1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/string.h>
37 #include <linux/compiler.h>
38 #include <linux/slab.h>
39 #include <asm/page.h>
40 #include <linux/cache.h>
41
42 #include "t4_values.h"
43 #include "csio_hw.h"
44 #include "csio_wr.h"
45 #include "csio_mb.h"
46 #include "csio_defs.h"
47
48 int csio_intr_coalesce_cnt; /* value:SGE_INGRESS_RX_THRESHOLD[0] */
49 static int csio_sge_thresh_reg; /* SGE_INGRESS_RX_THRESHOLD[0] */
50
51 int csio_intr_coalesce_time = 10; /* value:SGE_TIMER_VALUE_1 */
52 static int csio_sge_timer_reg = 1;
53
54 #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \
55 csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
56
57 static void
csio_get_flbuf_size(struct csio_hw * hw,struct csio_sge * sge,uint32_t reg)58 csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
59 {
60 sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A +
61 reg * sizeof(uint32_t));
62 }
63
64 /* Free list buffer size */
65 static inline uint32_t
csio_wr_fl_bufsz(struct csio_sge * sge,struct csio_dma_buf * buf)66 csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
67 {
68 return sge->sge_fl_buf_size[buf->paddr & 0xF];
69 }
70
71 /* Size of the egress queue status page */
72 static inline uint32_t
csio_wr_qstat_pgsz(struct csio_hw * hw)73 csio_wr_qstat_pgsz(struct csio_hw *hw)
74 {
75 return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
76 }
77
78 /* Ring freelist doorbell */
79 static inline void
csio_wr_ring_fldb(struct csio_hw * hw,struct csio_q * flq)80 csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
81 {
82 /*
83 * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
84 * number of bytes in the freelist queue. This translates to atleast
85 * 8 freelist buffer pointers (since each pointer is 8 bytes).
86 */
87 if (flq->inc_idx >= 8) {
88 csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) |
89 PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F,
90 MYPF_REG(SGE_PF_KDOORBELL_A));
91 flq->inc_idx &= 7;
92 }
93 }
94
95 /* Write a 0 cidx increment value to enable SGE interrupts for this queue */
96 static void
csio_wr_sge_intr_enable(struct csio_hw * hw,uint16_t iqid)97 csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
98 {
99 csio_wr_reg32(hw, CIDXINC_V(0) |
100 INGRESSQID_V(iqid) |
101 TIMERREG_V(X_TIMERREG_RESTART_COUNTER),
102 MYPF_REG(SGE_PF_GTS_A));
103 }
104
105 /*
106 * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
107 * @hw: HW module.
108 * @flq: Freelist queue.
109 *
110 * Fill up freelist buffer entries with buffers of size specified
111 * in the size register.
112 *
113 */
114 static int
csio_wr_fill_fl(struct csio_hw * hw,struct csio_q * flq)115 csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
116 {
117 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
118 struct csio_sge *sge = &wrm->sge;
119 __be64 *d = (__be64 *)(flq->vstart);
120 struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
121 uint64_t paddr;
122 int sreg = flq->un.fl.sreg;
123 int n = flq->credits;
124
125 while (n--) {
126 buf->len = sge->sge_fl_buf_size[sreg];
127 buf->vaddr = dma_alloc_coherent(&hw->pdev->dev, buf->len,
128 &buf->paddr, GFP_KERNEL);
129 if (!buf->vaddr) {
130 csio_err(hw, "Could only fill %d buffers!\n", n + 1);
131 return -ENOMEM;
132 }
133
134 paddr = buf->paddr | (sreg & 0xF);
135
136 *d++ = cpu_to_be64(paddr);
137 buf++;
138 }
139
140 return 0;
141 }
142
143 /*
144 * csio_wr_update_fl -
145 * @hw: HW module.
146 * @flq: Freelist queue.
147 *
148 *
149 */
150 static inline void
csio_wr_update_fl(struct csio_hw * hw,struct csio_q * flq,uint16_t n)151 csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
152 {
153
154 flq->inc_idx += n;
155 flq->pidx += n;
156 if (unlikely(flq->pidx >= flq->credits))
157 flq->pidx -= (uint16_t)flq->credits;
158
159 CSIO_INC_STATS(flq, n_flq_refill);
160 }
161
162 /*
163 * csio_wr_alloc_q - Allocate a WR queue and initialize it.
164 * @hw: HW module
165 * @qsize: Size of the queue in bytes
166 * @wrsize: Since of WR in this queue, if fixed.
167 * @type: Type of queue (Ingress/Egress/Freelist)
168 * @owner: Module that owns this queue.
169 * @nflb: Number of freelist buffers for FL.
170 * @sreg: What is the FL buffer size register?
171 * @iq_int_handler: Ingress queue handler in INTx mode.
172 *
173 * This function allocates and sets up a queue for the caller
174 * of size qsize, aligned at the required boundary. This is subject to
175 * be free entries being available in the queue array. If one is found,
176 * it is initialized with the allocated queue, marked as being used (owner),
177 * and a handle returned to the caller in form of the queue's index
178 * into the q_arr array.
179 * If user has indicated a freelist (by specifying nflb > 0), create
180 * another queue (with its own index into q_arr) for the freelist. Allocate
181 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
182 * idx in the ingress queue's flq.idx. This is how a Freelist is associated
183 * with its owning ingress queue.
184 */
185 int
csio_wr_alloc_q(struct csio_hw * hw,uint32_t qsize,uint32_t wrsize,uint16_t type,void * owner,uint32_t nflb,int sreg,iq_handler_t iq_intx_handler)186 csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
187 uint16_t type, void *owner, uint32_t nflb, int sreg,
188 iq_handler_t iq_intx_handler)
189 {
190 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
191 struct csio_q *q, *flq;
192 int free_idx = wrm->free_qidx;
193 int ret_idx = free_idx;
194 uint32_t qsz;
195 int flq_idx;
196
197 if (free_idx >= wrm->num_q) {
198 csio_err(hw, "No more free queues.\n");
199 return -1;
200 }
201
202 switch (type) {
203 case CSIO_EGRESS:
204 qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
205 break;
206 case CSIO_INGRESS:
207 switch (wrsize) {
208 case 16:
209 case 32:
210 case 64:
211 case 128:
212 break;
213 default:
214 csio_err(hw, "Invalid Ingress queue WR size:%d\n",
215 wrsize);
216 return -1;
217 }
218
219 /*
220 * Number of elements must be a multiple of 16
221 * So this includes status page size
222 */
223 qsz = ALIGN(qsize/wrsize, 16) * wrsize;
224
225 break;
226 case CSIO_FREELIST:
227 qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
228 break;
229 default:
230 csio_err(hw, "Invalid queue type: 0x%x\n", type);
231 return -1;
232 }
233
234 q = wrm->q_arr[free_idx];
235
236 q->vstart = dma_alloc_coherent(&hw->pdev->dev, qsz, &q->pstart,
237 GFP_KERNEL);
238 if (!q->vstart) {
239 csio_err(hw,
240 "Failed to allocate DMA memory for "
241 "queue at id: %d size: %d\n", free_idx, qsize);
242 return -1;
243 }
244
245 q->type = type;
246 q->owner = owner;
247 q->pidx = q->cidx = q->inc_idx = 0;
248 q->size = qsz;
249 q->wr_sz = wrsize; /* If using fixed size WRs */
250
251 wrm->free_qidx++;
252
253 if (type == CSIO_INGRESS) {
254 /* Since queue area is set to zero */
255 q->un.iq.genbit = 1;
256
257 /*
258 * Ingress queue status page size is always the size of
259 * the ingress queue entry.
260 */
261 q->credits = (qsz - q->wr_sz) / q->wr_sz;
262 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
263 - q->wr_sz);
264
265 /* Allocate memory for FL if requested */
266 if (nflb > 0) {
267 flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
268 sizeof(__be64), CSIO_FREELIST,
269 owner, 0, sreg, NULL);
270 if (flq_idx == -1) {
271 csio_err(hw,
272 "Failed to allocate FL queue"
273 " for IQ idx:%d\n", free_idx);
274 return -1;
275 }
276
277 /* Associate the new FL with the Ingress quue */
278 q->un.iq.flq_idx = flq_idx;
279
280 flq = wrm->q_arr[q->un.iq.flq_idx];
281 flq->un.fl.bufs = kcalloc(flq->credits,
282 sizeof(struct csio_dma_buf),
283 GFP_KERNEL);
284 if (!flq->un.fl.bufs) {
285 csio_err(hw,
286 "Failed to allocate FL queue bufs"
287 " for IQ idx:%d\n", free_idx);
288 return -1;
289 }
290
291 flq->un.fl.packen = 0;
292 flq->un.fl.offset = 0;
293 flq->un.fl.sreg = sreg;
294
295 /* Fill up the free list buffers */
296 if (csio_wr_fill_fl(hw, flq))
297 return -1;
298
299 /*
300 * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
301 * remains unpopulated,otherwise HW thinks
302 * FLQ is empty.
303 */
304 flq->pidx = flq->inc_idx = flq->credits - 8;
305 } else {
306 q->un.iq.flq_idx = -1;
307 }
308
309 /* Associate the IQ INTx handler. */
310 q->un.iq.iq_intx_handler = iq_intx_handler;
311
312 csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;
313
314 } else if (type == CSIO_EGRESS) {
315 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
316 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
317 - csio_wr_qstat_pgsz(hw));
318 csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
319 } else { /* Freelist */
320 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
321 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
322 - csio_wr_qstat_pgsz(hw));
323 csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
324 }
325
326 return ret_idx;
327 }
328
329 /*
330 * csio_wr_iq_create_rsp - Response handler for IQ creation.
331 * @hw: The HW module.
332 * @mbp: Mailbox.
333 * @iq_idx: Ingress queue that got created.
334 *
335 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
336 */
337 static int
csio_wr_iq_create_rsp(struct csio_hw * hw,struct csio_mb * mbp,int iq_idx)338 csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
339 {
340 struct csio_iq_params iqp;
341 enum fw_retval retval;
342 uint32_t iq_id;
343 int flq_idx;
344
345 memset(&iqp, 0, sizeof(struct csio_iq_params));
346
347 csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);
348
349 if (retval != FW_SUCCESS) {
350 csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
351 mempool_free(mbp, hw->mb_mempool);
352 return -EINVAL;
353 }
354
355 csio_q_iqid(hw, iq_idx) = iqp.iqid;
356 csio_q_physiqid(hw, iq_idx) = iqp.physiqid;
357 csio_q_pidx(hw, iq_idx) = csio_q_cidx(hw, iq_idx) = 0;
358 csio_q_inc_idx(hw, iq_idx) = 0;
359
360 /* Actual iq-id. */
361 iq_id = iqp.iqid - hw->wrm.fw_iq_start;
362
363 /* Set the iq-id to iq map table. */
364 if (iq_id >= CSIO_MAX_IQ) {
365 csio_err(hw,
366 "Exceeding MAX_IQ(%d) supported!"
367 " iqid:%d rel_iqid:%d FW iq_start:%d\n",
368 CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
369 mempool_free(mbp, hw->mb_mempool);
370 return -EINVAL;
371 }
372 csio_q_set_intr_map(hw, iq_idx, iq_id);
373
374 /*
375 * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
376 * ingress context of this queue. This will block interrupts to
377 * this queue until the next GTS write. Therefore, we do a
378 * 0-cidx increment GTS write for this queue just to clear the
379 * interrupt_sent bit. This will re-enable interrupts to this
380 * queue.
381 */
382 csio_wr_sge_intr_enable(hw, iqp.physiqid);
383
384 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
385 if (flq_idx != -1) {
386 struct csio_q *flq = hw->wrm.q_arr[flq_idx];
387
388 csio_q_flid(hw, flq_idx) = iqp.fl0id;
389 csio_q_cidx(hw, flq_idx) = 0;
390 csio_q_pidx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
391 csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
392
393 /* Now update SGE about the buffers allocated during init */
394 csio_wr_ring_fldb(hw, flq);
395 }
396
397 mempool_free(mbp, hw->mb_mempool);
398
399 return 0;
400 }
401
402 /*
403 * csio_wr_iq_create - Configure an Ingress queue with FW.
404 * @hw: The HW module.
405 * @priv: Private data object.
406 * @iq_idx: Ingress queue index in the WR module.
407 * @vec: MSIX vector.
408 * @portid: PCIE Channel to be associated with this queue.
409 * @async: Is this a FW asynchronous message handling queue?
410 * @cbfn: Completion callback.
411 *
412 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
413 * with alloc/write bits set.
414 */
415 int
csio_wr_iq_create(struct csio_hw * hw,void * priv,int iq_idx,uint32_t vec,uint8_t portid,bool async,void (* cbfn)(struct csio_hw *,struct csio_mb *))416 csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
417 uint32_t vec, uint8_t portid, bool async,
418 void (*cbfn) (struct csio_hw *, struct csio_mb *))
419 {
420 struct csio_mb *mbp;
421 struct csio_iq_params iqp;
422 int flq_idx;
423
424 memset(&iqp, 0, sizeof(struct csio_iq_params));
425 csio_q_portid(hw, iq_idx) = portid;
426
427 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
428 if (!mbp) {
429 csio_err(hw, "IQ command out of memory!\n");
430 return -ENOMEM;
431 }
432
433 switch (hw->intr_mode) {
434 case CSIO_IM_INTX:
435 case CSIO_IM_MSI:
436 /* For interrupt forwarding queue only */
437 if (hw->intr_iq_idx == iq_idx)
438 iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
439 else
440 iqp.iqandst = X_INTERRUPTDESTINATION_IQ;
441 iqp.iqandstindex =
442 csio_q_physiqid(hw, hw->intr_iq_idx);
443 break;
444 case CSIO_IM_MSIX:
445 iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
446 iqp.iqandstindex = (uint16_t)vec;
447 break;
448 case CSIO_IM_NONE:
449 mempool_free(mbp, hw->mb_mempool);
450 return -EINVAL;
451 }
452
453 /* Pass in the ingress queue cmd parameters */
454 iqp.pfn = hw->pfn;
455 iqp.vfn = 0;
456 iqp.iq_start = 1;
457 iqp.viid = 0;
458 iqp.type = FW_IQ_TYPE_FL_INT_CAP;
459 iqp.iqasynch = async;
460 if (csio_intr_coalesce_cnt)
461 iqp.iqanus = X_UPDATESCHEDULING_COUNTER_OPTTIMER;
462 else
463 iqp.iqanus = X_UPDATESCHEDULING_TIMER;
464 iqp.iqanud = X_UPDATEDELIVERY_INTERRUPT;
465 iqp.iqpciech = portid;
466 iqp.iqintcntthresh = (uint8_t)csio_sge_thresh_reg;
467
468 switch (csio_q_wr_sz(hw, iq_idx)) {
469 case 16:
470 iqp.iqesize = 0; break;
471 case 32:
472 iqp.iqesize = 1; break;
473 case 64:
474 iqp.iqesize = 2; break;
475 case 128:
476 iqp.iqesize = 3; break;
477 }
478
479 iqp.iqsize = csio_q_size(hw, iq_idx) /
480 csio_q_wr_sz(hw, iq_idx);
481 iqp.iqaddr = csio_q_pstart(hw, iq_idx);
482
483 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
484 if (flq_idx != -1) {
485 enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
486 struct csio_q *flq = hw->wrm.q_arr[flq_idx];
487
488 iqp.fl0paden = 1;
489 iqp.fl0packen = flq->un.fl.packen ? 1 : 0;
490 iqp.fl0fbmin = X_FETCHBURSTMIN_64B;
491 iqp.fl0fbmax = ((chip == CHELSIO_T5) ?
492 X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B);
493 iqp.fl0size = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
494 iqp.fl0addr = csio_q_pstart(hw, flq_idx);
495 }
496
497 csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
498
499 if (csio_mb_issue(hw, mbp)) {
500 csio_err(hw, "Issue of IQ cmd failed!\n");
501 mempool_free(mbp, hw->mb_mempool);
502 return -EINVAL;
503 }
504
505 if (cbfn != NULL)
506 return 0;
507
508 return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
509 }
510
511 /*
512 * csio_wr_eq_create_rsp - Response handler for EQ creation.
513 * @hw: The HW module.
514 * @mbp: Mailbox.
515 * @eq_idx: Egress queue that got created.
516 *
517 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
518 */
519 static int
csio_wr_eq_cfg_rsp(struct csio_hw * hw,struct csio_mb * mbp,int eq_idx)520 csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
521 {
522 struct csio_eq_params eqp;
523 enum fw_retval retval;
524
525 memset(&eqp, 0, sizeof(struct csio_eq_params));
526
527 csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);
528
529 if (retval != FW_SUCCESS) {
530 csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
531 mempool_free(mbp, hw->mb_mempool);
532 return -EINVAL;
533 }
534
535 csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid;
536 csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
537 csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0;
538 csio_q_inc_idx(hw, eq_idx) = 0;
539
540 mempool_free(mbp, hw->mb_mempool);
541
542 return 0;
543 }
544
545 /*
546 * csio_wr_eq_create - Configure an Egress queue with FW.
547 * @hw: HW module.
548 * @priv: Private data.
549 * @eq_idx: Egress queue index in the WR module.
550 * @iq_idx: Associated ingress queue index.
551 * @cbfn: Completion callback.
552 *
553 * This API configures a offload egress queue with FW by issuing a
554 * FW_EQ_OFLD_CMD (with alloc + write ) mailbox.
555 */
556 int
csio_wr_eq_create(struct csio_hw * hw,void * priv,int eq_idx,int iq_idx,uint8_t portid,void (* cbfn)(struct csio_hw *,struct csio_mb *))557 csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
558 int iq_idx, uint8_t portid,
559 void (*cbfn) (struct csio_hw *, struct csio_mb *))
560 {
561 struct csio_mb *mbp;
562 struct csio_eq_params eqp;
563
564 memset(&eqp, 0, sizeof(struct csio_eq_params));
565
566 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
567 if (!mbp) {
568 csio_err(hw, "EQ command out of memory!\n");
569 return -ENOMEM;
570 }
571
572 eqp.pfn = hw->pfn;
573 eqp.vfn = 0;
574 eqp.eqstart = 1;
575 eqp.hostfcmode = X_HOSTFCMODE_STATUS_PAGE;
576 eqp.iqid = csio_q_iqid(hw, iq_idx);
577 eqp.fbmin = X_FETCHBURSTMIN_64B;
578 eqp.fbmax = X_FETCHBURSTMAX_512B;
579 eqp.cidxfthresh = 0;
580 eqp.pciechn = portid;
581 eqp.eqsize = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
582 eqp.eqaddr = csio_q_pstart(hw, eq_idx);
583
584 csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
585 &eqp, cbfn);
586
587 if (csio_mb_issue(hw, mbp)) {
588 csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
589 mempool_free(mbp, hw->mb_mempool);
590 return -EINVAL;
591 }
592
593 if (cbfn != NULL)
594 return 0;
595
596 return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
597 }
598
599 /*
600 * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
601 * @hw: The HW module.
602 * @mbp: Mailbox.
603 * @iq_idx: Ingress queue that was freed.
604 *
605 * Handle FW_IQ_CMD (free) mailbox completion.
606 */
607 static int
csio_wr_iq_destroy_rsp(struct csio_hw * hw,struct csio_mb * mbp,int iq_idx)608 csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
609 {
610 enum fw_retval retval = csio_mb_fw_retval(mbp);
611 int rv = 0;
612
613 if (retval != FW_SUCCESS)
614 rv = -EINVAL;
615
616 mempool_free(mbp, hw->mb_mempool);
617
618 return rv;
619 }
620
621 /*
622 * csio_wr_iq_destroy - Free an ingress queue.
623 * @hw: The HW module.
624 * @priv: Private data object.
625 * @iq_idx: Ingress queue index to destroy
626 * @cbfn: Completion callback.
627 *
628 * This API frees an ingress queue by issuing the FW_IQ_CMD
629 * with the free bit set.
630 */
631 static int
csio_wr_iq_destroy(struct csio_hw * hw,void * priv,int iq_idx,void (* cbfn)(struct csio_hw *,struct csio_mb *))632 csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
633 void (*cbfn)(struct csio_hw *, struct csio_mb *))
634 {
635 int rv = 0;
636 struct csio_mb *mbp;
637 struct csio_iq_params iqp;
638 int flq_idx;
639
640 memset(&iqp, 0, sizeof(struct csio_iq_params));
641
642 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
643 if (!mbp)
644 return -ENOMEM;
645
646 iqp.pfn = hw->pfn;
647 iqp.vfn = 0;
648 iqp.iqid = csio_q_iqid(hw, iq_idx);
649 iqp.type = FW_IQ_TYPE_FL_INT_CAP;
650
651 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
652 if (flq_idx != -1)
653 iqp.fl0id = csio_q_flid(hw, flq_idx);
654 else
655 iqp.fl0id = 0xFFFF;
656
657 iqp.fl1id = 0xFFFF;
658
659 csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
660
661 rv = csio_mb_issue(hw, mbp);
662 if (rv != 0) {
663 mempool_free(mbp, hw->mb_mempool);
664 return rv;
665 }
666
667 if (cbfn != NULL)
668 return 0;
669
670 return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
671 }
672
673 /*
674 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
675 * @hw: The HW module.
676 * @mbp: Mailbox.
677 * @eq_idx: Egress queue that was freed.
678 *
679 * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
680 */
681 static int
csio_wr_eq_destroy_rsp(struct csio_hw * hw,struct csio_mb * mbp,int eq_idx)682 csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
683 {
684 enum fw_retval retval = csio_mb_fw_retval(mbp);
685 int rv = 0;
686
687 if (retval != FW_SUCCESS)
688 rv = -EINVAL;
689
690 mempool_free(mbp, hw->mb_mempool);
691
692 return rv;
693 }
694
695 /*
696 * csio_wr_eq_destroy - Free an Egress queue.
697 * @hw: The HW module.
698 * @priv: Private data object.
699 * @eq_idx: Egress queue index to destroy
700 * @cbfn: Completion callback.
701 *
702 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
703 * with the free bit set.
704 */
705 static int
csio_wr_eq_destroy(struct csio_hw * hw,void * priv,int eq_idx,void (* cbfn)(struct csio_hw *,struct csio_mb *))706 csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
707 void (*cbfn) (struct csio_hw *, struct csio_mb *))
708 {
709 int rv = 0;
710 struct csio_mb *mbp;
711 struct csio_eq_params eqp;
712
713 memset(&eqp, 0, sizeof(struct csio_eq_params));
714
715 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
716 if (!mbp)
717 return -ENOMEM;
718
719 eqp.pfn = hw->pfn;
720 eqp.vfn = 0;
721 eqp.eqid = csio_q_eqid(hw, eq_idx);
722
723 csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);
724
725 rv = csio_mb_issue(hw, mbp);
726 if (rv != 0) {
727 mempool_free(mbp, hw->mb_mempool);
728 return rv;
729 }
730
731 if (cbfn != NULL)
732 return 0;
733
734 return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
735 }
736
737 /*
738 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
739 * @hw: HW module
740 * @qidx: Egress queue index
741 *
742 * Cleanup the Egress queue status page.
743 */
744 static void
csio_wr_cleanup_eq_stpg(struct csio_hw * hw,int qidx)745 csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
746 {
747 struct csio_q *q = csio_hw_to_wrm(hw)->q_arr[qidx];
748 struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
749
750 memset(stp, 0, sizeof(*stp));
751 }
752
753 /*
754 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
755 * @hw: HW module
756 * @qidx: Ingress queue index
757 *
758 * Cleanup the footer entries in the given ingress queue,
759 * set to 1 the internal copy of genbit.
760 */
761 static void
csio_wr_cleanup_iq_ftr(struct csio_hw * hw,int qidx)762 csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
763 {
764 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
765 struct csio_q *q = wrm->q_arr[qidx];
766 void *wr;
767 struct csio_iqwr_footer *ftr;
768 uint32_t i = 0;
769
770 /* set to 1 since we are just about zero out genbit */
771 q->un.iq.genbit = 1;
772
773 for (i = 0; i < q->credits; i++) {
774 /* Get the WR */
775 wr = (void *)((uintptr_t)q->vstart +
776 (i * q->wr_sz));
777 /* Get the footer */
778 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
779 (q->wr_sz - sizeof(*ftr)));
780 /* Zero out footer */
781 memset(ftr, 0, sizeof(*ftr));
782 }
783 }
784
785 int
csio_wr_destroy_queues(struct csio_hw * hw,bool cmd)786 csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
787 {
788 int i, flq_idx;
789 struct csio_q *q;
790 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
791 int rv;
792
793 for (i = 0; i < wrm->free_qidx; i++) {
794 q = wrm->q_arr[i];
795
796 switch (q->type) {
797 case CSIO_EGRESS:
798 if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
799 csio_wr_cleanup_eq_stpg(hw, i);
800 if (!cmd) {
801 csio_q_eqid(hw, i) = CSIO_MAX_QID;
802 continue;
803 }
804
805 rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
806 if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
807 cmd = false;
808
809 csio_q_eqid(hw, i) = CSIO_MAX_QID;
810 }
811 fallthrough;
812 case CSIO_INGRESS:
813 if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
814 csio_wr_cleanup_iq_ftr(hw, i);
815 if (!cmd) {
816 csio_q_iqid(hw, i) = CSIO_MAX_QID;
817 flq_idx = csio_q_iq_flq_idx(hw, i);
818 if (flq_idx != -1)
819 csio_q_flid(hw, flq_idx) =
820 CSIO_MAX_QID;
821 continue;
822 }
823
824 rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
825 if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
826 cmd = false;
827
828 csio_q_iqid(hw, i) = CSIO_MAX_QID;
829 flq_idx = csio_q_iq_flq_idx(hw, i);
830 if (flq_idx != -1)
831 csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
832 }
833 break;
834 default:
835 break;
836 }
837 }
838
839 hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;
840
841 return 0;
842 }
843
844 /*
845 * csio_wr_get - Get requested size of WR entry/entries from queue.
846 * @hw: HW module.
847 * @qidx: Index of queue.
848 * @size: Cumulative size of Work request(s).
849 * @wrp: Work request pair.
850 *
851 * If requested credits are available, return the start address of the
852 * work request in the work request pair. Set pidx accordingly and
853 * return.
854 *
855 * NOTE about WR pair:
856 * ==================
857 * A WR can start towards the end of a queue, and then continue at the
858 * beginning, since the queue is considered to be circular. This will
859 * require a pair of address/size to be passed back to the caller -
860 * hence Work request pair format.
861 */
862 int
csio_wr_get(struct csio_hw * hw,int qidx,uint32_t size,struct csio_wr_pair * wrp)863 csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
864 struct csio_wr_pair *wrp)
865 {
866 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
867 struct csio_q *q = wrm->q_arr[qidx];
868 void *cwr = (void *)((uintptr_t)(q->vstart) +
869 (q->pidx * CSIO_QCREDIT_SZ));
870 struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
871 uint16_t cidx = q->cidx = ntohs(stp->cidx);
872 uint16_t pidx = q->pidx;
873 uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ);
874 int req_credits = req_sz / CSIO_QCREDIT_SZ;
875 int credits;
876
877 CSIO_DB_ASSERT(q->owner != NULL);
878 CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
879 CSIO_DB_ASSERT(cidx <= q->credits);
880
881 /* Calculate credits */
882 if (pidx > cidx) {
883 credits = q->credits - (pidx - cidx) - 1;
884 } else if (cidx > pidx) {
885 credits = cidx - pidx - 1;
886 } else {
887 /* cidx == pidx, empty queue */
888 credits = q->credits;
889 CSIO_INC_STATS(q, n_qempty);
890 }
891
892 /*
893 * Check if we have enough credits.
894 * credits = 1 implies queue is full.
895 */
896 if (!credits || (req_credits > credits)) {
897 CSIO_INC_STATS(q, n_qfull);
898 return -EBUSY;
899 }
900
901 /*
902 * If we are here, we have enough credits to satisfy the
903 * request. Check if we are near the end of q, and if WR spills over.
904 * If it does, use the first addr/size to cover the queue until
905 * the end. Fit the remainder portion of the request at the top
906 * of queue and return it in the second addr/len. Set pidx
907 * accordingly.
908 */
909 if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
910 wrp->addr1 = cwr;
911 wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
912 wrp->addr2 = q->vstart;
913 wrp->size2 = req_sz - wrp->size1;
914 q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
915 CSIO_QCREDIT_SZ);
916 CSIO_INC_STATS(q, n_qwrap);
917 CSIO_INC_STATS(q, n_eq_wr_split);
918 } else {
919 wrp->addr1 = cwr;
920 wrp->size1 = req_sz;
921 wrp->addr2 = NULL;
922 wrp->size2 = 0;
923 q->pidx += (uint16_t)req_credits;
924
925 /* We are the end of queue, roll back pidx to top of queue */
926 if (unlikely(q->pidx == q->credits)) {
927 q->pidx = 0;
928 CSIO_INC_STATS(q, n_qwrap);
929 }
930 }
931
932 q->inc_idx = (uint16_t)req_credits;
933
934 CSIO_INC_STATS(q, n_tot_reqs);
935
936 return 0;
937 }
938
939 /*
940 * csio_wr_copy_to_wrp - Copies given data into WR.
941 * @data_buf - Data buffer
942 * @wrp - Work request pair.
943 * @wr_off - Work request offset.
944 * @data_len - Data length.
945 *
946 * Copies the given data in Work Request. Work request pair(wrp) specifies
947 * address information of Work request.
948 * Returns: none
949 */
950 void
csio_wr_copy_to_wrp(void * data_buf,struct csio_wr_pair * wrp,uint32_t wr_off,uint32_t data_len)951 csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
952 uint32_t wr_off, uint32_t data_len)
953 {
954 uint32_t nbytes;
955
956 /* Number of space available in buffer addr1 of WRP */
957 nbytes = ((wrp->size1 - wr_off) >= data_len) ?
958 data_len : (wrp->size1 - wr_off);
959
960 memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
961 data_len -= nbytes;
962
963 /* Write the remaining data from the begining of circular buffer */
964 if (data_len) {
965 CSIO_DB_ASSERT(data_len <= wrp->size2);
966 CSIO_DB_ASSERT(wrp->addr2 != NULL);
967 memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
968 }
969 }
970
971 /*
972 * csio_wr_issue - Notify chip of Work request.
973 * @hw: HW module.
974 * @qidx: Index of queue.
975 * @prio: 0: Low priority, 1: High priority
976 *
977 * Rings the SGE Doorbell by writing the current producer index of the passed
978 * in queue into the register.
979 *
980 */
981 int
csio_wr_issue(struct csio_hw * hw,int qidx,bool prio)982 csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
983 {
984 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
985 struct csio_q *q = wrm->q_arr[qidx];
986
987 CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
988
989 wmb();
990 /* Ring SGE Doorbell writing q->pidx into it */
991 csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) |
992 PIDX_T5_V(q->inc_idx) | DBTYPE_F,
993 MYPF_REG(SGE_PF_KDOORBELL_A));
994 q->inc_idx = 0;
995
996 return 0;
997 }
998
999 static inline uint32_t
csio_wr_avail_qcredits(struct csio_q * q)1000 csio_wr_avail_qcredits(struct csio_q *q)
1001 {
1002 if (q->pidx > q->cidx)
1003 return q->pidx - q->cidx;
1004 else if (q->cidx > q->pidx)
1005 return q->credits - (q->cidx - q->pidx);
1006 else
1007 return 0; /* cidx == pidx, empty queue */
1008 }
1009
1010 /*
1011 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
1012 * @hw: HW module.
1013 * @flq: The freelist queue.
1014 *
1015 * Invalidate the driver's version of a freelist buffer entry,
1016 * without freeing the associated the DMA memory. The entry
1017 * to be invalidated is picked up from the current Free list
1018 * queue cidx.
1019 *
1020 */
1021 static inline void
csio_wr_inval_flq_buf(struct csio_hw * hw,struct csio_q * flq)1022 csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
1023 {
1024 flq->cidx++;
1025 if (flq->cidx == flq->credits) {
1026 flq->cidx = 0;
1027 CSIO_INC_STATS(flq, n_qwrap);
1028 }
1029 }
1030
1031 /*
1032 * csio_wr_process_fl - Process a freelist completion.
1033 * @hw: HW module.
1034 * @q: The ingress queue attached to the Freelist.
1035 * @wr: The freelist completion WR in the ingress queue.
1036 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
1037 * @iq_handler: Caller's handler for this completion.
1038 * @priv: Private pointer of caller
1039 *
1040 */
1041 static inline void
csio_wr_process_fl(struct csio_hw * hw,struct csio_q * q,void * wr,uint32_t len_to_qid,void (* iq_handler)(struct csio_hw *,void *,uint32_t,struct csio_fl_dma_buf *,void *),void * priv)1042 csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
1043 void *wr, uint32_t len_to_qid,
1044 void (*iq_handler)(struct csio_hw *, void *,
1045 uint32_t, struct csio_fl_dma_buf *,
1046 void *),
1047 void *priv)
1048 {
1049 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1050 struct csio_sge *sge = &wrm->sge;
1051 struct csio_fl_dma_buf flb;
1052 struct csio_dma_buf *buf, *fbuf;
1053 uint32_t bufsz, len, lastlen = 0;
1054 int n;
1055 struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];
1056
1057 CSIO_DB_ASSERT(flq != NULL);
1058
1059 len = len_to_qid;
1060
1061 if (len & IQWRF_NEWBUF) {
1062 if (flq->un.fl.offset > 0) {
1063 csio_wr_inval_flq_buf(hw, flq);
1064 flq->un.fl.offset = 0;
1065 }
1066 len = IQWRF_LEN_GET(len);
1067 }
1068
1069 CSIO_DB_ASSERT(len != 0);
1070
1071 flb.totlen = len;
1072
1073 /* Consume all freelist buffers used for len bytes */
1074 for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) {
1075 buf = &flq->un.fl.bufs[flq->cidx];
1076 bufsz = csio_wr_fl_bufsz(sge, buf);
1077
1078 fbuf->paddr = buf->paddr;
1079 fbuf->vaddr = buf->vaddr;
1080
1081 flb.offset = flq->un.fl.offset;
1082 lastlen = min(bufsz, len);
1083 fbuf->len = lastlen;
1084
1085 len -= lastlen;
1086 if (!len)
1087 break;
1088 csio_wr_inval_flq_buf(hw, flq);
1089 }
1090
1091 flb.defer_free = flq->un.fl.packen ? 0 : 1;
1092
1093 iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
1094 &flb, priv);
1095
1096 if (flq->un.fl.packen)
1097 flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
1098 else
1099 csio_wr_inval_flq_buf(hw, flq);
1100
1101 }
1102
1103 /*
1104 * csio_is_new_iqwr - Is this a new Ingress queue entry ?
1105 * @q: Ingress quueue.
1106 * @ftr: Ingress queue WR SGE footer.
1107 *
1108 * The entry is new if our generation bit matches the corresponding
1109 * bit in the footer of the current WR.
1110 */
1111 static inline bool
csio_is_new_iqwr(struct csio_q * q,struct csio_iqwr_footer * ftr)1112 csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
1113 {
1114 return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
1115 }
1116
1117 /*
1118 * csio_wr_process_iq - Process elements in Ingress queue.
1119 * @hw: HW pointer
1120 * @qidx: Index of queue
1121 * @iq_handler: Handler for this queue
1122 * @priv: Caller's private pointer
1123 *
1124 * This routine walks through every entry of the ingress queue, calling
1125 * the provided iq_handler with the entry, until the generation bit
1126 * flips.
1127 */
1128 int
csio_wr_process_iq(struct csio_hw * hw,struct csio_q * q,void (* iq_handler)(struct csio_hw *,void *,uint32_t,struct csio_fl_dma_buf *,void *),void * priv)1129 csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
1130 void (*iq_handler)(struct csio_hw *, void *,
1131 uint32_t, struct csio_fl_dma_buf *,
1132 void *),
1133 void *priv)
1134 {
1135 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1136 void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
1137 struct csio_iqwr_footer *ftr;
1138 uint32_t wr_type, fw_qid, qid;
1139 struct csio_q *q_completed;
1140 struct csio_q *flq = csio_iq_has_fl(q) ?
1141 wrm->q_arr[q->un.iq.flq_idx] : NULL;
1142 int rv = 0;
1143
1144 /* Get the footer */
1145 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1146 (q->wr_sz - sizeof(*ftr)));
1147
1148 /*
1149 * When q wrapped around last time, driver should have inverted
1150 * ic.genbit as well.
1151 */
1152 while (csio_is_new_iqwr(q, ftr)) {
1153
1154 CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
1155 (uintptr_t)q->vwrap);
1156 rmb();
1157 wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);
1158
1159 switch (wr_type) {
1160 case X_RSPD_TYPE_CPL:
1161 /* Subtract footer from WR len */
1162 iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
1163 break;
1164 case X_RSPD_TYPE_FLBUF:
1165 csio_wr_process_fl(hw, q, wr,
1166 ntohl(ftr->pldbuflen_qid),
1167 iq_handler, priv);
1168 break;
1169 case X_RSPD_TYPE_INTR:
1170 fw_qid = ntohl(ftr->pldbuflen_qid);
1171 qid = fw_qid - wrm->fw_iq_start;
1172 q_completed = hw->wrm.intr_map[qid];
1173
1174 if (unlikely(qid ==
1175 csio_q_physiqid(hw, hw->intr_iq_idx))) {
1176 /*
1177 * We are already in the Forward Interrupt
1178 * Interrupt Queue Service! Do-not service
1179 * again!
1180 *
1181 */
1182 } else {
1183 CSIO_DB_ASSERT(q_completed);
1184 CSIO_DB_ASSERT(
1185 q_completed->un.iq.iq_intx_handler);
1186
1187 /* Call the queue handler. */
1188 q_completed->un.iq.iq_intx_handler(hw, NULL,
1189 0, NULL, (void *)q_completed);
1190 }
1191 break;
1192 default:
1193 csio_warn(hw, "Unknown resp type 0x%x received\n",
1194 wr_type);
1195 CSIO_INC_STATS(q, n_rsp_unknown);
1196 break;
1197 }
1198
1199 /*
1200 * Ingress *always* has fixed size WR entries. Therefore,
1201 * there should always be complete WRs towards the end of
1202 * queue.
1203 */
1204 if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {
1205
1206 /* Roll over to start of queue */
1207 q->cidx = 0;
1208 wr = q->vstart;
1209
1210 /* Toggle genbit */
1211 q->un.iq.genbit ^= 0x1;
1212
1213 CSIO_INC_STATS(q, n_qwrap);
1214 } else {
1215 q->cidx++;
1216 wr = (void *)((uintptr_t)(q->vstart) +
1217 (q->cidx * q->wr_sz));
1218 }
1219
1220 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1221 (q->wr_sz - sizeof(*ftr)));
1222 q->inc_idx++;
1223
1224 } /* while (q->un.iq.genbit == hdr->genbit) */
1225
1226 /*
1227 * We need to re-arm SGE interrupts in case we got a stray interrupt,
1228 * especially in msix mode. With INTx, this may be a common occurence.
1229 */
1230 if (unlikely(!q->inc_idx)) {
1231 CSIO_INC_STATS(q, n_stray_comp);
1232 rv = -EINVAL;
1233 goto restart;
1234 }
1235
1236 /* Replenish free list buffers if pending falls below low water mark */
1237 if (flq) {
1238 uint32_t avail = csio_wr_avail_qcredits(flq);
1239 if (avail <= 16) {
1240 /* Make sure in FLQ, atleast 1 credit (8 FL buffers)
1241 * remains unpopulated otherwise HW thinks
1242 * FLQ is empty.
1243 */
1244 csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
1245 csio_wr_ring_fldb(hw, flq);
1246 }
1247 }
1248
1249 restart:
1250 /* Now inform SGE about our incremental index value */
1251 csio_wr_reg32(hw, CIDXINC_V(q->inc_idx) |
1252 INGRESSQID_V(q->un.iq.physiqid) |
1253 TIMERREG_V(csio_sge_timer_reg),
1254 MYPF_REG(SGE_PF_GTS_A));
1255 q->stats.n_tot_rsps += q->inc_idx;
1256
1257 q->inc_idx = 0;
1258
1259 return rv;
1260 }
1261
1262 int
csio_wr_process_iq_idx(struct csio_hw * hw,int qidx,void (* iq_handler)(struct csio_hw *,void *,uint32_t,struct csio_fl_dma_buf *,void *),void * priv)1263 csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
1264 void (*iq_handler)(struct csio_hw *, void *,
1265 uint32_t, struct csio_fl_dma_buf *,
1266 void *),
1267 void *priv)
1268 {
1269 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1270 struct csio_q *iq = wrm->q_arr[qidx];
1271
1272 return csio_wr_process_iq(hw, iq, iq_handler, priv);
1273 }
1274
1275 static int
csio_closest_timer(struct csio_sge * s,int time)1276 csio_closest_timer(struct csio_sge *s, int time)
1277 {
1278 int i, delta, match = 0, min_delta = INT_MAX;
1279
1280 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1281 delta = time - s->timer_val[i];
1282 if (delta < 0)
1283 delta = -delta;
1284 if (delta < min_delta) {
1285 min_delta = delta;
1286 match = i;
1287 }
1288 }
1289 return match;
1290 }
1291
1292 static int
csio_closest_thresh(struct csio_sge * s,int cnt)1293 csio_closest_thresh(struct csio_sge *s, int cnt)
1294 {
1295 int i, delta, match = 0, min_delta = INT_MAX;
1296
1297 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1298 delta = cnt - s->counter_val[i];
1299 if (delta < 0)
1300 delta = -delta;
1301 if (delta < min_delta) {
1302 min_delta = delta;
1303 match = i;
1304 }
1305 }
1306 return match;
1307 }
1308
1309 static void
csio_wr_fixup_host_params(struct csio_hw * hw)1310 csio_wr_fixup_host_params(struct csio_hw *hw)
1311 {
1312 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1313 struct csio_sge *sge = &wrm->sge;
1314 uint32_t clsz = L1_CACHE_BYTES;
1315 uint32_t s_hps = PAGE_SHIFT - 10;
1316 uint32_t stat_len = clsz > 64 ? 128 : 64;
1317 u32 fl_align = clsz < 32 ? 32 : clsz;
1318 u32 pack_align;
1319 u32 ingpad, ingpack;
1320
1321 csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) |
1322 HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) |
1323 HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) |
1324 HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps),
1325 SGE_HOST_PAGE_SIZE_A);
1326
1327 /* T5 introduced the separation of the Free List Padding and
1328 * Packing Boundaries. Thus, we can select a smaller Padding
1329 * Boundary to avoid uselessly chewing up PCIe Link and Memory
1330 * Bandwidth, and use a Packing Boundary which is large enough
1331 * to avoid false sharing between CPUs, etc.
1332 *
1333 * For the PCI Link, the smaller the Padding Boundary the
1334 * better. For the Memory Controller, a smaller Padding
1335 * Boundary is better until we cross under the Memory Line
1336 * Size (the minimum unit of transfer to/from Memory). If we
1337 * have a Padding Boundary which is smaller than the Memory
1338 * Line Size, that'll involve a Read-Modify-Write cycle on the
1339 * Memory Controller which is never good.
1340 */
1341
1342 /* We want the Packing Boundary to be based on the Cache Line
1343 * Size in order to help avoid False Sharing performance
1344 * issues between CPUs, etc. We also want the Packing
1345 * Boundary to incorporate the PCI-E Maximum Payload Size. We
1346 * get best performance when the Packing Boundary is a
1347 * multiple of the Maximum Payload Size.
1348 */
1349 pack_align = fl_align;
1350 if (pci_is_pcie(hw->pdev)) {
1351 u32 mps, mps_log;
1352 u16 devctl;
1353
1354 /* The PCIe Device Control Maximum Payload Size field
1355 * [bits 7:5] encodes sizes as powers of 2 starting at
1356 * 128 bytes.
1357 */
1358 pcie_capability_read_word(hw->pdev, PCI_EXP_DEVCTL, &devctl);
1359 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
1360 mps = 1 << mps_log;
1361 if (mps > pack_align)
1362 pack_align = mps;
1363 }
1364
1365 /* T5/T6 have a special interpretation of the "0"
1366 * value for the Packing Boundary. This corresponds to 16
1367 * bytes instead of the expected 32 bytes.
1368 */
1369 if (pack_align <= 16) {
1370 ingpack = INGPACKBOUNDARY_16B_X;
1371 fl_align = 16;
1372 } else if (pack_align == 32) {
1373 ingpack = INGPACKBOUNDARY_64B_X;
1374 fl_align = 64;
1375 } else {
1376 u32 pack_align_log = fls(pack_align) - 1;
1377
1378 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
1379 fl_align = pack_align;
1380 }
1381
1382 /* Use the smallest Ingress Padding which isn't smaller than
1383 * the Memory Controller Read/Write Size. We'll take that as
1384 * being 8 bytes since we don't know of any system with a
1385 * wider Memory Controller Bus Width.
1386 */
1387 if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
1388 ingpad = INGPADBOUNDARY_32B_X;
1389 else
1390 ingpad = T6_INGPADBOUNDARY_8B_X;
1391
1392 csio_set_reg_field(hw, SGE_CONTROL_A,
1393 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
1394 EGRSTATUSPAGESIZE_F,
1395 INGPADBOUNDARY_V(ingpad) |
1396 EGRSTATUSPAGESIZE_V(stat_len != 64));
1397 csio_set_reg_field(hw, SGE_CONTROL2_A,
1398 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
1399 INGPACKBOUNDARY_V(ingpack));
1400
1401 /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
1402 csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A);
1403
1404 /*
1405 * If using hard params, the following will get set correctly
1406 * in csio_wr_set_sge().
1407 */
1408 if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
1409 csio_wr_reg32(hw,
1410 (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) +
1411 fl_align - 1) & ~(fl_align - 1),
1412 SGE_FL_BUFFER_SIZE2_A);
1413 csio_wr_reg32(hw,
1414 (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) +
1415 fl_align - 1) & ~(fl_align - 1),
1416 SGE_FL_BUFFER_SIZE3_A);
1417 }
1418
1419 sge->csio_fl_align = fl_align;
1420
1421 csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A);
1422
1423 /* default value of rx_dma_offset of the NIC driver */
1424 csio_set_reg_field(hw, SGE_CONTROL_A,
1425 PKTSHIFT_V(PKTSHIFT_M),
1426 PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET));
1427
1428 csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A,
1429 CSUM_HAS_PSEUDO_HDR_F, 0);
1430 }
1431
1432 static void
csio_init_intr_coalesce_parms(struct csio_hw * hw)1433 csio_init_intr_coalesce_parms(struct csio_hw *hw)
1434 {
1435 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1436 struct csio_sge *sge = &wrm->sge;
1437
1438 csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
1439 if (csio_intr_coalesce_cnt) {
1440 csio_sge_thresh_reg = 0;
1441 csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
1442 return;
1443 }
1444
1445 csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
1446 }
1447
1448 /*
1449 * csio_wr_get_sge - Get SGE register values.
1450 * @hw: HW module.
1451 *
1452 * Used by non-master functions and by master-functions relying on config file.
1453 */
1454 static void
csio_wr_get_sge(struct csio_hw * hw)1455 csio_wr_get_sge(struct csio_hw *hw)
1456 {
1457 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1458 struct csio_sge *sge = &wrm->sge;
1459 uint32_t ingpad;
1460 int i;
1461 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
1462 u32 ingress_rx_threshold;
1463
1464 sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1465
1466 ingpad = INGPADBOUNDARY_G(sge->sge_control);
1467
1468 switch (ingpad) {
1469 case X_INGPCIEBOUNDARY_32B:
1470 sge->csio_fl_align = 32; break;
1471 case X_INGPCIEBOUNDARY_64B:
1472 sge->csio_fl_align = 64; break;
1473 case X_INGPCIEBOUNDARY_128B:
1474 sge->csio_fl_align = 128; break;
1475 case X_INGPCIEBOUNDARY_256B:
1476 sge->csio_fl_align = 256; break;
1477 case X_INGPCIEBOUNDARY_512B:
1478 sge->csio_fl_align = 512; break;
1479 case X_INGPCIEBOUNDARY_1024B:
1480 sge->csio_fl_align = 1024; break;
1481 case X_INGPCIEBOUNDARY_2048B:
1482 sge->csio_fl_align = 2048; break;
1483 case X_INGPCIEBOUNDARY_4096B:
1484 sge->csio_fl_align = 4096; break;
1485 }
1486
1487 for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1488 csio_get_flbuf_size(hw, sge, i);
1489
1490 timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A);
1491 timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A);
1492 timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A);
1493
1494 sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
1495 TIMERVALUE0_G(timer_value_0_and_1));
1496 sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
1497 TIMERVALUE1_G(timer_value_0_and_1));
1498 sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
1499 TIMERVALUE2_G(timer_value_2_and_3));
1500 sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
1501 TIMERVALUE3_G(timer_value_2_and_3));
1502 sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
1503 TIMERVALUE4_G(timer_value_4_and_5));
1504 sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
1505 TIMERVALUE5_G(timer_value_4_and_5));
1506
1507 ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A);
1508 sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
1509 sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
1510 sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
1511 sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
1512
1513 csio_init_intr_coalesce_parms(hw);
1514 }
1515
1516 /*
1517 * csio_wr_set_sge - Initialize SGE registers
1518 * @hw: HW module.
1519 *
1520 * Used by Master function to initialize SGE registers in the absence
1521 * of a config file.
1522 */
1523 static void
csio_wr_set_sge(struct csio_hw * hw)1524 csio_wr_set_sge(struct csio_hw *hw)
1525 {
1526 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1527 struct csio_sge *sge = &wrm->sge;
1528 int i;
1529
1530 /*
1531 * Set up our basic SGE mode to deliver CPL messages to our Ingress
1532 * Queue and Packet Date to the Free List.
1533 */
1534 csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
1535
1536 sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1537
1538 /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
1539
1540 /*
1541 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
1542 * and generate an interrupt when this occurs so we can recover.
1543 */
1544 csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A,
1545 LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1546 LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1547 csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A,
1548 HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1549 HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1550
1551 csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
1552 ENABLE_DROP_F);
1553
1554 /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
1555
1556 CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
1557 csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
1558 & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A);
1559 csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
1560 & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A);
1561 CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
1562 CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
1563 CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
1564 CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
1565 CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);
1566
1567 for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1568 csio_get_flbuf_size(hw, sge, i);
1569
1570 /* Initialize interrupt coalescing attributes */
1571 sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
1572 sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
1573 sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
1574 sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
1575 sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
1576 sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;
1577
1578 sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
1579 sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
1580 sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
1581 sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;
1582
1583 csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) |
1584 THRESHOLD_1_V(sge->counter_val[1]) |
1585 THRESHOLD_2_V(sge->counter_val[2]) |
1586 THRESHOLD_3_V(sge->counter_val[3]),
1587 SGE_INGRESS_RX_THRESHOLD_A);
1588
1589 csio_wr_reg32(hw,
1590 TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
1591 TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])),
1592 SGE_TIMER_VALUE_0_AND_1_A);
1593
1594 csio_wr_reg32(hw,
1595 TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
1596 TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])),
1597 SGE_TIMER_VALUE_2_AND_3_A);
1598
1599 csio_wr_reg32(hw,
1600 TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
1601 TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])),
1602 SGE_TIMER_VALUE_4_AND_5_A);
1603
1604 csio_init_intr_coalesce_parms(hw);
1605 }
1606
1607 void
csio_wr_sge_init(struct csio_hw * hw)1608 csio_wr_sge_init(struct csio_hw *hw)
1609 {
1610 /*
1611 * If we are master and chip is not initialized:
1612 * - If we plan to use the config file, we need to fixup some
1613 * host specific registers, and read the rest of the SGE
1614 * configuration.
1615 * - If we dont plan to use the config file, we need to initialize
1616 * SGE entirely, including fixing the host specific registers.
1617 * If we are master and chip is initialized, just read and work off of
1618 * the already initialized SGE values.
1619 * If we arent the master, we are only allowed to read and work off of
1620 * the already initialized SGE values.
1621 *
1622 * Therefore, before calling this function, we assume that the master-
1623 * ship of the card, state and whether to use config file or not, have
1624 * already been decided.
1625 */
1626 if (csio_is_hw_master(hw)) {
1627 if (hw->fw_state != CSIO_DEV_STATE_INIT)
1628 csio_wr_fixup_host_params(hw);
1629
1630 if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
1631 csio_wr_get_sge(hw);
1632 else
1633 csio_wr_set_sge(hw);
1634 } else
1635 csio_wr_get_sge(hw);
1636 }
1637
1638 /*
1639 * csio_wrm_init - Initialize Work request module.
1640 * @wrm: WR module
1641 * @hw: HW pointer
1642 *
1643 * Allocates memory for an array of queue pointers starting at q_arr.
1644 */
1645 int
csio_wrm_init(struct csio_wrm * wrm,struct csio_hw * hw)1646 csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
1647 {
1648 int i;
1649
1650 if (!wrm->num_q) {
1651 csio_err(hw, "Num queues is not set\n");
1652 return -EINVAL;
1653 }
1654
1655 wrm->q_arr = kcalloc(wrm->num_q, sizeof(struct csio_q *), GFP_KERNEL);
1656 if (!wrm->q_arr)
1657 goto err;
1658
1659 for (i = 0; i < wrm->num_q; i++) {
1660 wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
1661 if (!wrm->q_arr[i]) {
1662 while (--i >= 0)
1663 kfree(wrm->q_arr[i]);
1664 goto err_free_arr;
1665 }
1666 }
1667 wrm->free_qidx = 0;
1668
1669 return 0;
1670
1671 err_free_arr:
1672 kfree(wrm->q_arr);
1673 err:
1674 return -ENOMEM;
1675 }
1676
1677 /*
1678 * csio_wrm_exit - Initialize Work request module.
1679 * @wrm: WR module
1680 * @hw: HW module
1681 *
1682 * Uninitialize WR module. Free q_arr and pointers in it.
1683 * We have the additional job of freeing the DMA memory associated
1684 * with the queues.
1685 */
1686 void
csio_wrm_exit(struct csio_wrm * wrm,struct csio_hw * hw)1687 csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
1688 {
1689 int i;
1690 uint32_t j;
1691 struct csio_q *q;
1692 struct csio_dma_buf *buf;
1693
1694 for (i = 0; i < wrm->num_q; i++) {
1695 q = wrm->q_arr[i];
1696
1697 if (wrm->free_qidx && (i < wrm->free_qidx)) {
1698 if (q->type == CSIO_FREELIST) {
1699 if (!q->un.fl.bufs)
1700 continue;
1701 for (j = 0; j < q->credits; j++) {
1702 buf = &q->un.fl.bufs[j];
1703 if (!buf->vaddr)
1704 continue;
1705 dma_free_coherent(&hw->pdev->dev,
1706 buf->len, buf->vaddr,
1707 buf->paddr);
1708 }
1709 kfree(q->un.fl.bufs);
1710 }
1711 dma_free_coherent(&hw->pdev->dev, q->size,
1712 q->vstart, q->pstart);
1713 }
1714 kfree(q);
1715 }
1716
1717 hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;
1718
1719 kfree(wrm->q_arr);
1720 }
1721