1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <generated/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/pm.h>
31 #include <linux/cpu.h>
32 #include <linux/console.h>
33 #include <linux/vmalloc.h>
34 #include <linux/swap.h>
35 #include <linux/kmsg_dump.h>
36 #include <linux/syscore_ops.h>
37 
38 #include <asm/page.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/system.h>
42 #include <asm/sections.h>
43 
44 /* Per cpu memory for storing cpu states in case of system crash. */
45 note_buf_t __percpu *crash_notes;
46 
47 /* vmcoreinfo stuff */
48 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
49 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
50 size_t vmcoreinfo_size;
51 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
52 
53 /* Location of the reserved area for the crash kernel */
54 struct resource crashk_res = {
55 	.name  = "Crash kernel",
56 	.start = 0,
57 	.end   = 0,
58 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
59 };
60 
kexec_should_crash(struct task_struct * p)61 int kexec_should_crash(struct task_struct *p)
62 {
63 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
64 		return 1;
65 	return 0;
66 }
67 
68 /*
69  * When kexec transitions to the new kernel there is a one-to-one
70  * mapping between physical and virtual addresses.  On processors
71  * where you can disable the MMU this is trivial, and easy.  For
72  * others it is still a simple predictable page table to setup.
73  *
74  * In that environment kexec copies the new kernel to its final
75  * resting place.  This means I can only support memory whose
76  * physical address can fit in an unsigned long.  In particular
77  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
78  * If the assembly stub has more restrictive requirements
79  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
80  * defined more restrictively in <asm/kexec.h>.
81  *
82  * The code for the transition from the current kernel to the
83  * the new kernel is placed in the control_code_buffer, whose size
84  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
85  * page of memory is necessary, but some architectures require more.
86  * Because this memory must be identity mapped in the transition from
87  * virtual to physical addresses it must live in the range
88  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
89  * modifiable.
90  *
91  * The assembly stub in the control code buffer is passed a linked list
92  * of descriptor pages detailing the source pages of the new kernel,
93  * and the destination addresses of those source pages.  As this data
94  * structure is not used in the context of the current OS, it must
95  * be self-contained.
96  *
97  * The code has been made to work with highmem pages and will use a
98  * destination page in its final resting place (if it happens
99  * to allocate it).  The end product of this is that most of the
100  * physical address space, and most of RAM can be used.
101  *
102  * Future directions include:
103  *  - allocating a page table with the control code buffer identity
104  *    mapped, to simplify machine_kexec and make kexec_on_panic more
105  *    reliable.
106  */
107 
108 /*
109  * KIMAGE_NO_DEST is an impossible destination address..., for
110  * allocating pages whose destination address we do not care about.
111  */
112 #define KIMAGE_NO_DEST (-1UL)
113 
114 static int kimage_is_destination_range(struct kimage *image,
115 				       unsigned long start, unsigned long end);
116 static struct page *kimage_alloc_page(struct kimage *image,
117 				       gfp_t gfp_mask,
118 				       unsigned long dest);
119 
do_kimage_alloc(struct kimage ** rimage,unsigned long entry,unsigned long nr_segments,struct kexec_segment __user * segments)120 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
121 	                    unsigned long nr_segments,
122                             struct kexec_segment __user *segments)
123 {
124 	size_t segment_bytes;
125 	struct kimage *image;
126 	unsigned long i;
127 	int result;
128 
129 	/* Allocate a controlling structure */
130 	result = -ENOMEM;
131 	image = kzalloc(sizeof(*image), GFP_KERNEL);
132 	if (!image)
133 		goto out;
134 
135 	image->head = 0;
136 	image->entry = &image->head;
137 	image->last_entry = &image->head;
138 	image->control_page = ~0; /* By default this does not apply */
139 	image->start = entry;
140 	image->type = KEXEC_TYPE_DEFAULT;
141 
142 	/* Initialize the list of control pages */
143 	INIT_LIST_HEAD(&image->control_pages);
144 
145 	/* Initialize the list of destination pages */
146 	INIT_LIST_HEAD(&image->dest_pages);
147 
148 	/* Initialize the list of unusable pages */
149 	INIT_LIST_HEAD(&image->unuseable_pages);
150 
151 	/* Read in the segments */
152 	image->nr_segments = nr_segments;
153 	segment_bytes = nr_segments * sizeof(*segments);
154 	result = copy_from_user(image->segment, segments, segment_bytes);
155 	if (result) {
156 		result = -EFAULT;
157 		goto out;
158 	}
159 
160 	/*
161 	 * Verify we have good destination addresses.  The caller is
162 	 * responsible for making certain we don't attempt to load
163 	 * the new image into invalid or reserved areas of RAM.  This
164 	 * just verifies it is an address we can use.
165 	 *
166 	 * Since the kernel does everything in page size chunks ensure
167 	 * the destination addresses are page aligned.  Too many
168 	 * special cases crop of when we don't do this.  The most
169 	 * insidious is getting overlapping destination addresses
170 	 * simply because addresses are changed to page size
171 	 * granularity.
172 	 */
173 	result = -EADDRNOTAVAIL;
174 	for (i = 0; i < nr_segments; i++) {
175 		unsigned long mstart, mend;
176 
177 		mstart = image->segment[i].mem;
178 		mend   = mstart + image->segment[i].memsz;
179 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
180 			goto out;
181 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
182 			goto out;
183 	}
184 
185 	/* Verify our destination addresses do not overlap.
186 	 * If we alloed overlapping destination addresses
187 	 * through very weird things can happen with no
188 	 * easy explanation as one segment stops on another.
189 	 */
190 	result = -EINVAL;
191 	for (i = 0; i < nr_segments; i++) {
192 		unsigned long mstart, mend;
193 		unsigned long j;
194 
195 		mstart = image->segment[i].mem;
196 		mend   = mstart + image->segment[i].memsz;
197 		for (j = 0; j < i; j++) {
198 			unsigned long pstart, pend;
199 			pstart = image->segment[j].mem;
200 			pend   = pstart + image->segment[j].memsz;
201 			/* Do the segments overlap ? */
202 			if ((mend > pstart) && (mstart < pend))
203 				goto out;
204 		}
205 	}
206 
207 	/* Ensure our buffer sizes are strictly less than
208 	 * our memory sizes.  This should always be the case,
209 	 * and it is easier to check up front than to be surprised
210 	 * later on.
211 	 */
212 	result = -EINVAL;
213 	for (i = 0; i < nr_segments; i++) {
214 		if (image->segment[i].bufsz > image->segment[i].memsz)
215 			goto out;
216 	}
217 
218 	result = 0;
219 out:
220 	if (result == 0)
221 		*rimage = image;
222 	else
223 		kfree(image);
224 
225 	return result;
226 
227 }
228 
kimage_normal_alloc(struct kimage ** rimage,unsigned long entry,unsigned long nr_segments,struct kexec_segment __user * segments)229 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
230 				unsigned long nr_segments,
231 				struct kexec_segment __user *segments)
232 {
233 	int result;
234 	struct kimage *image;
235 
236 	/* Allocate and initialize a controlling structure */
237 	image = NULL;
238 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
239 	if (result)
240 		goto out;
241 
242 	*rimage = image;
243 
244 	/*
245 	 * Find a location for the control code buffer, and add it
246 	 * the vector of segments so that it's pages will also be
247 	 * counted as destination pages.
248 	 */
249 	result = -ENOMEM;
250 	image->control_code_page = kimage_alloc_control_pages(image,
251 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
252 	if (!image->control_code_page) {
253 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
254 		goto out;
255 	}
256 
257 	image->swap_page = kimage_alloc_control_pages(image, 0);
258 	if (!image->swap_page) {
259 		printk(KERN_ERR "Could not allocate swap buffer\n");
260 		goto out;
261 	}
262 
263 	result = 0;
264  out:
265 	if (result == 0)
266 		*rimage = image;
267 	else
268 		kfree(image);
269 
270 	return result;
271 }
272 
kimage_crash_alloc(struct kimage ** rimage,unsigned long entry,unsigned long nr_segments,struct kexec_segment __user * segments)273 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
274 				unsigned long nr_segments,
275 				struct kexec_segment __user *segments)
276 {
277 	int result;
278 	struct kimage *image;
279 	unsigned long i;
280 
281 	image = NULL;
282 	/* Verify we have a valid entry point */
283 	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
284 		result = -EADDRNOTAVAIL;
285 		goto out;
286 	}
287 
288 	/* Allocate and initialize a controlling structure */
289 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
290 	if (result)
291 		goto out;
292 
293 	/* Enable the special crash kernel control page
294 	 * allocation policy.
295 	 */
296 	image->control_page = crashk_res.start;
297 	image->type = KEXEC_TYPE_CRASH;
298 
299 	/*
300 	 * Verify we have good destination addresses.  Normally
301 	 * the caller is responsible for making certain we don't
302 	 * attempt to load the new image into invalid or reserved
303 	 * areas of RAM.  But crash kernels are preloaded into a
304 	 * reserved area of ram.  We must ensure the addresses
305 	 * are in the reserved area otherwise preloading the
306 	 * kernel could corrupt things.
307 	 */
308 	result = -EADDRNOTAVAIL;
309 	for (i = 0; i < nr_segments; i++) {
310 		unsigned long mstart, mend;
311 
312 		mstart = image->segment[i].mem;
313 		mend = mstart + image->segment[i].memsz - 1;
314 		/* Ensure we are within the crash kernel limits */
315 		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
316 			goto out;
317 	}
318 
319 	/*
320 	 * Find a location for the control code buffer, and add
321 	 * the vector of segments so that it's pages will also be
322 	 * counted as destination pages.
323 	 */
324 	result = -ENOMEM;
325 	image->control_code_page = kimage_alloc_control_pages(image,
326 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
327 	if (!image->control_code_page) {
328 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
329 		goto out;
330 	}
331 
332 	result = 0;
333 out:
334 	if (result == 0)
335 		*rimage = image;
336 	else
337 		kfree(image);
338 
339 	return result;
340 }
341 
kimage_is_destination_range(struct kimage * image,unsigned long start,unsigned long end)342 static int kimage_is_destination_range(struct kimage *image,
343 					unsigned long start,
344 					unsigned long end)
345 {
346 	unsigned long i;
347 
348 	for (i = 0; i < image->nr_segments; i++) {
349 		unsigned long mstart, mend;
350 
351 		mstart = image->segment[i].mem;
352 		mend = mstart + image->segment[i].memsz;
353 		if ((end > mstart) && (start < mend))
354 			return 1;
355 	}
356 
357 	return 0;
358 }
359 
kimage_alloc_pages(gfp_t gfp_mask,unsigned int order)360 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
361 {
362 	struct page *pages;
363 
364 	pages = alloc_pages(gfp_mask, order);
365 	if (pages) {
366 		unsigned int count, i;
367 		pages->mapping = NULL;
368 		set_page_private(pages, order);
369 		count = 1 << order;
370 		for (i = 0; i < count; i++)
371 			SetPageReserved(pages + i);
372 	}
373 
374 	return pages;
375 }
376 
kimage_free_pages(struct page * page)377 static void kimage_free_pages(struct page *page)
378 {
379 	unsigned int order, count, i;
380 
381 	order = page_private(page);
382 	count = 1 << order;
383 	for (i = 0; i < count; i++)
384 		ClearPageReserved(page + i);
385 	__free_pages(page, order);
386 }
387 
kimage_free_page_list(struct list_head * list)388 static void kimage_free_page_list(struct list_head *list)
389 {
390 	struct list_head *pos, *next;
391 
392 	list_for_each_safe(pos, next, list) {
393 		struct page *page;
394 
395 		page = list_entry(pos, struct page, lru);
396 		list_del(&page->lru);
397 		kimage_free_pages(page);
398 	}
399 }
400 
kimage_alloc_normal_control_pages(struct kimage * image,unsigned int order)401 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
402 							unsigned int order)
403 {
404 	/* Control pages are special, they are the intermediaries
405 	 * that are needed while we copy the rest of the pages
406 	 * to their final resting place.  As such they must
407 	 * not conflict with either the destination addresses
408 	 * or memory the kernel is already using.
409 	 *
410 	 * The only case where we really need more than one of
411 	 * these are for architectures where we cannot disable
412 	 * the MMU and must instead generate an identity mapped
413 	 * page table for all of the memory.
414 	 *
415 	 * At worst this runs in O(N) of the image size.
416 	 */
417 	struct list_head extra_pages;
418 	struct page *pages;
419 	unsigned int count;
420 
421 	count = 1 << order;
422 	INIT_LIST_HEAD(&extra_pages);
423 
424 	/* Loop while I can allocate a page and the page allocated
425 	 * is a destination page.
426 	 */
427 	do {
428 		unsigned long pfn, epfn, addr, eaddr;
429 
430 		pages = kimage_alloc_pages(GFP_KERNEL, order);
431 		if (!pages)
432 			break;
433 		pfn   = page_to_pfn(pages);
434 		epfn  = pfn + count;
435 		addr  = pfn << PAGE_SHIFT;
436 		eaddr = epfn << PAGE_SHIFT;
437 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
438 			      kimage_is_destination_range(image, addr, eaddr)) {
439 			list_add(&pages->lru, &extra_pages);
440 			pages = NULL;
441 		}
442 	} while (!pages);
443 
444 	if (pages) {
445 		/* Remember the allocated page... */
446 		list_add(&pages->lru, &image->control_pages);
447 
448 		/* Because the page is already in it's destination
449 		 * location we will never allocate another page at
450 		 * that address.  Therefore kimage_alloc_pages
451 		 * will not return it (again) and we don't need
452 		 * to give it an entry in image->segment[].
453 		 */
454 	}
455 	/* Deal with the destination pages I have inadvertently allocated.
456 	 *
457 	 * Ideally I would convert multi-page allocations into single
458 	 * page allocations, and add everything to image->dest_pages.
459 	 *
460 	 * For now it is simpler to just free the pages.
461 	 */
462 	kimage_free_page_list(&extra_pages);
463 
464 	return pages;
465 }
466 
kimage_alloc_crash_control_pages(struct kimage * image,unsigned int order)467 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
468 						      unsigned int order)
469 {
470 	/* Control pages are special, they are the intermediaries
471 	 * that are needed while we copy the rest of the pages
472 	 * to their final resting place.  As such they must
473 	 * not conflict with either the destination addresses
474 	 * or memory the kernel is already using.
475 	 *
476 	 * Control pages are also the only pags we must allocate
477 	 * when loading a crash kernel.  All of the other pages
478 	 * are specified by the segments and we just memcpy
479 	 * into them directly.
480 	 *
481 	 * The only case where we really need more than one of
482 	 * these are for architectures where we cannot disable
483 	 * the MMU and must instead generate an identity mapped
484 	 * page table for all of the memory.
485 	 *
486 	 * Given the low demand this implements a very simple
487 	 * allocator that finds the first hole of the appropriate
488 	 * size in the reserved memory region, and allocates all
489 	 * of the memory up to and including the hole.
490 	 */
491 	unsigned long hole_start, hole_end, size;
492 	struct page *pages;
493 
494 	pages = NULL;
495 	size = (1 << order) << PAGE_SHIFT;
496 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
497 	hole_end   = hole_start + size - 1;
498 	while (hole_end <= crashk_res.end) {
499 		unsigned long i;
500 
501 		if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
502 			break;
503 		if (hole_end > crashk_res.end)
504 			break;
505 		/* See if I overlap any of the segments */
506 		for (i = 0; i < image->nr_segments; i++) {
507 			unsigned long mstart, mend;
508 
509 			mstart = image->segment[i].mem;
510 			mend   = mstart + image->segment[i].memsz - 1;
511 			if ((hole_end >= mstart) && (hole_start <= mend)) {
512 				/* Advance the hole to the end of the segment */
513 				hole_start = (mend + (size - 1)) & ~(size - 1);
514 				hole_end   = hole_start + size - 1;
515 				break;
516 			}
517 		}
518 		/* If I don't overlap any segments I have found my hole! */
519 		if (i == image->nr_segments) {
520 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
521 			break;
522 		}
523 	}
524 	if (pages)
525 		image->control_page = hole_end;
526 
527 	return pages;
528 }
529 
530 
kimage_alloc_control_pages(struct kimage * image,unsigned int order)531 struct page *kimage_alloc_control_pages(struct kimage *image,
532 					 unsigned int order)
533 {
534 	struct page *pages = NULL;
535 
536 	switch (image->type) {
537 	case KEXEC_TYPE_DEFAULT:
538 		pages = kimage_alloc_normal_control_pages(image, order);
539 		break;
540 	case KEXEC_TYPE_CRASH:
541 		pages = kimage_alloc_crash_control_pages(image, order);
542 		break;
543 	}
544 
545 	return pages;
546 }
547 
kimage_add_entry(struct kimage * image,kimage_entry_t entry)548 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
549 {
550 	if (*image->entry != 0)
551 		image->entry++;
552 
553 	if (image->entry == image->last_entry) {
554 		kimage_entry_t *ind_page;
555 		struct page *page;
556 
557 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
558 		if (!page)
559 			return -ENOMEM;
560 
561 		ind_page = page_address(page);
562 		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
563 		image->entry = ind_page;
564 		image->last_entry = ind_page +
565 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
566 	}
567 	*image->entry = entry;
568 	image->entry++;
569 	*image->entry = 0;
570 
571 	return 0;
572 }
573 
kimage_set_destination(struct kimage * image,unsigned long destination)574 static int kimage_set_destination(struct kimage *image,
575 				   unsigned long destination)
576 {
577 	int result;
578 
579 	destination &= PAGE_MASK;
580 	result = kimage_add_entry(image, destination | IND_DESTINATION);
581 	if (result == 0)
582 		image->destination = destination;
583 
584 	return result;
585 }
586 
587 
kimage_add_page(struct kimage * image,unsigned long page)588 static int kimage_add_page(struct kimage *image, unsigned long page)
589 {
590 	int result;
591 
592 	page &= PAGE_MASK;
593 	result = kimage_add_entry(image, page | IND_SOURCE);
594 	if (result == 0)
595 		image->destination += PAGE_SIZE;
596 
597 	return result;
598 }
599 
600 
kimage_free_extra_pages(struct kimage * image)601 static void kimage_free_extra_pages(struct kimage *image)
602 {
603 	/* Walk through and free any extra destination pages I may have */
604 	kimage_free_page_list(&image->dest_pages);
605 
606 	/* Walk through and free any unusable pages I have cached */
607 	kimage_free_page_list(&image->unuseable_pages);
608 
609 }
kimage_terminate(struct kimage * image)610 static void kimage_terminate(struct kimage *image)
611 {
612 	if (*image->entry != 0)
613 		image->entry++;
614 
615 	*image->entry = IND_DONE;
616 }
617 
618 #define for_each_kimage_entry(image, ptr, entry) \
619 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
620 		ptr = (entry & IND_INDIRECTION)? \
621 			phys_to_virt((entry & PAGE_MASK)): ptr +1)
622 
kimage_free_entry(kimage_entry_t entry)623 static void kimage_free_entry(kimage_entry_t entry)
624 {
625 	struct page *page;
626 
627 	page = pfn_to_page(entry >> PAGE_SHIFT);
628 	kimage_free_pages(page);
629 }
630 
kimage_free(struct kimage * image)631 static void kimage_free(struct kimage *image)
632 {
633 	kimage_entry_t *ptr, entry;
634 	kimage_entry_t ind = 0;
635 
636 	if (!image)
637 		return;
638 
639 	kimage_free_extra_pages(image);
640 	for_each_kimage_entry(image, ptr, entry) {
641 		if (entry & IND_INDIRECTION) {
642 			/* Free the previous indirection page */
643 			if (ind & IND_INDIRECTION)
644 				kimage_free_entry(ind);
645 			/* Save this indirection page until we are
646 			 * done with it.
647 			 */
648 			ind = entry;
649 		}
650 		else if (entry & IND_SOURCE)
651 			kimage_free_entry(entry);
652 	}
653 	/* Free the final indirection page */
654 	if (ind & IND_INDIRECTION)
655 		kimage_free_entry(ind);
656 
657 	/* Handle any machine specific cleanup */
658 	machine_kexec_cleanup(image);
659 
660 	/* Free the kexec control pages... */
661 	kimage_free_page_list(&image->control_pages);
662 	kfree(image);
663 }
664 
kimage_dst_used(struct kimage * image,unsigned long page)665 static kimage_entry_t *kimage_dst_used(struct kimage *image,
666 					unsigned long page)
667 {
668 	kimage_entry_t *ptr, entry;
669 	unsigned long destination = 0;
670 
671 	for_each_kimage_entry(image, ptr, entry) {
672 		if (entry & IND_DESTINATION)
673 			destination = entry & PAGE_MASK;
674 		else if (entry & IND_SOURCE) {
675 			if (page == destination)
676 				return ptr;
677 			destination += PAGE_SIZE;
678 		}
679 	}
680 
681 	return NULL;
682 }
683 
kimage_alloc_page(struct kimage * image,gfp_t gfp_mask,unsigned long destination)684 static struct page *kimage_alloc_page(struct kimage *image,
685 					gfp_t gfp_mask,
686 					unsigned long destination)
687 {
688 	/*
689 	 * Here we implement safeguards to ensure that a source page
690 	 * is not copied to its destination page before the data on
691 	 * the destination page is no longer useful.
692 	 *
693 	 * To do this we maintain the invariant that a source page is
694 	 * either its own destination page, or it is not a
695 	 * destination page at all.
696 	 *
697 	 * That is slightly stronger than required, but the proof
698 	 * that no problems will not occur is trivial, and the
699 	 * implementation is simply to verify.
700 	 *
701 	 * When allocating all pages normally this algorithm will run
702 	 * in O(N) time, but in the worst case it will run in O(N^2)
703 	 * time.   If the runtime is a problem the data structures can
704 	 * be fixed.
705 	 */
706 	struct page *page;
707 	unsigned long addr;
708 
709 	/*
710 	 * Walk through the list of destination pages, and see if I
711 	 * have a match.
712 	 */
713 	list_for_each_entry(page, &image->dest_pages, lru) {
714 		addr = page_to_pfn(page) << PAGE_SHIFT;
715 		if (addr == destination) {
716 			list_del(&page->lru);
717 			return page;
718 		}
719 	}
720 	page = NULL;
721 	while (1) {
722 		kimage_entry_t *old;
723 
724 		/* Allocate a page, if we run out of memory give up */
725 		page = kimage_alloc_pages(gfp_mask, 0);
726 		if (!page)
727 			return NULL;
728 		/* If the page cannot be used file it away */
729 		if (page_to_pfn(page) >
730 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
731 			list_add(&page->lru, &image->unuseable_pages);
732 			continue;
733 		}
734 		addr = page_to_pfn(page) << PAGE_SHIFT;
735 
736 		/* If it is the destination page we want use it */
737 		if (addr == destination)
738 			break;
739 
740 		/* If the page is not a destination page use it */
741 		if (!kimage_is_destination_range(image, addr,
742 						  addr + PAGE_SIZE))
743 			break;
744 
745 		/*
746 		 * I know that the page is someones destination page.
747 		 * See if there is already a source page for this
748 		 * destination page.  And if so swap the source pages.
749 		 */
750 		old = kimage_dst_used(image, addr);
751 		if (old) {
752 			/* If so move it */
753 			unsigned long old_addr;
754 			struct page *old_page;
755 
756 			old_addr = *old & PAGE_MASK;
757 			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
758 			copy_highpage(page, old_page);
759 			*old = addr | (*old & ~PAGE_MASK);
760 
761 			/* The old page I have found cannot be a
762 			 * destination page, so return it if it's
763 			 * gfp_flags honor the ones passed in.
764 			 */
765 			if (!(gfp_mask & __GFP_HIGHMEM) &&
766 			    PageHighMem(old_page)) {
767 				kimage_free_pages(old_page);
768 				continue;
769 			}
770 			addr = old_addr;
771 			page = old_page;
772 			break;
773 		}
774 		else {
775 			/* Place the page on the destination list I
776 			 * will use it later.
777 			 */
778 			list_add(&page->lru, &image->dest_pages);
779 		}
780 	}
781 
782 	return page;
783 }
784 
kimage_load_normal_segment(struct kimage * image,struct kexec_segment * segment)785 static int kimage_load_normal_segment(struct kimage *image,
786 					 struct kexec_segment *segment)
787 {
788 	unsigned long maddr;
789 	unsigned long ubytes, mbytes;
790 	int result;
791 	unsigned char __user *buf;
792 
793 	result = 0;
794 	buf = segment->buf;
795 	ubytes = segment->bufsz;
796 	mbytes = segment->memsz;
797 	maddr = segment->mem;
798 
799 	result = kimage_set_destination(image, maddr);
800 	if (result < 0)
801 		goto out;
802 
803 	while (mbytes) {
804 		struct page *page;
805 		char *ptr;
806 		size_t uchunk, mchunk;
807 
808 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
809 		if (!page) {
810 			result  = -ENOMEM;
811 			goto out;
812 		}
813 		result = kimage_add_page(image, page_to_pfn(page)
814 								<< PAGE_SHIFT);
815 		if (result < 0)
816 			goto out;
817 
818 		ptr = kmap(page);
819 		/* Start with a clear page */
820 		clear_page(ptr);
821 		ptr += maddr & ~PAGE_MASK;
822 		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
823 		if (mchunk > mbytes)
824 			mchunk = mbytes;
825 
826 		uchunk = mchunk;
827 		if (uchunk > ubytes)
828 			uchunk = ubytes;
829 
830 		result = copy_from_user(ptr, buf, uchunk);
831 		kunmap(page);
832 		if (result) {
833 			result = -EFAULT;
834 			goto out;
835 		}
836 		ubytes -= uchunk;
837 		maddr  += mchunk;
838 		buf    += mchunk;
839 		mbytes -= mchunk;
840 	}
841 out:
842 	return result;
843 }
844 
kimage_load_crash_segment(struct kimage * image,struct kexec_segment * segment)845 static int kimage_load_crash_segment(struct kimage *image,
846 					struct kexec_segment *segment)
847 {
848 	/* For crash dumps kernels we simply copy the data from
849 	 * user space to it's destination.
850 	 * We do things a page at a time for the sake of kmap.
851 	 */
852 	unsigned long maddr;
853 	unsigned long ubytes, mbytes;
854 	int result;
855 	unsigned char __user *buf;
856 
857 	result = 0;
858 	buf = segment->buf;
859 	ubytes = segment->bufsz;
860 	mbytes = segment->memsz;
861 	maddr = segment->mem;
862 	while (mbytes) {
863 		struct page *page;
864 		char *ptr;
865 		size_t uchunk, mchunk;
866 
867 		page = pfn_to_page(maddr >> PAGE_SHIFT);
868 		if (!page) {
869 			result  = -ENOMEM;
870 			goto out;
871 		}
872 		ptr = kmap(page);
873 		ptr += maddr & ~PAGE_MASK;
874 		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
875 		if (mchunk > mbytes)
876 			mchunk = mbytes;
877 
878 		uchunk = mchunk;
879 		if (uchunk > ubytes) {
880 			uchunk = ubytes;
881 			/* Zero the trailing part of the page */
882 			memset(ptr + uchunk, 0, mchunk - uchunk);
883 		}
884 		result = copy_from_user(ptr, buf, uchunk);
885 		kexec_flush_icache_page(page);
886 		kunmap(page);
887 		if (result) {
888 			result = -EFAULT;
889 			goto out;
890 		}
891 		ubytes -= uchunk;
892 		maddr  += mchunk;
893 		buf    += mchunk;
894 		mbytes -= mchunk;
895 	}
896 out:
897 	return result;
898 }
899 
kimage_load_segment(struct kimage * image,struct kexec_segment * segment)900 static int kimage_load_segment(struct kimage *image,
901 				struct kexec_segment *segment)
902 {
903 	int result = -ENOMEM;
904 
905 	switch (image->type) {
906 	case KEXEC_TYPE_DEFAULT:
907 		result = kimage_load_normal_segment(image, segment);
908 		break;
909 	case KEXEC_TYPE_CRASH:
910 		result = kimage_load_crash_segment(image, segment);
911 		break;
912 	}
913 
914 	return result;
915 }
916 
917 /*
918  * Exec Kernel system call: for obvious reasons only root may call it.
919  *
920  * This call breaks up into three pieces.
921  * - A generic part which loads the new kernel from the current
922  *   address space, and very carefully places the data in the
923  *   allocated pages.
924  *
925  * - A generic part that interacts with the kernel and tells all of
926  *   the devices to shut down.  Preventing on-going dmas, and placing
927  *   the devices in a consistent state so a later kernel can
928  *   reinitialize them.
929  *
930  * - A machine specific part that includes the syscall number
931  *   and the copies the image to it's final destination.  And
932  *   jumps into the image at entry.
933  *
934  * kexec does not sync, or unmount filesystems so if you need
935  * that to happen you need to do that yourself.
936  */
937 struct kimage *kexec_image;
938 struct kimage *kexec_crash_image;
939 
940 static DEFINE_MUTEX(kexec_mutex);
941 
SYSCALL_DEFINE4(kexec_load,unsigned long,entry,unsigned long,nr_segments,struct kexec_segment __user *,segments,unsigned long,flags)942 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
943 		struct kexec_segment __user *, segments, unsigned long, flags)
944 {
945 	struct kimage **dest_image, *image;
946 	int result;
947 
948 	/* We only trust the superuser with rebooting the system. */
949 	if (!capable(CAP_SYS_BOOT))
950 		return -EPERM;
951 
952 	/*
953 	 * Verify we have a legal set of flags
954 	 * This leaves us room for future extensions.
955 	 */
956 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
957 		return -EINVAL;
958 
959 	/* Verify we are on the appropriate architecture */
960 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
961 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
962 		return -EINVAL;
963 
964 	/* Put an artificial cap on the number
965 	 * of segments passed to kexec_load.
966 	 */
967 	if (nr_segments > KEXEC_SEGMENT_MAX)
968 		return -EINVAL;
969 
970 	image = NULL;
971 	result = 0;
972 
973 	/* Because we write directly to the reserved memory
974 	 * region when loading crash kernels we need a mutex here to
975 	 * prevent multiple crash  kernels from attempting to load
976 	 * simultaneously, and to prevent a crash kernel from loading
977 	 * over the top of a in use crash kernel.
978 	 *
979 	 * KISS: always take the mutex.
980 	 */
981 	if (!mutex_trylock(&kexec_mutex))
982 		return -EBUSY;
983 
984 	dest_image = &kexec_image;
985 	if (flags & KEXEC_ON_CRASH)
986 		dest_image = &kexec_crash_image;
987 	if (nr_segments > 0) {
988 		unsigned long i;
989 
990 		/* Loading another kernel to reboot into */
991 		if ((flags & KEXEC_ON_CRASH) == 0)
992 			result = kimage_normal_alloc(&image, entry,
993 							nr_segments, segments);
994 		/* Loading another kernel to switch to if this one crashes */
995 		else if (flags & KEXEC_ON_CRASH) {
996 			/* Free any current crash dump kernel before
997 			 * we corrupt it.
998 			 */
999 			kimage_free(xchg(&kexec_crash_image, NULL));
1000 			result = kimage_crash_alloc(&image, entry,
1001 						     nr_segments, segments);
1002 		}
1003 		if (result)
1004 			goto out;
1005 
1006 		if (flags & KEXEC_PRESERVE_CONTEXT)
1007 			image->preserve_context = 1;
1008 		result = machine_kexec_prepare(image);
1009 		if (result)
1010 			goto out;
1011 
1012 		for (i = 0; i < nr_segments; i++) {
1013 			result = kimage_load_segment(image, &image->segment[i]);
1014 			if (result)
1015 				goto out;
1016 		}
1017 		kimage_terminate(image);
1018 	}
1019 	/* Install the new kernel, and  Uninstall the old */
1020 	image = xchg(dest_image, image);
1021 
1022 out:
1023 	mutex_unlock(&kexec_mutex);
1024 	kimage_free(image);
1025 
1026 	return result;
1027 }
1028 
1029 #ifdef CONFIG_COMPAT
compat_sys_kexec_load(unsigned long entry,unsigned long nr_segments,struct compat_kexec_segment __user * segments,unsigned long flags)1030 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1031 				unsigned long nr_segments,
1032 				struct compat_kexec_segment __user *segments,
1033 				unsigned long flags)
1034 {
1035 	struct compat_kexec_segment in;
1036 	struct kexec_segment out, __user *ksegments;
1037 	unsigned long i, result;
1038 
1039 	/* Don't allow clients that don't understand the native
1040 	 * architecture to do anything.
1041 	 */
1042 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1043 		return -EINVAL;
1044 
1045 	if (nr_segments > KEXEC_SEGMENT_MAX)
1046 		return -EINVAL;
1047 
1048 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1049 	for (i=0; i < nr_segments; i++) {
1050 		result = copy_from_user(&in, &segments[i], sizeof(in));
1051 		if (result)
1052 			return -EFAULT;
1053 
1054 		out.buf   = compat_ptr(in.buf);
1055 		out.bufsz = in.bufsz;
1056 		out.mem   = in.mem;
1057 		out.memsz = in.memsz;
1058 
1059 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1060 		if (result)
1061 			return -EFAULT;
1062 	}
1063 
1064 	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1065 }
1066 #endif
1067 
crash_kexec(struct pt_regs * regs)1068 void crash_kexec(struct pt_regs *regs)
1069 {
1070 	/* Take the kexec_mutex here to prevent sys_kexec_load
1071 	 * running on one cpu from replacing the crash kernel
1072 	 * we are using after a panic on a different cpu.
1073 	 *
1074 	 * If the crash kernel was not located in a fixed area
1075 	 * of memory the xchg(&kexec_crash_image) would be
1076 	 * sufficient.  But since I reuse the memory...
1077 	 */
1078 	if (mutex_trylock(&kexec_mutex)) {
1079 		if (kexec_crash_image) {
1080 			struct pt_regs fixed_regs;
1081 
1082 			kmsg_dump(KMSG_DUMP_KEXEC);
1083 
1084 			crash_setup_regs(&fixed_regs, regs);
1085 			crash_save_vmcoreinfo();
1086 			machine_crash_shutdown(&fixed_regs);
1087 			machine_kexec(kexec_crash_image);
1088 		}
1089 		mutex_unlock(&kexec_mutex);
1090 	}
1091 }
1092 
crash_get_memory_size(void)1093 size_t crash_get_memory_size(void)
1094 {
1095 	size_t size = 0;
1096 	mutex_lock(&kexec_mutex);
1097 	if (crashk_res.end != crashk_res.start)
1098 		size = crashk_res.end - crashk_res.start + 1;
1099 	mutex_unlock(&kexec_mutex);
1100 	return size;
1101 }
1102 
crash_free_reserved_phys_range(unsigned long begin,unsigned long end)1103 void __weak crash_free_reserved_phys_range(unsigned long begin,
1104 					   unsigned long end)
1105 {
1106 	unsigned long addr;
1107 
1108 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1109 		ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1110 		init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1111 		free_page((unsigned long)__va(addr));
1112 		totalram_pages++;
1113 	}
1114 }
1115 
crash_shrink_memory(unsigned long new_size)1116 int crash_shrink_memory(unsigned long new_size)
1117 {
1118 	int ret = 0;
1119 	unsigned long start, end;
1120 
1121 	mutex_lock(&kexec_mutex);
1122 
1123 	if (kexec_crash_image) {
1124 		ret = -ENOENT;
1125 		goto unlock;
1126 	}
1127 	start = crashk_res.start;
1128 	end = crashk_res.end;
1129 
1130 	if (new_size >= end - start + 1) {
1131 		ret = -EINVAL;
1132 		if (new_size == end - start + 1)
1133 			ret = 0;
1134 		goto unlock;
1135 	}
1136 
1137 	start = roundup(start, PAGE_SIZE);
1138 	end = roundup(start + new_size, PAGE_SIZE);
1139 
1140 	crash_free_reserved_phys_range(end, crashk_res.end);
1141 
1142 	if ((start == end) && (crashk_res.parent != NULL))
1143 		release_resource(&crashk_res);
1144 	crashk_res.end = end - 1;
1145 
1146 unlock:
1147 	mutex_unlock(&kexec_mutex);
1148 	return ret;
1149 }
1150 
append_elf_note(u32 * buf,char * name,unsigned type,void * data,size_t data_len)1151 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1152 			    size_t data_len)
1153 {
1154 	struct elf_note note;
1155 
1156 	note.n_namesz = strlen(name) + 1;
1157 	note.n_descsz = data_len;
1158 	note.n_type   = type;
1159 	memcpy(buf, &note, sizeof(note));
1160 	buf += (sizeof(note) + 3)/4;
1161 	memcpy(buf, name, note.n_namesz);
1162 	buf += (note.n_namesz + 3)/4;
1163 	memcpy(buf, data, note.n_descsz);
1164 	buf += (note.n_descsz + 3)/4;
1165 
1166 	return buf;
1167 }
1168 
final_note(u32 * buf)1169 static void final_note(u32 *buf)
1170 {
1171 	struct elf_note note;
1172 
1173 	note.n_namesz = 0;
1174 	note.n_descsz = 0;
1175 	note.n_type   = 0;
1176 	memcpy(buf, &note, sizeof(note));
1177 }
1178 
crash_save_cpu(struct pt_regs * regs,int cpu)1179 void crash_save_cpu(struct pt_regs *regs, int cpu)
1180 {
1181 	struct elf_prstatus prstatus;
1182 	u32 *buf;
1183 
1184 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1185 		return;
1186 
1187 	/* Using ELF notes here is opportunistic.
1188 	 * I need a well defined structure format
1189 	 * for the data I pass, and I need tags
1190 	 * on the data to indicate what information I have
1191 	 * squirrelled away.  ELF notes happen to provide
1192 	 * all of that, so there is no need to invent something new.
1193 	 */
1194 	buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1195 	if (!buf)
1196 		return;
1197 	memset(&prstatus, 0, sizeof(prstatus));
1198 	prstatus.pr_pid = current->pid;
1199 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1200 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1201 		      	      &prstatus, sizeof(prstatus));
1202 	final_note(buf);
1203 }
1204 
crash_notes_memory_init(void)1205 static int __init crash_notes_memory_init(void)
1206 {
1207 	/* Allocate memory for saving cpu registers. */
1208 	crash_notes = alloc_percpu(note_buf_t);
1209 	if (!crash_notes) {
1210 		printk("Kexec: Memory allocation for saving cpu register"
1211 		" states failed\n");
1212 		return -ENOMEM;
1213 	}
1214 	return 0;
1215 }
module_init(crash_notes_memory_init)1216 module_init(crash_notes_memory_init)
1217 
1218 
1219 /*
1220  * parsing the "crashkernel" commandline
1221  *
1222  * this code is intended to be called from architecture specific code
1223  */
1224 
1225 
1226 /*
1227  * This function parses command lines in the format
1228  *
1229  *   crashkernel=ramsize-range:size[,...][@offset]
1230  *
1231  * The function returns 0 on success and -EINVAL on failure.
1232  */
1233 static int __init parse_crashkernel_mem(char 			*cmdline,
1234 					unsigned long long	system_ram,
1235 					unsigned long long	*crash_size,
1236 					unsigned long long	*crash_base)
1237 {
1238 	char *cur = cmdline, *tmp;
1239 
1240 	/* for each entry of the comma-separated list */
1241 	do {
1242 		unsigned long long start, end = ULLONG_MAX, size;
1243 
1244 		/* get the start of the range */
1245 		start = memparse(cur, &tmp);
1246 		if (cur == tmp) {
1247 			pr_warning("crashkernel: Memory value expected\n");
1248 			return -EINVAL;
1249 		}
1250 		cur = tmp;
1251 		if (*cur != '-') {
1252 			pr_warning("crashkernel: '-' expected\n");
1253 			return -EINVAL;
1254 		}
1255 		cur++;
1256 
1257 		/* if no ':' is here, than we read the end */
1258 		if (*cur != ':') {
1259 			end = memparse(cur, &tmp);
1260 			if (cur == tmp) {
1261 				pr_warning("crashkernel: Memory "
1262 						"value expected\n");
1263 				return -EINVAL;
1264 			}
1265 			cur = tmp;
1266 			if (end <= start) {
1267 				pr_warning("crashkernel: end <= start\n");
1268 				return -EINVAL;
1269 			}
1270 		}
1271 
1272 		if (*cur != ':') {
1273 			pr_warning("crashkernel: ':' expected\n");
1274 			return -EINVAL;
1275 		}
1276 		cur++;
1277 
1278 		size = memparse(cur, &tmp);
1279 		if (cur == tmp) {
1280 			pr_warning("Memory value expected\n");
1281 			return -EINVAL;
1282 		}
1283 		cur = tmp;
1284 		if (size >= system_ram) {
1285 			pr_warning("crashkernel: invalid size\n");
1286 			return -EINVAL;
1287 		}
1288 
1289 		/* match ? */
1290 		if (system_ram >= start && system_ram < end) {
1291 			*crash_size = size;
1292 			break;
1293 		}
1294 	} while (*cur++ == ',');
1295 
1296 	if (*crash_size > 0) {
1297 		while (*cur && *cur != ' ' && *cur != '@')
1298 			cur++;
1299 		if (*cur == '@') {
1300 			cur++;
1301 			*crash_base = memparse(cur, &tmp);
1302 			if (cur == tmp) {
1303 				pr_warning("Memory value expected "
1304 						"after '@'\n");
1305 				return -EINVAL;
1306 			}
1307 		}
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 /*
1314  * That function parses "simple" (old) crashkernel command lines like
1315  *
1316  * 	crashkernel=size[@offset]
1317  *
1318  * It returns 0 on success and -EINVAL on failure.
1319  */
parse_crashkernel_simple(char * cmdline,unsigned long long * crash_size,unsigned long long * crash_base)1320 static int __init parse_crashkernel_simple(char 		*cmdline,
1321 					   unsigned long long 	*crash_size,
1322 					   unsigned long long 	*crash_base)
1323 {
1324 	char *cur = cmdline;
1325 
1326 	*crash_size = memparse(cmdline, &cur);
1327 	if (cmdline == cur) {
1328 		pr_warning("crashkernel: memory value expected\n");
1329 		return -EINVAL;
1330 	}
1331 
1332 	if (*cur == '@')
1333 		*crash_base = memparse(cur+1, &cur);
1334 
1335 	return 0;
1336 }
1337 
1338 /*
1339  * That function is the entry point for command line parsing and should be
1340  * called from the arch-specific code.
1341  */
parse_crashkernel(char * cmdline,unsigned long long system_ram,unsigned long long * crash_size,unsigned long long * crash_base)1342 int __init parse_crashkernel(char 		 *cmdline,
1343 			     unsigned long long system_ram,
1344 			     unsigned long long *crash_size,
1345 			     unsigned long long *crash_base)
1346 {
1347 	char 	*p = cmdline, *ck_cmdline = NULL;
1348 	char	*first_colon, *first_space;
1349 
1350 	BUG_ON(!crash_size || !crash_base);
1351 	*crash_size = 0;
1352 	*crash_base = 0;
1353 
1354 	/* find crashkernel and use the last one if there are more */
1355 	p = strstr(p, "crashkernel=");
1356 	while (p) {
1357 		ck_cmdline = p;
1358 		p = strstr(p+1, "crashkernel=");
1359 	}
1360 
1361 	if (!ck_cmdline)
1362 		return -EINVAL;
1363 
1364 	ck_cmdline += 12; /* strlen("crashkernel=") */
1365 
1366 	/*
1367 	 * if the commandline contains a ':', then that's the extended
1368 	 * syntax -- if not, it must be the classic syntax
1369 	 */
1370 	first_colon = strchr(ck_cmdline, ':');
1371 	first_space = strchr(ck_cmdline, ' ');
1372 	if (first_colon && (!first_space || first_colon < first_space))
1373 		return parse_crashkernel_mem(ck_cmdline, system_ram,
1374 				crash_size, crash_base);
1375 	else
1376 		return parse_crashkernel_simple(ck_cmdline, crash_size,
1377 				crash_base);
1378 
1379 	return 0;
1380 }
1381 
1382 
1383 
crash_save_vmcoreinfo(void)1384 void crash_save_vmcoreinfo(void)
1385 {
1386 	u32 *buf;
1387 
1388 	if (!vmcoreinfo_size)
1389 		return;
1390 
1391 	vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1392 
1393 	buf = (u32 *)vmcoreinfo_note;
1394 
1395 	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1396 			      vmcoreinfo_size);
1397 
1398 	final_note(buf);
1399 }
1400 
vmcoreinfo_append_str(const char * fmt,...)1401 void vmcoreinfo_append_str(const char *fmt, ...)
1402 {
1403 	va_list args;
1404 	char buf[0x50];
1405 	int r;
1406 
1407 	va_start(args, fmt);
1408 	r = vsnprintf(buf, sizeof(buf), fmt, args);
1409 	va_end(args);
1410 
1411 	if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1412 		r = vmcoreinfo_max_size - vmcoreinfo_size;
1413 
1414 	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1415 
1416 	vmcoreinfo_size += r;
1417 }
1418 
1419 /*
1420  * provide an empty default implementation here -- architecture
1421  * code may override this
1422  */
arch_crash_save_vmcoreinfo(void)1423 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1424 {}
1425 
paddr_vmcoreinfo_note(void)1426 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1427 {
1428 	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1429 }
1430 
crash_save_vmcoreinfo_init(void)1431 static int __init crash_save_vmcoreinfo_init(void)
1432 {
1433 	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1434 	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1435 
1436 	VMCOREINFO_SYMBOL(init_uts_ns);
1437 	VMCOREINFO_SYMBOL(node_online_map);
1438 	VMCOREINFO_SYMBOL(swapper_pg_dir);
1439 	VMCOREINFO_SYMBOL(_stext);
1440 	VMCOREINFO_SYMBOL(vmlist);
1441 
1442 #ifndef CONFIG_NEED_MULTIPLE_NODES
1443 	VMCOREINFO_SYMBOL(mem_map);
1444 	VMCOREINFO_SYMBOL(contig_page_data);
1445 #endif
1446 #ifdef CONFIG_SPARSEMEM
1447 	VMCOREINFO_SYMBOL(mem_section);
1448 	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1449 	VMCOREINFO_STRUCT_SIZE(mem_section);
1450 	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1451 #endif
1452 	VMCOREINFO_STRUCT_SIZE(page);
1453 	VMCOREINFO_STRUCT_SIZE(pglist_data);
1454 	VMCOREINFO_STRUCT_SIZE(zone);
1455 	VMCOREINFO_STRUCT_SIZE(free_area);
1456 	VMCOREINFO_STRUCT_SIZE(list_head);
1457 	VMCOREINFO_SIZE(nodemask_t);
1458 	VMCOREINFO_OFFSET(page, flags);
1459 	VMCOREINFO_OFFSET(page, _count);
1460 	VMCOREINFO_OFFSET(page, mapping);
1461 	VMCOREINFO_OFFSET(page, lru);
1462 	VMCOREINFO_OFFSET(pglist_data, node_zones);
1463 	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1464 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1465 	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1466 #endif
1467 	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1468 	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1469 	VMCOREINFO_OFFSET(pglist_data, node_id);
1470 	VMCOREINFO_OFFSET(zone, free_area);
1471 	VMCOREINFO_OFFSET(zone, vm_stat);
1472 	VMCOREINFO_OFFSET(zone, spanned_pages);
1473 	VMCOREINFO_OFFSET(free_area, free_list);
1474 	VMCOREINFO_OFFSET(list_head, next);
1475 	VMCOREINFO_OFFSET(list_head, prev);
1476 	VMCOREINFO_OFFSET(vm_struct, addr);
1477 	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1478 	log_buf_kexec_setup();
1479 	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1480 	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1481 	VMCOREINFO_NUMBER(PG_lru);
1482 	VMCOREINFO_NUMBER(PG_private);
1483 	VMCOREINFO_NUMBER(PG_swapcache);
1484 
1485 	arch_crash_save_vmcoreinfo();
1486 
1487 	return 0;
1488 }
1489 
module_init(crash_save_vmcoreinfo_init)1490 module_init(crash_save_vmcoreinfo_init)
1491 
1492 /*
1493  * Move into place and start executing a preloaded standalone
1494  * executable.  If nothing was preloaded return an error.
1495  */
1496 int kernel_kexec(void)
1497 {
1498 	int error = 0;
1499 
1500 	if (!mutex_trylock(&kexec_mutex))
1501 		return -EBUSY;
1502 	if (!kexec_image) {
1503 		error = -EINVAL;
1504 		goto Unlock;
1505 	}
1506 
1507 #ifdef CONFIG_KEXEC_JUMP
1508 	if (kexec_image->preserve_context) {
1509 		mutex_lock(&pm_mutex);
1510 		pm_prepare_console();
1511 		error = freeze_processes();
1512 		if (error) {
1513 			error = -EBUSY;
1514 			goto Restore_console;
1515 		}
1516 		suspend_console();
1517 		error = dpm_suspend_start(PMSG_FREEZE);
1518 		if (error)
1519 			goto Resume_console;
1520 		/* At this point, dpm_suspend_start() has been called,
1521 		 * but *not* dpm_suspend_noirq(). We *must* call
1522 		 * dpm_suspend_noirq() now.  Otherwise, drivers for
1523 		 * some devices (e.g. interrupt controllers) become
1524 		 * desynchronized with the actual state of the
1525 		 * hardware at resume time, and evil weirdness ensues.
1526 		 */
1527 		error = dpm_suspend_noirq(PMSG_FREEZE);
1528 		if (error)
1529 			goto Resume_devices;
1530 		error = disable_nonboot_cpus();
1531 		if (error)
1532 			goto Enable_cpus;
1533 		local_irq_disable();
1534 		/* Suspend system devices */
1535 		error = sysdev_suspend(PMSG_FREEZE);
1536 		if (!error) {
1537 			error = syscore_suspend();
1538 			if (error)
1539 				sysdev_resume();
1540 		}
1541 		if (error)
1542 			goto Enable_irqs;
1543 	} else
1544 #endif
1545 	{
1546 		kernel_restart_prepare(NULL);
1547 		printk(KERN_EMERG "Starting new kernel\n");
1548 		machine_shutdown();
1549 	}
1550 
1551 	machine_kexec(kexec_image);
1552 
1553 #ifdef CONFIG_KEXEC_JUMP
1554 	if (kexec_image->preserve_context) {
1555 		syscore_resume();
1556 		sysdev_resume();
1557  Enable_irqs:
1558 		local_irq_enable();
1559  Enable_cpus:
1560 		enable_nonboot_cpus();
1561 		dpm_resume_noirq(PMSG_RESTORE);
1562  Resume_devices:
1563 		dpm_resume_end(PMSG_RESTORE);
1564  Resume_console:
1565 		resume_console();
1566 		thaw_processes();
1567  Restore_console:
1568 		pm_restore_console();
1569 		mutex_unlock(&pm_mutex);
1570 	}
1571 #endif
1572 
1573  Unlock:
1574 	mutex_unlock(&kexec_mutex);
1575 	return error;
1576 }
1577