1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * linux/include/linux/cpufreq.h
4  *
5  * Copyright (C) 2001 Russell King
6  *           (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  */
8 #ifndef _LINUX_CPUFREQ_H
9 #define _LINUX_CPUFREQ_H
10 
11 #include <linux/clk.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/completion.h>
15 #include <linux/kobject.h>
16 #include <linux/notifier.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/pm_opp.h>
20 #include <linux/pm_qos.h>
21 #include <linux/spinlock.h>
22 #include <linux/sysfs.h>
23 
24 /*********************************************************************
25  *                        CPUFREQ INTERFACE                          *
26  *********************************************************************/
27 /*
28  * Frequency values here are CPU kHz
29  *
30  * Maximum transition latency is in nanoseconds - if it's unknown,
31  * CPUFREQ_ETERNAL shall be used.
32  */
33 
34 #define CPUFREQ_ETERNAL			(-1)
35 #define CPUFREQ_NAME_LEN		16
36 /* Print length for names. Extra 1 space for accommodating '\n' in prints */
37 #define CPUFREQ_NAME_PLEN		(CPUFREQ_NAME_LEN + 1)
38 
39 struct cpufreq_governor;
40 
41 enum cpufreq_table_sorting {
42 	CPUFREQ_TABLE_UNSORTED,
43 	CPUFREQ_TABLE_SORTED_ASCENDING,
44 	CPUFREQ_TABLE_SORTED_DESCENDING
45 };
46 
47 struct cpufreq_cpuinfo {
48 	unsigned int		max_freq;
49 	unsigned int		min_freq;
50 
51 	/* in 10^(-9) s = nanoseconds */
52 	unsigned int		transition_latency;
53 };
54 
55 struct cpufreq_policy {
56 	/* CPUs sharing clock, require sw coordination */
57 	cpumask_var_t		cpus;	/* Online CPUs only */
58 	cpumask_var_t		related_cpus; /* Online + Offline CPUs */
59 	cpumask_var_t		real_cpus; /* Related and present */
60 
61 	unsigned int		shared_type; /* ACPI: ANY or ALL affected CPUs
62 						should set cpufreq */
63 	unsigned int		cpu;    /* cpu managing this policy, must be online */
64 
65 	struct clk		*clk;
66 	struct cpufreq_cpuinfo	cpuinfo;/* see above */
67 
68 	unsigned int		min;    /* in kHz */
69 	unsigned int		max;    /* in kHz */
70 	unsigned int		cur;    /* in kHz, only needed if cpufreq
71 					 * governors are used */
72 	unsigned int		suspend_freq; /* freq to set during suspend */
73 
74 	unsigned int		policy; /* see above */
75 	unsigned int		last_policy; /* policy before unplug */
76 	struct cpufreq_governor	*governor; /* see below */
77 	void			*governor_data;
78 	char			last_governor[CPUFREQ_NAME_LEN]; /* last governor used */
79 
80 	struct work_struct	update; /* if update_policy() needs to be
81 					 * called, but you're in IRQ context */
82 
83 	struct freq_constraints	constraints;
84 	struct freq_qos_request	*min_freq_req;
85 	struct freq_qos_request	*max_freq_req;
86 
87 	struct cpufreq_frequency_table	*freq_table;
88 	enum cpufreq_table_sorting freq_table_sorted;
89 
90 	struct list_head        policy_list;
91 	struct kobject		kobj;
92 	struct completion	kobj_unregister;
93 
94 	/*
95 	 * The rules for this semaphore:
96 	 * - Any routine that wants to read from the policy structure will
97 	 *   do a down_read on this semaphore.
98 	 * - Any routine that will write to the policy structure and/or may take away
99 	 *   the policy altogether (eg. CPU hotplug), will hold this lock in write
100 	 *   mode before doing so.
101 	 */
102 	struct rw_semaphore	rwsem;
103 
104 	/*
105 	 * Fast switch flags:
106 	 * - fast_switch_possible should be set by the driver if it can
107 	 *   guarantee that frequency can be changed on any CPU sharing the
108 	 *   policy and that the change will affect all of the policy CPUs then.
109 	 * - fast_switch_enabled is to be set by governors that support fast
110 	 *   frequency switching with the help of cpufreq_enable_fast_switch().
111 	 */
112 	bool			fast_switch_possible;
113 	bool			fast_switch_enabled;
114 
115 	/*
116 	 * Set if the CPUFREQ_GOV_STRICT_TARGET flag is set for the current
117 	 * governor.
118 	 */
119 	bool			strict_target;
120 
121 	/*
122 	 * Set if inefficient frequencies were found in the frequency table.
123 	 * This indicates if the relation flag CPUFREQ_RELATION_E can be
124 	 * honored.
125 	 */
126 	bool			efficiencies_available;
127 
128 	/*
129 	 * Preferred average time interval between consecutive invocations of
130 	 * the driver to set the frequency for this policy.  To be set by the
131 	 * scaling driver (0, which is the default, means no preference).
132 	 */
133 	unsigned int		transition_delay_us;
134 
135 	/*
136 	 * Remote DVFS flag (Not added to the driver structure as we don't want
137 	 * to access another structure from scheduler hotpath).
138 	 *
139 	 * Should be set if CPUs can do DVFS on behalf of other CPUs from
140 	 * different cpufreq policies.
141 	 */
142 	bool			dvfs_possible_from_any_cpu;
143 
144 	 /* Cached frequency lookup from cpufreq_driver_resolve_freq. */
145 	unsigned int cached_target_freq;
146 	unsigned int cached_resolved_idx;
147 
148 	/* Synchronization for frequency transitions */
149 	bool			transition_ongoing; /* Tracks transition status */
150 	spinlock_t		transition_lock;
151 	wait_queue_head_t	transition_wait;
152 	struct task_struct	*transition_task; /* Task which is doing the transition */
153 
154 	/* cpufreq-stats */
155 	struct cpufreq_stats	*stats;
156 
157 	/* For cpufreq driver's internal use */
158 	void			*driver_data;
159 
160 	/* Pointer to the cooling device if used for thermal mitigation */
161 	struct thermal_cooling_device *cdev;
162 
163 	struct notifier_block nb_min;
164 	struct notifier_block nb_max;
165 };
166 
167 /*
168  * Used for passing new cpufreq policy data to the cpufreq driver's ->verify()
169  * callback for sanitization.  That callback is only expected to modify the min
170  * and max values, if necessary, and specifically it must not update the
171  * frequency table.
172  */
173 struct cpufreq_policy_data {
174 	struct cpufreq_cpuinfo		cpuinfo;
175 	struct cpufreq_frequency_table	*freq_table;
176 	unsigned int			cpu;
177 	unsigned int			min;    /* in kHz */
178 	unsigned int			max;    /* in kHz */
179 };
180 
181 struct cpufreq_freqs {
182 	struct cpufreq_policy *policy;
183 	unsigned int old;
184 	unsigned int new;
185 	u8 flags;		/* flags of cpufreq_driver, see below. */
186 };
187 
188 /* Only for ACPI */
189 #define CPUFREQ_SHARED_TYPE_NONE (0) /* None */
190 #define CPUFREQ_SHARED_TYPE_HW	 (1) /* HW does needed coordination */
191 #define CPUFREQ_SHARED_TYPE_ALL	 (2) /* All dependent CPUs should set freq */
192 #define CPUFREQ_SHARED_TYPE_ANY	 (3) /* Freq can be set from any dependent CPU*/
193 
194 #ifdef CONFIG_CPU_FREQ
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu);
196 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu);
197 void cpufreq_cpu_put(struct cpufreq_policy *policy);
198 #else
cpufreq_cpu_get_raw(unsigned int cpu)199 static inline struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
200 {
201 	return NULL;
202 }
cpufreq_cpu_get(unsigned int cpu)203 static inline struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
204 {
205 	return NULL;
206 }
cpufreq_cpu_put(struct cpufreq_policy * policy)207 static inline void cpufreq_cpu_put(struct cpufreq_policy *policy) { }
208 #endif
209 
policy_is_inactive(struct cpufreq_policy * policy)210 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
211 {
212 	return cpumask_empty(policy->cpus);
213 }
214 
policy_is_shared(struct cpufreq_policy * policy)215 static inline bool policy_is_shared(struct cpufreq_policy *policy)
216 {
217 	return cpumask_weight(policy->cpus) > 1;
218 }
219 
220 #ifdef CONFIG_CPU_FREQ
221 unsigned int cpufreq_get(unsigned int cpu);
222 unsigned int cpufreq_quick_get(unsigned int cpu);
223 unsigned int cpufreq_quick_get_max(unsigned int cpu);
224 unsigned int cpufreq_get_hw_max_freq(unsigned int cpu);
225 void disable_cpufreq(void);
226 
227 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy);
228 
229 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu);
230 void cpufreq_cpu_release(struct cpufreq_policy *policy);
231 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu);
232 void refresh_frequency_limits(struct cpufreq_policy *policy);
233 void cpufreq_update_policy(unsigned int cpu);
234 void cpufreq_update_limits(unsigned int cpu);
235 bool have_governor_per_policy(void);
236 bool cpufreq_supports_freq_invariance(void);
237 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy);
238 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy);
239 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy);
240 #else
cpufreq_get(unsigned int cpu)241 static inline unsigned int cpufreq_get(unsigned int cpu)
242 {
243 	return 0;
244 }
cpufreq_quick_get(unsigned int cpu)245 static inline unsigned int cpufreq_quick_get(unsigned int cpu)
246 {
247 	return 0;
248 }
cpufreq_quick_get_max(unsigned int cpu)249 static inline unsigned int cpufreq_quick_get_max(unsigned int cpu)
250 {
251 	return 0;
252 }
cpufreq_get_hw_max_freq(unsigned int cpu)253 static inline unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
254 {
255 	return 0;
256 }
cpufreq_supports_freq_invariance(void)257 static inline bool cpufreq_supports_freq_invariance(void)
258 {
259 	return false;
260 }
disable_cpufreq(void)261 static inline void disable_cpufreq(void) { }
262 #endif
263 
264 #ifdef CONFIG_CPU_FREQ_STAT
265 void cpufreq_stats_create_table(struct cpufreq_policy *policy);
266 void cpufreq_stats_free_table(struct cpufreq_policy *policy);
267 void cpufreq_stats_record_transition(struct cpufreq_policy *policy,
268 				     unsigned int new_freq);
269 #else
cpufreq_stats_create_table(struct cpufreq_policy * policy)270 static inline void cpufreq_stats_create_table(struct cpufreq_policy *policy) { }
cpufreq_stats_free_table(struct cpufreq_policy * policy)271 static inline void cpufreq_stats_free_table(struct cpufreq_policy *policy) { }
cpufreq_stats_record_transition(struct cpufreq_policy * policy,unsigned int new_freq)272 static inline void cpufreq_stats_record_transition(struct cpufreq_policy *policy,
273 						   unsigned int new_freq) { }
274 #endif /* CONFIG_CPU_FREQ_STAT */
275 
276 /*********************************************************************
277  *                      CPUFREQ DRIVER INTERFACE                     *
278  *********************************************************************/
279 
280 #define CPUFREQ_RELATION_L 0  /* lowest frequency at or above target */
281 #define CPUFREQ_RELATION_H 1  /* highest frequency below or at target */
282 #define CPUFREQ_RELATION_C 2  /* closest frequency to target */
283 /* relation flags */
284 #define CPUFREQ_RELATION_E BIT(2) /* Get if possible an efficient frequency */
285 
286 #define CPUFREQ_RELATION_LE (CPUFREQ_RELATION_L | CPUFREQ_RELATION_E)
287 #define CPUFREQ_RELATION_HE (CPUFREQ_RELATION_H | CPUFREQ_RELATION_E)
288 #define CPUFREQ_RELATION_CE (CPUFREQ_RELATION_C | CPUFREQ_RELATION_E)
289 
290 struct freq_attr {
291 	struct attribute attr;
292 	ssize_t (*show)(struct cpufreq_policy *, char *);
293 	ssize_t (*store)(struct cpufreq_policy *, const char *, size_t count);
294 };
295 
296 #define cpufreq_freq_attr_ro(_name)		\
297 static struct freq_attr _name =			\
298 __ATTR(_name, 0444, show_##_name, NULL)
299 
300 #define cpufreq_freq_attr_ro_perm(_name, _perm)	\
301 static struct freq_attr _name =			\
302 __ATTR(_name, _perm, show_##_name, NULL)
303 
304 #define cpufreq_freq_attr_rw(_name)		\
305 static struct freq_attr _name =			\
306 __ATTR(_name, 0644, show_##_name, store_##_name)
307 
308 #define cpufreq_freq_attr_wo(_name)		\
309 static struct freq_attr _name =			\
310 __ATTR(_name, 0200, NULL, store_##_name)
311 
312 #define define_one_global_ro(_name)		\
313 static struct kobj_attribute _name =		\
314 __ATTR(_name, 0444, show_##_name, NULL)
315 
316 #define define_one_global_rw(_name)		\
317 static struct kobj_attribute _name =		\
318 __ATTR(_name, 0644, show_##_name, store_##_name)
319 
320 
321 struct cpufreq_driver {
322 	char		name[CPUFREQ_NAME_LEN];
323 	u16		flags;
324 	void		*driver_data;
325 
326 	/* needed by all drivers */
327 	int		(*init)(struct cpufreq_policy *policy);
328 	int		(*verify)(struct cpufreq_policy_data *policy);
329 
330 	/* define one out of two */
331 	int		(*setpolicy)(struct cpufreq_policy *policy);
332 
333 	int		(*target)(struct cpufreq_policy *policy,
334 				  unsigned int target_freq,
335 				  unsigned int relation);	/* Deprecated */
336 	int		(*target_index)(struct cpufreq_policy *policy,
337 					unsigned int index);
338 	unsigned int	(*fast_switch)(struct cpufreq_policy *policy,
339 				       unsigned int target_freq);
340 	/*
341 	 * ->fast_switch() replacement for drivers that use an internal
342 	 * representation of performance levels and can pass hints other than
343 	 * the target performance level to the hardware.
344 	 */
345 	void		(*adjust_perf)(unsigned int cpu,
346 				       unsigned long min_perf,
347 				       unsigned long target_perf,
348 				       unsigned long capacity);
349 
350 	/*
351 	 * Only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION
352 	 * unset.
353 	 *
354 	 * get_intermediate should return a stable intermediate frequency
355 	 * platform wants to switch to and target_intermediate() should set CPU
356 	 * to that frequency, before jumping to the frequency corresponding
357 	 * to 'index'. Core will take care of sending notifications and driver
358 	 * doesn't have to handle them in target_intermediate() or
359 	 * target_index().
360 	 *
361 	 * Drivers can return '0' from get_intermediate() in case they don't
362 	 * wish to switch to intermediate frequency for some target frequency.
363 	 * In that case core will directly call ->target_index().
364 	 */
365 	unsigned int	(*get_intermediate)(struct cpufreq_policy *policy,
366 					    unsigned int index);
367 	int		(*target_intermediate)(struct cpufreq_policy *policy,
368 					       unsigned int index);
369 
370 	/* should be defined, if possible */
371 	unsigned int	(*get)(unsigned int cpu);
372 
373 	/* Called to update policy limits on firmware notifications. */
374 	void		(*update_limits)(unsigned int cpu);
375 
376 	/* optional */
377 	int		(*bios_limit)(int cpu, unsigned int *limit);
378 
379 	int		(*online)(struct cpufreq_policy *policy);
380 	int		(*offline)(struct cpufreq_policy *policy);
381 	int		(*exit)(struct cpufreq_policy *policy);
382 	int		(*suspend)(struct cpufreq_policy *policy);
383 	int		(*resume)(struct cpufreq_policy *policy);
384 
385 	/* Will be called after the driver is fully initialized */
386 	void		(*ready)(struct cpufreq_policy *policy);
387 
388 	struct freq_attr **attr;
389 
390 	/* platform specific boost support code */
391 	bool		boost_enabled;
392 	int		(*set_boost)(struct cpufreq_policy *policy, int state);
393 
394 	/*
395 	 * Set by drivers that want to register with the energy model after the
396 	 * policy is properly initialized, but before the governor is started.
397 	 */
398 	void		(*register_em)(struct cpufreq_policy *policy);
399 };
400 
401 /* flags */
402 
403 /*
404  * Set by drivers that need to update internal upper and lower boundaries along
405  * with the target frequency and so the core and governors should also invoke
406  * the diver if the target frequency does not change, but the policy min or max
407  * may have changed.
408  */
409 #define CPUFREQ_NEED_UPDATE_LIMITS		BIT(0)
410 
411 /* loops_per_jiffy or other kernel "constants" aren't affected by frequency transitions */
412 #define CPUFREQ_CONST_LOOPS			BIT(1)
413 
414 /*
415  * Set by drivers that want the core to automatically register the cpufreq
416  * driver as a thermal cooling device.
417  */
418 #define CPUFREQ_IS_COOLING_DEV			BIT(2)
419 
420 /*
421  * This should be set by platforms having multiple clock-domains, i.e.
422  * supporting multiple policies. With this sysfs directories of governor would
423  * be created in cpu/cpu<num>/cpufreq/ directory and so they can use the same
424  * governor with different tunables for different clusters.
425  */
426 #define CPUFREQ_HAVE_GOVERNOR_PER_POLICY	BIT(3)
427 
428 /*
429  * Driver will do POSTCHANGE notifications from outside of their ->target()
430  * routine and so must set cpufreq_driver->flags with this flag, so that core
431  * can handle them specially.
432  */
433 #define CPUFREQ_ASYNC_NOTIFICATION		BIT(4)
434 
435 /*
436  * Set by drivers which want cpufreq core to check if CPU is running at a
437  * frequency present in freq-table exposed by the driver. For these drivers if
438  * CPU is found running at an out of table freq, we will try to set it to a freq
439  * from the table. And if that fails, we will stop further boot process by
440  * issuing a BUG_ON().
441  */
442 #define CPUFREQ_NEED_INITIAL_FREQ_CHECK	BIT(5)
443 
444 /*
445  * Set by drivers to disallow use of governors with "dynamic_switching" flag
446  * set.
447  */
448 #define CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING	BIT(6)
449 
450 int cpufreq_register_driver(struct cpufreq_driver *driver_data);
451 int cpufreq_unregister_driver(struct cpufreq_driver *driver_data);
452 
453 bool cpufreq_driver_test_flags(u16 flags);
454 const char *cpufreq_get_current_driver(void);
455 void *cpufreq_get_driver_data(void);
456 
cpufreq_thermal_control_enabled(struct cpufreq_driver * drv)457 static inline int cpufreq_thermal_control_enabled(struct cpufreq_driver *drv)
458 {
459 	return IS_ENABLED(CONFIG_CPU_THERMAL) &&
460 		(drv->flags & CPUFREQ_IS_COOLING_DEV);
461 }
462 
cpufreq_verify_within_limits(struct cpufreq_policy_data * policy,unsigned int min,unsigned int max)463 static inline void cpufreq_verify_within_limits(struct cpufreq_policy_data *policy,
464 						unsigned int min,
465 						unsigned int max)
466 {
467 	if (policy->min < min)
468 		policy->min = min;
469 	if (policy->max < min)
470 		policy->max = min;
471 	if (policy->min > max)
472 		policy->min = max;
473 	if (policy->max > max)
474 		policy->max = max;
475 	if (policy->min > policy->max)
476 		policy->min = policy->max;
477 	return;
478 }
479 
480 static inline void
cpufreq_verify_within_cpu_limits(struct cpufreq_policy_data * policy)481 cpufreq_verify_within_cpu_limits(struct cpufreq_policy_data *policy)
482 {
483 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
484 				     policy->cpuinfo.max_freq);
485 }
486 
487 #ifdef CONFIG_CPU_FREQ
488 void cpufreq_suspend(void);
489 void cpufreq_resume(void);
490 int cpufreq_generic_suspend(struct cpufreq_policy *policy);
491 #else
cpufreq_suspend(void)492 static inline void cpufreq_suspend(void) {}
cpufreq_resume(void)493 static inline void cpufreq_resume(void) {}
494 #endif
495 
496 /*********************************************************************
497  *                     CPUFREQ NOTIFIER INTERFACE                    *
498  *********************************************************************/
499 
500 #define CPUFREQ_TRANSITION_NOTIFIER	(0)
501 #define CPUFREQ_POLICY_NOTIFIER		(1)
502 
503 /* Transition notifiers */
504 #define CPUFREQ_PRECHANGE		(0)
505 #define CPUFREQ_POSTCHANGE		(1)
506 
507 /* Policy Notifiers  */
508 #define CPUFREQ_CREATE_POLICY		(0)
509 #define CPUFREQ_REMOVE_POLICY		(1)
510 
511 #ifdef CONFIG_CPU_FREQ
512 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list);
513 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list);
514 
515 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
516 		struct cpufreq_freqs *freqs);
517 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
518 		struct cpufreq_freqs *freqs, int transition_failed);
519 
520 #else /* CONFIG_CPU_FREQ */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)521 static inline int cpufreq_register_notifier(struct notifier_block *nb,
522 						unsigned int list)
523 {
524 	return 0;
525 }
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)526 static inline int cpufreq_unregister_notifier(struct notifier_block *nb,
527 						unsigned int list)
528 {
529 	return 0;
530 }
531 #endif /* !CONFIG_CPU_FREQ */
532 
533 /**
534  * cpufreq_scale - "old * mult / div" calculation for large values (32-bit-arch
535  * safe)
536  * @old:   old value
537  * @div:   divisor
538  * @mult:  multiplier
539  *
540  *
541  * new = old * mult / div
542  */
cpufreq_scale(unsigned long old,u_int div,u_int mult)543 static inline unsigned long cpufreq_scale(unsigned long old, u_int div,
544 		u_int mult)
545 {
546 #if BITS_PER_LONG == 32
547 	u64 result = ((u64) old) * ((u64) mult);
548 	do_div(result, div);
549 	return (unsigned long) result;
550 
551 #elif BITS_PER_LONG == 64
552 	unsigned long result = old * ((u64) mult);
553 	result /= div;
554 	return result;
555 #endif
556 }
557 
558 /*********************************************************************
559  *                          CPUFREQ GOVERNORS                        *
560  *********************************************************************/
561 
562 #define CPUFREQ_POLICY_UNKNOWN		(0)
563 /*
564  * If (cpufreq_driver->target) exists, the ->governor decides what frequency
565  * within the limits is used. If (cpufreq_driver->setpolicy> exists, these
566  * two generic policies are available:
567  */
568 #define CPUFREQ_POLICY_POWERSAVE	(1)
569 #define CPUFREQ_POLICY_PERFORMANCE	(2)
570 
571 /*
572  * The polling frequency depends on the capability of the processor. Default
573  * polling frequency is 1000 times the transition latency of the processor. The
574  * ondemand governor will work on any processor with transition latency <= 10ms,
575  * using appropriate sampling rate.
576  */
577 #define LATENCY_MULTIPLIER		(1000)
578 
579 struct cpufreq_governor {
580 	char	name[CPUFREQ_NAME_LEN];
581 	int	(*init)(struct cpufreq_policy *policy);
582 	void	(*exit)(struct cpufreq_policy *policy);
583 	int	(*start)(struct cpufreq_policy *policy);
584 	void	(*stop)(struct cpufreq_policy *policy);
585 	void	(*limits)(struct cpufreq_policy *policy);
586 	ssize_t	(*show_setspeed)	(struct cpufreq_policy *policy,
587 					 char *buf);
588 	int	(*store_setspeed)	(struct cpufreq_policy *policy,
589 					 unsigned int freq);
590 	struct list_head	governor_list;
591 	struct module		*owner;
592 	u8			flags;
593 };
594 
595 /* Governor flags */
596 
597 /* For governors which change frequency dynamically by themselves */
598 #define CPUFREQ_GOV_DYNAMIC_SWITCHING	BIT(0)
599 
600 /* For governors wanting the target frequency to be set exactly */
601 #define CPUFREQ_GOV_STRICT_TARGET	BIT(1)
602 
603 
604 /* Pass a target to the cpufreq driver */
605 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
606 					unsigned int target_freq);
607 void cpufreq_driver_adjust_perf(unsigned int cpu,
608 				unsigned long min_perf,
609 				unsigned long target_perf,
610 				unsigned long capacity);
611 bool cpufreq_driver_has_adjust_perf(void);
612 int cpufreq_driver_target(struct cpufreq_policy *policy,
613 				 unsigned int target_freq,
614 				 unsigned int relation);
615 int __cpufreq_driver_target(struct cpufreq_policy *policy,
616 				   unsigned int target_freq,
617 				   unsigned int relation);
618 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
619 					 unsigned int target_freq);
620 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy);
621 int cpufreq_register_governor(struct cpufreq_governor *governor);
622 void cpufreq_unregister_governor(struct cpufreq_governor *governor);
623 int cpufreq_start_governor(struct cpufreq_policy *policy);
624 void cpufreq_stop_governor(struct cpufreq_policy *policy);
625 
626 #define cpufreq_governor_init(__governor)			\
627 static int __init __governor##_init(void)			\
628 {								\
629 	return cpufreq_register_governor(&__governor);	\
630 }								\
631 core_initcall(__governor##_init)
632 
633 #define cpufreq_governor_exit(__governor)			\
634 static void __exit __governor##_exit(void)			\
635 {								\
636 	return cpufreq_unregister_governor(&__governor);	\
637 }								\
638 module_exit(__governor##_exit)
639 
640 struct cpufreq_governor *cpufreq_default_governor(void);
641 struct cpufreq_governor *cpufreq_fallback_governor(void);
642 
cpufreq_policy_apply_limits(struct cpufreq_policy * policy)643 static inline void cpufreq_policy_apply_limits(struct cpufreq_policy *policy)
644 {
645 	if (policy->max < policy->cur)
646 		__cpufreq_driver_target(policy, policy->max,
647 					CPUFREQ_RELATION_HE);
648 	else if (policy->min > policy->cur)
649 		__cpufreq_driver_target(policy, policy->min,
650 					CPUFREQ_RELATION_LE);
651 }
652 
653 /* Governor attribute set */
654 struct gov_attr_set {
655 	struct kobject kobj;
656 	struct list_head policy_list;
657 	struct mutex update_lock;
658 	int usage_count;
659 };
660 
661 /* sysfs ops for cpufreq governors */
662 extern const struct sysfs_ops governor_sysfs_ops;
663 
to_gov_attr_set(struct kobject * kobj)664 static inline struct gov_attr_set *to_gov_attr_set(struct kobject *kobj)
665 {
666 	return container_of(kobj, struct gov_attr_set, kobj);
667 }
668 
669 void gov_attr_set_init(struct gov_attr_set *attr_set, struct list_head *list_node);
670 void gov_attr_set_get(struct gov_attr_set *attr_set, struct list_head *list_node);
671 unsigned int gov_attr_set_put(struct gov_attr_set *attr_set, struct list_head *list_node);
672 
673 /* Governor sysfs attribute */
674 struct governor_attr {
675 	struct attribute attr;
676 	ssize_t (*show)(struct gov_attr_set *attr_set, char *buf);
677 	ssize_t (*store)(struct gov_attr_set *attr_set, const char *buf,
678 			 size_t count);
679 };
680 
681 /*********************************************************************
682  *                     FREQUENCY TABLE HELPERS                       *
683  *********************************************************************/
684 
685 /* Special Values of .frequency field */
686 #define CPUFREQ_ENTRY_INVALID		~0u
687 #define CPUFREQ_TABLE_END		~1u
688 /* Special Values of .flags field */
689 #define CPUFREQ_BOOST_FREQ		(1 << 0)
690 #define CPUFREQ_INEFFICIENT_FREQ	(1 << 1)
691 
692 struct cpufreq_frequency_table {
693 	unsigned int	flags;
694 	unsigned int	driver_data; /* driver specific data, not used by core */
695 	unsigned int	frequency; /* kHz - doesn't need to be in ascending
696 				    * order */
697 };
698 
699 #if defined(CONFIG_CPU_FREQ) && defined(CONFIG_PM_OPP)
700 int dev_pm_opp_init_cpufreq_table(struct device *dev,
701 				  struct cpufreq_frequency_table **table);
702 void dev_pm_opp_free_cpufreq_table(struct device *dev,
703 				   struct cpufreq_frequency_table **table);
704 #else
dev_pm_opp_init_cpufreq_table(struct device * dev,struct cpufreq_frequency_table ** table)705 static inline int dev_pm_opp_init_cpufreq_table(struct device *dev,
706 						struct cpufreq_frequency_table
707 						**table)
708 {
709 	return -EINVAL;
710 }
711 
dev_pm_opp_free_cpufreq_table(struct device * dev,struct cpufreq_frequency_table ** table)712 static inline void dev_pm_opp_free_cpufreq_table(struct device *dev,
713 						 struct cpufreq_frequency_table
714 						 **table)
715 {
716 }
717 #endif
718 
719 /*
720  * cpufreq_for_each_entry -	iterate over a cpufreq_frequency_table
721  * @pos:	the cpufreq_frequency_table * to use as a loop cursor.
722  * @table:	the cpufreq_frequency_table * to iterate over.
723  */
724 
725 #define cpufreq_for_each_entry(pos, table)	\
726 	for (pos = table; pos->frequency != CPUFREQ_TABLE_END; pos++)
727 
728 /*
729  * cpufreq_for_each_entry_idx -	iterate over a cpufreq_frequency_table
730  *	with index
731  * @pos:	the cpufreq_frequency_table * to use as a loop cursor.
732  * @table:	the cpufreq_frequency_table * to iterate over.
733  * @idx:	the table entry currently being processed
734  */
735 
736 #define cpufreq_for_each_entry_idx(pos, table, idx)	\
737 	for (pos = table, idx = 0; pos->frequency != CPUFREQ_TABLE_END; \
738 		pos++, idx++)
739 
740 /*
741  * cpufreq_for_each_valid_entry -     iterate over a cpufreq_frequency_table
742  *	excluding CPUFREQ_ENTRY_INVALID frequencies.
743  * @pos:        the cpufreq_frequency_table * to use as a loop cursor.
744  * @table:      the cpufreq_frequency_table * to iterate over.
745  */
746 
747 #define cpufreq_for_each_valid_entry(pos, table)			\
748 	for (pos = table; pos->frequency != CPUFREQ_TABLE_END; pos++)	\
749 		if (pos->frequency == CPUFREQ_ENTRY_INVALID)		\
750 			continue;					\
751 		else
752 
753 /*
754  * cpufreq_for_each_valid_entry_idx -     iterate with index over a cpufreq
755  *	frequency_table excluding CPUFREQ_ENTRY_INVALID frequencies.
756  * @pos:	the cpufreq_frequency_table * to use as a loop cursor.
757  * @table:	the cpufreq_frequency_table * to iterate over.
758  * @idx:	the table entry currently being processed
759  */
760 
761 #define cpufreq_for_each_valid_entry_idx(pos, table, idx)		\
762 	cpufreq_for_each_entry_idx(pos, table, idx)			\
763 		if (pos->frequency == CPUFREQ_ENTRY_INVALID)		\
764 			continue;					\
765 		else
766 
767 /**
768  * cpufreq_for_each_efficient_entry_idx - iterate with index over a cpufreq
769  *	frequency_table excluding CPUFREQ_ENTRY_INVALID and
770  *	CPUFREQ_INEFFICIENT_FREQ frequencies.
771  * @pos: the &struct cpufreq_frequency_table to use as a loop cursor.
772  * @table: the &struct cpufreq_frequency_table to iterate over.
773  * @idx: the table entry currently being processed.
774  * @efficiencies: set to true to only iterate over efficient frequencies.
775  */
776 
777 #define cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies)	\
778 	cpufreq_for_each_valid_entry_idx(pos, table, idx)			\
779 		if (efficiencies && (pos->flags & CPUFREQ_INEFFICIENT_FREQ))	\
780 			continue;						\
781 		else
782 
783 
784 int cpufreq_frequency_table_cpuinfo(struct cpufreq_policy *policy,
785 				    struct cpufreq_frequency_table *table);
786 
787 int cpufreq_frequency_table_verify(struct cpufreq_policy_data *policy,
788 				   struct cpufreq_frequency_table *table);
789 int cpufreq_generic_frequency_table_verify(struct cpufreq_policy_data *policy);
790 
791 int cpufreq_table_index_unsorted(struct cpufreq_policy *policy,
792 				 unsigned int target_freq,
793 				 unsigned int relation);
794 int cpufreq_frequency_table_get_index(struct cpufreq_policy *policy,
795 		unsigned int freq);
796 
797 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf);
798 
799 #ifdef CONFIG_CPU_FREQ
800 int cpufreq_boost_trigger_state(int state);
801 int cpufreq_boost_enabled(void);
802 int cpufreq_enable_boost_support(void);
803 bool policy_has_boost_freq(struct cpufreq_policy *policy);
804 
805 /* Find lowest freq at or above target in a table in ascending order */
cpufreq_table_find_index_al(struct cpufreq_policy * policy,unsigned int target_freq,bool efficiencies)806 static inline int cpufreq_table_find_index_al(struct cpufreq_policy *policy,
807 					      unsigned int target_freq,
808 					      bool efficiencies)
809 {
810 	struct cpufreq_frequency_table *table = policy->freq_table;
811 	struct cpufreq_frequency_table *pos;
812 	unsigned int freq;
813 	int idx, best = -1;
814 
815 	cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) {
816 		freq = pos->frequency;
817 
818 		if (freq >= target_freq)
819 			return idx;
820 
821 		best = idx;
822 	}
823 
824 	return best;
825 }
826 
827 /* Find lowest freq at or above target in a table in descending order */
cpufreq_table_find_index_dl(struct cpufreq_policy * policy,unsigned int target_freq,bool efficiencies)828 static inline int cpufreq_table_find_index_dl(struct cpufreq_policy *policy,
829 					      unsigned int target_freq,
830 					      bool efficiencies)
831 {
832 	struct cpufreq_frequency_table *table = policy->freq_table;
833 	struct cpufreq_frequency_table *pos;
834 	unsigned int freq;
835 	int idx, best = -1;
836 
837 	cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) {
838 		freq = pos->frequency;
839 
840 		if (freq == target_freq)
841 			return idx;
842 
843 		if (freq > target_freq) {
844 			best = idx;
845 			continue;
846 		}
847 
848 		/* No freq found above target_freq */
849 		if (best == -1)
850 			return idx;
851 
852 		return best;
853 	}
854 
855 	return best;
856 }
857 
858 /* Works only on sorted freq-tables */
cpufreq_table_find_index_l(struct cpufreq_policy * policy,unsigned int target_freq,bool efficiencies)859 static inline int cpufreq_table_find_index_l(struct cpufreq_policy *policy,
860 					     unsigned int target_freq,
861 					     bool efficiencies)
862 {
863 	target_freq = clamp_val(target_freq, policy->min, policy->max);
864 
865 	if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
866 		return cpufreq_table_find_index_al(policy, target_freq,
867 						   efficiencies);
868 	else
869 		return cpufreq_table_find_index_dl(policy, target_freq,
870 						   efficiencies);
871 }
872 
873 /* Find highest freq at or below target in a table in ascending order */
cpufreq_table_find_index_ah(struct cpufreq_policy * policy,unsigned int target_freq,bool efficiencies)874 static inline int cpufreq_table_find_index_ah(struct cpufreq_policy *policy,
875 					      unsigned int target_freq,
876 					      bool efficiencies)
877 {
878 	struct cpufreq_frequency_table *table = policy->freq_table;
879 	struct cpufreq_frequency_table *pos;
880 	unsigned int freq;
881 	int idx, best = -1;
882 
883 	cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) {
884 		freq = pos->frequency;
885 
886 		if (freq == target_freq)
887 			return idx;
888 
889 		if (freq < target_freq) {
890 			best = idx;
891 			continue;
892 		}
893 
894 		/* No freq found below target_freq */
895 		if (best == -1)
896 			return idx;
897 
898 		return best;
899 	}
900 
901 	return best;
902 }
903 
904 /* Find highest freq at or below target in a table in descending order */
cpufreq_table_find_index_dh(struct cpufreq_policy * policy,unsigned int target_freq,bool efficiencies)905 static inline int cpufreq_table_find_index_dh(struct cpufreq_policy *policy,
906 					      unsigned int target_freq,
907 					      bool efficiencies)
908 {
909 	struct cpufreq_frequency_table *table = policy->freq_table;
910 	struct cpufreq_frequency_table *pos;
911 	unsigned int freq;
912 	int idx, best = -1;
913 
914 	cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) {
915 		freq = pos->frequency;
916 
917 		if (freq <= target_freq)
918 			return idx;
919 
920 		best = idx;
921 	}
922 
923 	return best;
924 }
925 
926 /* Works only on sorted freq-tables */
cpufreq_table_find_index_h(struct cpufreq_policy * policy,unsigned int target_freq,bool efficiencies)927 static inline int cpufreq_table_find_index_h(struct cpufreq_policy *policy,
928 					     unsigned int target_freq,
929 					     bool efficiencies)
930 {
931 	target_freq = clamp_val(target_freq, policy->min, policy->max);
932 
933 	if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
934 		return cpufreq_table_find_index_ah(policy, target_freq,
935 						   efficiencies);
936 	else
937 		return cpufreq_table_find_index_dh(policy, target_freq,
938 						   efficiencies);
939 }
940 
941 /* Find closest freq to target in a table in ascending order */
cpufreq_table_find_index_ac(struct cpufreq_policy * policy,unsigned int target_freq,bool efficiencies)942 static inline int cpufreq_table_find_index_ac(struct cpufreq_policy *policy,
943 					      unsigned int target_freq,
944 					      bool efficiencies)
945 {
946 	struct cpufreq_frequency_table *table = policy->freq_table;
947 	struct cpufreq_frequency_table *pos;
948 	unsigned int freq;
949 	int idx, best = -1;
950 
951 	cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) {
952 		freq = pos->frequency;
953 
954 		if (freq == target_freq)
955 			return idx;
956 
957 		if (freq < target_freq) {
958 			best = idx;
959 			continue;
960 		}
961 
962 		/* No freq found below target_freq */
963 		if (best == -1)
964 			return idx;
965 
966 		/* Choose the closest freq */
967 		if (target_freq - table[best].frequency > freq - target_freq)
968 			return idx;
969 
970 		return best;
971 	}
972 
973 	return best;
974 }
975 
976 /* Find closest freq to target in a table in descending order */
cpufreq_table_find_index_dc(struct cpufreq_policy * policy,unsigned int target_freq,bool efficiencies)977 static inline int cpufreq_table_find_index_dc(struct cpufreq_policy *policy,
978 					      unsigned int target_freq,
979 					      bool efficiencies)
980 {
981 	struct cpufreq_frequency_table *table = policy->freq_table;
982 	struct cpufreq_frequency_table *pos;
983 	unsigned int freq;
984 	int idx, best = -1;
985 
986 	cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) {
987 		freq = pos->frequency;
988 
989 		if (freq == target_freq)
990 			return idx;
991 
992 		if (freq > target_freq) {
993 			best = idx;
994 			continue;
995 		}
996 
997 		/* No freq found above target_freq */
998 		if (best == -1)
999 			return idx;
1000 
1001 		/* Choose the closest freq */
1002 		if (table[best].frequency - target_freq > target_freq - freq)
1003 			return idx;
1004 
1005 		return best;
1006 	}
1007 
1008 	return best;
1009 }
1010 
1011 /* Works only on sorted freq-tables */
cpufreq_table_find_index_c(struct cpufreq_policy * policy,unsigned int target_freq,bool efficiencies)1012 static inline int cpufreq_table_find_index_c(struct cpufreq_policy *policy,
1013 					     unsigned int target_freq,
1014 					     bool efficiencies)
1015 {
1016 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1017 
1018 	if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
1019 		return cpufreq_table_find_index_ac(policy, target_freq,
1020 						   efficiencies);
1021 	else
1022 		return cpufreq_table_find_index_dc(policy, target_freq,
1023 						   efficiencies);
1024 }
1025 
cpufreq_frequency_table_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)1026 static inline int cpufreq_frequency_table_target(struct cpufreq_policy *policy,
1027 						 unsigned int target_freq,
1028 						 unsigned int relation)
1029 {
1030 	bool efficiencies = policy->efficiencies_available &&
1031 			    (relation & CPUFREQ_RELATION_E);
1032 	int idx;
1033 
1034 	/* cpufreq_table_index_unsorted() has no use for this flag anyway */
1035 	relation &= ~CPUFREQ_RELATION_E;
1036 
1037 	if (unlikely(policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED))
1038 		return cpufreq_table_index_unsorted(policy, target_freq,
1039 						    relation);
1040 retry:
1041 	switch (relation) {
1042 	case CPUFREQ_RELATION_L:
1043 		idx = cpufreq_table_find_index_l(policy, target_freq,
1044 						 efficiencies);
1045 		break;
1046 	case CPUFREQ_RELATION_H:
1047 		idx = cpufreq_table_find_index_h(policy, target_freq,
1048 						 efficiencies);
1049 		break;
1050 	case CPUFREQ_RELATION_C:
1051 		idx = cpufreq_table_find_index_c(policy, target_freq,
1052 						 efficiencies);
1053 		break;
1054 	default:
1055 		WARN_ON_ONCE(1);
1056 		return 0;
1057 	}
1058 
1059 	if (idx < 0 && efficiencies) {
1060 		efficiencies = false;
1061 		goto retry;
1062 	}
1063 
1064 	return idx;
1065 }
1066 
cpufreq_table_count_valid_entries(const struct cpufreq_policy * policy)1067 static inline int cpufreq_table_count_valid_entries(const struct cpufreq_policy *policy)
1068 {
1069 	struct cpufreq_frequency_table *pos;
1070 	int count = 0;
1071 
1072 	if (unlikely(!policy->freq_table))
1073 		return 0;
1074 
1075 	cpufreq_for_each_valid_entry(pos, policy->freq_table)
1076 		count++;
1077 
1078 	return count;
1079 }
1080 
1081 /**
1082  * cpufreq_table_set_inefficient() - Mark a frequency as inefficient
1083  * @policy:	the &struct cpufreq_policy containing the inefficient frequency
1084  * @frequency:	the inefficient frequency
1085  *
1086  * The &struct cpufreq_policy must use a sorted frequency table
1087  *
1088  * Return:	%0 on success or a negative errno code
1089  */
1090 
1091 static inline int
cpufreq_table_set_inefficient(struct cpufreq_policy * policy,unsigned int frequency)1092 cpufreq_table_set_inefficient(struct cpufreq_policy *policy,
1093 			      unsigned int frequency)
1094 {
1095 	struct cpufreq_frequency_table *pos;
1096 
1097 	/* Not supported */
1098 	if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED)
1099 		return -EINVAL;
1100 
1101 	cpufreq_for_each_valid_entry(pos, policy->freq_table) {
1102 		if (pos->frequency == frequency) {
1103 			pos->flags |= CPUFREQ_INEFFICIENT_FREQ;
1104 			policy->efficiencies_available = true;
1105 			return 0;
1106 		}
1107 	}
1108 
1109 	return -EINVAL;
1110 }
1111 
parse_perf_domain(int cpu,const char * list_name,const char * cell_name)1112 static inline int parse_perf_domain(int cpu, const char *list_name,
1113 				    const char *cell_name)
1114 {
1115 	struct device_node *cpu_np;
1116 	struct of_phandle_args args;
1117 	int ret;
1118 
1119 	cpu_np = of_cpu_device_node_get(cpu);
1120 	if (!cpu_np)
1121 		return -ENODEV;
1122 
1123 	ret = of_parse_phandle_with_args(cpu_np, list_name, cell_name, 0,
1124 					 &args);
1125 	if (ret < 0)
1126 		return ret;
1127 
1128 	of_node_put(cpu_np);
1129 
1130 	return args.args[0];
1131 }
1132 
of_perf_domain_get_sharing_cpumask(int pcpu,const char * list_name,const char * cell_name,struct cpumask * cpumask)1133 static inline int of_perf_domain_get_sharing_cpumask(int pcpu, const char *list_name,
1134 						     const char *cell_name, struct cpumask *cpumask)
1135 {
1136 	int target_idx;
1137 	int cpu, ret;
1138 
1139 	ret = parse_perf_domain(pcpu, list_name, cell_name);
1140 	if (ret < 0)
1141 		return ret;
1142 
1143 	target_idx = ret;
1144 	cpumask_set_cpu(pcpu, cpumask);
1145 
1146 	for_each_possible_cpu(cpu) {
1147 		if (cpu == pcpu)
1148 			continue;
1149 
1150 		ret = parse_perf_domain(cpu, list_name, cell_name);
1151 		if (ret < 0)
1152 			continue;
1153 
1154 		if (target_idx == ret)
1155 			cpumask_set_cpu(cpu, cpumask);
1156 	}
1157 
1158 	return target_idx;
1159 }
1160 #else
cpufreq_boost_trigger_state(int state)1161 static inline int cpufreq_boost_trigger_state(int state)
1162 {
1163 	return 0;
1164 }
cpufreq_boost_enabled(void)1165 static inline int cpufreq_boost_enabled(void)
1166 {
1167 	return 0;
1168 }
1169 
cpufreq_enable_boost_support(void)1170 static inline int cpufreq_enable_boost_support(void)
1171 {
1172 	return -EINVAL;
1173 }
1174 
policy_has_boost_freq(struct cpufreq_policy * policy)1175 static inline bool policy_has_boost_freq(struct cpufreq_policy *policy)
1176 {
1177 	return false;
1178 }
1179 
1180 static inline int
cpufreq_table_set_inefficient(struct cpufreq_policy * policy,unsigned int frequency)1181 cpufreq_table_set_inefficient(struct cpufreq_policy *policy,
1182 			      unsigned int frequency)
1183 {
1184 	return -EINVAL;
1185 }
1186 
of_perf_domain_get_sharing_cpumask(int pcpu,const char * list_name,const char * cell_name,struct cpumask * cpumask)1187 static inline int of_perf_domain_get_sharing_cpumask(int pcpu, const char *list_name,
1188 						     const char *cell_name, struct cpumask *cpumask)
1189 {
1190 	return -EOPNOTSUPP;
1191 }
1192 #endif
1193 
1194 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
1195 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
1196 			struct cpufreq_governor *old_gov);
1197 #else
sched_cpufreq_governor_change(struct cpufreq_policy * policy,struct cpufreq_governor * old_gov)1198 static inline void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
1199 			struct cpufreq_governor *old_gov) { }
1200 #endif
1201 
1202 extern unsigned int arch_freq_get_on_cpu(int cpu);
1203 
1204 #ifndef arch_set_freq_scale
1205 static __always_inline
arch_set_freq_scale(const struct cpumask * cpus,unsigned long cur_freq,unsigned long max_freq)1206 void arch_set_freq_scale(const struct cpumask *cpus,
1207 			 unsigned long cur_freq,
1208 			 unsigned long max_freq)
1209 {
1210 }
1211 #endif
1212 /* the following are really really optional */
1213 extern struct freq_attr cpufreq_freq_attr_scaling_available_freqs;
1214 extern struct freq_attr cpufreq_freq_attr_scaling_boost_freqs;
1215 extern struct freq_attr *cpufreq_generic_attr[];
1216 int cpufreq_table_validate_and_sort(struct cpufreq_policy *policy);
1217 
1218 unsigned int cpufreq_generic_get(unsigned int cpu);
1219 void cpufreq_generic_init(struct cpufreq_policy *policy,
1220 		struct cpufreq_frequency_table *table,
1221 		unsigned int transition_latency);
1222 
cpufreq_register_em_with_opp(struct cpufreq_policy * policy)1223 static inline void cpufreq_register_em_with_opp(struct cpufreq_policy *policy)
1224 {
1225 	dev_pm_opp_of_register_em(get_cpu_device(policy->cpu),
1226 				  policy->related_cpus);
1227 }
1228 #endif /* _LINUX_CPUFREQ_H */
1229