG_ERR_CAPT_ALC_ID_FIELD, err_capt_alc),
821 FIELD_GET(REG_ERR_CAPT_ALC_BIT, err_capt_alc));
822
823 skb = alloc_can_err_skb(ndev, &cf);
824
825 /* EWLI: error warning limit condition met
826 * FCSI: fault confinement state changed
827 * ALI: arbitration lost (just informative)
828 * BEI: bus error interrupt
829 */
830 if (FIELD_GET(REG_INT_STAT_FCSI, isr) || FIELD_GET(REG_INT_STAT_EWLI, isr)) {
831 netdev_info(ndev, "state changes from %s to %s\n",
832 ctucan_state_to_str(priv->can.state),
833 ctucan_state_to_str(state));
834
835 if (priv->can.state == state)
836 netdev_warn(ndev,
837 "current and previous state is the same! (missed interrupt?)\n");
838
839 priv->can.state = state;
840 switch (state) {
841 case CAN_STATE_BUS_OFF:
842 priv->can.can_stats.bus_off++;
843 can_bus_off(ndev);
844 if (skb)
845 cf->can_id |= CAN_ERR_BUSOFF;
846 break;
847 case CAN_STATE_ERROR_PASSIVE:
848 priv->can.can_stats.error_passive++;
849 if (skb) {
850 cf->can_id |= CAN_ERR_CRTL;
851 cf->data[1] = (bec.rxerr > 127) ?
852 CAN_ERR_CRTL_RX_PASSIVE :
853 CAN_ERR_CRTL_TX_PASSIVE;
854 cf->data[6] = bec.txerr;
855 cf->data[7] = bec.rxerr;
856 }
857 break;
858 case CAN_STATE_ERROR_WARNING:
859 priv->can.can_stats.error_warning++;
860 if (skb) {
861 cf->can_id |= CAN_ERR_CRTL;
862 cf->data[1] |= (bec.txerr > bec.rxerr) ?
863 CAN_ERR_CRTL_TX_WARNING :
864 CAN_ERR_CRTL_RX_WARNING;
865 cf->data[6] = bec.txerr;
866 cf->data[7] = bec.rxerr;
867 }
868 break;
869 case CAN_STATE_ERROR_ACTIVE:
870 cf->data[1] = CAN_ERR_CRTL_ACTIVE;
871 cf->data[6] = bec.txerr;
872 cf->data[7] = bec.rxerr;
873 break;
874 default:
875 netdev_warn(ndev, "unhandled error state (%d:%s)!\n",
876 state, ctucan_state_to_str(state));
877 break;
878 }
879 }
880
881 /* Check for Arbitration Lost interrupt */
882 if (FIELD_GET(REG_INT_STAT_ALI, isr)) {
883 if (dologerr)
884 netdev_info(ndev, "arbitration lost\n");
885 priv->can.can_stats.arbitration_lost++;
886 if (skb) {
887 cf->can_id |= CAN_ERR_LOSTARB;
888 cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
889 }
890 }
891
892 /* Check for Bus Error interrupt */
893 if (FIELD_GET(REG_INT_STAT_BEI, isr)) {
894 netdev_info(ndev, "bus error\n");
895 priv->can.can_stats.bus_error++;
896 stats->rx_errors++;
897 if (skb) {
898 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
899 cf->data[2] = CAN_ERR_PROT_UNSPEC;
900 cf->data[3] = CAN_ERR_PROT_LOC_UNSPEC;
901 }
902 }
903
904 if (skb) {
905 stats->rx_packets++;
906 stats->rx_bytes += cf->can_dlc;
907 netif_rx(skb);
908 }
909 }
910
911 /**
912 * ctucan_rx_poll() - Poll routine for rx packets (NAPI)
913 * @napi: NAPI structure pointer
914 * @quota: Max number of rx packets to be processed.
915 *
916 * This is the poll routine for rx part. It will process the packets maximux quota value.
917 *
918 * Return: Number of packets received
919 */
ctucan_rx_poll(struct napi_struct * napi,int quota)920 static int ctucan_rx_poll(struct napi_struct *napi, int quota)
921 {
922 struct net_device *ndev = napi->dev;
923 struct ctucan_priv *priv = netdev_priv(ndev);
924 int work_done = 0;
925 u32 status;
926 u32 framecnt;
927 int res = 1;
928
929 framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS));
930 while (framecnt && work_done < quota && res > 0) {
931 res = ctucan_rx(ndev);
932 work_done++;
933 framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS));
934 }
935
936 /* Check for RX FIFO Overflow */
937 status = ctucan_read32(priv, CTUCANFD_STATUS);
938 if (FIELD_GET(REG_STATUS_DOR, status)) {
939 struct net_device_stats *stats = &ndev->stats;
940 struct can_frame *cf;
941 struct sk_buff *skb;
942
943 netdev_info(ndev, "rx_poll: rx fifo overflow\n");
944 stats->rx_over_errors++;
945 stats->rx_errors++;
946 skb = alloc_can_err_skb(ndev, &cf);
947 if (skb) {
948 cf->can_id |= CAN_ERR_CRTL;
949 cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
950 stats->rx_packets++;
951 stats->rx_bytes += cf->can_dlc;
952 netif_rx(skb);
953 }
954
955 /* Clear Data Overrun */
956 ctucan_write32(priv, CTUCANFD_COMMAND, REG_COMMAND_CDO);
957 }
958
959 if (!framecnt && res != 0) {
960 if (napi_complete_done(napi, work_done)) {
961 /* Clear and enable RBNEI. It is level-triggered, so
962 * there is no race condition.
963 */
964 ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_RBNEI);
965 ctucan_write32(priv, CTUCANFD_INT_MASK_CLR, REG_INT_STAT_RBNEI);
966 }
967 }
968
969 return work_done;
970 }
971
972 /**
973 * ctucan_rotate_txb_prio() - Rotates priorities of TXT Buffers
974 * @ndev: net_device pointer
975 */
ctucan_rotate_txb_prio(struct net_device * ndev)976 static void ctucan_rotate_txb_prio(struct net_device *ndev)
977 {
978 struct ctucan_priv *priv = netdev_priv(ndev);
979 u32 prio = priv->txb_prio;
980
981 prio = (prio << 4) | ((prio >> ((priv->ntxbufs - 1) * 4)) & 0xF);
982 ctucan_netdev_dbg(ndev, "%s: from 0x%08x to 0x%08x\n", __func__, priv->txb_prio, prio);
983 priv->txb_prio = prio;
984 ctucan_write32(priv, CTUCANFD_TX_PRIORITY, prio);
985 }
986
987 /**
988 * ctucan_tx_interrupt() - Tx done Isr
989 * @ndev: net_device pointer
990 */
ctucan_tx_interrupt(struct net_device * ndev)991 static void ctucan_tx_interrupt(struct net_device *ndev)
992 {
993 struct ctucan_priv *priv = netdev_priv(ndev);
994 struct net_device_stats *stats = &ndev->stats;
995 bool first = true;
996 bool some_buffers_processed;
997 unsigned long flags;
998 enum ctucan_txtb_status txtb_status;
999 u32 txtb_id;
1000
1001 /* read tx_status
1002 * if txb[n].finished (bit 2)
1003 * if ok -> echo
1004 * if error / aborted -> ?? (find how to handle oneshot mode)
1005 * txb_tail++
1006 */
1007 do {
1008 spin_lock_irqsave(&priv->tx_lock, flags);
1009
1010 some_buffers_processed = false;
1011 while ((int)(priv->txb_head - priv->txb_tail) > 0) {
1012 txtb_id = priv->txb_tail % priv->ntxbufs;
1013 txtb_status = ctucan_get_tx_status(priv, txtb_id);
1014
1015 ctucan_netdev_dbg(ndev, "TXI: TXB#%u: status 0x%x\n", txtb_id, txtb_status);
1016
1017 switch (txtb_status) {
1018 case TXT_TOK:
1019 ctucan_netdev_dbg(ndev, "TXT_OK\n");
1020 stats->tx_bytes += can_get_echo_skb(ndev, txtb_id, NULL);
1021 stats->tx_packets++;
1022 break;
1023 case TXT_ERR:
1024 /* This indicated that retransmit limit has been reached. Obviously
1025 * we should not echo the frame, but also not indicate any kind of
1026 * error. If desired, it was already reported (possible multiple
1027 * times) on each arbitration lost.
1028 */
1029 netdev_warn(ndev, "TXB in Error state\n");
1030 can_free_echo_skb(ndev, txtb_id, NULL);
1031 stats->tx_dropped++;
1032 break;
1033 case TXT_ABT:
1034 /* Same as for TXT_ERR, only with different cause. We *could*
1035 * re-queue the frame, but multiqueue/abort is not supported yet
1036 * anyway.
1037 */
1038 netdev_warn(ndev, "TXB in Aborted state\n");
1039 can_free_echo_skb(ndev, txtb_id, NULL);
1040 stats->tx_dropped++;
1041 break;
1042 default:
1043 /* Bug only if the first buffer is not finished, otherwise it is
1044 * pretty much expected.
1045 */
1046 if (first) {
1047 netdev_err(ndev,
1048 "BUG: TXB#%u not in a finished state (0x%x)!\n",
1049 txtb_id, txtb_status);
1050 spin_unlock_irqrestore(&priv->tx_lock, flags);
1051 /* do not clear nor wake */
1052 return;
1053 }
1054 goto clear;
1055 }
1056 priv->txb_tail++;
1057 first = false;
1058 some_buffers_processed = true;
1059 /* Adjust priorities *before* marking the buffer as empty. */
1060 ctucan_rotate_txb_prio(ndev);
1061 ctucan_give_txtb_cmd(priv, TXT_CMD_SET_EMPTY, txtb_id);
1062 }
1063 clear:
1064 spin_unlock_irqrestore(&priv->tx_lock, flags);
1065
1066 /* If no buffers were processed this time, we cannot clear - that would introduce
1067 * a race condition.
1068 */
1069 if (some_buffers_processed) {
1070 /* Clear the interrupt again. We do not want to receive again interrupt for
1071 * the buffer already handled. If it is the last finished one then it would
1072 * cause log of spurious interrupt.
1073 */
1074 ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_TXBHCI);
1075 }
1076 } while (some_buffers_processed);
1077
1078 spin_lock_irqsave(&priv->tx_lock, flags);
1079
1080 /* Check if at least one TX buffer is free */
1081 if (CTU_CAN_FD_TXTNF(priv))
1082 netif_wake_queue(ndev);
1083
1084 spin_unlock_irqrestore(&priv->tx_lock, flags);
1085 }
1086
1087 /**
1088 * ctucan_interrupt() - CAN Isr
1089 * @irq: irq number
1090 * @dev_id: device id poniter
1091 *
1092 * This is the CTU CAN FD ISR. It checks for the type of interrupt
1093 * and invokes the corresponding ISR.
1094 *
1095 * Return:
1096 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1097 */
ctucan_interrupt(int irq,void * dev_id)1098 static irqreturn_t ctucan_interrupt(int irq, void *dev_id)
1099 {
1100 struct net_device *ndev = (struct net_device *)dev_id;
1101 struct ctucan_priv *priv = netdev_priv(ndev);
1102 u32 isr, icr;
1103 u32 imask;
1104 int irq_loops;
1105
1106 for (irq_loops = 0; irq_loops < 10000; irq_loops++) {
1107 /* Get the interrupt status */
1108 isr = ctucan_read32(priv, CTUCANFD_INT_STAT);
1109
1110 if (!isr)
1111 return irq_loops ? IRQ_HANDLED : IRQ_NONE;
1112
1113 /* Receive Buffer Not Empty Interrupt */
1114 if (FIELD_GET(REG_INT_STAT_RBNEI, isr)) {
1115 ctucan_netdev_dbg(ndev, "RXBNEI\n");
1116 /* Mask RXBNEI the first, then clear interrupt and schedule NAPI. Even if
1117 * another IRQ fires, RBNEI will always be 0 (masked).
1118 */
1119 icr = REG_INT_STAT_RBNEI;
1120 ctucan_write32(priv, CTUCANFD_INT_MASK_SET, icr);
1121 ctucan_write32(priv, CTUCANFD_INT_STAT, icr);
1122 napi_schedule(&priv->napi);
1123 }
1124
1125 /* TXT Buffer HW Command Interrupt */
1126 if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) {
1127 ctucan_netdev_dbg(ndev, "TXBHCI\n");
1128 /* Cleared inside */
1129 ctucan_tx_interrupt(ndev);
1130 }
1131
1132 /* Error interrupts */
1133 if (FIELD_GET(REG_INT_STAT_EWLI, isr) ||
1134 FIELD_GET(REG_INT_STAT_FCSI, isr) ||
1135 FIELD_GET(REG_INT_STAT_ALI, isr)) {
1136 icr = isr & (REG_INT_STAT_EWLI | REG_INT_STAT_FCSI | REG_INT_STAT_ALI);
1137
1138 ctucan_netdev_dbg(ndev, "some ERR interrupt: clearing 0x%08x\n", icr);
1139 ctucan_write32(priv, CTUCANFD_INT_STAT, icr);
1140 ctucan_err_interrupt(ndev, isr);
1141 }
1142 /* Ignore RI, TI, LFI, RFI, BSI */
1143 }
1144
1145 netdev_err(ndev, "%s: stuck interrupt (isr=0x%08x), stopping\n", __func__, isr);
1146
1147 if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) {
1148 int i;
1149
1150 netdev_err(ndev, "txb_head=0x%08x txb_tail=0x%08x\n",
1151 priv->txb_head, priv->txb_tail);
1152 for (i = 0; i < priv->ntxbufs; i++) {
1153 u32 status = ctucan_get_tx_status(priv, i);
1154
1155 netdev_err(ndev, "txb[%d] txb status=0x%08x\n", i, status);
1156 }
1157 }
1158
1159 imask = 0xffffffff;
1160 ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, imask);
1161 ctucan_write32(priv, CTUCANFD_INT_MASK_SET, imask);
1162
1163 return IRQ_HANDLED;
1164 }
1165
1166 /**
1167 * ctucan_chip_stop() - Driver stop routine
1168 * @ndev: Pointer to net_device structure
1169 *
1170 * This is the drivers stop routine. It will disable the
1171 * interrupts and disable the controller.
1172 */
ctucan_chip_stop(struct net_device * ndev)1173 static void ctucan_chip_stop(struct net_device *ndev)
1174 {
1175 struct ctucan_priv *priv = netdev_priv(ndev);
1176 u32 mask = 0xffffffff;
1177 u32 mode;
1178
1179 /* Disable interrupts and disable CAN */
1180 ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, mask);
1181 ctucan_write32(priv, CTUCANFD_INT_MASK_SET, mask);
1182 mode = ctucan_read32(priv, CTUCANFD_MODE);
1183 mode &= ~REG_MODE_ENA;
1184 ctucan_write32(priv, CTUCANFD_MODE, mode);
1185
1186 priv->can.state = CAN_STATE_STOPPED;
1187 }
1188
1189 /**
1190 * ctucan_open() - Driver open routine
1191 * @ndev: Pointer to net_device structure
1192 *
1193 * This is the driver open routine.
1194 * Return: 0 on success and failure value on error
1195 */
ctucan_open(struct net_device * ndev)1196 static int ctucan_open(struct net_device *ndev)
1197 {
1198 struct ctucan_priv *priv = netdev_priv(ndev);
1199 int ret;
1200
1201 ret = pm_runtime_get_sync(priv->dev);
1202 if (ret < 0) {
1203 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1204 __func__, ret);
1205 pm_runtime_put_noidle(priv->dev);
1206 return ret;
1207 }
1208
1209 ret = ctucan_reset(ndev);
1210 if (ret < 0)
1211 goto err_reset;
1212
1213 /* Common open */
1214 ret = open_candev(ndev);
1215 if (ret) {
1216 netdev_warn(ndev, "open_candev failed!\n");
1217 goto err_open;
1218 }
1219
1220 ret = request_irq(ndev->irq, ctucan_interrupt, priv->irq_flags, ndev->name, ndev);
1221 if (ret < 0) {
1222 netdev_err(ndev, "irq allocation for CAN failed\n");
1223 goto err_irq;
1224 }
1225
1226 ret = ctucan_chip_start(ndev);
1227 if (ret < 0) {
1228 netdev_err(ndev, "ctucan_chip_start failed!\n");
1229 goto err_chip_start;
1230 }
1231
1232 netdev_info(ndev, "ctu_can_fd device registered\n");
1233 napi_enable(&priv->napi);
1234 netif_start_queue(ndev);
1235
1236 return 0;
1237
1238 err_chip_start:
1239 free_irq(ndev->irq, ndev);
1240 err_irq:
1241 close_candev(ndev);
1242 err_open:
1243 err_reset:
1244 pm_runtime_put(priv->dev);
1245
1246 return ret;
1247 }
1248
1249 /**
1250 * ctucan_close() - Driver close routine
1251 * @ndev: Pointer to net_device structure
1252 *
1253 * Return: 0 always
1254 */
ctucan_close(struct net_device * ndev)1255 static int ctucan_close(struct net_device *ndev)
1256 {
1257 struct ctucan_priv *priv = netdev_priv(ndev);
1258
1259 netif_stop_queue(ndev);
1260 napi_disable(&priv->napi);
1261 ctucan_chip_stop(ndev);
1262 free_irq(ndev->irq, ndev);
1263 close_candev(ndev);
1264
1265 pm_runtime_put(priv->dev);
1266
1267 return 0;
1268 }
1269
1270 /**
1271 * ctucan_get_berr_counter() - error counter routine
1272 * @ndev: Pointer to net_device structure
1273 * @bec: Pointer to can_berr_counter structure
1274 *
1275 * This is the driver error counter routine.
1276 * Return: 0 on success and failure value on error
1277 */
ctucan_get_berr_counter(const struct net_device * ndev,struct can_berr_counter * bec)1278 static int ctucan_get_berr_counter(const struct net_device *ndev, struct can_berr_counter *bec)
1279 {
1280 struct ctucan_priv *priv = netdev_priv(ndev);
1281 int ret;
1282
1283 ret = pm_runtime_get_sync(priv->dev);
1284 if (ret < 0) {
1285 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", __func__, ret);
1286 pm_runtime_put_noidle(priv->dev);
1287 return ret;
1288 }
1289
1290 ctucan_get_rec_tec(priv, bec);
1291 pm_runtime_put(priv->dev);
1292
1293 return 0;
1294 }
1295
1296 static const struct net_device_ops ctucan_netdev_ops = {
1297 .ndo_open = ctucan_open,
1298 .ndo_stop = ctucan_close,
1299 .ndo_start_xmit = ctucan_start_xmit,
1300 .ndo_change_mtu = can_change_mtu,
1301 };
1302
ctucan_suspend(struct device * dev)1303 int ctucan_suspend(struct device *dev)
1304 {
1305 struct net_device *ndev = dev_get_drvdata(dev);
1306 struct ctucan_priv *priv = netdev_priv(ndev);
1307
1308 if (netif_running(ndev)) {
1309 netif_stop_queue(ndev);
1310 netif_device_detach(ndev);
1311 }
1312
1313 priv->can.state = CAN_STATE_SLEEPING;
1314
1315 return 0;
1316 }
1317 EXPORT_SYMBOL(ctucan_suspend);
1318
ctucan_resume(struct device * dev)1319 int ctucan_resume(struct device *dev)
1320 {
1321 struct net_device *ndev = dev_get_drvdata(dev);
1322 struct ctucan_priv *priv = netdev_priv(ndev);
1323
1324 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1325
1326 if (netif_running(ndev)) {
1327 netif_device_attach(ndev);
1328 netif_start_queue(ndev);
1329 }
1330
1331 return 0;
1332 }
1333 EXPORT_SYMBOL(ctucan_resume);
1334
ctucan_probe_common(struct device * dev,void __iomem * addr,int irq,unsigned int ntxbufs,unsigned long can_clk_rate,int pm_enable_call,void (* set_drvdata_fnc)(struct device * dev,struct net_device * ndev))1335 int ctucan_probe_common(struct device *dev, void __iomem *addr, int irq, unsigned int ntxbufs,
1336 unsigned long can_clk_rate, int pm_enable_call,
1337 void (*set_drvdata_fnc)(struct device *dev, struct net_device *ndev))
1338 {
1339 struct ctucan_priv *priv;
1340 struct net_device *ndev;
1341 int ret;
1342
1343 /* Create a CAN device instance */
1344 ndev = alloc_candev(sizeof(struct ctucan_priv), ntxbufs);
1345 if (!ndev)
1346 return -ENOMEM;
1347
1348 priv = netdev_priv(ndev);
1349 spin_lock_init(&priv->tx_lock);
1350 INIT_LIST_HEAD(&priv->peers_on_pdev);
1351 priv->ntxbufs = ntxbufs;
1352 priv->dev = dev;
1353 priv->can.bittiming_const = &ctu_can_fd_bit_timing_max;
1354 priv->can.data_bittiming_const = &ctu_can_fd_bit_timing_data_max;
1355 priv->can.do_set_mode = ctucan_do_set_mode;
1356
1357 /* Needed for timing adjustment to be performed as soon as possible */
1358 priv->can.do_set_bittiming = ctucan_set_bittiming;
1359 priv->can.do_set_data_bittiming = ctucan_set_data_bittiming;
1360
1361 priv->can.do_get_berr_counter = ctucan_get_berr_counter;
1362 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK
1363 | CAN_CTRLMODE_LISTENONLY
1364 | CAN_CTRLMODE_FD
1365 | CAN_CTRLMODE_PRESUME_ACK
1366 | CAN_CTRLMODE_BERR_REPORTING
1367 | CAN_CTRLMODE_FD_NON_ISO
1368 | CAN_CTRLMODE_ONE_SHOT;
1369 priv->mem_base = addr;
1370
1371 /* Get IRQ for the device */
1372 ndev->irq = irq;
1373 ndev->flags |= IFF_ECHO; /* We support local echo */
1374
1375 if (set_drvdata_fnc)
1376 set_drvdata_fnc(dev, ndev);
1377 SET_NETDEV_DEV(ndev, dev);
1378 ndev->netdev_ops = &ctucan_netdev_ops;
1379
1380 /* Getting the can_clk info */
1381 if (!can_clk_rate) {
1382 priv->can_clk = devm_clk_get(dev, NULL);
1383 if (IS_ERR(priv->can_clk)) {
1384 dev_err(dev, "Device clock not found.\n");
1385 ret = PTR_ERR(priv->can_clk);
1386 goto err_free;
1387 }
1388 can_clk_rate = clk_get_rate(priv->can_clk);
1389 }
1390
1391 priv->write_reg = ctucan_write32_le;
1392 priv->read_reg = ctucan_read32_le;
1393
1394 if (pm_enable_call)
1395 pm_runtime_enable(dev);
1396 ret = pm_runtime_get_sync(dev);
1397 if (ret < 0) {
1398 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1399 __func__, ret);
1400 pm_runtime_put_noidle(priv->dev);
1401 goto err_pmdisable;
1402 }
1403
1404 /* Check for big-endianity and set according IO-accessors */
1405 if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) {
1406 priv->write_reg = ctucan_write32_be;
1407 priv->read_reg = ctucan_read32_be;
1408 if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) {
1409 netdev_err(ndev, "CTU_CAN_FD signature not found\n");
1410 ret = -ENODEV;
1411 goto err_deviceoff;
1412 }
1413 }
1414
1415 ret = ctucan_reset(ndev);
1416 if (ret < 0)
1417 goto err_deviceoff;
1418
1419 priv->can.clock.freq = can_clk_rate;
1420
1421 netif_napi_add(ndev, &priv->napi, ctucan_rx_poll, NAPI_POLL_WEIGHT);
1422
1423 ret = register_candev(ndev);
1424 if (ret) {
1425 dev_err(dev, "fail to register failed (err=%d)\n", ret);
1426 goto err_deviceoff;
1427 }
1428
1429 pm_runtime_put(dev);
1430
1431 netdev_dbg(ndev, "mem_base=0x%p irq=%d clock=%d, no. of txt buffers:%d\n",
1432 priv->mem_base, ndev->irq, priv->can.clock.freq, priv->ntxbufs);
1433
1434 return 0;
1435
1436 err_deviceoff:
1437 pm_runtime_put(priv->dev);
1438 err_pmdisable:
1439 if (pm_enable_call)
1440 pm_runtime_disable(dev);
1441 err_free:
1442 list_del_init(&priv->peers_on_pdev);
1443 free_candev(ndev);
1444 return ret;
1445 }
1446 EXPORT_SYMBOL(ctucan_probe_common);
1447
1448 MODULE_LICENSE("GPL");
1449 MODULE_AUTHOR("Martin Jerabek <martin.jerabek01@gmail.com>");
1450 MODULE_AUTHOR("Pavel Pisa <pisa@cmp.felk.cvut.cz>");
1451 MODULE_AUTHOR("Ondrej Ille <ondrej.ille@gmail.com>");
1452 MODULE_DESCRIPTION("CTU CAN FD interface");
1453